1
|
Mori K, Watanabe T, Ono T. Formation of Nonspherical Cellulose Acetate Microparticles under Microflow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27314-27322. [PMID: 39696796 PMCID: PMC11697331 DOI: 10.1021/acs.langmuir.4c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Nonspherical particles have gained significant interest owing to their unique shapes and large specific surface areas, making them suitable for a wide range of applications, such as drug delivery, catalysis, and adsorption. However, conventional methods for preparing nonspherical particles face certain limitations. In this study, we propose a simple method for fabricating nonspherical cellulose acetate (CA) microparticles using a microfluidic device in which droplets undergo rapid diffusion in a continuous aqueous phase. The influence of variations in the flow rate ratio and continuous phase composition on the dimensionless Péclet number (Pe) within the droplet and shape of the resultant particles is investigated. Pe is critical, because it indicates the balance between polymer diffusion and droplet shrinkage dynamics. Our findings reveal that increasing the flow rate ratio and reducing the methyl acetate concentration in the continuous phase lead to faster droplet shrinkage and an increased Pe. A high Pe (>100) suggests that the reduction of the droplet interface predominates over polymer diffusion, resulting in the formation of a viscous layer near the droplet surface, which subsequently leads to nonspherical particle shapes (such as bowl-like or biconcave structures). In situ time-lapse observations of droplets from the top and side of a microchannel reveal that the formation of a viscous layer near the droplet surface and the deformation of the droplet, influenced by the z-axis location of the droplets during particle formation, ultimately determine the final particle shape. Based on these observations, a linear correlation between the initial conditions, i.e., the Pe and z-axis location at which the viscous layer formed, is established, enabling the prediction of the particle structure. In summary, the present study enhances the understanding of shape control in microfluidic particle formation and offers a novel guideline for the fabrication of spherical and nonspherical particles.
Collapse
Affiliation(s)
- Kurumi Mori
- Department of Applied Chemistry,
Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takaichi Watanabe
- Department of Applied Chemistry,
Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsutomu Ono
- Department of Applied Chemistry,
Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Ning R, Acree B, Wu M, Gao Y. Microfluidic Monodispersed Microbubble Generation for Production of Cavitation Nuclei. MICROMACHINES 2024; 15:1531. [PMID: 39770284 PMCID: PMC11678649 DOI: 10.3390/mi15121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Microbubbles, acting as cavitation nuclei, undergo cycles of expansion, contraction, and collapse. This collapse generates shockwaves, alters local shear forces, and increases local temperature. Cavitation causes severe changes in pressure and temperature, resulting in surface erosion. Shockwaves strip material from surfaces, forming pits and cracks. Prolonged cavitation reduces the mechanical strength and fatigue life of materials, potentially leading to failure. Controlling bubble size and generating monodispersed bubbles is crucial for accurately modeling cavitation phenomena. In this work, we generate monodispersed microbubbles with controllable size using a novel and low-cost microfluidic method. We created an innovative T-junction structure that controls the two-phase flow for tiny, monodispersed bubble generation. Monodisperse microbubbles with diameters below one-fifth of the channel width (W = 100 µm) are produced due to the controlled pressure gradient. This microstructure, fabricated by a CNC milling technique, produces 20 μm bubbles without requiring high-resolution equipment and cleanroom environments. Bubble size is controlled with gas and liquid pressure ratio and microgeometry. This microbubble generation method provides a controllable and reproducible way for cavitation research.
Collapse
Affiliation(s)
| | | | | | - Yuan Gao
- Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA; (R.N.); (B.A.); (M.W.)
| |
Collapse
|
3
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
4
|
Lashkaripour A, McIntyre DP, Calhoun SGK, Krauth K, Densmore DM, Fordyce PM. Design automation of microfluidic single and double emulsion droplets with machine learning. Nat Commun 2024; 15:83. [PMID: 38167827 PMCID: PMC10761910 DOI: 10.1038/s41467-023-44068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Droplet microfluidics enables kHz screening of picoliter samples at a fraction of the cost of other high-throughput approaches. However, generating stable droplets with desired characteristics typically requires labor-intensive empirical optimization of device designs and flow conditions that limit adoption to specialist labs. Here, we compile a comprehensive droplet dataset and use it to train machine learning models capable of accurately predicting device geometries and flow conditions required to generate stable aqueous-in-oil and oil-in-aqueous single and double emulsions from 15 to 250 μm at rates up to 12000 Hz for different fluids commonly used in life sciences. Blind predictions by our models for as-yet-unseen fluids, geometries, and device materials yield accurate results, establishing their generalizability. Finally, we generate an easy-to-use design automation tool that yield droplets within 3 μm (<8%) of the desired diameter, facilitating tailored droplet-based platforms and accelerating their utility in life sciences.
Collapse
Affiliation(s)
- Ali Lashkaripour
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - David P McIntyre
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | | | - Karl Krauth
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Douglas M Densmore
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Bianchi JRDO, de la Torre LG, Costa ALR. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type. Foods 2023; 12:3385. [PMID: 37761094 PMCID: PMC10527709 DOI: 10.3390/foods12183385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Microfluidic technology has emerged as a powerful tool for several applications, including chemistry, physics, biology, and engineering. Due to the laminar regime, droplet-based microfluidics enable the development of diverse delivery systems based on food-grade emulsions, such as multiple emulsions, microgels, microcapsules, solid lipid microparticles, and giant liposomes. Additionally, by precisely manipulating fluids on the low-energy-demand micrometer scale, it becomes possible to control the size, shape, and dispersity of generated droplets, which makes microfluidic emulsification an excellent approach for tailoring delivery system properties based on the nature of the entrapped compounds. Thus, this review points out the most current advances in droplet-based microfluidic processes, which successfully use food-grade emulsions to develop simple and complex delivery systems. In this context, we summarized the principles of droplet-based microfluidics, introducing the most common microdevice geometries, the materials used in the manufacture, and the forces involved in the different droplet-generation processes into the microchannels. Subsequently, the encapsulated compound type, classified as lipophilic or hydrophilic functional compounds, was used as a starting point to present current advances in delivery systems using food-grade emulsions and their assembly using microfluidic technologies. Finally, we discuss the limitations and perspectives of scale-up in droplet-based microfluidic approaches, including the challenges that have limited the transition of microfluidic processes from the lab-scale to the industrial-scale.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Lucimara Gaziola de la Torre
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
| | - Ana Leticia Rodrigues Costa
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas 13083-852, Brazil; (J.R.d.O.B.); (L.G.d.l.T.)
- Institute of Exact and Technological Sciences, Federal University of Viçosa (UFV), Campus Florestal, Florestal 35690-000, Brazil
| |
Collapse
|
6
|
He V, Cadarso VJ, Seibt S, Boyd BJ, Neild A. A novel droplet-based approach to study phase transformations in lyotropic liquid crystalline systems. J Colloid Interface Sci 2023; 641:459-469. [PMID: 36948101 DOI: 10.1016/j.jcis.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
HYPOTHESIS Lyotropic liquid crystals (LLC) and their phase transformations in response to stimuli have gathered much interest for controlled and 'on-demand' drug applications. Bulk methods of preparation impose limitations on studying the transformations, especially induced by compositional changes, such as enzymatic changes to lipid structure. Here we hypothesise that controlled microfluidic production and coalescence of dissimilar aqueous and lipid droplets emulsified in a third mutually immiscible liquid will provide a new approach to the spatio-temporal study of structure formation in lyotropic liquid crystalline materials. EXPERIMENTS Separate lipid and aqueous droplets, dispersed in a fluorocarbon oil were generated using a microfluidic format. The chip, prepared as a hybrid polydimethylsiloxane (PDMS) and glass microfluidic device, was constructed to enable in-situ acquisition of time-resolved synchrotron small angle X-ray scattering (SAXS) and crossed polarised light microscopy of the coalesced droplets to determine the structures present during aging. FINDINGS Janus-like droplets formed upon coalesce, with distinct lipid and aqueous portions with a gradient between the two sides of the merged droplet. SAXS and polarised light microscopy revealed a progression of mesophases as the lipid portion was hydrated by the aqueous portion via the diffusion limited interface which separated the portions. Thus demonstrating, on a droplet scale, a new approach for studying the phase transformation kinetics and identification of non-equilibrium phase in droplet-based lyotropic liquid systems.
Collapse
Affiliation(s)
- Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Susanne Seibt
- SAXS/WAXS Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, VIC 3150, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Jeyasountharan A, Giudice FD. Viscoelastic Particle Encapsulation Using a Hyaluronic Acid Solution in a T-Junction Microfluidic Device. MICROMACHINES 2023; 14:563. [PMID: 36984969 PMCID: PMC10053877 DOI: 10.3390/mi14030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The encapsulation of particles and cells in droplets is highly relevant in biomedical engineering as well as in material science. So far, however, the majority of the studies in this area have focused on the encapsulation of particles or cells suspended in Newtonian liquids. We here studied the particle encapsulation phenomenon in a T-junction microfluidic device, using a non-Newtonian viscoelastic hyaluronic acid solution in phosphate buffer saline as suspending liquid for the particles. We first studied the non-Newtonian droplet formation mechanism, finding that the data for the normalised droplet length scaled as the Newtonian ones. We then performed viscoelastic encapsulation experiments, where we exploited the fact that particles self-assembled in equally-spaced structures before approaching the encapsulation area, to then identify some experimental conditions for which the single encapsulation efficiency was larger than the stochastic limit predicted by the Poisson statistics.
Collapse
|
8
|
Zath GK, Sperling RA, Hoffman CW, Bikos DA, Abbasi R, Abate AR, Weitz DA, Chang CB. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip. LAB ON A CHIP 2022; 22:4735-4745. [PMID: 36367139 PMCID: PMC10016142 DOI: 10.1039/d2lc00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 μm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time.
Collapse
Affiliation(s)
- Geoffrey K Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Ralph A Sperling
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Fraunhofer Institute for Microengineering and Microsystems IMM, Mainz, Germany
| | - Carter W Hoffman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dimitri A Bikos
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Reha Abbasi
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Connie B Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Pieroth S, Heras‐Bautista CO, Hamad S, Brockmeier K, Hescheler J, Pfannkuche K, Schmidt AM. Poly(acrylamide) Spheroids with Tunable Elasticity for Scalable Cell Culture Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Stephanie Pieroth
- Chemistry Department Institute for Physical Chemistry University of Cologne 50939 Cologne Germany
| | - Carlos O. Heras‐Bautista
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
| | - Sarkawt Hamad
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
- Biology Department Faculty of Science Soran University Soran Kurdistan Region JGXP+9QW Iraq
- Marga‐and‐Walter‐Boll Laboratory for Cardiac Tissue Engineering University of Cologne 50931 Cologne Germany
| | - Konrad Brockmeier
- Department of Pediatric Cardiology University Hospital of Cologne 50937 Cologne Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
| | - Kurt Pfannkuche
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
- Department of Pediatric Cardiology University Hospital of Cologne 50937 Cologne Germany
- Marga‐and‐Walter‐Boll Laboratory for Cardiac Tissue Engineering University of Cologne 50931 Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne 50931 Cologne Germany
| | - Annette M. Schmidt
- Chemistry Department Institute for Physical Chemistry University of Cologne 50939 Cologne Germany
| |
Collapse
|
10
|
Ježková M, Jelínek P, Marelja O, Trunov D, Jarošová M, Slouka Z, Šoóš M. The preparation of mono- and multicomponent nanoparticle aggregates with layer-by-layer structure using emulsion templating method in microfluidics. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Mazzarotta A, Caputo TM, Battista E, Netti PA, Causa F. Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay. SENSORS (BASEL, SWITZERLAND) 2021; 21:7671. [PMID: 34833752 PMCID: PMC8624599 DOI: 10.3390/s21227671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Herein we describe the development of a mix-read bioassay based on a three-dimensional (3D) poly ethylene glycol-(PEG)-hydrogel microparticles for the detection of oligonucleotides in complex media. The key steps of hydrogels synthesis and molecular recognition in a 3D polymer network are elucidated. The design of the DNA probes and their density in polymer network were opportunely optimized. Furthermore, the diffusion into the polymer was tuned adjusting the polymer concentration and consequently the characteristic mesh size. Upon parameters optimization, 3D-PEG-hydrogels were synthetized in a microfluidic system and provided with fluorescent probe. Target detection occurred by double strand displacement assay associated to fluorescence depletion within the hydrogel microparticle. Proposed 3D-PEG-hydrogel microparticles were designed for miR-143-3p detection. Results showed 3D-hydrogel microparticles with working range comprise between 10-6-10-12 M, had limit of detection of 30 pM and good specificity. Moreover, due to the anti-fouling properties of PEG-hydrogel, the target detection occurred in human serum with performance comparable to that in buffer. Due to the approach versatility, such design could be easily adapted to other short oligonucleotides detection.
Collapse
Affiliation(s)
- Alessia Mazzarotta
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
| | - Tania Mariastella Caputo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
| | - Edmondo Battista
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, 53, 80125 Naples, Italy; (A.M.); (T.M.C.); (P.A.N.); (F.C.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
12
|
Lüken A, Geiger M, Steinbeck L, Joel A, Lampert A, Linkhorst J, Wessling M. Biocompatible Micron-Scale Silk Fibers Fabricated by Microfluidic Wet Spinning. Adv Healthc Mater 2021; 10:e2100898. [PMID: 34331524 PMCID: PMC11468244 DOI: 10.1002/adhm.202100898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Indexed: 12/15/2022]
Abstract
For successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications.
Collapse
Affiliation(s)
- Arne Lüken
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Matthias Geiger
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Lea Steinbeck
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Anna‐Christin Joel
- Institute of Biology IIRWTH Aachen UniversityWorringerweg 3Aachen52074Germany
| | - Angelika Lampert
- Institute of PhysiologyUniklinik RWTH Aachen UniversityPauwelsstraße 30Aachen52074Germany
| | - John Linkhorst
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 51Aachen52074Germany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52074Germany
| |
Collapse
|
13
|
Van Lent J, Breukers J, Ven K, Ampofo L, Horta S, Pollet F, Imbrechts M, Geukens N, Vanhoorelbeke K, Declerck P, Lammertyn J. Miniaturized single-cell technologies for monoclonal antibody discovery. LAB ON A CHIP 2021; 21:3627-3654. [PMID: 34505611 DOI: 10.1039/d1lc00243k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.
Collapse
Affiliation(s)
- Julie Van Lent
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Karen Ven
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Louanne Ampofo
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Maya Imbrechts
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
14
|
Wu J, Yadavali S, Lee D, Issadore DA. Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook. APPLIED PHYSICS REVIEWS 2021; 8:031304. [PMID: 34484549 PMCID: PMC8293697 DOI: 10.1063/5.0049897] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
The last two decades have witnessed tremendous progress in the development of microfluidic chips that generate micrometer- and nanometer-scale materials. These chips allow precise control over composition, structure, and particle uniformity not achievable using conventional methods. These microfluidic-generated materials have demonstrated enormous potential for applications in medicine, agriculture, food processing, acoustic, and optical meta-materials, and more. However, because the basis of these chips' performance is their precise control of fluid flows at the micrometer scale, their operation is limited to the inherently low throughputs dictated by the physics of multiphasic flows in micro-channels. This limitation on throughput results in material production rates that are too low for most practical applications. In recent years, however, significant progress has been made to tackle this challenge by designing microchip architectures that incorporate multiple microfluidic devices onto single chips. These devices can be operated in parallel to increase throughput while retaining the benefits of microfluidic particle generation. In this review, we will highlight recent work in this area and share our perspective on the key unsolved challenges and opportunities in this field.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
15
|
Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Molecules 2021; 26:molecules26092817. [PMID: 34068649 PMCID: PMC8126101 DOI: 10.3390/molecules26092817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/22/2023] Open
Abstract
Droplet microfluidics—the art and science of forming droplets—has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing—and in particular, projection micro-stereolithography (PµSL)—provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.
Collapse
|
16
|
Ma J, Tran G, Wan AMD, Young EWK, Kumacheva E, Iscove NN, Zandstra PW. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Sci Rep 2021; 11:6777. [PMID: 33762663 PMCID: PMC7990930 DOI: 10.1038/s41598-021-86087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023] Open
Abstract
Gene expression analysis of individual cells enables characterization of heterogeneous and rare cell populations, yet widespread implementation of existing single-cell gene analysis techniques has been hindered due to limitations in scale, ease, and cost. Here, we present a novel microdroplet-based, one-step reverse-transcriptase polymerase chain reaction (RT-PCR) platform and demonstrate the detection of three targets simultaneously in over 100,000 single cells in a single experiment with a rapid read-out. Our customized reagent cocktail incorporates the bacteriophage T7 gene 2.5 protein to overcome cell lysate-mediated inhibition and allows for one-step RT-PCR of single cells encapsulated in nanoliter droplets. Fluorescent signals indicative of gene expressions are analyzed using a probabilistic deconvolution method to account for ambient RNA and cell doublets and produce single-cell gene signature profiles, as well as predict cell frequencies within heterogeneous samples. We also developed a simulation model to guide experimental design and optimize the accuracy and precision of the assay. Using mixtures of in vitro transcripts and murine cell lines, we demonstrated the detection of single RNA molecules and rare cell populations at a frequency of 0.1%. This low cost, sensitive, and adaptable technique will provide an accessible platform for high throughput single-cell analysis and enable a wide range of research and clinical applications.
Collapse
Affiliation(s)
- Jennifer Ma
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Gary Tran
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alwin M D Wan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Edmond W K Young
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Eugenia Kumacheva
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Norman N Iscove
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
17
|
Zhao S, Zhang Z, Hu F, Wu J, Peng N. Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube. Analyst 2021; 146:1559-1568. [PMID: 33533355 DOI: 10.1039/d0an01841d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Step emulsification (SE) devices coupled with parallel generation nozzles are widely used in the production of large-scale monodisperse droplets, especially for droplet-based digital polymerase chain reaction (ddPCR) analysis. Although current ddPCR systems based on the SE method can provide a fully enclosed ddPCR scheme, high demands on chip fabrication and system control will increase testing costs and reduce its flexibility in ddPCR analysis. In this study, a compact SE device, integrating a smart SE chip into a reaction tube, was developed to prepare large-scale water-in-fluorinated-oil droplets for ddPCR analysis. The SE chip contained dozens of droplet-generation nozzles. By adjusting the nozzle height of the SE chip, monodisperse droplets in a picolitre to nanolitre vloume could be prepared at a production rate of tens to hundreds of microlitres per minute. Subsequently, we utilized such an integrated SE device to prepare monodisperse droplets for ddPCR experiments. The volume of PCR reagent and the number of droplets could be flexibly adjusted according to the requirements of the ddPCR analysis. The quantitative results showed that emulsions prepared by the SE device could achieve ddPCR detection with high accuracy, good repeatability, and an adaptive dynamic range, which also demonstrated the robustness and reliability of such devices in the droplet preparation. Thus, this compact SE device provides an inexpensive, flexible, and simplified droplet preparation method for digital PCR quantitative analysis.
Collapse
Affiliation(s)
- Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | | | | | | | | |
Collapse
|
18
|
Debon A, Pott M, Obexer R, Green AP, Friedrich L, Griffiths AD, Hilvert D. Ultrahigh-throughput screening enables efficient single-round oxidase remodelling. Nat Catal 2019. [DOI: 10.1038/s41929-019-0340-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Chiu FWY, Stavrakis S. High-throughput droplet-based microfluidics for directed evolution of enzymes. Electrophoresis 2019; 40:2860-2872. [PMID: 31433062 PMCID: PMC6899980 DOI: 10.1002/elps.201900222] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023]
Abstract
Natural enzymes have evolved over millions of years to allow for their effective operation within specific environments. However, it is significant to note that despite their wide structural and chemical diversity, relatively few natural enzymes have been successfully applied to industrial processes. To address this limitation, directed evolution (DE) (a method that mimics the process of natural selection to evolve proteins toward a user‐defined goal) coupled with droplet‐based microfluidics allows the detailed analysis of millions of enzyme variants on ultra‐short timescales, and thus the design of novel enzymes with bespoke properties. In this review, we aim at presenting the development of DE over the last years and highlighting the most important advancements in droplet‐based microfluidics, made in this context towards the high‐throughput demands of enzyme optimization. Specifically, an overview of the range of microfluidic unit operations available for the construction of DE platforms is provided, focusing on their suitability and benefits for cell‐based assays, as in the case of directed evolution experimentations.
Collapse
Affiliation(s)
- Flora W Y Chiu
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Hommes A, de Wit T, Euverink GJW, Yue J. Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kang KK, Lee B, Lee CS. Recent progress in the synthesis of inorganic particulate materials using microfluidics. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Alkayyali T, Cameron T, Haltli B, Kerr R, Ahmadi A. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria - A review. Anal Chim Acta 2019; 1053:1-21. [DOI: 10.1016/j.aca.2018.12.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
23
|
Lam T, Brennan MD, Morrison DA, Eddington DT. Femtoliter droplet confinement of Streptococcus pneumoniae: bacterial genetic transformation by cell-cell interaction in droplets. LAB ON A CHIP 2019; 19:682-692. [PMID: 30657515 PMCID: PMC6487891 DOI: 10.1039/c8lc01367e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Streptococcus pneumoniae (pneumococcus), a deadly bacterial human pathogen, uses genetic transformation to gain antibiotic resistance. Genetic transformation begins when a pneumococcal strain in a transient specialized physiological state called competence, attacks and lyses another strain, releasing DNA, taking up fragments of the liberated DNA, and integrating divergent genes into its genome. While many steps of the process are known and generally understood, the precise mechanism of this natural genetic transformation is not fully understood and the current standard strategies to study it have limitations in specifically controlling and observing the process in detail. To overcome these limitations, we have developed a droplet microfluidic system for isolating individual episodes of bacterial transformation between two confined cells of pneumococcus. By encapsulating the cells in a 10 μm diameter aqueous droplet, we provide an improved experimental model of genetic transformation, as both participating cells can be identified, and the released DNA is spatially restricted near the attacking strain. Specifically, the bacterial cells, one rifampicin (R) resistant, the other novobiocin (N) and spectinomycin (S) resistant were encapsulated in droplets carried by the fluorinated oil FC-40 with 5% surfactant and allowed to carry out competence-specific attack and DNA uptake (and consequently gain antibiotic resistances) within the droplets. The droplets were then broken, and recombinants were recovered by selective plating with antibiotics. The new droplet system encapsulated 2 or more cells in a droplet with a probability up to 71%, supporting gene transfer rates comparable to standard mixtures of unconfined cells. Thus, confinement in droplets allows characterization of natural genetic transformation during a strictly defined interaction between two confined cells.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
24
|
High viscosity polymeric fluid droplet formation in a flow focusing microfluidic device – Experimental and numerical study. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.09.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Abedi S, Suteria NS, Chen CC, Vanapalli SA. Microfluidic production of size-tunable hexadecane-in-water emulsions: Effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence. J Colloid Interface Sci 2019; 533:59-70. [DOI: 10.1016/j.jcis.2018.08.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
|
26
|
Wang X, Zhu J, Shao T, Luo X, Zhang L. Fabrication of Millimeters-Sized Poly(Divinylbenzene) Foam Shells from Controllable Double Emulsion in Microfluidic Device. INTERNATIONAL JOURNAL OF NANOSCIENCE 2018. [DOI: 10.1142/s0219581x17500235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A geometrically confined dripping was employed to enable precise control over the dimension and structure of millimeters-sized double-emulsion precursors of poly(divinylbenzene) foam shells in a new kind of double Y-shaped compound channels. Due to the 3D axial-symmetric microfluidic device, a more stable and robust flow field was maintained to obtain a continuous and regular emulsification. Various factors were systematically investigated for the precise size control of dripping in confined channel geometry, such as outlet channel size, fluid properties and flow rates. It was seen that phase properties and synergistic effects of main factors played key roles in determining droplet size. Thus, we used the optimized microfluidic approach to fabricate predetermined size foams to satisfy inertial fusion energy experiments, ranging from 4 to 4.6[Formula: see text]mm in diameter with a 50–300[Formula: see text][Formula: see text]m wall thickness and a coefficient of variation [Formula: see text]%. The results presented in this work provided a practical guideline for creating size-desired polymersome from comparable double emulsions.
Collapse
Affiliation(s)
- Xiaojun Wang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, P. R. China
- School of Chemistry and Chemical Engineering, Mianyang Teachers’ College, Mianyang 621000, P. R. China
| | - Jiayi Zhu
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, Mianyang 621000, P. R. China
| | - Ting Shao
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, P. R. China
| | - Xuan Luo
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, P. R. China
| | - Lin Zhang
- Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, P. R. China
| |
Collapse
|
27
|
Mastiani M, Seo S, Mosavati B, Kim M. High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics. ACS OMEGA 2018; 3:9296-9302. [PMID: 31459062 PMCID: PMC6645416 DOI: 10.1021/acsomega.8b01768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 05/29/2023]
Abstract
Aqueous two-phase system (ATPS) droplet generation has significant potential in biological and medical applications because of its excellent biocompatibility. However, the ultralow interfacial tension of ATPS makes droplet generation extremely challenging when compared with the conventional water-in-oil (W/O) system. In this paper, we passively produced ATPS droplets with a wide range of droplet size and high production rate without the involvement of an oil phase and external forces. For the first time, we reported important information of the flow rate and capillary (Ca) number for passive, oil-free ATPS droplet generation. It was found that the range of Ca numbers of the continuous phase under the jetting flow regime is 0.3-1.7, as compared to less than 0.1 in the W/O system, indicating the ultralow interfacial tension in ATPS. In addition, we successfully generated ATPS droplets with a radius as small as 7 μm at the maximum frequency up to 300 Hz, which has not been achieved in previous studies. The size and generation frequency of ATPS droplets can be controlled independently by adjusting the inlet pressures and corresponding flow rates. We found that the droplet size is correlated with the pressure and flow rate ratios with the power-law exponents of 0.8 and 0.2, respectively.
Collapse
|
28
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schmid L, Franke T. Real-time size modulation and synchronization of a microfluidic dropmaker with pulsed surface acoustic waves (SAW). Sci Rep 2018. [PMID: 29540848 PMCID: PMC5852020 DOI: 10.1038/s41598-018-22529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We show that a microfluidic flow focusing drop maker can be synchronized to a surface acoustic waves (SAW) triggered by an external electric signal. In this way droplet rate and volume can be controlled over a wide range of values in real time. Using SAW, the drop formation rate of a regularly operating water in oil drop maker without SAW can be increased by acoustically enforcing the drop pinch-off and thereby reducing the volume. Drop makers of square cross-sections (w = h = 30 µm, with width w and height h) that produce large drops of length l = 10 w can be triggered to produce drops as short as l ~ 2w, approaching the geometical limit l = w without changing the flow rates. Unlike devices that adjust drop size by changing the flow rates the acoustic dropmaker has very short transients allowing to adjust the size of every single drop. This allows us to produce custom made emulsions with a defined size distribution as demonstrated here not only for a monodisperse emulsion but also for binary emulsions with drops of alternating size. Moreover, we show that the robustness and monodispersity of our devices is enhanced compared to purely flow driven drop makers in the absence of acoustic synchronization.
Collapse
Affiliation(s)
- Lothar Schmid
- Chair of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT, Glasgow, United Kingdom
| | - Thomas Franke
- Chair of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Avenue, G12 8LT, Glasgow, United Kingdom.
| |
Collapse
|
30
|
Li X, Zhang D, Zhang H, Guan Z, Song Y, Liu R, Zhu Z, Yang C. Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis. Anal Chem 2018; 90:2570-2577. [PMID: 29350029 DOI: 10.1021/acs.analchem.7b04040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol-gel switching property of agarose enable formation of stable beads by chilling the droplet array at -20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis.
Collapse
Affiliation(s)
- Xingrui Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Dongfeng Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Zhichao Guan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China.,The MOE Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, People's Republic of China
| | - Ruochen Liu
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey United States
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, People's Republic of China
| |
Collapse
|
31
|
Kovalchuk NM, Roumpea E, Nowak E, Chinaud M, Angeli P, Simmons MJ. Effect of surfactant on emulsification in microchannels. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Wiedemeier S, Eichler M, Römer R, Grodrian A, Lemke K, Nagel K, Klages CP, Gastrock G. Parametric studies on droplet generation reproducibility for applications with biological relevant fluids. Eng Life Sci 2017; 17:1271-1280. [PMID: 29399017 PMCID: PMC5765517 DOI: 10.1002/elsc.201700086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 11/08/2022] Open
Abstract
Although the great potential of droplet based microfluidic technologies for routine applications in industry and academia has been successfully demonstrated over the past years, its inherent potential is not fully exploited till now. Especially regarding to the droplet generation reproducibility and stability, two pivotally important parameters for successful applications, there is still a need for improvement. This is even more considerable when droplets are created to investigate tissue fragments or cell cultures (e.g. suspended cells or 3D cell cultures) over days or even weeks. In this study we present microfluidic chips composed of a plasma coated polymer, which allow surfactants-free, highly reproducible and stable droplet generation from fluids like cell culture media. We demonstrate how different microfluidic designs and different flow rates (and flow rate ratios) affect the reproducibility of the droplet generation process and display the applicability for a wide variety of bio(techno)logically relevant media.
Collapse
Affiliation(s)
- Stefan Wiedemeier
- Bioprocess Engineering Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba) Heilbad Heiligenstadt Germany
| | - Marko Eichler
- Atmospheric Pressure Processes Fraunhofer Institute for Surface Engineering and Thin Films (IST) Braunschweig Germany
| | - Robert Römer
- Bioprocess Engineering Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba) Heilbad Heiligenstadt Germany
| | - Andreas Grodrian
- Bioprocess Engineering Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba) Heilbad Heiligenstadt Germany
| | - Karen Lemke
- Bioprocess Engineering Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba) Heilbad Heiligenstadt Germany
| | - Krees Nagel
- Atmospheric Pressure Processes Fraunhofer Institute for Surface Engineering and Thin Films (IST) Braunschweig Germany
| | - Claus-Peter Klages
- Atmospheric Pressure Processes Fraunhofer Institute for Surface Engineering and Thin Films (IST) Braunschweig Germany
| | - Gunter Gastrock
- Bioprocess Engineering Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba) Heilbad Heiligenstadt Germany
| |
Collapse
|
33
|
Hwang MY, Kim SG, Lee HS, Muller SJ. Generation and characterization of monodisperse deformable alginate and pNIPAM microparticles with a wide range of shear moduli. SOFT MATTER 2017; 13:5785-5794. [PMID: 28766673 DOI: 10.1039/c7sm01079f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monodisperse particles of varying size, shape, and deformability were produced using two microfluidic strategies. For both strategies, monodisperse emulsion droplets of a crosslinkable solution were generated via flow-focusing. Subsequently, droplets were crosslinked either on chip or in an external bath. On-chip gelation resulted in spherical particles; varying the degree of crosslinking varied the deformability systematically. The optimized flow-focusing device design separated the production of monodisperse aqueous alginate droplets and the on-chip introduction of crosslinking ions. Two features were then adapted to target softer particles: the dispersed phase design and the polymer choice. The alternative design used a sheathed dispersed phase, with the polymer solution surrounding an unreactive viscous core, which generated alginate particles with a softer core. Poly(N-isopropylacrylamide) (pNIPAM) allowed access to a broad range of moduli. The resulting spherical particles were characterized using capillary micromechanics to determine the shear (G) and compressive (K) moduli. Particles with G = 0.013 kPa to 26 kPa and K = 0.221 kPa to 34.9 kPa were obtained; the softest particles are an order of magnitude softer than those previously reported. The second approach, based on earlier work by Hu et al., produced axisymmetric, non-spherical particles with fore-aft asymmetry. Alginate drops were again formed in a flow-focusing device but were crosslinked off-chip in an external gelation bath. By changing the bath viscosity, crosslinker concentration, and outlet height, the falling droplets deformed differently during gelation, resulting in a variety of shapes, such as teardrop, mushroom, and bowl shapes.
Collapse
Affiliation(s)
- Margaret Y Hwang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
34
|
Autour A, Ryckelynck M. Ultrahigh-Throughput Improvement and Discovery of Enzymes Using Droplet-Based Microfluidic Screening. MICROMACHINES 2017. [PMCID: PMC6189954 DOI: 10.3390/mi8040128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymes are extremely valuable tools for industrial, environmental, and biotechnological applications and there is a constant need for improving existing biological catalysts and for discovering new ones. Screening microbe or gene libraries is an efficient way of identifying new enzymes. In this view, droplet-based microfluidics appears to be one of the most powerful approaches as it allows inexpensive screenings in well-controlled conditions and an ultrahigh-throughput regime. This review aims to introduce the main microfluidic devices and concepts to be considered for such screening before presenting and discussing the latest successful applications of the technology for enzyme discovery.
Collapse
|
35
|
Amstad E, Chen X, Eggersdorfer M, Cohen N, Kodger TE, Ren CL, Weitz DA. Parallelization of microfluidic flow-focusing devices. Phys Rev E 2017; 95:043105. [PMID: 28505795 DOI: 10.1103/physreve.95.043105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/06/2022]
Abstract
Microfluidic flow-focusing devices offer excellent control over fluid flow, enabling formation of drops with a narrow size distribution. However, the throughput of microfluidic flow-focusing devices is limited and scale-up through operation of multiple drop makers in parallel often compromises the robustness of their operation. We demonstrate that parallelization is facilitated if the outer phase is injected from the direction opposite to that of the inner phase, because the fluid injection flow rate, where the drop formation transitions from the squeezing into the dripping regime, is shifted towards higher values.
Collapse
Affiliation(s)
- Esther Amstad
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xiaoming Chen
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Max Eggersdorfer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Noa Cohen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Thomas E Kodger
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Carolyn L Ren
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
36
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Thiele J. Polymer Material Design by Microfluidics Inspired by Cell Biology and Cell-Free Biotechnology. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e. V; Leibniz Research Cluster (LRC); Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
38
|
Lychagov VV, Shemetov AA, Jimenez R, Verkhusha VV. Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins. Anal Chem 2016; 88:11821-11829. [PMID: 27807973 DOI: 10.1021/acs.analchem.6b03499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.
Collapse
Affiliation(s)
| | | | | | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki , Helsinki 00029, Finland
| |
Collapse
|
39
|
Jing T, Lai Z, Wu L, Han J, Lim CT, Chen CH. Single Cell Analysis of Leukocyte Protease Activity Using Integrated Continuous-Flow Microfluidics. Anal Chem 2016; 88:11750-11757. [PMID: 27797505 DOI: 10.1021/acs.analchem.6b03370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.
Collapse
Affiliation(s)
- Tengyang Jing
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602
| | - Zhangxing Lai
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077
| | | | - Jongyoon Han
- Singapore-MIT Alliance for Research and Technology , Singapore 138602
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602.,Mechanobiology Institute , Singapore 117411
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore , Singapore 119077.,Singapore-MIT Alliance for Research and Technology , Singapore 138602.,Singapore Institute for Neurotechnology (SINAPSE) , Singapore 117456
| |
Collapse
|
40
|
Haefner S, Frank P, Elstner M, Nowak J, Odenbach S, Richter A. Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. LAB ON A CHIP 2016; 16:3977-3989. [PMID: 27713982 DOI: 10.1039/c6lc00806b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Smart hydrogels are useful elements in microfluidic systems because they respond to environmental stimuli and are capable of storing reagents. We present here a concept of using hydrogels (poly(N-isopropylacrylamide)) as an interface between continuous and discontinuous microfluidics. Their swelling and shrinking capabilities allow them to act as storage elements for reagents absorbed in the swelling process. When the swollen hydrogel collapses in an oil-filled channel, the incorporated water and molecules are expelled from the hydrogel and form a water reservoir. Water-in-oil droplets can be released from the reservoir generating different sized droplets depending on the flow regime at various oil flow rates (dispensing functionality). Different hydrogel sizes and microfluidic structures are discussed in terms of their storage and droplet formation capabilities. The time behaviour of the hydrogel element is investigated by dynamic swelling experiments and computational fluid dynamics simulations. By precise temperature control, the device acts as an active droplet generator and converts continuous to discontinuous flows.
Collapse
Affiliation(s)
- Sebastian Haefner
- Polymeric Microsystems, Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Philipp Frank
- Polymeric Microsystems, Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Martin Elstner
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Johannes Nowak
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Richter
- Polymeric Microsystems, Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany. and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
41
|
Li L, Zhang J, Wang K, Xu J, Luo G. Droplet formation of H2
SO4
/alkane system in a T-junction microchannel: Gravity effect. AIChE J 2016. [DOI: 10.1002/aic.15354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liantang Li
- Dept. of Chemical Engineering, The State Key Lab of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jisong Zhang
- Dept. of Chemical Engineering, The State Key Lab of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Kai Wang
- Dept. of Chemical Engineering, The State Key Lab of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jianhong Xu
- Dept. of Chemical Engineering, The State Key Lab of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- Dept. of Chemical Engineering, The State Key Lab of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
42
|
Highley CB, Kim M, Lee D, Burdick JA. Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites. Nanomedicine (Lond) 2016; 11:1579-90. [PMID: 27176049 DOI: 10.2217/nnm-2016-0070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIM To develop a stimulus-responsive material platform capable of releasing entrapped molecules in response to near infrared (NIR) light. MATERIALS & METHODS Gold nanorods were mixed with hyaluronic acid derivatives modified with β-cyclodextrin or adamantane to create a NIR-responsive hydrogel-nanorod composite. Microfluidics were used to create responsive microgels and NIR-triggered release was evaluated. RESULTS & DISCUSSION The hydrogel-nanorod composite material exhibited a rapid response to NIR-irradiation, allowing enhanced release of encapsulated payloads with material heating and network disruption. The release was dependent on the entrapped molecule size, the NIR exposure time and the light intensity. CONCLUSION NIR irradiation of hydrogel-nanorods leads to plasmonic heating and triggered release of encapsulated molecules, a system that has potential for light-triggered release of therapeutics.
Collapse
Affiliation(s)
- Christopher B Highley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miju Kim
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daeyeon Lee
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Prileszky TA, Ogunnaike BA, Furst EM. Statistics of droplet sizes generated by a microfluidic device. AIChE J 2016. [DOI: 10.1002/aic.15246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tamás A. Prileszky
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
| | | | - Eric M. Furst
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
| |
Collapse
|
44
|
Muijlwijk K, Berton-Carabin C, Schroën K. Cross-flow microfluidic emulsification from a food perspective. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Stoller MA, Konda A, Kottwitz MA, Morin SA. Thermoplastic building blocks for the fabrication of microfluidic masters. RSC Adv 2015. [DOI: 10.1039/c5ra22742a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This manuscript reports a building-block-based approach for the design and fabrication of masters that enables “ultra-rapid” prototyping of functional microfluidic systems.
Collapse
Affiliation(s)
| | - Abhiteja Konda
- Department of Chemistry
- University of Nebraska–Lincoln
- Lincoln
- USA
| | | | - Stephen A. Morin
- Department of Chemistry
- University of Nebraska–Lincoln
- Lincoln
- USA
- Nebraska Center for Materials and Nanoscience
| |
Collapse
|
46
|
|
47
|
Park SJ, Lee YK, Cho S, Uthaman S, Park IK, Min JJ, Ko SY, Park JO, Park S. Effect of chitosan coating on a bacteria-based alginate microrobot. Biotechnol Bioeng 2014; 112:769-76. [PMID: 25312282 DOI: 10.1002/bit.25476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 11/11/2022]
Abstract
To develop an efficient bacteria-based microrobot, first, therapeutic bacteria should be encapsulated into microbeads using biodegradable and biocompatible materials; second, the releasing rate of the encapsulated bacteria for theragnostic function should be regulated; and finally, flagellated bacteria should be attached on the microbeads to ensure the motility of the microrobot. For the therapeutic bacteria encapsulation, an alginate can be a promising candidate as a biodegradable and biocompatible material. Owing to the non-regulated releasing rate of the encapsulated bacteria in alginate microbeads and the weak attachment of flagellated bacteria on the surface of alginate microbeads, however, the alginate microbeads cannot be used as effective cargo for a bacteria-based microrobot. In this paper, to enhance the stability of the bacteria encapsulation and the adhesion of flagellated bacteria in alginate microbeads, we performed a surface modification of alginate microbeads using chitosan coating. The bacteria-encapsulated alginate microbeads with 1% chitosan coating maintained their structural integrity up to 72 h, whereas the control alginate microbead group without chitosan coating showed severe degradations after 24 h. The chitosan coating in alginate microbeads shows the enhanced attachment of flagellated bacteria on the surface of alginate microbeads. The bacteria-actuated microrobot with the enhanced flagellated bacteria attachment could show approximately 4.2 times higher average velocities than the control bacteria-actuated microrobot without chitosan coating. Consequently, the surface modification using chitosan coating enhanced the structural stability and the motility of the bacteria-based alginate microrobots.
Collapse
Affiliation(s)
- Sung Jun Park
- School of Mechanical Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Amstad E, Datta SS, Weitz DA. The microfluidic post-array device: high throughput production of single emulsion drops. LAB ON A CHIP 2014; 14:705-709. [PMID: 24336872 DOI: 10.1039/c3lc51213d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a microfluidic device that enables high throughput production of relatively monodisperse emulsion drops while controlling the average size. The device consists of a two-dimensional array of regularly-spaced posts. Large drops of a highly polydisperse crude emulsion are input into the device and are successively split by the posts, ultimately yielding a finer emulsion consisting of smaller, and much more monodisperse drops. The size distribution of the resultant emulsion depends only weakly on the viscosities of the input fluids and allows fluids of very high viscosities to be used. The average size and polydispersity of the drops depend strongly on the device geometry enabling both control and optimization. We use this device to produce drops of a highly viscous monomer solution and subsequently solidify them into polymeric microparticles. The production rate of these devices is similar to that achieved by membrane emulsification techniques, yet the control over the drop size is superior; thus these post-array microfluidic devices are potentially useful for industrial applications.
Collapse
Affiliation(s)
- E Amstad
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
50
|
Tran TM, Cater S, Abate AR. Coaxial flow focusing in poly(dimethylsiloxane) microfluidic devices. BIOMICROFLUIDICS 2014; 8:016502. [PMID: 24753732 PMCID: PMC3977865 DOI: 10.1063/1.4863576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/17/2014] [Indexed: 05/15/2023]
Abstract
We have developed a coaxial flow focusing geometry that can be fabricated using soft lithography in poly(dimethylsiloxane) (PDMS). Like coaxial flow focusing in glass capillary microfluidics, our geometry can form double emulsions in channels with uniform wettability and of a size much smaller than the channel dimensions. However, In contrast to glass capillary coaxial flow focusing, our geometry can be fabricated using lithographic techniques, allowing it to be integrated as the drop making unit in parallel drop maker arrays. Our geometry enables scalable formation of emulsions down 7 μm in diameter, in large channels that are robust against fouling and clogging.
Collapse
Affiliation(s)
- Tuan M Tran
- Joint UCSF/UCB Bioengineering Graduate Group, University of California, San Francisco 1700, 4th Street, Byers Hall 303C, San Francisco, California 94158, USA
| | - Sean Cater
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco 1700, 4th Street, Byers Hall 303C, San Francisco, California 94158, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco 1700, 4th Street, Byers Hall 303C, San Francisco, California 94158, USA
| |
Collapse
|