1
|
Shamsara E, Yamakou ME, Atay FM, Jost J. Dynamics of neural fields with exponential temporal kernel. Theory Biosci 2024; 143:107-122. [PMID: 38460025 PMCID: PMC11127868 DOI: 10.1007/s12064-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/09/2024] [Indexed: 03/11/2024]
Abstract
We consider the standard neural field equation with an exponential temporal kernel. We analyze the time-independent (static) and time-dependent (dynamic) bifurcations of the equilibrium solution and the emerging spatiotemporal wave patterns. We show that an exponential temporal kernel does not allow static bifurcations such as saddle-node, pitchfork, and in particular, static Turing bifurcations. However, the exponential temporal kernel possesses the important property that it takes into account the finite memory of past activities of neurons, which Green's function does not. Through a dynamic bifurcation analysis, we give explicit bifurcation conditions. Hopf bifurcations lead to temporally non-constant, but spatially constant solutions, but Turing-Hopf bifurcations generate spatially and temporally non-constant solutions, in particular, traveling waves. Bifurcation parameters are the coefficient of the exponential temporal kernel, the transmission speed of neural signals, the time delay rate of synapses, and the ratio of excitatory to inhibitory synaptic weights.
Collapse
Affiliation(s)
- Elham Shamsara
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Marius E Yamakou
- Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058, Erlangen, Germany.
| | - Fatihcan M Atay
- Department of Mathematics, Bilkent University, 06800, Ankara, Turkey
| | - Jürgen Jost
- Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22, 04103, Leipzig, Germany
- Santa Fe Institute for the Sciences of Complexity, Santa Fe, NM, 87501, USA
- ScaDS.AI, Dresden/Leipzig, Germany
| |
Collapse
|
2
|
Shaw S, Kilpatrick ZP. Representing stimulus motion with waves in adaptive neural fields. J Comput Neurosci 2024; 52:145-164. [PMID: 38607466 PMCID: PMC11802407 DOI: 10.1007/s10827-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.
Collapse
Affiliation(s)
- Sage Shaw
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
| | - Zachary P Kilpatrick
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA.
- Institute for Cognitive Sciences, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
3
|
Liu Q, Wei C, Qu Y, Liang Z. Modelling and Controlling System Dynamics of the Brain: An Intersection of Machine Learning and Control Theory. ADVANCES IN NEUROBIOLOGY 2024; 41:63-87. [PMID: 39589710 DOI: 10.1007/978-3-031-69188-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The human brain, as a complex system, has long captivated multidisciplinary researchers aiming to decode its intricate structure and function. This intricate network has driven scientific pursuits to advance our understanding of cognition, behavior, and neurological disorders by delving into the complex mechanisms underlying brain function and dysfunction. Modelling brain dynamics using machine learning techniques deepens our comprehension of brain dynamics from a computational perspective. These computational models allow researchers to simulate and analyze neural interactions, facilitating the identification of dysfunctions in connectivity or activity patterns. Additionally, the trained dynamical system, serving as a surrogate model, optimizes neurostimulation strategies under the guidelines of control theory. In this chapter, we discuss the recent studies on modelling and controlling brain dynamics at the intersection of machine learning and control theory, providing a framework to understand and improve cognitive function, and treat neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China.
| | - Chen Wei
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| | - Youzhi Qu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| | - Zhichao Liang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| |
Collapse
|
4
|
Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational Models in Electroencephalography. Brain Topogr 2021; 35:142-161. [PMID: 33779888 PMCID: PMC8813814 DOI: 10.1007/s10548-021-00828-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by “computational model” is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses in silico. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.
Collapse
Affiliation(s)
- Katharina Glomb
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
| | - Anna Cattani
- Department of Psychiatry, University of Wisconsin-Madison, Madison, USA.,Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ashish Raj
- School of Medicine, UCSF, San Francisco, USA
| | - Benedetta Franceschiello
- Department of Ophthalmology, Hopital Ophthalmic Jules Gonin, FAA, Lausanne, Switzerland.,CIBM Centre for Biomedical Imaging, EEG Section CHUV-UNIL, Lausanne, Switzerland.,Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
5
|
Wason TD. A model integrating multiple processes of synchronization and coherence for information instantiation within a cortical area. Biosystems 2021; 205:104403. [PMID: 33746019 DOI: 10.1016/j.biosystems.2021.104403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
What is the form of dynamic, e.g., sensory, information in the mammalian cortex? Information in the cortex is modeled as a coherence map of a mixed chimera state of synchronous, phasic, and disordered minicolumns. The theoretical model is built on neurophysiological evidence. Complex spatiotemporal information is instantiated through a system of interacting biological processes that generate a synchronized cortical area, a coherent aperture. Minicolumn elements are grouped in macrocolumns in an array analogous to a phased-array radar, modeled as an aperture, a "hole through which radiant energy flows." Coherence maps in a cortical area transform inputs from multiple sources into outputs to multiple targets, while reducing complexity and entropy. Coherent apertures can assume extremely large numbers of different information states as coherence maps, which can be communicated among apertures with corresponding very large bandwidths. The coherent aperture model incorporates considerable reported research, integrating five conceptually and mathematically independent processes: 1) a damped Kuramoto network model, 2) a pumped area field potential, 3) the gating of nearly coincident spikes, 4) the coherence of activity across cortical lamina, and 5) complex information formed through functions in macrocolumns. Biological processes and their interactions are described in equations and a functional circuit such that the mathematical pieces can be assembled the same way the neurophysiological ones are. The model can be conceptually convolved over the specifics of local cortical areas within and across species. A coherent aperture becomes a node in a graph of cortical areas with a corresponding distribution of information.
Collapse
Affiliation(s)
- Thomas D Wason
- North Carolina State University, Department of Biological Sciences, Meitzen Laboratory, Campus Box 7617, 128 David Clark Labs, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
6
|
Ross J, Margetts M, Bojak I, Nicks R, Avitabile D, Coombes S. Brain-wave equation incorporating axodendritic connectivity. Phys Rev E 2020; 101:022411. [PMID: 32168690 DOI: 10.1103/physreve.101.022411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
We introduce an integral model of a two-dimensional neural field that includes a third dimension representing space along a dendritic tree that can incorporate realistic patterns of axodendritic connectivity. For natural choices of this connectivity we show how to construct an equivalent brain-wave partial differential equation that allows for efficient numerical simulation of the model. This is used to highlight the effects that passive dendritic properties can have on the speed and shape of large scale traveling cortical waves.
Collapse
Affiliation(s)
- James Ross
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michelle Margetts
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ingo Bojak
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, United Kingdom
| | - Rachel Nicks
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Daniele Avitabile
- Department of Mathematics, Vrije Universiteit (VU University Amsterdam), Faculteit der Exacte Wetenschappen, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
- Mathneuro Team, Inria Sophia Antipolis, 2004 Rue des Lucioles, 06902 Sophia Antipolis, Cedex, France
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
7
|
Daini D, Ceccarelli G, Cataldo E, Jirsa V. Spherical-harmonics mode decomposition of neural field equations. Phys Rev E 2020; 101:012202. [PMID: 32069532 DOI: 10.1103/physreve.101.012202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Large-scale neural networks can be described in the spatial continuous limit by neural field equations. For large-scale brain networks, the connectivity is typically translationally variant and imposes a large computational burden upon simulations. To reduce this burden, we take a semiquantitative approach and study the dynamics of neural fields described by a delayed integrodifferential equation. We decompose the connectivity into spatially variant and invariant contributions, which typically comprise the short- and long-range fiber systems, respectively. The neural fields are mapped on the two-dimensional spherical surface, which is choice consistent with routine mappings of cortical surfaces. Then, we perform mathematically a mode decomposition of the neural field equation into spherical harmonic basis functions. A spatial truncation of the leading orders at low wave number is consistent with the spatially coherent pattern formation of large-scale patterns observed in simulations and empirical brain imaging data and leads to a low-dimensional representation of the dynamics of the neural fields, bearing promise for an acceleration of the numerical simulations by orders of magnitude.
Collapse
Affiliation(s)
- Daniele Daini
- UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Giacomo Ceccarelli
- Physics Department, Largo B. Pontecorvo 3, University of Pisa, 56127 Pisa, Italy
| | - Enrico Cataldo
- Physics Department, Largo B. Pontecorvo 3, University of Pisa, 56127 Pisa, Italy
| | - Viktor Jirsa
- UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, 27, Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
8
|
Byrne Á, O'Dea RD, Forrester M, Ross J, Coombes S. Next-generation neural mass and field modeling. J Neurophysiol 2019; 123:726-742. [PMID: 31774370 DOI: 10.1152/jn.00406.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Wilson-Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large-scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. Here, we consider a neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event-related synchronization and desynchronization. This derived mean-field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson-Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex-valued population synchrony measure. To highlight the usefulness of this next-generation Wilson-Cowan style model, we deploy it in a number of neurobiological contexts, providing understanding of the changes in power spectra observed in electro- and magnetoencephalography neuroimaging studies of motor cortex during movement, insights into patterns of functional connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.
Collapse
Affiliation(s)
- Áine Byrne
- Center for Neural Science, New York University, New York, New York.,School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael Forrester
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James Ross
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Alswaihli J, Potthast R, Bojak I, Saddy D, Hutt A. Kernel Reconstruction for Delayed Neural Field Equations. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2018; 8:3. [PMID: 29399710 PMCID: PMC5797727 DOI: 10.1186/s13408-018-0058-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
Understanding the neural field activity for realistic living systems is a challenging task in contemporary neuroscience. Neural fields have been studied and developed theoretically and numerically with considerable success over the past four decades. However, to make effective use of such models, we need to identify their constituents in practical systems. This includes the determination of model parameters and in particular the reconstruction of the underlying effective connectivity in biological tissues.In this work, we provide an integral equation approach to the reconstruction of the neural connectivity in the case where the neural activity is governed by a delay neural field equation. As preparation, we study the solution of the direct problem based on the Banach fixed-point theorem. Then we reformulate the inverse problem into a family of integral equations of the first kind. This equation will be vector valued when several neural activity trajectories are taken as input for the inverse problem. We employ spectral regularization techniques for its stable solution. A sensitivity analysis of the regularized kernel reconstruction with respect to the input signal u is carried out, investigating the Fréchet differentiability of the kernel with respect to the signal. Finally, we use numerical examples to show the feasibility of the approach for kernel reconstruction, including numerical sensitivity tests, which show that the integral equation approach is a very stable and promising approach for practical computational neuroscience.
Collapse
Affiliation(s)
- Jehan Alswaihli
- Department of Mathematics and Statistics, University of Reading, Reading, UK
- Department of Mathematics, Faculty of Education, Misurata University, Misurata, Libya
| | - Roland Potthast
- Department of Mathematics and Statistics, University of Reading, Reading, UK
- Division for Data Assimilation (FE12), Deutscher Wetterdienst, Offenbach, Germany
| | - Ingo Bojak
- Centre for Integrative Neuroscience and Neurodynamics (CINN), Department of Psychology, University of Reading, Reading, UK
| | - Douglas Saddy
- Centre for Integrative Neuroscience and Neurodynamics (CINN), Department of Psychology, University of Reading, Reading, UK
| | - Axel Hutt
- Department of Mathematics and Statistics, University of Reading, Reading, UK
- Division for Data Assimilation (FE12), Deutscher Wetterdienst, Offenbach, Germany
| |
Collapse
|
10
|
Romeo A, Supèr H. Bump competition and lattice solutions in two-dimensional neural fields. Neural Netw 2017; 94:141-158. [PMID: 28779599 DOI: 10.1016/j.neunet.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Some forms of competition among activity bumps in a two-dimensional neural field are studied. First, threshold dynamics is included and rivalry evolutions are considered. The relations between parameters and dominance durations can match experimental observations about ageing. Next, the threshold dynamics is omitted from the model and we focus on the properties of the steady-state. From noisy inputs, hexagonal grids are formed by a symmetry-breaking process. Particular issues about solution existence and stability conditions are considered. We speculate that they affect the possibility of producing basis grids which may be combined to form feature maps.
Collapse
Affiliation(s)
- August Romeo
- Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, Spain
| | - Hans Supèr
- Department of Cognition, Development and Educational Psychology, Faculty of Psychology, University of Barcelona, Spain; Institut de Neurociències, University of Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain.
| |
Collapse
|
11
|
Visser S, Nicks R, Faugeras O, Coombes S. Standing and travelling waves in a spherical brain model: The Nunez model revisited. PHYSICA D. NONLINEAR PHENOMENA 2017; 349:27-45. [PMID: 28626276 PMCID: PMC5421190 DOI: 10.1016/j.physd.2017.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.
Collapse
Affiliation(s)
- S. Visser
- School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK
- Wellcome Trust Centre for Biomedical Modelling and Analysis, RILD Building, University of Exeter, EX2 5DW, UK
| | - R. Nicks
- School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK
| | - O. Faugeras
- INRIA Sophia Antipolis Mediterannee, 2004 Route Des Lucioles, Sophia Antipolis, 06410, France
| | - S. Coombes
- School of Mathematical Sciences, University of Nottingham, NG7 2RD, UK
| |
Collapse
|
12
|
Dynamic models of large-scale brain activity. Nat Neurosci 2017; 20:340-352. [PMID: 28230845 DOI: 10.1038/nn.4497] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
|
13
|
The contribution of geometry to the human connectome. Neuroimage 2016; 124:379-393. [DOI: 10.1016/j.neuroimage.2015.09.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022] Open
|
14
|
Laing CR. Waves in Spatially-Disordered Neural Fields: A Case Study in Uncertainty Quantification. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-21296-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Nichols EJ, Hutt A. Neural field simulator: two-dimensional spatio-temporal dynamics involving finite transmission speed. Front Neuroinform 2015; 9:25. [PMID: 26539105 PMCID: PMC4611063 DOI: 10.3389/fninf.2015.00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
Neural Field models (NFM) play an important role in the understanding of neural population dynamics on a mesoscopic spatial and temporal scale. Their numerical simulation is an essential element in the analysis of their spatio-temporal dynamics. The simulation tool described in this work considers scalar spatially homogeneous neural fields taking into account a finite axonal transmission speed and synaptic temporal derivatives of first and second order. A text-based interface offers complete control of field parameters and several approaches are used to accelerate simulations. A graphical output utilizes video hardware acceleration to display running output with reduced computational hindrance compared to simulators that are exclusively software-based. Diverse applications of the tool demonstrate breather oscillations, static and dynamic Turing patterns and activity spreading with finite propagation speed. The simulator is open source to allow tailoring of code and this is presented with an extension use case.
Collapse
Affiliation(s)
- Eric J. Nichols
- Team Neurosys, Loria, Centre National de la Recherche Scientifique, INRIA, UMR no. 7503, Université de LorraineNancy, France
| | | |
Collapse
|
16
|
Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network modeling in The Virtual Brain. Neuroimage 2015; 111:385-430. [PMID: 25592995 DOI: 10.1016/j.neuroimage.2015.01.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 12/19/2022] Open
|
17
|
Woldman W, Terry JR. Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances. VALIDATING NEURO-COMPUTATIONAL MODELS OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS 2015. [DOI: 10.1007/978-3-319-20037-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Laing CR. Derivation of a neural field model from a network of theta neurons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:010901. [PMID: 25122239 DOI: 10.1103/physreve.90.010901] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Indexed: 05/20/2023]
Abstract
Neural field models are used to study macroscopic spatiotemporal patterns in the cortex. Their derivation from networks of model neurons normally involves a number of assumptions, which may not be correct. Here we present an exact derivation of a neural field model from an infinite network of theta neurons, the canonical form of a type I neuron. We demonstrate the existence of a "bump" solution in both a discrete network of neurons and in the corresponding neural field model.
Collapse
Affiliation(s)
- Carlo R Laing
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand
| |
Collapse
|
19
|
Kutchko KM, Fröhlich F. Emergence of metastable state dynamics in interconnected cortical networks with propagation delays. PLoS Comput Biol 2013; 9:e1003304. [PMID: 24204238 PMCID: PMC3812055 DOI: 10.1371/journal.pcbi.1003304] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
The importance of the large number of thin-diameter and unmyelinated axons that connect different cortical areas is unknown. The pronounced propagation delays in these axons may prevent synchronization of cortical networks and therefore hinder efficient information integration and processing. Yet, such global information integration across cortical areas is vital for higher cognitive function. We hypothesized that delays in communication between cortical areas can disrupt synchronization and therefore enhance the set of activity trajectories and computations interconnected networks can perform. To evaluate this hypothesis, we studied the effect of long-range cortical projections with propagation delays in interconnected large-scale cortical networks that exhibited spontaneous rhythmic activity. Long-range connections with delays caused the emergence of metastable, spatio-temporally distinct activity states between which the networks spontaneously transitioned. Interestingly, the observed activity patterns correspond to macroscopic network dynamics such as globally synchronized activity, propagating wave fronts, and spiral waves that have been previously observed in neurophysiological recordings from humans and animal models. Transient perturbations with simulated transcranial alternating current stimulation (tACS) confirmed the multistability of the interconnected networks by switching the networks between these metastable states. Our model thus proposes that slower long-range connections enrich the landscape of activity states and represent a parsimonious mechanism for the emergence of multistability in cortical networks. These results further provide a mechanistic link between the known deficits in connectivity and cortical state dynamics in neuropsychiatric illnesses such as schizophrenia and autism, as well as suggest non-invasive brain stimulation as an effective treatment for these illnesses.
Collapse
Affiliation(s)
- Katrina M. Kutchko
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill North Carolina, United States of America
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Gray RT, Robinson PA. Stability constraints on large-scale structural brain networks. Front Comput Neurosci 2013; 7:31. [PMID: 23630490 PMCID: PMC3624092 DOI: 10.3389/fncom.2013.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/24/2013] [Indexed: 11/18/2022] Open
Abstract
Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure and physiology. Using a physiologically-based model of brain electrical activity, we investigated the stability and dispersion solutions of networks of neuronal populations with propagation time delays and dendritic time constants. We find that stability is determined by the spectrum of the network's matrix of connection strengths and is independent of the temporal damping rate of axonal propagation with stability restricting the spectrum to a region in the complex plane. Time delays and dendritic time constants modify the shape of this region but it always contains the unit disk. Instabilities resulting from changes in connection strength initially have frequencies less than a critical frequency. For physiologically plausible parameter values based on the corticothalamic system, this critical frequency is approximately 10 Hz. For excitatory networks and networks with randomly distributed excitatory and inhibitory connections, time delays and non-zero dendritic time constants have no impact on network stability but do effect dispersion frequencies. Random networks with both excitatory and inhibitory connections can have multiple marginally stable modes at low delta frequencies.
Collapse
Affiliation(s)
- Richard T. Gray
- The Kirby Institute, The University of New South WalesSydney, NSW, Australia
| | - Peter A. Robinson
- School of Physics, University of SydneySydney, NSW, Australia
- Brain Dynamics Center, Sydney Medical School – Western, University of SydneyWestmead, NSW, Australia
| |
Collapse
|
21
|
Hutt A. The anesthetic propofol shifts the frequency of maximum spectral power in EEG during general anesthesia: analytical insights from a linear model. Front Comput Neurosci 2013; 7:2. [PMID: 23386826 PMCID: PMC3564209 DOI: 10.3389/fncom.2013.00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/19/2013] [Indexed: 11/30/2022] Open
Abstract
The work introduces a linear neural population model that allows to derive analytically the power spectrum subjected to the concentration of the anesthetic propofol. The analytical study of the power spectrum of the systems activity gives conditions on how the frequency of maximum power in experimental electroencephalographic (EEG) changes dependent on the propofol concentration. In this context, we explain the anesthetic-induced power increase in neural activity by an oscillatory instability and derive conditions under which the power peak shifts to larger frequencies as observed experimentally in EEG. Moreover the work predicts that the power increase only occurs while the frequency of maximum power increases. Numerically simulations of the systems activity complement the analytical results.
Collapse
Affiliation(s)
- Axel Hutt
- INRIA CR Nancy - Grand Est, Team CORTEX Villers-les-Nancy, France
| |
Collapse
|
22
|
van Gils SA, Janssens SG, Kuznetsov YA, Visser S. On local bifurcations in neural field models with transmission delays. J Math Biol 2012. [PMID: 23192328 DOI: 10.1007/s00285-012-0598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neural field models with transmission delays may be cast as abstract delay differential equations (DDE). The theory of dual semigroups (also called sun-star calculus) provides a natural framework for the analysis of a broad class of delay equations, among which DDE. In particular, it may be used advantageously for the investigation of stability and bifurcation of steady states. After introducing the neural field model in its basic functional analytic setting and discussing its spectral properties, we elaborate extensively an example and derive a characteristic equation. Under certain conditions the associated equilibrium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect in a double Hopf point in a two-dimensional parameter space. We provide general formulas for the corresponding critical normal form coefficients, evaluate these numerically and interpret the results.
Collapse
Affiliation(s)
- S A van Gils
- Department of Applied Mathematics, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Pinotsis DA, Hansen E, Friston KJ, Jirsa VK. Anatomical connectivity and the resting state activity of large cortical networks. Neuroimage 2012; 65:127-38. [PMID: 23085498 PMCID: PMC3520011 DOI: 10.1016/j.neuroimage.2012.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022] Open
Abstract
This paper uses mathematical modelling and simulations to explore the dynamics that emerge in large scale cortical networks, with a particular focus on the topological properties of the structural connectivity and its relationship to functional connectivity. We exploit realistic anatomical connectivity matrices (from diffusion spectrum imaging) and investigate their capacity to generate various types of resting state activity. In particular, we study emergent patterns of activity for realistic connectivity configurations together with approximations formulated in terms of neural mass or field models. We find that homogenous connectivity matrices, of the sort of assumed in certain neural field models give rise to damped spatially periodic modes, while more localised modes reflect heterogeneous coupling topologies. When simulating resting state fluctuations under realistic connectivity, we find no evidence for a spectrum of spatially periodic patterns, even when grouping together cortical nodes into communities, using graph theory. We conclude that neural field models with translationally invariant connectivity may be best applied at the mesoscopic scale and that more general models of cortical networks that embed local neural fields, may provide appropriate models of macroscopic cortical dynamics over the whole brain.
Collapse
Affiliation(s)
- D A Pinotsis
- The Wellcome Trust Centre for Neuroimaging, University College London WC1N 3BG, UK.
| | | | | | | |
Collapse
|
24
|
Fung PK, Haber AL, Robinson PA. Neural field theory of plasticity in the cerebral cortex. J Theor Biol 2012; 318:44-57. [PMID: 23036915 DOI: 10.1016/j.jtbi.2012.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 08/20/2012] [Accepted: 09/21/2012] [Indexed: 11/25/2022]
Abstract
A generalized timing-dependent plasticity rule is incorporated into a recent neural field theory to explore synaptic plasticity in the cerebral cortex, with both excitatory and inhibitory populations included. Analysis in the time and frequency domains reveals that cortical network behavior gives rise to a saddle-node bifurcation and resonant frequencies, including a gamma-band resonance. These system resonances constrain cortical synaptic dynamics and divide it into four classes, which depend on the type of synaptic plasticity window. Depending on the dynamical class, synaptic strengths can either have a stable fixed point, or can diverge in the absence of a separate saturation mechanism. Parameter exploration shows that time-asymmetric plasticity windows, which are signatures of spike-timing dependent plasticity, enable the richest variety of synaptic dynamics to occur. In particular, we predict a zone in parameter space which may allow brains to attain the marginal stability phenomena observed experimentally, although additional regulatory mechanisms may be required to maintain these parameters.
Collapse
Affiliation(s)
- P K Fung
- School of Physics, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
25
|
Bifurcation analysis applied to a model of motion integration with a multistable stimulus. J Comput Neurosci 2012; 34:103-24. [PMID: 22870848 PMCID: PMC3558671 DOI: 10.1007/s10827-012-0409-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/22/2012] [Accepted: 06/15/2012] [Indexed: 11/17/2022]
Abstract
A computational study into the motion perception dynamics of a multistable psychophysics stimulus is presented. A diagonally drifting grating viewed through a square aperture is perceived as moving in the actual grating direction or in line with the aperture edges (horizontally or vertically). The different percepts are the product of interplay between ambiguous contour cues and specific terminator cues. We present a dynamical model of motion integration that performs direction selection for such a stimulus and link the different percepts to coexisting steady states of the underlying equations. We apply the powerful tools of bifurcation analysis and numerical continuation to study changes to the model’s solution structure under the variation of parameters. Indeed, we apply these tools in a systematic way, taking into account biological and mathematical constraints, in order to fix model parameters. A region of parameter space is identified for which the model reproduces the qualitative behaviour observed in experiments. The temporal dynamics of motion integration are studied within this region; specifically, the effect of varying the stimulus gain is studied, which allows for qualitative predictions to be made.
Collapse
|
26
|
Robinson PA. Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011912. [PMID: 22400596 DOI: 10.1103/physreve.85.011912] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/09/2011] [Indexed: 05/31/2023]
Abstract
It is shown how to compute effective and functional connection matrices (eCMs and fCMs) from anatomical CMs (aCMs) and corresponding strength-of-connection matrices (sCMs) using propagator methods in which neural interactions play the role of scatterings. This analysis demonstrates how network effects dress the bare propagators (the sCMs) to yield effective propagators (the eCMs) that can be used to compute the covariances customarily used to define fCMs. The results incorporate excitatory and inhibitory connections, multiple structures and populations, asymmetries, time delays, and measurement effects. They can also be postprocessed in the same manner as experimental measurements for direct comparison with data and thereby give insights into the role of coarse-graining, thresholding, and other effects in determining the structure of CMs. The spatiotemporal results show how to generalize CMs to include time delays and how natural network modes give rise to long-range coherence at resonant frequencies. The results are demonstrated using tractable analytic cases via neural field theory of cortical and corticothalamic systems. These also demonstrate close connections between the structure of CMs and proximity to critical points of the system, highlight the importance of indirect links between brain regions and raise the possibility of imaging specific levels of indirect connectivity. Aside from the results presented explicitly here, the expression of the connections among aCMs, sCMs, eCMs, and fCMs in terms of propagators opens the way for propagator theory to be further applied to analysis of connectivity.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Laxminarayan S, Tadmor G, Diamond SG, Miller E, Franceschini MA, Brooks DH. Modeling habituation in rat EEG-evoked responses via a neural mass model with feedback. BIOLOGICAL CYBERNETICS 2011; 105:371-397. [PMID: 22282292 PMCID: PMC3403689 DOI: 10.1007/s00422-012-0472-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/08/2012] [Indexed: 05/31/2023]
Abstract
Habituation is a generic property of the neural response to repeated stimuli. Its strength often increases as inter-stimuli relaxation periods decrease. We propose a simple, broadly applicable control structure that enables a neural mass model of the evoked EEG response to exhibit habituated behavior. A key motivation for this investigation is the ongoing effort to develop model-based reconstruction of multi-modal functional neuroimaging data. The control structure proposed here is illustrated and validated in the context of a biophysical neural mass model, developed by Riera et al. (Hum Brain Mapp 27(11):896-914, 2006; 28(4):335-354, 2007), and of simplifications thereof, using data from rat EEG response to medial nerve stimuli presented at frequencies from 1 to 8 Hz. Performance was tested by predictions of both the response to the next stimulus based on the current one, and also of continued stimuli trains over 4-s time intervals based on the first stimulus in the interval, with similar success statistics. These tests demonstrate the ability of simple generative models to capture key features of the evoked response, including habituation.
Collapse
Affiliation(s)
- Srinivas Laxminarayan
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 2011; 58:339-61. [PMID: 21477655 PMCID: PMC3167373 DOI: 10.1016/j.neuroimage.2011.03.058] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/15/2011] [Accepted: 03/23/2011] [Indexed: 11/30/2022] Open
Abstract
This is the final paper in a Comments and Controversies series dedicated to "The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution". We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener-Akaike-Granger-Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments.
Collapse
Affiliation(s)
- Pedro A Valdes-Sosa
- Cuban Neuroscience Center, Ave 25 #15202 esquina 158, Cubanacan, Playa, Cuba.
| | | | | | | |
Collapse
|
29
|
Pinotsis DA, Moran RJ, Friston KJ. Dynamic causal modeling with neural fields. Neuroimage 2011; 59:1261-74. [PMID: 21924363 PMCID: PMC3236998 DOI: 10.1016/j.neuroimage.2011.08.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 11/05/2022] Open
Abstract
The aim of this paper is twofold: first, to introduce a neural field model motivated by a well-known neural mass model; second, to show how one can estimate model parameters pertaining to spatial (anatomical) properties of neuronal sources based on EEG or LFP spectra using Bayesian inference. Specifically, we consider neural field models of cortical activity as generative models in the context of dynamic causal modeling (DCM). This paper considers the simplest case of a single cortical source modeled by the spatiotemporal dynamics of hidden neuronal states on a bounded cortical surface or manifold. We build this model using multiple layers, corresponding to cortical lamina in the real cortical manifold. These layers correspond to the populations considered in classical (Jansen and Rit) neural mass models. This allows us to formulate a neural field model that can be reduced to a neural mass model using appropriate constraints on its spatial parameters. In turn, this enables one to compare and contrast the predicted responses from equivalent neural field and mass models respectively. We pursue this using empirical LFP data from a single electrode to show that the parameters controlling the spatial dynamics of cortical activity can be recovered, using DCM, even in the absence of explicit spatial information in observed data.
Collapse
Affiliation(s)
- D A Pinotsis
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
30
|
Freestone DR, Aram P, Dewar M, Scerri K, Grayden DB, Kadirkamanathan V. A data-driven framework for neural field modeling. Neuroimage 2011; 56:1043-58. [PMID: 21329758 DOI: 10.1016/j.neuroimage.2011.02.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/18/2011] [Accepted: 02/09/2011] [Indexed: 11/29/2022] Open
Abstract
This paper presents a framework for creating neural field models from electrophysiological data. The Wilson and Cowan or Amari style neural field equations are used to form a parametric model, where the parameters are estimated from data. To illustrate the estimation framework, data is generated using the neural field equations incorporating modeled sensors enabling a comparison between the estimated and true parameters. To facilitate state and parameter estimation, we introduce a method to reduce the continuum neural field model using a basis function decomposition to form a finite-dimensional state-space model. Spatial frequency analysis methods are introduced that systematically specify the basis function configuration required to capture the dominant characteristics of the neural field. The estimation procedure consists of a two-stage iterative algorithm incorporating the unscented Rauch-Tung-Striebel smoother for state estimation and a least squares algorithm for parameter estimation. The results show that it is theoretically possible to reconstruct the neural field and estimate intracortical connectivity structure and synaptic dynamics with the proposed framework.
Collapse
Affiliation(s)
- D R Freestone
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Coombes S, Laing CR. Pulsating fronts in periodically modulated neural field models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:011912. [PMID: 21405718 DOI: 10.1103/physreve.83.011912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/05/2010] [Indexed: 05/30/2023]
Abstract
We consider a coarse-grained neural field model for synaptic activity in spatially extended cortical tissue that possesses an underlying periodicity in its microstructure. The model is written as an integrodifferential equation with periodic modulation of a translationally invariant spatial kernel. This modulation can have a strong effect on wave propagation through the tissue, including the creation of pulsating fronts with widely varying speeds and wave-propagation failure. Here we develop a new analysis for the study of such phenomena, using two complementary techniques. The first uses linearized information from the leading edge of a traveling periodic wave to obtain wave speed estimates for pulsating fronts, and the second develops an interface description for waves in the full nonlinear model. For weak modulation and a Heaviside firing rate function the interface dynamics can be analyzed exactly and gives predictions that are in excellent agreement with direct numerical simulations. Importantly, the interface dynamics description improves on the standard homogenization calculation, which is restricted to modulation that is both fast and weak.
Collapse
Affiliation(s)
- S Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | |
Collapse
|
32
|
Pinotsis DA, Friston KJ. Neural fields, spectral responses and lateral connections. Neuroimage 2010; 55:39-48. [PMID: 21138771 PMCID: PMC3049874 DOI: 10.1016/j.neuroimage.2010.11.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/11/2010] [Accepted: 11/26/2010] [Indexed: 12/01/2022] Open
Abstract
This paper describes a neural field model for local (mesoscopic) dynamics on the cortical surface. Our focus is on sparse intrinsic connections that are characteristic of real cortical microcircuits. This sparsity is modelled with radial connectivity functions or kernels with non-central peaks. The ensuing analysis allows one to generate or predict spectral responses to known exogenous input or random fluctuations. Here, we characterise the effect of different connectivity architectures (the range, dispersion and propagation speed of intrinsic or lateral connections) and synaptic gains on spatiotemporal dynamics. Specifically, we look at spectral responses to random fluctuations and examine the ability of synaptic gain and connectivity parameters to induce Turing instabilities. We find that although the spatial deployment and speed of lateral connections can have a profound affect on the behaviour of spatial modes over different scales, only synaptic gain is capable of producing phase-transitions. We discuss the implications of these findings for the use of neural fields as generative models in dynamic causal modeling (DCM).
Collapse
Affiliation(s)
- D A Pinotsis
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
33
|
Hutt A, Rougier N. Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:055701. [PMID: 21230538 DOI: 10.1103/physreve.82.055701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Indexed: 05/30/2023]
Abstract
The work studies the spatiotemporal activity propagation in a two-dimensional spatial system involving a finite transmission speed. We derive a numerical scheme in detail to integrate the corresponding evolution equation and validate the derived algorithm by a study of a spatially periodic system. Finally, the work demonstrates numerically transmission delay-induced breathers subjected to anisotropic external input.
Collapse
Affiliation(s)
- Axel Hutt
- INRIA Nancy-Grand Est, Team CORTEX, 615 rue du Jardin Botanique, 54600 Villers-les-Nancy, France.
| | | |
Collapse
|
34
|
Dynamics of activity fronts in a continuum mean field model of cortex. BMC Neurosci 2010. [PMCID: PMC3090913 DOI: 10.1186/1471-2202-11-s1-p28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
35
|
Connecting mean field models of neural activity to EEG and fMRI data. Brain Topogr 2010; 23:139-49. [PMID: 20364434 DOI: 10.1007/s10548-010-0140-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Collapse
|
36
|
Hutt A, Longtin A. Effects of the anesthetic agent propofol on neural populations. Cogn Neurodyn 2010; 4:37-59. [PMID: 19768579 PMCID: PMC2837528 DOI: 10.1007/s11571-009-9092-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 08/29/2009] [Accepted: 08/31/2009] [Indexed: 11/30/2022] Open
Abstract
The neuronal mechanisms of general anesthesia are still poorly understood. Besides several characteristic features of anesthesia observed in experiments, a prominent effect is the bi-phasic change of power in the observed electroencephalogram (EEG), i.e. the initial increase and subsequent decrease of the EEG-power in several frequency bands while increasing the concentration of the anaesthetic agent. The present work aims to derive analytical conditions for this bi-phasic spectral behavior by the study of a neural population model. This model describes mathematically the effective membrane potential and involves excitatory and inhibitory synapses, excitatory and inhibitory cells, nonlocal spatial interactions and a finite axonal conduction speed. The work derives conditions for synaptic time constants based on experimental results and gives conditions on the resting state stability. Further the power spectrum of Local Field Potentials and EEG generated by the neural activity is derived analytically and allow for the detailed study of bi-spectral power changes. We find bi-phasic power changes both in monostable and bistable system regime, affirming the omnipresence of bi-spectral power changes in anesthesia. Further the work gives conditions for the strong increase of power in the δ-frequency band for large propofol concentrations as observed in experiments.
Collapse
Affiliation(s)
- Axel Hutt
- INRIA CR Nancy - Grand Est, CS20101, 54603 Villers-ls-Nancy Cedex, France
| | - Andre Longtin
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N-6N5 Canada
| |
Collapse
|
37
|
Bojak I, Liley DTJ. Axonal velocity distributions in neural field equations. PLoS Comput Biol 2010; 6:e1000653. [PMID: 20126532 PMCID: PMC2813262 DOI: 10.1371/journal.pcbi.1000653] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022] Open
Abstract
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
Collapse
Affiliation(s)
- Ingo Bojak
- Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
38
|
Coombes S. Large-scale neural dynamics: simple and complex. Neuroimage 2010; 52:731-9. [PMID: 20096791 DOI: 10.1016/j.neuroimage.2010.01.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/23/2009] [Accepted: 01/13/2010] [Indexed: 11/24/2022] Open
Abstract
We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models, we build to spatially extend cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.
Collapse
Affiliation(s)
- S Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
39
|
Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T. Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp 2009; 30:2701-21. [PMID: 19107753 DOI: 10.1002/hbm.20704] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This article reviews progress and challenges in model driven EEG/fMRI fusion with a focus on brain oscillations. Fusion is the combination of both imaging modalities based on a cascade of forward models from ensemble of post-synaptic potentials (ePSP) to net primary current densities (nPCD) to EEG; and from ePSP to vasomotor feed forward signal (VFFSS) to BOLD. In absence of a model, data driven fusion creates maps of correlations between EEG and BOLD or between estimates of nPCD and VFFS. A consistent finding has been that of positive correlations between EEG alpha power and BOLD in both frontal cortices and thalamus and of negative ones for the occipital region. For model driven fusion we formulate a neural mass EEG/fMRI model coupled to a metabolic hemodynamic model. For exploratory simulations we show that the Local Linearization (LL) method for integrating stochastic differential equations is appropriate for highly nonlinear dynamics. It has been successfully applied to small and medium sized networks, reproducing the described EEG/BOLD correlations. A new LL-algebraic method allows simulations with hundreds of thousands of neural populations, with connectivities and conduction delays estimated from diffusion weighted MRI. For parameter and state estimation, Kalman filtering combined with the LL method estimates the innovations or prediction errors. From these the likelihood of models given data are obtained. The LL-innovation estimation method has been already applied to small and medium scale models. With improved Bayesian computations the practical estimation of very large scale EEG/fMRI models shall soon be possible.
Collapse
|
40
|
Henke H, Robinson PA, Drysdale PM, Loxley PN. Spatiotemporal dynamics of pattern formation in the primary visual cortex and hallucinations. BIOLOGICAL CYBERNETICS 2009; 101:3-18. [PMID: 19504122 DOI: 10.1007/s00422-009-0315-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 02/27/2009] [Indexed: 05/27/2023]
Abstract
The existence of visual hallucinations with prominent temporal oscillations is well documented in conditions such as Charles Bonnett Syndrome. To explore these phenomena, a continuum model of cortical activity that includes additional physiological features of axonal propagation and synapto-dendritic time constants, is used to study the generation of hallucinations featuring both temporal and spatial oscillations. A detailed comparison of the physiological features of this model with those of two others used previously in the modeling of hallucinations is made, and differences, particularly regarding temporal dynamics, relevant to pattern formation are analyzed. Linear analysis and numerical calculation are then employed to examine the pattern forming behavior of this new model for two different forms of spatiotemporal coupling between neurons. Numerical calculations reveal an oscillating mode whose frequency depends on synaptic, dendritic, and axonal time constants not previously simultaneously included in such analyses. Its properties are qualitatively consistent with descriptions of a number of physiological disorders and conditions with temporal dynamics, but the analysis implies that corticothalamic effects will need to be incorporated to treat the consequences quantitatively.
Collapse
Affiliation(s)
- H Henke
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
41
|
Dynamic causal modelling of distributed electromagnetic responses. Neuroimage 2009; 47:590-601. [PMID: 19398015 PMCID: PMC2722904 DOI: 10.1016/j.neuroimage.2009.04.062] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 11/25/2022] Open
Abstract
In this note, we describe a variant of dynamic causal modelling for evoked responses as measured with electroencephalography or magnetoencephalography (EEG and MEG). We depart from equivalent current dipole formulations of DCM, and extend it to provide spatiotemporal source estimates that are spatially distributed. The spatial model is based upon neural-field equations that model neuronal activity on the cortical manifold. We approximate this description of electrocortical activity with a set of local standing-waves that are coupled though their temporal dynamics. The ensuing distributed DCM models source as a mixture of overlapping patches on the cortical mesh. Time-varying activity in this mixture, caused by activity in other sources and exogenous inputs, is propagated through appropriate lead-field or gain-matrices to generate observed sensor data. This spatial model has three key advantages. First, it is more appropriate than equivalent current dipole models, when real source activity is distributed locally within a cortical area. Second, the spatial degrees of freedom of the model can be specified and therefore optimised using model selection. Finally, the model is linear in the spatial parameters, which finesses model inversion. Here, we describe the distributed spatial model and present a comparative evaluation with conventional equivalent current dipole (ECD) models of auditory processing, as measured with EEG.
Collapse
|
42
|
Paik SB, Kumar T, Glaser DA. Spontaneous local gamma oscillation selectively enhances neural network responsiveness. PLoS Comput Biol 2009; 5:e1000342. [PMID: 19343222 PMCID: PMC2659453 DOI: 10.1371/journal.pcbi.1000342] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/26/2009] [Indexed: 11/19/2022] Open
Abstract
Synchronized oscillation is very commonly observed in many neuronal systems and
might play an important role in the response properties of the system. We have
studied how the spontaneous oscillatory activity affects the responsiveness of a
neuronal network, using a neural network model of the visual cortex built from
Hodgkin-Huxley type excitatory (E-) and inhibitory (I-) neurons. When the
isotropic local E-I and I-E synaptic connections were sufficiently strong, the
network commonly generated gamma frequency oscillatory firing patterns in
response to random feed-forward (FF) input spikes. This spontaneous oscillatory
network activity injects a periodic local current that could amplify a weak
synaptic input and enhance the network's responsiveness. When E-E
connections were added, we found that the strength of oscillation can be
modulated by varying the FF input strength without any changes in single neuron
properties or interneuron connectivity. The response modulation is proportional
to the oscillation strength, which leads to self-regulation such that the
cortical network selectively amplifies various FF inputs according to its
strength, without requiring any adaptation mechanism. We show that this
selective cortical amplification is controlled by E-E cell interactions. We also
found that this response amplification is spatially localized, which suggests
that the responsiveness modulation may also be spatially selective. This
suggests a generalized mechanism by which neural oscillatory activity can
enhance the selectivity of a neural network to FF inputs. In the nervous system, information is delivered and processed digitally via
voltage spikes transmitted between cells. A neural system is characterized by
its input/output spike signal patterns. Generally, a network of neurons shows a
very different response pattern than that of a single neuron. In some cases, a
neural network generates interesting population activities, such as synchronized
oscillations, which are thought to modulate the response properties of the
network. However, the exact role of these neural oscillations is unknown. We
investigated the relationship between the oscillatory activity and the response
modulation in neural networks using computational simulation modeling. We found
that the response of the system is significantly modified by the oscillations in
the network. In particular, the responsiveness to weak inputs is remarkably
enhanced. This suggests that the oscillation can differentially amplify sensory
information depending on the input signal conditions. We conclude that a neural
network can dynamically modify its response properties by the selective
amplification of sensory signals due to oscillation activity, which may explain
some experimental observations and help us to better understand neural
systems.
Collapse
Affiliation(s)
- Se-Bum Paik
- Department of Physics, University of California Berkeley, Berkeley, California, United States of America.
| | | | | |
Collapse
|
43
|
Coombes S, Laing C. Delays in activity-based neural networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1117-1129. [PMID: 19218154 DOI: 10.1098/rsta.2008.0256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, we study the effect of two distinct discrete delays on the dynamics of a Wilson-Cowan neural network. This activity-based model describes the dynamics of synaptically interacting excitatory and inhibitory neuronal populations. We discuss the interpretation of the delays in the language of neurobiology and show how they can contribute to the generation of network rhythms. First, we focus on the use of linear stability theory to show how to destabilize a fixed point, leading to the onset of oscillatory behaviour. Next, we show for the choice of a Heaviside nonlinearity for the firing rate that such emergent oscillations can be either synchronous or anti-synchronous, depending on whether inhibition or excitation dominates the network architecture. To probe the behaviour of smooth (sigmoidal) nonlinear firing rates, we use a mixture of numerical bifurcation analysis and direct simulations, and uncover parameter windows that support chaotic behaviour. Finally, we comment on the role of delays in the generation of bursting oscillations, and discuss natural extensions of the work in this paper.
Collapse
Affiliation(s)
- Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
44
|
Elvin AJ, Laing CR, Roberts MG. Transient Turing patterns in a neural field model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011911. [PMID: 19257073 DOI: 10.1103/physreve.79.011911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Indexed: 05/27/2023]
Abstract
We investigate Turing bifurcations in a neural field model with one spatial dimension. For some parameter values the resulting Turing patterns are stable, while for others the patterns appear transiently. We show that this difference is due to the relative position in parameter space of the saddle-node bifurcation of a spatially periodic pattern and the Turing bifurcation point. By varying parameters we are able to observe transient patterns whose duration scales in the same way as type-I intermittency. Similar behavior occurs in two spatial dimensions.
Collapse
Affiliation(s)
- A J Elvin
- Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, NSMC, Auckland, New Zealand.
| | | | | |
Collapse
|
45
|
Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. Modeling brain activation patterns for the default and cognitive states. Neuroimage 2008; 45:298-311. [PMID: 19121401 DOI: 10.1016/j.neuroimage.2008.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022] Open
Abstract
We argue that spatial patterns of cortical activation observed with EEG, MEG and fMRI might arise from spontaneous self-organisation of interacting populations of excitatory and inhibitory neurons. We examine the dynamical behavior of a mean-field cortical model that includes chemical and electrical (gap-junction) synapses, focusing on two limiting cases: the "slow-soma" limit with slow voltage feedback from soma to dendrite, and the "fast-soma" limit in which the feedback action of soma voltage onto dendrite reversal potentials is instantaneous. For slow soma-dendrite feedback, we find a low-frequency (approximately 1 Hz) dynamic Hopf instability, and a stationary Turing instability that catalyzes formation of patterned distributions of cortical firing-rate activity with pattern wavelength approximately 2 cm. Turing instability can only be triggered when gap-junction diffusion between inhibitory neurons is strong, but patterning is destroyed if the tonic level of subcortical excitation is raised sufficiently. Interaction between the Hopf and Turing instabilities may describe the non-cognitive background or "default" state of the brain, as observed by BOLD imaging. In the fast-soma limit, the model predicts a high-frequency Hopf (approximately 35 Hz) instability, and a traveling-wave gamma-band instability that manifests as a 2-D standing-wave pattern oscillating in place at approximately 30 Hz. Small levels of inhibitory diffusion enhance and broaden the definition of the gamma antinodal regions by suppressing higher-frequency spatial modes, but gamma emergence is not contingent on the presence of inhibitory gap junctions; higher levels of diffusion suppress gamma activity. Fast-soma instabilities are enhanced by increased subcortical stimulation. Prompt soma-dendrite feedback may be an essential component of the genesis and large-scale cortical synchrony of gamma activity observed at the point of cognition.
Collapse
Affiliation(s)
- Moira L Steyn-Ross
- Department of Engineering, University of Waikato, P.B. 3105, Hamilton 3240, New Zealand.
| | | | | | | |
Collapse
|
46
|
|
47
|
Wennekers T. Tuned solutions in dynamic neural fields as building blocks for extended EEG models. Cogn Neurodyn 2008; 2:137-46. [PMID: 19003480 DOI: 10.1007/s11571-008-9045-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/26/2008] [Indexed: 11/29/2022] Open
Abstract
The most prominent functional property of cortical neurons in sensory areas are their tuned receptive fields which provide specific responses of the neurons to external stimuli. Tuned neural firing indeed reflects the most basic and best worked out level of cognitive representations. Tuning properties can be dynamic on a short time-scale of fractions of a second. Such dynamic effects have been modeled by localised solutions (also called "bumps" or "peaks") in dynamic neural fields. In the present work we develop an approximation method to reduce the dynamics of localised activation peaks in systems of n coupled nonlinear d-dimensional neural fields with transmission delays to a small set of delay differential equations for the peak amplitudes and widths only. The method considerably simplifies the analysis of peaked solutions as demonstrated for a two-dimensional example model of neural feature selectivity in the brain. The reduced equations describe the effective interaction between pools of local neurons of several (n) classes that participate in shaping the dynamic receptive field responses. To lowest order they resemble neural mass models as they often form the base of EEG-models. Thereby they provide a link between functional small-scale receptive field models and more coarse-grained EEG-models. More specifically, they connect the dynamics in feature-selective cortical microcircuits to the more abstract local elements used in coarse-grained models. However, beside amplitudes the reduced equations also reflect the sharpness of tuning of the activity in a d-dimensional feature space in response to localised stimuli.
Collapse
Affiliation(s)
- Thomas Wennekers
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Drake Circus, PL4 8AA, UK,
| |
Collapse
|