1
|
Pozaruk A, Atamaniuk V, Pawar K, Carey A, Cheng J, Cholewa M, Grummet J, Chen Z, Egan G. Correlations Between MR Apparent Diffusion Coefficients and PET Standard Uptake Values in Simultaneous MR-PET Imaging of Prostate Cancer. Int J Mol Sci 2025; 26:905. [PMID: 39940674 PMCID: PMC11817574 DOI: 10.3390/ijms26030905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
This study evaluated the hypothesis that 68Ga-PSMA-11 PET SUV, obtained via an advanced DL approach, correlates better with MR ADC maps than values from conventional PET-MR. Additionally, we aimed to identify the optimal SUV threshold for maximum correlation with ADC values. A cohort of 32 prostate cancer patients underwent CT and corresponding PET-MR imaging. The dataset underwent K-fold cross-validation, dividing it into four folds. In each fold, 24 patients were used for training, and 8 for validation to create DL models. ADC maps from 27 out of 32 patients were successfully aligned with T2 images for detailed analysis, revealing an inverse correlation (ρ = -0.20 to -0.51) between ADC and SUV values in prostate cancer zones. Statistically significant differences in mean SUV values were observed between PETMRI and PETDL. DL-based SUV values show a stronger correlation with ADC than conventional PET-MR values in our investigation.
Collapse
Affiliation(s)
- Andrii Pozaruk
- Department of Photomedicine and Physical Chemistry, Institute of Medical Sciences, The Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland
- Institute of Physics, College of Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland; (V.A.); (M.C.)
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia; (K.P.); (A.C.); (Z.C.); (G.E.)
| | - Vitaliy Atamaniuk
- Institute of Physics, College of Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland; (V.A.); (M.C.)
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia; (K.P.); (A.C.); (Z.C.); (G.E.)
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Alexandra Carey
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia; (K.P.); (A.C.); (Z.C.); (G.E.)
- Monash Imaging, Monash Health, Clayton, VIC 3168, Australia
| | - Jeremy Cheng
- Department of Surgery, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (J.C.); (J.G.)
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland; (V.A.); (M.C.)
| | - Jeremy Grummet
- Department of Surgery, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (J.C.); (J.G.)
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia; (K.P.); (A.C.); (Z.C.); (G.E.)
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, VIC 3168, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia; (K.P.); (A.C.); (Z.C.); (G.E.)
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Wang W, Shang S, Wang Y, Xu B. Utilization of nanomaterials in MRI contrast agents and their role in therapy guided by imaging. Front Bioeng Biotechnol 2024; 12:1484577. [PMID: 39628648 PMCID: PMC11611570 DOI: 10.3389/fbioe.2024.1484577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is a globally acknowledged diagnostic procedure particularly recognized for its superior soft tissue contrast, high-resolution imaging, and non-ionizing radiation properties, making it an indispensable tool in the medical field. However, to optimize MRI's sensitivity and specificity towards certain diseases, use of contrast agents becomes necessary. Recent developments focus on nanomaterial-based MRI contrast agents to improve diagnostic accuracy and image quality. This review highlights advancements in such agents, including metal oxide nanoparticles, carbon-based materials, gold nanoparticles, and quantum dots. It discusses their roles in MRI-guided therapies like targeted drug delivery, hyperthermia, radiation therapy, photodynamic therapy, immunity-boosting therapy, and gene therapy. Insights into the future potential of MRI contrast agents in imaging medicine are also provided.
Collapse
Affiliation(s)
| | | | | | - Bing Xu
- Department of Radiology, Beijing Shunyi District Hospital, Shunyi Teaching Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Rabe M, Dietrich O, Forbrig R, Niyazi M, Belka C, Corradini S, Landry G, Kurz C. Repeatability quantification of brain diffusion-weighted imaging for future clinical implementation at a low-field MR-linac. Radiat Oncol 2024; 19:31. [PMID: 38448888 PMCID: PMC10916154 DOI: 10.1186/s13014-024-02424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Longitudinal assessments of apparent diffusion coefficients (ADCs) derived from diffusion-weighted imaging (DWI) during intracranial radiotherapy at magnetic resonance imaging-guided linear accelerators (MR-linacs) could enable early response assessment by tracking tumor diffusivity changes. However, DWI pulse sequences are currently unavailable in clinical practice at low-field MR-linacs. Quantifying the in vivo repeatability of ADC measurements is a crucial step towards clinical implementation of DWI sequences but has not yet been reported on for low-field MR-linacs. This study assessed ADC measurement repeatability in a phantom and in vivo at a 0.35 T MR-linac. METHODS Eleven volunteers and a diffusion phantom were imaged on a 0.35 T MR-linac. Two echo-planar imaging DWI sequence variants, emphasizing high spatial resolution ("highRes") and signal-to-noise ratio ("highSNR"), were investigated. A test-retest study with an intermediate outside-scanner-break was performed to assess repeatability in the phantom and volunteers' brains. Mean ADCs within phantom vials, cerebrospinal fluid (CSF), and four brain tissue regions were compared to literature values. Absolute relative differences of mean ADCs in pre- and post-break scans were calculated for the diffusion phantom, and repeatability coefficients (RC) and relative RC (relRC) with 95% confidence intervals were determined for each region-of-interest (ROI) in volunteers. RESULTS Both DWI sequence variants demonstrated high repeatability, with absolute relative deviations below 1% for water, dimethyl sulfoxide, and polyethylene glycol in the diffusion phantom. RelRCs were 7% [5%, 12%] (CSF; highRes), 12% [9%, 22%] (CSF; highSNR), 9% [8%, 12%] (brain tissue ROIs; highRes), and 6% [5%, 7%] (brain tissue ROIs; highSNR), respectively. ADCs measured with the highSNR variant were consistent with literature values for volunteers, while smaller mean values were measured for the diffusion phantom. Conversely, the highRes variant underestimated ADCs compared to literature values, indicating systematic deviations. CONCLUSIONS High repeatability of ADC measurements in a diffusion phantom and volunteers' brains were measured at a low-field MR-linac. The highSNR variant outperformed the highRes variant in accuracy and repeatability, at the expense of an approximately doubled voxel volume. The observed high in vivo repeatability confirms the potential utility of DWI at low-field MR-linacs for early treatment response assessment.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and LMU University Hospital Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Bryant JM, Doniparthi A, Weygand J, Cruz-Chamorro R, Oraiqat IM, Andreozzi J, Graham J, Redler G, Latifi K, Feygelman V, Rosenberg SA, Yu HHM, Oliver DE. Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers (Basel) 2023; 15:5200. [PMID: 37958374 PMCID: PMC10649155 DOI: 10.3390/cancers15215200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ajay Doniparthi
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Joseph Weygand
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ruben Cruz-Chamorro
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ibrahim M. Oraiqat
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jacqueline Andreozzi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jasmine Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Daniel E. Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| |
Collapse
|
5
|
Weygand J, Armstrong T, Bryant JM, Andreozzi JM, Oraiqat IM, Nichols S, Liveringhouse CL, Latifi K, Yamoah K, Costello JR, Frakes JM, Moros EG, El Naqa IM, Naghavi AO, Rosenberg SA, Redler G. Accurate, repeatable, and geometrically precise diffusion-weighted imaging on a 0.35 T magnetic resonance imaging-guided linear accelerator. Phys Imaging Radiat Oncol 2023; 28:100505. [PMID: 38045642 PMCID: PMC10692914 DOI: 10.1016/j.phro.2023.100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Background and purpose Diffusion weighted imaging (DWI) allows for the interrogation of tissue cellularity, which is a surrogate for cellular proliferation. Previous attempts to incorporate DWI into the workflow of a 0.35 T MR-linac (MRL) have lacked quantitative accuracy. In this study, accuracy, repeatability, and geometric precision of apparent diffusion coefficient (ADC) maps produced using an echo planar imaging (EPI)-based DWI protocol on the MRL system is illustrated, and in vivo potential for longitudinal patient imaging is demonstrated. Materials and methods Accuracy and repeatability were assessed by measuring ADC values in a diffusion phantom at three timepoints and comparing to reference ADC values. System-dependent geometric distortion was quantified by measuring the distance between 93 pairs of phantom features on ADC maps acquired on a 0.35 T MRL and a 3.0 T diagnostic scanner and comparing to spatially precise CT images. Additionally, for five sarcoma patients receiving radiotherapy on the MRL, same-day in vivo ADC maps were acquired on both systems, one of which at multiple timepoints. Results Phantom ADC quantification was accurate on the 0.35 T MRL with significant discrepancies only seen at high ADC. Average geometric distortions were 0.35 (±0.02) mm and 0.85 (±0.02) mm in the central slice and 0.66 (±0.04) mm and 2.14 (±0.07) mm at 5.4 cm off-center for the MRL and diagnostic system, respectively. In the sarcoma patients, a mean pretreatment ADC of 910x10-6 (±100x10-6) mm2/s was measured on the MRL. Conclusions The acquisition of accurate, repeatable, and geometrically precise ADC maps is possible at 0.35 T with an EPI approach.
Collapse
Affiliation(s)
- Joseph Weygand
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - Steven Nichols
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Jessica M. Frakes
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G. Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Issam M. El Naqa
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| | - Arash O. Naghavi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
6
|
Broncano J, Steinbrecher K, Marquis KM, Raptis CA, Royuela Del Val J, Vollmer I, Bhalla S, Luna A. Diffusion-weighted Imaging of the Chest: A Primer for Radiologists. Radiographics 2023; 43:e220138. [PMID: 37347699 DOI: 10.1148/rg.220138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Diffusion-weighted imaging (DWI) is a fundamental sequence not only in neuroimaging but also in oncologic imaging and has emerging applications for MRI evaluation of the chest. DWI can be used in clinical practice to enhance lesion conspicuity, tissue characterization, and treatment response. While the spatial resolution of DWI is in the order of millimeters, changes in diffusion can be measured on the micrometer scale. As such, DWI sequences can provide important functional information to MRI evaluation of the chest but require careful optimization of acquisition parameters, notably selection of b values, application of parallel imaging, fat saturation, and motion correction techniques. Along with assessment of morphologic and other functional features, evaluation of DWI signal attenuation and apparent diffusion coefficient maps can aid in tissue characterization. DWI is a noninvasive noncontrast acquisition with an inherent quantitative nature and excellent reproducibility. The outstanding contrast-to-noise ratio provided by DWI can be used to improve detection of pulmonary, mediastinal, and pleural lesions, to identify the benign nature of complex cysts, to characterize the solid portions of cystic lesions, and to classify chest lesions as benign or malignant. DWI has several advantages over fluorine 18 (18F)-fluorodeoxyglucose PET/CT in the assessment, TNM staging, and treatment monitoring of lung cancer and other thoracic neoplasms with conventional or more recently developed therapies. © RSNA, 2023 Quiz questions for this article are available in the supplemental material. Supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.
Collapse
Affiliation(s)
- Jordi Broncano
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Kacie Steinbrecher
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Kaitlin M Marquis
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Constantin A Raptis
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Javier Royuela Del Val
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Ivan Vollmer
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Sanjeev Bhalla
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| | - Antonio Luna
- From the Cardiothoracic Imaging Unit (J.B.) and Department of Radiology (J.B., J.R.d.V.), Hospital San Juan de Dios, HT-RESSALTA, HT Médica, Avenida el Brillante No. 36, 14012 Córdoba, Spain; Cardiothoracic Imaging Section, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.S., K.M.M., C.A.R., S.B.); Cardiothoracic Imaging Section, Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain (I.V.); and MRI Section, Department of Radiology, Clínica Las Nieves, HT-SERCOSA, HT Médica, Jaén, Spain (A.L.)
| |
Collapse
|
7
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
8
|
Value of Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Prediction of Treatment Outcomes in Nasopharyngeal Carcinoma. J Comput Assist Tomogr 2022; 46:664-672. [PMID: 35483078 DOI: 10.1097/rct.0000000000001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) parameters that reflect the tumor microenvironment of nasopharyngeal carcinoma (NPC) may predict treatment response and facilitate treatment planning. This study aimed to evaluate the diffusion-weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI) values for predicting the treatment outcomes in NPC patients. METHODS Eighty-three patients with NPC underwent pretreatment MRI simulation with diffusion-weighted imaging and dynamic contrast-enhanced MRI. Average values of the apparent diffusion coefficient (ADC), Ktrans, Kep, Ve, Vp, and tumor volume of the primary tumors were measured. Other potential clinical characteristics (age, sex, staging, pathology, pretreatment Epstein-Barr virus level, and treatment type) were analyzed. Patients underwent follow-up imaging 6 months after treatment initiation. Treatment responses were assigned according to the Response Evaluation Criteria in Solid Tumors guideline (version 1.1). RESULTS Fifty-one patients showed complete response (CR), whereas 32 patients did not (non-CR). Univariable logistic regression with variables dichotomized by optimal cutoff values showed that ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, tumor volume of ≥14.05 mL, high stage (stages III and IV), and Epstein-Barr virus level of ≥2300 copies/mL were predictors of non-CR (P = 0.008, 0.05, 0.01, 0.009, and 0.04, respectively). The final multivariable model, consisting of a combination of ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, and high stage, could predict non-CR with a good discrimination ability (area under the receiver operating characteristic curve, 0.76 [95% confidence interval, 0.66-0.87]; sensitivity, 62.50%; specificity, 80.39%; and accuracy 73.49%). CONCLUSIONS A multivariable prediction model using a combination of ADC ≥1.45 × 10-3 mm2/s, Vp ≥0.14, and high stage can be effective for treatment response prediction in NPC patients.
Collapse
|
9
|
Performance of simultaneous multi-slice accelerated diffusion-weighted imaging for assessing focal renal lesions in pediatric patients with tuberous sclerosis complex. Pediatr Radiol 2021; 51:77-85. [PMID: 32845348 DOI: 10.1007/s00247-020-04798-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) is a useful MRI technique to characterize abdominal lesions in children, but long acquisition times can lead to image degradation. Simultaneous multi-slice accelerated DWI is a promising technique to shorten DWI scan times. OBJECTIVE To test the feasibility of simultaneous multi-slice DWI of the kidneys in pediatric patients with tuberous sclerosis complex (TSC) and to evaluate the accelerated protocol regarding image quality and quantitative apparent diffusion coefficient (ADC) values compared to standard echoplanar DWI sequence. MATERIALS AND METHODS We included 33 children and adolescents (12 female, 21 male; mean age 10±5 years) with TSC and renal cyst or angiomyolipoma on 3-tesla (T) MRI from 2017 to 2019. All studies included both free-breathing standard echoplanar DWI and simultaneous multi-slice DWI sequences. Subjective and quantitative image quality was evaluated using a predefined 5-point scale. ADC values were obtained for all renal cysts and angiomyolipomas ≥5 mm. All statistical analysis was performed using Stata/SE v15.1. RESULTS Simultaneous multi-slice DWI ADC values were slightly lower compared to standard echoplanar DWI for both renal cysts and angiomyolipomas (mean difference 0.05×10-3 mm2/s, 95% confidence interval [CI] 0.40-0.50 and 0.024×10-3 mm2/s, 95% CI 0.17-0.21, respectively, with P>0.1). Our results showed that renal lesions with ADC values >1.69×10-3 mm2/s were all cysts, whereas lesions with values <1.16×10-3 mm2/s were all angiomyolipomas. However, ADC values could not discriminate between lipid-rich and lipid-poor angiomyolipomas (P>0.1, for both sequences). CONCLUSION A 55% reduction in scan time was achieved using simultaneous multi-slice DWI for abdominal imaging in children with TSC, with near identical image quality as standard DWI. These results suggest that multi-slice techniques should be considered more broadly as an MRI acceleration technique in children.
Collapse
|
10
|
Radiomics in diffusion data: a test-retest, inter- and intra-reader DWI phantom study. Clin Radiol 2020; 75:798.e13-798.e22. [PMID: 32723501 DOI: 10.1016/j.crad.2020.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
AIM The aim of this study was to evaluate the robustness of radiomics features of a MRI (magnetic resonance imaging) phantom in quantitative diffusion-weighted imaging (DWI) and depending on the image resolution. MATERIALS AND METHODS Scanning of an in-house developed DWI phantom was performed at a 1.5 T MRI scanner (Magnetom AERA, Siemens, Erlangen, Germany) using an echo planar imaging (EPI) DWI sequence (b=0,500,1,000 s/mm2) with low (3×3 mm2) and high (2×2 mm2) image resolutions. Scans were repeated after phantom repositioning to evaluate retest reliability. Radiomics features were extracted after semi-automatic segmentation and standardised pre-processing. Intra-/interobserver reproducibility and test-retest robustness were assessed using intraclass correlation coefficients (ICC). Differences were tested with non-parametric Wilcoxon's signed-rank and Friedman's test (p < 0.05) with Dunn's post-hoc analysis. RESULTS Test-retest ICC was overall high with >0.90 for 39/46 radiomics features in all sequences/resolutions. Decreased test-retest ICCs were pronounced for conventional Min-value (overall ICC=0.817), and grey-level zone length matrix (GLZLM) features Short-Zone Emphasis (SZE) and Short-Zone Low Grey-level Emphasis (SZLGE) (for both overall ICC=0.927). Test-retest reproducibility was significantly different between b=500, 1,000 and apparent diffusion coefficient (ADC) (mean 0.975±0.050, 0.974±0.051 and 0.966±0.063), which remained significant after post-hoc analysis between b=1,000 and ADC (p = 0.022). ICCs were not significantly different between resolutions of 2×2 and 3×3 mm2 regarding b=500 (mean: 0.977±0.052 and 0.974±0.049, p = 0.612), b=1,000 (mean: 0.973±0.059 and 0.974±0.054, p = 0.516), and ADC (mean: 0.972±0.049 and 0.955±0.101, p = 0.851). Inter- and intra-observer reliability was consistently high for all sequences (overall mean 0.992±0.021 and 0.990±0.028). CONCLUSION Under ex-vivo conditions, DWI provided robust radiomics features with those from ADC being slightly less robust than from raw DWI (b=500, 1,000 s/mm2). No significant difference was detected for different resolutions. Although, ex-vivo reliability of DWI radiomics features was high, no implications can be made regarding in-vivo analyses.
Collapse
|
11
|
|
12
|
Dong L, Xie L, Li M, Dai H, Wang X, Wang P, Zhang Q, Liu W, Hu X, Zhao M. Downregulation of B7-H4 suppresses tumor progression of hepatocellular carcinoma. Sci Rep 2019; 9:14854. [PMID: 31619714 PMCID: PMC6795893 DOI: 10.1038/s41598-019-51253-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/28/2019] [Indexed: 01/13/2023] Open
Abstract
B7-H4, as a member of the B7 superfamily, was overexpressed in various types of cancers. However, the effects of B7-H4 on the aggressiveness of HCC and the underlying mechanisms have not yet been fully explored. For this purpose, B7-H4 expression was detected by Flow cytometry and Western blotting, it was highly expressed in several HCC cell lines but not in normal LO2 cell line. Knockdown B7-H4 expression induced HCC cells apoptosis by flow cytometry and colony formation assays and increased several apoptosis-related proteins, including survivin, cleaved caspase-3, cleaved caspase-7, and Bax, while the pro-growth protein survivin was reduced. Then the proliferation and cell cycle were suppressed after treated by siB7-H4. Moreover, the level of B7-H4 was significantly correlated with cell migration. In vivo, intra-tumor injection of siRNA targeting B7-H4 can significantly inhibited the growth of HepG2 cells in nude mice. Finally, regions of interest were manually traced on T1WI, T2WI, DWI and ADC of MR images. ADC values were increased in HCC xenografts after B7-H4 siRNA treatment. These data indicated that downregulation of B7-H4 suppressed the proliferation and migration and promoted apoptosis in vitro and in vivo. Blocking the B7-H4 channel might be a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Lijie Dong
- Department of Imaging, Binzhou Medical University, Binzhou, Shandong, 264003, P.R. China.,Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Lulu Xie
- Department of Imaging, Binzhou Medical University, Binzhou, Shandong, 264003, P.R. China
| | - Minjing Li
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Hanhan Dai
- Department of Imaging, Binzhou Medical University, Binzhou, Shandong, 264003, P.R. China
| | - Xia Wang
- Department of Oral Pathology, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Peiyuan Wang
- Department of Imaging, Binzhou Medical University, Binzhou, Shandong, 264003, P.R. China
| | - Qiang Zhang
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Wei Liu
- Department of Imaging, Binzhou Medical University, Binzhou, Shandong, 264003, P.R. China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| | - Mingdong Zhao
- Department of Imaging, Binzhou Medical University, Binzhou, Shandong, 264003, P.R. China.
| |
Collapse
|
13
|
Modulating Diffusion-Weighted Magnetic Resonance Imaging for Screening in Oncologic Tertiary Prevention: A Prospective Ex Vivo and In Vivo Study. Invest Radiol 2019; 54:704-711. [PMID: 31356384 DOI: 10.1097/rli.0000000000000596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Diffusion-weighted imaging (DWI) is an important part of oncological magnetic resonance imaging (MRI) examinations, especially for tertiary cancer prevention in terms of early detection of recurrent disease. However, abdominal studies can be challenged by motion artifacts, poor signal-to-noise ratios, and visibility of retroperitoneal structures, which necessitates sequence optimization depending on the investigated region. This study aims at prospectively evaluating an adapted DWI sequence ex vivo and in vivo in oncologic patients undergoing abdominal MRI. METHODS This institutional review board-approved, prospective study included phantom measurements, volunteer examinations, and oncologic patient examinations of the abdomen. Fifty-seven MRI examinations in 54 patients (mean age, 58 years; range, 21-90 years) were included into the analysis. The MRI examination were performed at a 1.5 T MRI scanner (MAGNETOM Aera; Siemens Healthcare, Erlangen, Germany) and included both a standard EPI-DWI (s-DWI; b = 50, 900 s/mm) and an adapted DWI (opt-DWI; EPI-DWI with b = 0, 50, 900, 1500 s/mm, acquisition with higher spatial resolution and optimized processing for the abdomen including motion correction, adaptive image combination, and background suppression). For b = 900 s/mm, the ratio of signal intensity in the normal tissue and the standard deviation of the noise in the surrounding air was quantitatively calculated; image quality and tissue differentiation parameters were rated by 2 independent, blinded readers using a 5-point Likert scale. Statistics included Wilcoxon signed-rank test and kappa statistic (P < 0.05/0.0125 after Bonferroni correction). RESULTS The DWI phantom demonstrated an optimized contour sharpness and inlay differentiation for opt-DWI. The apparent ratio of normal tissue signal/standard deviation of background noise at b = 900 s/mm of the right/left hemiabdomen was significantly increased in opt-DWI (mean, 71.9 ± 23.5/86.0 ± 43.3) versus s-DWI (mean, 51.4 ± 15.4/63.4 ± 36.5; P < 0.001). Image quality parameters (contour sharpness and tissue differentiation of upper abdominal and retroperitoneal structures) were significantly increased in opt-DWI versus s-DWI (P < 0.001). Interreader reliability test showed good agreement (kappa = 0.768; P < 0.001). DISCUSSION This study prospectively evaluated the potential of adapted DWI for screening in tertiary prevention of oncologic patients. An optimized DWI protocol with advanced processing achieved improved image quality in quantitative and qualitative analyses. Oncological optimization of DWI should be performed before its application in cancer patients to improve both screening and follow-up examinations, to better unleash the diagnostic potential of DWI.
Collapse
|
14
|
Doudou NR, Kampo S, Liu Y, Ahmmed B, Zeng D, Zheng M, Mohamadou A, Wen QP, Wang S. Monitoring the Early Antiproliferative Effect of the Analgesic-Antitumor Peptide, BmK AGAP on Breast Cancer Using Intravoxel Incoherent Motion With a Reduced Distribution of Four b-Values. Front Physiol 2019; 10:708. [PMID: 31293432 PMCID: PMC6598093 DOI: 10.3389/fphys.2019.00708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The present study aimed to investigate the possibility of using intravoxel incoherent motion (IVIM) diffusion magnetic resonance imaging (MRI) to quantitatively assess the early therapeutic effect of the analgesic–antitumor peptide BmK AGAP on breast cancer and also evaluate the medical value of a reduced distribution of four b-values. Methods: IVIM diffusion MRI using 10 b-values and 4 b-values (0–1,000 s/mm2) was performed at five different time points on BALB/c mice bearing xenograft breast tumors treated with BmK AGAP. Variability in Dslow, Dfast, PF, and ADC derived from the set of 10 b-values and 4 b-values was assessed to evaluate the antitumor effect of BmK AGAP on breast tumor. Results: The data showed that PF values significantly decreased in rBmK AGAP-treated mice on day 12 (P = 0.044). PF displayed the greatest AUC but with a poor medical value (AUC = 0.65). The data showed no significant difference between IVIM measurements acquired from the two sets of b-values at different time points except in the PF on the day 3. The within-subject coefficients of variation were relatively higher in Dfast and PF. However, except for a case noticed on day 0 in PF measurements, the results indicated no statistically significant difference at various time points in the rBmK AGAP-treated or the untreated group (P < 0.05). Conclusion: IVIM showed poor medical value in the early evaluation of the antiproliferative effect of rBmK AGAP in breast cancer, suggesting sensitivity in PF. A reduced distribution of four b-values may provide remarkable measurements but with a potential loss of accuracy in the perfusion-related parameter PF.
Collapse
Affiliation(s)
- Natacha Raissa Doudou
- Department of Radiology, Dalian Medical University, Dalian, China.,Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sylvanus Kampo
- Department of Anesthesiology, Dalian Medical University, Dalian, China.,Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yajie Liu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bulbul Ahmmed
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Dewei Zeng
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minting Zheng
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Aminou Mohamadou
- Department of Radiology, Dalian Medical University, Dalian, China
| | - Qing-Ping Wen
- Department of Anesthesiology, Dalian Medical University, Dalian, China.,Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shaowu Wang
- Department of Radiology, Dalian Medical University, Dalian, China.,Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Intra-individual comparison of conventional and simultaneous multislice-accelerated diffusion-weighted imaging in upper abdominal solid organs: value of ADC normalization using the spleen as a reference organ. Abdom Radiol (NY) 2019; 44:1808-1815. [PMID: 30737546 DOI: 10.1007/s00261-019-01924-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare the apparent diffusion coefficient (ADC) value of conventional diffusion-weighted imaging (cDWI) to simultaneous multislice-accelerated DWI (sDWI) and to evaluate the possibility of ADC normalization using the spleen as a reference organ. METHODS We retrospectively evaluated 92 patients (68 men, 24 women; mean age 60.0 years) who underwent liver magnetic resonance imaging (MRI) including both cDWI and sDWI. sDWI was obtained with an acceleration factor of 2. ADC values were measured from the right liver lobe, left liver lobe, spleen, pancreas, right kidney, and left kidney. ADC values of the spleen were used for normalization. Paired sample t test, Pearson's correlation coefficient, and Bland-Altman method were used for statistical analysis. RESULTS ADC values of cDWI were significantly lower than sDWI in all six anatomic regions (p < 0.001). The mean difference in ADC value between cDWI and sDWI ranged from 0.048 to 0.125 × 10-3 mm2/s. ADC values from cDWI and sDWI showed a moderate to very high positive correlation (p < 0.001). After ADC normalization using the spleen as a reference organ, there was no significant difference between normalized ADC of cDWI and sDWI in all 5 anatomic regions (p = 0.11 - 0.74). CONCLUSIONS Normalization of ADC using the spleen could be useful for comparing upper abdominal organs acquired with either cDWI or sDWI in longitudinal and follow-up studies.
Collapse
|
16
|
Broncano J, Alvarado-Benavides AM, Bhalla S, Álvarez-Kindelan A, Raptis CA, Luna A. Role of advanced magnetic resonance imaging in the assessment of malignancies of the mediastinum. World J Radiol 2019; 11:27-45. [PMID: 30949298 PMCID: PMC6441936 DOI: 10.4329/wjr.v11.i3.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
In the new era of functional magnetic resonance imaging (MRI), the utility of chest MRI is increasing exponentially due to several advances, including absence of ionizing radiation, excellent tissue contrast and high capability for lesion characterization and treatment monitoring. The application of several of these diagnostic weapons in a multiparametric fashion enables to better characterize thymic epithelial tumors and other mediastinal tumoral lesions, accurate assessment of the invasion of adjacent structures and detection of pathologic lymph nodes and metastasis. Also, “do not touch lesions” could be identified with the associated impact in the management of those patients. One of the hot-spots of the multiparametric chest MR is its ability to detect with acuity early response to treatment in patients with mediastinal malignant neoplasms. This has been related with higher rates of overall survival and progression free survival. Therefore, in this review we will analyze the current functional imaging techniques available (18F-Fluorodeoxiglucose positron emission tomography/computed tomography, diffusion-weighted imaging, dynamic contrast-enhanced MRI, diffusion tensor imaging and MR spectroscopy) for the evaluation of mediastinal lesions, with a focus in their correct acquisition and post-processing. Also, to review the clinical applications of these techniques in the diagnostic approach of benign and malignant conditions of the mediastinum.
Collapse
Affiliation(s)
- Jordi Broncano
- Cardiothoracic Imaging Unit, Hospital San Juan de Dios, Health Time, Cordoba 14012, Spain
| | - Ana María Alvarado-Benavides
- Cardiothoracic Department, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO 63110, United States
| | - Sanjeev Bhalla
- Cardiothoracic Department, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO 63110, United States
| | | | - Constantine A Raptis
- Cardiothoracic Department, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO 63110, United States
| | - Antonio Luna
- MR imaging Unit, Clínica Las Nieves, Jaen 23007, Spain
| |
Collapse
|
17
|
Shi B, Yuan F, Yan F, Zhang H, Pan Z, Chen W, Wang G, Tan J, Zhang Y, Ren Y, Du L. Evaluation of Effects of TGF-β1 Inhibition on Gastric Cancer in Nude Mice by Diffusion Kurtosis Imaging and In-Line X-ray Phase Contrast Imaging With Sequential Histology. J Magn Reson Imaging 2018; 49:1553-1564. [PMID: 30291648 PMCID: PMC6585615 DOI: 10.1002/jmri.26523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
Background Accurate and complete response evaluation after treatment is important to implement individualized therapy for gastric cancer. Purpose To investigate the effectiveness of diffusion kurtosis imaging (DKI) and in‐line X‐ray phase contrast imaging (ILXPCI) in the assessment of the therapeutic efficacy by transforming growth factor beta 1 (TGF‐β1) inhibition. Study Type Prospective animal study. Animal Model Thirty nude mice subcutaneous xenotransplantation tumor model of gastric cancer for DKI and 10 peritoneal metastasis nude mice model for ILXPCI. Field Strength/Sequence Examinations before and serially at 7, 14, 21, and 28 days after TGF‐β1 inhibition treatment were performed at 3T MRI including T2‐weighted imaging (T2WI) and DKI with five b values of 0, 500, 1000, 1500, 2000 s/mm2; ILXPCI examinations were performed at 14 days after treatment. Assessment DKI parameters (apparent diffusion coefficient [ADC], diffusivity [D] and kurtosis [K]) were calculated by two experienced radiologists after postprocessing. Statistical Tests For the differences in all the parameters between the baseline and each timepoint for both the treated and the control mice, the Mann–Whitney test was used. The Spearman correlation test was used to evaluate correlations among the DKI parameters and corresponding pathologic necrosis fraction (NF). Results ADC, D, and K values were significantly different between the two groups after treatment (P < 0.05). Serial measurements in the treated group showed that the ADC, D, and K values were significantly different at 7, 14, 21, and 28 days compared with baseline (P < 0.05). There were significant correlations between DKI parameters and NF (ADC, r = 0.865, P < 0.001; D, r = 0.802, P < 0.001; K, r = –0.944, P < 0.001). The ILXPCI results in the treated group showed a stronger absorption area than the control group. Data Conclusion DKI may be used to evaluate the complete course therapeutic effects of gastric cancer induced by TGF‐β1 inhibition, and the ILXPCI technique will improve the tumor microstructure resolution. Level of Evidence: 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;49:1553–1564.
Collapse
Affiliation(s)
- Bowen Shi
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Fei Yuan
- Department of Pathology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weibo Chen
- Philips Healthcare, Shanghai, P.R. China
| | | | - Jingwen Tan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yang Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yuqi Ren
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
18
|
Zheng X, Chen Y, Xiao Y, Zheng D, Chen W. Early diagnosis of radio-insensitive human nasopharyngeal carcinoma xenograft models by diffusion kurtosis imaging. Magn Reson Imaging 2018; 55:128-132. [PMID: 30098385 DOI: 10.1016/j.mri.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To investigate the feasibility of DKI in early detection of radio-insensitive nasopharyngeal carcinoma (NPC) xenografts in nude mice. MATERIALS AND METHODS Seventy-two nude mice were implanted with CNE-1 (low radio-sensitive) and CNE-2 (high radio-sensitive) NPC cell lines, and their respective xenografts were obtained. Then, the NPC-bearing nude mice were exposed to different doses of fraction irradiation, which are divided into non-irradiated group (G0), 10Gy group (G1), 20Gy group (G2), 30Gy group (G3), 3rd (G4) and 5th (G5) days after the entire dose (30y) of irradiation. Subsequently, DKI was performed on each group. Tumor volumes, shrink rates, D and K parameters were measured by two experienced radiologists. Student's t-test and receiver operating characteristic (ROC) curve analysis were conducted in this study. RESULTS The differences of volume shrinkage rate between CNE-1 and -2 were observed in G2 (P = 0.032), with the shrink rates of 5.954% and 27.716%, respectively. The D values were reduced at G1 (DG1, P = 0.001) and then increased gradually after irradiation. The K values were increased at G1 (KG1, P = 0.001) and then declined sharply in CNE-2 (P < 0.01), but not in CNE-1 xenografts (P > 0.05). The respective AUC values for DG1 and KG1 were 0.875 and 0.917, with 66.7% and 83.3% sensitivity and 100% specificity, at the cutoff values of 1.27 × 10-3 mm2/s for parameter D and 0.88 for parameter K. CONCLUSION DKI can be used for early detection of radio-insensitive NPC xenografts prior to morphological change, where DG1 and KG1 may be the most valuable indicators.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Radiologic Diagnosis, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yunbin Chen
- Department of Radiologic Diagnosis, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China; Department of Radiologic Diagnosis, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Youping Xiao
- Department of Radiologic Diagnosis, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Dechun Zheng
- Department of Radiologic Diagnosis, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | | |
Collapse
|
19
|
SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer. RADIOLOGIA 2018; 60:332-346. [PMID: 29807678 DOI: 10.1016/j.rx.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC.
Collapse
|
20
|
Fitzpatrick JJ, Ryan MA, Bruzzi JF. Diagnostic accuracy of diffusion-weighted imaging- magnetic resonance imaging compared to positron emission tomography/computed tomography in evaluating and assessing pathological response to treatment in adult patients with lymphoma: A systematic review. J Med Imaging Radiat Oncol 2018; 62:530-539. [PMID: 29577630 DOI: 10.1111/1754-9485.12723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
Abstract
The use of Positron emission tomography/computerised tomography (PET/CT) is well established in the staging and assessment of treatment response of lymphoma. Recent studies have suggested that whole body diffusion-weighted imaging -magnetic resonance imaging (WB-DW-MRI) may be an alternative to PET/CT in both staging and assessment of treatment response. A systematic review was performed to assess the ability of DW-MRI in the assessment of treatment response in lymphoma. Pubmed, Medline, Web of Science and Embase databases were queried for studies examining whole body DW-MRI compared to PET/CT in adult patients using a protocol of search terms. We carried out an extensive assessment of titles, abstracts and full texts of relevant paper as well as quality assessment with the Quality Assessment of Diagnostic Accuracy (QUADAS-2) tool. Eight studies were found to meet the criteria and were included in our review and analysis. Overall, the quality of studies was found to be moderate, with good inter-rater agreement (K = 0.74). Data analysis showed that lesion-based assessment in 5 studies with pooled results had a sensitivity and specificity of 94.7% and 99.3%. Assessment with Cohen's Kappa coefficient showed agreement to be excellent (K = 0.88). Three studies were included for qualitative analysis, two of which showed good equivalence between PET/CT and DW-MRI. WB-DWI-MRI can be considered a sensitive and specific method for assessing treatment response in Lymphoma without the use of ionising radiation or administration of F-18 Flurodeoxyglucose. Further studies are needed to evaluate the optimum b-values in assessing treatment response.
Collapse
|
21
|
Taron J, Johannink J, Bitzer M, Nikolaou K, Notohamiprodjo M, Hoffmann R. Added value of diffusion-weighted imaging in hepatic tumors and its impact on patient management. Cancer Imaging 2018. [PMID: 29514710 PMCID: PMC5842618 DOI: 10.1186/s40644-018-0140-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background To investigate the added diagnostic value of diffusion-weighted imaging (DWI) of the liver and its impact on therapy decisions in patients with hepatic malignancy. Methods Interdisciplinary gastrointestinal tumorboard cases concerning patients with hepatic malignancies discussed between 11/2015 and 06/2016 were included in this retrospective, single-center study. Two radiologists independently reviewed the respective liver MR-examination first without, then with DWI. The readers were blinded regarding number, position and size of hepatic malignancies. Cases in which DWI revealed additional findings concerning the hepatic tumor status as compared to conventional sequences alone were presented to experienced members of the interdisciplinary tumor board. In this retrospective setting changes in treatment decisions based on these additional findings in the DWI sequences were recorded. Results A total of 87 patients were included. DWI revealed additional findings in 12 patients (13,8%). These new findings had a direct effect on the therapy in 8 patients (9,2%): In 6 patients (6,9%) the surgical/interventional treatment was adapted (n = 5: extended resection, n = 1: with transarterial chemoembolization of a single hepatocellular carcinoma only detectable in DWI); 2 patients (2,3%) received systemic therapy (n = 1: neo-adjuvant, n = 1: palliative) based on the additional findings in DWI. In 4 patients (4.6%) additional DWI findings did not affect the therapeutic decision. Conclusions DWI is a relevant diagnostic tool in oncologic imaging of the liver. By providing further information regarding tumor load in hepatic malignancies it can lead to a significant change in treatment.
Collapse
Affiliation(s)
- Jana Taron
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Jonas Johannink
- Department of Visceral Surgery, University Hospital of Tuebingen, Tuebingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Mike Notohamiprodjo
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.
| | - Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| |
Collapse
|
22
|
SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer. Clin Transl Oncol 2017; 20:837-852. [PMID: 29256154 PMCID: PMC5996017 DOI: 10.1007/s12094-017-1795-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision-making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC.
Collapse
|
23
|
Clinical Robustness of Accelerated and Optimized Abdominal Diffusion-Weighted Imaging. Invest Radiol 2017; 52:590-595. [DOI: 10.1097/rli.0000000000000370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Lin YC, Lin G, Hong JH, Lin YP, Chen FH, Ng SH, Wang CC. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology. J Magn Reson Imaging 2017; 46:483-489. [PMID: 28176411 DOI: 10.1002/jmri.25583] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To investigate the biological meaning of apparent diffusion coefficient (ADC) values in tumors following radiotherapy. MATERIALS AND METHODS Five mice bearing TRAMP-C1 tumor were half-irradiated with a dose of 15 Gy. Diffusion-weighted images, using multiple b-values from 0 to 3000 s/mm2 , were acquired at 7T on day 6. ADC values calculated by a two-point estimate and monoexponential fitting of signal decay were compared between the irradiated and nonirradiated regions of the tumor. Pixelwise ADC maps were correlated with histological metrics including nuclear counts, nuclear sizes, nuclear spaces, cytoplasmic spaces, and extracellular spaces. RESULTS As compared with the nonirradiated region, the irradiated region exhibited significant increases in ADC, extracellular space, and nuclear size, and a significant decrease in nuclear counts (P < 0.001 for all). Optimal ADC to differentiate the irradiated from nonirradiated regions was achieved at a b-value of 800 s/mm2 by the two-point method and monoexponential curve fitting. ADC positively correlated with extracellular spaces (r = 0.74) and nuclear sizes (r = 0.72), and negatively correlated with nuclear counts (r = -0.82, P < 0.001 for all). CONCLUSION As a radiomic biomarker, ADC maps correlating with histological metrics pixelwise could be a means of evaluating tumor heterogeneity and responses to radiotherapy. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:483-489.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taiwan.,Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ji-Hong Hong
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan
| | - Chun-Chieh Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Dinapoli N, Tartaglione T, Bussu F, Autorino R, Miccichè F, Sciandra M, Visconti E, Colosimo C, Paludetti G, Valentini V. Modelling tumour volume variations in head and neck cancer: contribution of magnetic resonance imaging for patients undergoing induction chemotherapy. ACTA OTORHINOLARYNGOLOGICA ITALICA 2016; 37:9-16. [PMID: 27897274 PMCID: PMC5384316 DOI: 10.14639/0392-100x-906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 11/23/2022]
Abstract
Primary tumour volume evaluation has predictive value for estimating survival outcomes. Using volumetric data acquired by MRI in patients undergoing induction chemotherapy (IC) these outcomes were estimated before the radiotherapy course in head and neck cancer (HNC) patients. MRI performed before and after IC in 36 locally advanced HNC patients were analysed to measure primary tumour volume. The two volumes were correlated using the linear-log ratio (LLR) between the volume in the first MRI and the volume in the second. Cox's proportional hazards models (CPHM) were defined for loco-regional control (LRC), disease-free survival (DFS) and overall survival (OS). Strict evaluation of the influence of volume delineation uncertainties on prediction of final outcomes has been defined. LLR showed good predictive value for all survival outcomes in CPHM. Predictive models for LRC and DFS at 24 months showed optimal discrimination and prediction capability. Evaluation of primary tumour volume variations in HNC after IC provides an example of modelling that can be easily used even for other adaptive treatment approaches. A complete assessment of uncertainties in covariates required for running models is a prerequisite to create reliable clinically models.
Collapse
Affiliation(s)
- N Dinapoli
- Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - T Tartaglione
- Institute of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Bussu
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - R Autorino
- Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Miccichè
- Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Sciandra
- Institute of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Visconti
- Institute of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Colosimo
- Institute of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Paludetti
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - V Valentini
- Institute of Radiotherapy, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
26
|
Chen X, Ma Z, Huang Y, He L, Liang C, Shi C, Zhang Z, Liang C, Liu Z. Multiparametric MR diffusion-weighted imaging for monitoring the ultra-early treatment effect of sorafenib in human hepatocellular carcinoma xenografts. J Magn Reson Imaging 2016; 46:248-256. [PMID: 27783444 DOI: 10.1002/jmri.25527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To investigate the value of multiparametric magnetic resonance imaging (MRI) diffusion-weighted imaging (DWI) for monitoring the ultra-early (within 24 hours) treatment effect of sorafenib in human hepatocellular carcinoma (HCC) xenografts. MATERIALS AND METHODS With institutional Animal Care and Use Committee approval, 16 BALB/c nude mice bearing subcutaneous HCC xenografts underwent serial Gaussian and non-Gaussian DWI at baseline and 1, 3, 6, 12, and 24 hours posttreatment using a 1.5T whole-body MRI system. Gaussian-DWI-derived apparent diffusion coefficient (ADC), D, D*, and f, and non-Gaussian-DWI-derived MD, MK, DDC, and α were calculated and compared between the control (n = 6) and sorafenib-treated groups (n = 10) with respect to each timepoint using Mann-Whitney or Wilcoxon signed-rank test. Results were validated by pathology. RESULTS Compared to baseline, ADC and D at 1 hour posttreatment (P = 0.005 and P = 0.013, respectively) and MD and DDC at 3 hours posttreatment (P = 0.009 and P = 0.005, respectively) significantly decreased and remained lower through 12 hours of follow-up (P = 0.005-0.022), followed by recovery to baseline levels at 24 hours posttreatment (P = 0.139-0.646). MK significantly increased at 1 hour posttreatment (P = 0.013) and remained higher through 24 hours of follow-up (P = 0.009-0.028). No significant differences were found in D*, f, and α at different timepoints (P = 0.188-0.714). Light microscopy did not reveal abnormal findings until 3 hours posttreatment, when central patchy necrosis was observed; more prominent diffuse necrosis was observed at 24 hours. Electron microscopy revealed swollen mitochondria at 1 hour posttreatment and accumulation of intracellular autophagosomes from 3 to 24 hours posttreatment. CONCLUSION Multiparametric DWI might evaluate therapeutic effects of sorafenib in HCC, where metrics of ADC, D, and MK could potentially serve as imaging biomarkers for monitoring therapeutic effects as early as 1 hour after treatment. Level of Evidence 1 Technical Efficacy: Stage 4 J. MAGN. RESON. IMAGING 2017;46:248-256.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zelan Ma
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanqi Huang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan He
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuishan Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Changzheng Shi
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | | | - Changhong Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
27
|
Wu B, Warnock G, Zaiss M, Lin C, Chen M, Zhou Z, Mu L, Nanz D, Tuura R, Delso G. An overview of CEST MRI for non-MR physicists. EJNMMI Phys 2016; 3:19. [PMID: 27562024 PMCID: PMC4999387 DOI: 10.1186/s40658-016-0155-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/06/2016] [Indexed: 01/16/2023] Open
Abstract
The search for novel image contrasts has been a major driving force in the magnetic resonance (MR) research community, in order to gain further information on the body’s physiological and pathological conditions. Chemical exchange saturation transfer (CEST) is a novel MR technique that enables imaging certain compounds at concentrations that are too low to impact the contrast of standard MR imaging and too low to directly be detected in MRS at typical water imaging resolution. For this to be possible, the target compound must be capable of exchanging protons with the surrounding water molecules. This property can be exploited to cause a continuous buildup of magnetic saturation of water, leading to greatly enhanced sensitivity. The goal of the present review is to introduce the basic principles of CEST imaging to the general molecular imaging community. Special focus has been given to the comparison of state-of-the-art CEST methods reported in the literature with their positron emission tomography (PET) counterparts.
Collapse
Affiliation(s)
- B Wu
- GE Healthcare, Waukesha (WI), USA
| | - G Warnock
- PMOD Technologies Ltd., Zurich, Switzerland
| | - M Zaiss
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Lin
- GE Healthcare, Waukesha (WI), USA
| | - M Chen
- Peking Hospital, Beijing, China
| | - Z Zhou
- GE Healthcare, Waukesha (WI), USA
| | - L Mu
- University of Zurich, Zurich, Switzerland
| | - D Nanz
- University Hospital of Zurich, Zurich, Switzerland
| | - R Tuura
- Children's Hospital Zurich, Zurich, Switzerland
| | - G Delso
- GE Healthcare, Waukesha (WI), USA.
| |
Collapse
|
28
|
Weiss E, Ford JC, Olsen KM, Karki K, Saraiya S, Groves R, Hugo GD. Apparent diffusion coefficient (ADC) change on repeated diffusion-weighted magnetic resonance imaging during radiochemotherapy for non-small cell lung cancer: A pilot study. Lung Cancer 2016; 96:113-9. [DOI: 10.1016/j.lungcan.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/11/2016] [Accepted: 04/03/2016] [Indexed: 12/12/2022]
|
29
|
Scan time minimization in hepatic diffusion-weighted imaging: evaluation of the simultaneous multislice acceleration technique with different acceleration factors and gradient preparation schemes. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:739-49. [DOI: 10.1007/s10334-016-0553-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/21/2023]
|
30
|
Broncano J, Luna A, Sánchez-González J, Alvarez-Kindelan A, Bhalla S. Functional MR Imaging in Chest Malignancies. Magn Reson Imaging Clin N Am 2016; 24:135-155. [DOI: 10.1016/j.mric.2015.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Liu LP, Cui LB, Zhang XX, Cao J, Chang N, Tang X, Qi S, Zhang XL, Yin H, Zhang J. Diagnostic Performance of Diffusion-weighted Magnetic Resonance Imaging in Bone Malignancy: Evidence From a Meta-Analysis. Medicine (Baltimore) 2015; 94:e1998. [PMID: 26559290 PMCID: PMC4912284 DOI: 10.1097/md.0000000000001998] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Current state-of-the-art nuclear medicine imaging methods (such as PET/CT or bone scintigraphy) may have insufficient sensitivity for predicting bone tumor, and substantial exposure to ionizing radiation is associated with the risk of secondary cancer development. Diffusion-weighted MRI (DW-MRI) is radiation free and requires no intravenous contrast media, and hence is more suitable for population groups that are vulnerable to ionizing radiation and/or impaired renal functions. This meta-analysis was conducted to investigate whether whole-body DW-MRI is a viable means in differentiating bone malignancy. Medline and Embase databases were searched from their inception to May 2015 without language restriction for studies evaluating DW-MRI for detection of bone lesions. Methodological quality was assessed by the quality assessment of diagnostic studies (QUADAS-2) instrument. Sensitivities, specificities, diagnostic odds ratio (DOR), and areas under the curve (AUC) were used as measures of the diagnostic accuracy. We combined the effects by using the random-effects mode. Potential threshold effects and publication bias were investigated. We included data from 32 studies with 1507 patients. The pooled sensitivity, specificity, and AUC were 0.95 (95% CI, 0.90-0.97), 0.92 (95% CI, 0.88-0.95), and 0.98 on a per-patient basis, and they were 0.91 (95% CI, 0.87-0.94), 0.94 (95% CI, 0.90-0.96), and 0.97 on a per-lesion basis. In subgroup analysis, there is no statistical significance found in the sensitivity and specificity of using DWI only and DWI combined with other morphological or functional imaging sequence in both basis (P > 0.05). A b value of 750 to 1000 s/mm enables higher AUC and DOR for whole-body imaging purpose when compared with other values in both basis either (P < 0.01). The ROC space did not show a curvilinear trend of points and a threshold effect was not observed. According to the Deek's plots, there was no publication bias on both basis. Our results support the use of DWI as an effective means for distinguishing malignant bone lesions; however, various imaging parameters need to be standardized prior to its broad use in clinical practice.
Collapse
Affiliation(s)
- Li-Peng Liu
- From the Department of Respiratory Medicine (L-PL, X-XZ, JC, NC, JZ); Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (L-BC, XT, SQ, HY); and Department of Radiology, University of California, San Francisco, California (X-LZ)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol 2015; 26:1048-1057. [PMID: 25471332 DOI: 10.1093/annonc/mdu558] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023] Open
Abstract
Bone is the most common site for breast cancer metastases, occurring in up to 70% of those with metastatic disease. In order to effectively manage these patients, it is essential to have consistent, reproducible and validated methods of assessing response to therapy. We present current clinical practice of imaging response assessment of bone metastases. We also review the biology of bone metastases and measures of response assessment including clinical assessment, tumour markers and imaging techniques; bone scans (BSs), computed tomography (CT), positron emission tomography, magnetic resonance imaging (MRI) and whole-body diffusion-weighted MRI (WB DW-MRI). The current standard of care of BSs and CT has significant limitations and are not routinely recommended for the purpose of response assessment in the bones. WB DW-MRI has the potential to address this unmet need and should be evaluated in clinical trials.
Collapse
Affiliation(s)
- D K Woolf
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood.
| | - A R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, UK
| | - A Makris
- Breast Cancer Research Unit, Mount Vernon Cancer Centre, Northwood
| |
Collapse
|
33
|
Guo Z, Zhang Q, Li X, Jing Z. Intravoxel Incoherent Motion Diffusion Weighted MR Imaging for Monitoring the Instantly Therapeutic Efficacy of Radiofrequency Ablation in Rabbit VX2 Tumors without Evident Links between Conventional Perfusion Weighted Images. PLoS One 2015; 10:e0127964. [PMID: 26020785 PMCID: PMC4447409 DOI: 10.1371/journal.pone.0127964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/21/2015] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To investigate the intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) as a potential valuable marker to monitor the therapy responses of VX2 to radiofrequency ablation (RF Ablation). METHODS The institutional animal care and use committee approved this study. In 10 VX2 tumor-bearing rabbits, IVIM-DWI examinations were performed with a 3.0T imaging unit by using 16 b values from 0 to 800 sec/mm2. The true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) of tumors were compared between before and instantly after RF Ablation treatment. The differences of D, D* and f and conventional perfusion parameters (from perfusion CT and dynamic enhanced magnetic resonance imaging, DCE-MRI) in the coagulation necrosis area, residual unablated area, untreated area, and normal control had been calculated by compared t-test. The correlation between f or D* with perfusion weighted CT including blood flow, BF (milliliter per 100 mL/min), blood volume, BV (milliliter per 100 mL/min), and capillary permeability-surface area, PMB (as a fraction) or from DCE-MRI: transfer constant (Ktrans), extra-vascular extra-cellular volume fraction (Ve) and reflux constant (Kep) values had been analyzed by region-of-interest (ROI) methods to calculate Pearson's correlation coefficients. RESULTS In the ablated necrosis areas, f and D* significantly decreased and D significantly increased, compared with residual unblazed areas or untreated control groups and normal control groups (P < 0.001). The IVIM-DWI derived f parameters showed significant increases in the residual unablated tumor area. There was no significant correlations between f or D* and conventional perfusion parameters. CONCLUSIONS The IVIM-DW derived f, D and D* parameters have the potential to indicate therapy response immediately after RF Ablation treatment, while no significant correlations with classical tumor perfusion metrics were derived from DCE-MRI and perfusion-CT measurements.
Collapse
Affiliation(s)
- Ziyi Guo
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Radiology, Haikou People’s Hospital, Xiangya Medical School, Central South University, Haikou, 570208, Hainan, P.R. China
| | - Qiang Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoguang Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- * E-mail: (ZGY); (XGL)
| | - Zhengyu Jing
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- * E-mail: (ZGY); (XGL)
| |
Collapse
|
34
|
Chen Y, Ren W, Zheng D, Zhong J, Liu X, Yue Q, Liu M, Xiao Y, Chen W, Chan Q, Pan J. Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients. J Magn Reson Imaging 2015; 42:1354-61. [PMID: 25873208 DOI: 10.1002/jmri.24910] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To explore the clinical value of diffusion kurtosis imaging (DKI) and monoexponential diffusion-weighted imaging (DWI) for predicting early response to neoadjuvant chemotherapy (NAC) in patients with nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Fifty-nine patients with stage III-IVb NPC underwent four 3.0T MR scans: prior to, and on the 4th, 21st, 42nd days after NAC initiation. The parameters of DKI (corrected diffusion coefficient, D; excess diffusion kurtosis coefficient, K) and monoexponential DWI (apparent diffusion coefficient, ADC) were obtained at the first three scans. Statistical methods included Student's t-test or Mann-Whitney U-test, receiver operating characteristic (ROC) curve analyses and paired X(2) test. RESULTS D(pre) in responders group (RG) was significantly lower than nonresponders group (NRG) (1.029 ± 0.033 vs. 1.184 ± 0.055, ×10(-3) mm(2) /s, P = 0.020). ADC(day4) and ΔD(day4) were the most useful parameters of the two diffusional models to distinguish RG from NRG, respectively (area under the curve, 0.761 vs. 0.895). ΔD(day4) was more sensitive than ADC(day4) to predict treatment response to NAC (P = 0.006). CONCLUSION Both DKI and monoexponential DWI showed potential to predict treatment response to NAC prior to morphological change. DKI may be superior to monoexponential DWI for predicting early response to NAC in patients with locally advanced NPC.
Collapse
Affiliation(s)
- Yunbin Chen
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China.,Department of Radiology, First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Wang Ren
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Dechun Zheng
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China.,Department of Radiology, First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jing Zhong
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Xiangyi Liu
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Qiuyuan Yue
- Department of Radiology, First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Meng Liu
- Department of Radiology, First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Youping Xiao
- Department of Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Weibo Chen
- Philips Healthcare, Shanghai, People's Republic of China
| | - Queenie Chan
- Philips Healthcare, Hong Kong, People's Republic of China
| | - Jianji Pan
- Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
35
|
Integrated multimodal imaging of dynamic bone-tumor alterations associated with metastatic prostate cancer. PLoS One 2015; 10:e0123877. [PMID: 25859981 PMCID: PMC4393258 DOI: 10.1371/journal.pone.0123877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/23/2015] [Indexed: 12/12/2022] Open
Abstract
Bone metastasis occurs for men with advanced prostate cancer which promotes osseous growth and destruction driven by alterations in osteoblast and osteoclast homeostasis. Patients can experience pain, spontaneous fractures and morbidity eroding overall quality of life. The complex and dynamic cellular interactions within the bone microenvironment limit current treatment options thus prostate to bone metastases remains incurable. This study uses voxel-based analysis of diffusion-weighted MRI and CT scans to simultaneously evaluate temporal changes in normal bone homeostasis along with prostate bone metatastsis to deliver an improved understanding of the spatiotemporal local microenvironment. Dynamic tumor-stromal interactions were assessed during treatment in mouse models along with a pilot prospective clinical trial with metastatic hormone sensitive and castration resistant prostate cancer patients with bone metastases. Longitudinal changes in tumor and bone imaging metrics during delivery of therapy were quantified. Studies revealed that voxel-based parametric response maps (PRM) of DW-MRI and CT scans could be used to quantify and spatially visualize dynamic changes during prostate tumor growth and in response to treatment thereby distinguishing patients with stable disease from those with progressive disease (p<0.05). These studies suggest that PRM imaging biomarkers are useful for detection of the impact of prostate tumor-stromal responses to therapies thus demonstrating the potential of multi-modal PRM image-based biomarkers as a novel means for assessing dynamic alterations associated with metastatic prostate cancer. These results establish an integrated and clinically translatable approach which can be readily implemented for improving the clinical management of patients with metastatic bone disease.
Collapse
|
36
|
Abstract
Imaging has played an important part in the diagnosis of disease and development of the understanding of the underlying disease mechanisms and is now poised to make an impact in the development of new pharmaceuticals. This chapter discusses the underlying technologies that make the field ready for this challenge. In particular, the potentials of magnetic resonance imaging and functional magnetic resonance imaging are outlined, including the new methods developed to provide additional information from the scans carried out. The field of nuclear medicine has seen a rapid increase in interest as advances in radiochemistry have enabled a wide range of new radiotracers to be synthesised.
Collapse
Affiliation(s)
- James Nairne
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, United Kingdom
| | - Peter B Iveson
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, United Kingdom
| | | |
Collapse
|
37
|
Combined PET imaging and diffusion-weighted imaging of intermediate and high-risk primary prostate carcinomas with simultaneous [18F] choline PET/MRI. PLoS One 2014; 9:e101571. [PMID: 25033396 PMCID: PMC4102471 DOI: 10.1371/journal.pone.0101571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 01/17/2023] Open
Abstract
Purpose To characterize intermediate and high-risk prostate carcinomas with measurements of standardized uptake values (SUVs) and apparent diffusion coefficient (ADC) values by means of simultaneous [18F] choline PET/MRI. Materials and Methods 35 patients with primary prostate cancer underwent simultaneous [18F] choline PET/MRI. From these, 21 patients with an intermediate and high risk constellation who were not under ongoing hormonal therapy were included. Altogether 32 tumor lesions with a focal uptake of [18F] choline could be identified. Average ADC values (ADCaver) minimum ADC values (ADCmin) as well as maximum and mean SUVs (SUVmax, SUVmean) of tumor lesions were assessed with volume-of-interest (VOI) and Region-of-interest (ROI) measurements. As a reference, also ADCaver, ADCmin and SUVmax and SUVmean of non-tumorous prostate tissue were measured. Statistical analysis comprised calculation of descriptive parameters and calculation of Pearson’s product moment correlations between ADC values and SUVs of tumor lesions. Results Mean ADCaver and ADCmin of tumor lesions were 0.94±0.22×10−3 mm2/s and 0.65±0.21×10−3 mm2/s, respectively. Mean SUVmax and SUVmean of tumor lesions were 6.3±2.3 and 2.6±0.8, respectively. These values were in each case significantly different from the reference values (p<0.001). There was no significant correlation between the measured SUVs and ADC values (SUVmax vs. ADCaver: R = −0.24, p = 0.179; SUVmax vs. ADCmin: R = −0.03, p = 0.877; SUVmean vs. ADCaver: R = −0.27, p = 0.136; SUVmean vs. ADCmin: R = −0.08, p = 0.679). Conclusion Both SUVs and ADC values differ significantly between tumor lesions and healthy tissue. However, there is no significant correlation between these two parameters. This might be explained by the fact that SUVs and ADC values characterize different parts of tumor biology.
Collapse
|
38
|
Kupelian P, Sonke JJ. Magnetic Resonance–Guided Adaptive Radiotherapy: A Solution to the Future. Semin Radiat Oncol 2014; 24:227-32. [DOI: 10.1016/j.semradonc.2014.02.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Partovi S, Kohan A, Rubbert C, Vercher-Conejero JL, Gaeta C, Yuh R, Zipp L, Herrmann KA, Robbin MR, Lee Z, Muzic RF, Faulhaber P, Ros PR. Clinical oncologic applications of PET/MRI: a new horizon. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:202-212. [PMID: 24753986 PMCID: PMC3992213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Andres Kohan
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Christian Rubbert
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Jose Luis Vercher-Conejero
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Chiara Gaeta
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Roger Yuh
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Lisa Zipp
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, University Hospitals Case Medical CenterCleveland, Ohio
| | - Karin A Herrmann
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Mark R Robbin
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Zhenghong Lee
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Raymond F Muzic
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Peter Faulhaber
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| | - Pablo R Ros
- Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve UniversityCleveland, Ohio
| |
Collapse
|