1
|
Chatterjee S, De R, Hens C, Dana SK, Kapitaniak T, Bhattacharyya S. Response of a three-species cyclic ecosystem to a short-lived elevation of death rate. Sci Rep 2023; 13:20740. [PMID: 38007582 PMCID: PMC10676407 DOI: 10.1038/s41598-023-48104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal, 741246, India
| | - Rina De
- Department of Physics, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, 712406, India
| | - Chittaranjan Hens
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, 500 032, India
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | - Syamal K Dana
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | | |
Collapse
|
2
|
Menezes J, Batista S, Rangel E. Spatial organisation plasticity reduces disease infection risk in rock-paper-scissors models. Biosystems 2022; 221:104777. [PMID: 36070849 DOI: 10.1016/j.biosystems.2022.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
We study a three-species cyclic game system where organisms face a contagious disease whose virulence may change by a pathogen mutation. As a responsive defence strategy, organisms' mobility is restricted to reduce disease dissemination in the system. The impact of the collective self-preservation strategy on the disease infection risk is investigated by performing stochastic simulations of the spatial version of the rock-paper-scissors game. Our outcomes show that the mobility control strategy induces plasticity in the spatial patterns with groups of organisms of the same species inhabiting spatial domains whose characteristic length scales depend on the level of dispersal restrictions. The spatial organisation plasticity allows the ecosystems to adapt to minimise the individuals' disease contamination risk if an eventual pathogen alters the disease virulence. We discover that if a pathogen mutation makes the disease more transmissible or less lethal, the organisms benefit more if the mobility is not strongly restricted, thus forming large spatial domains. Conversely, the benefits of protecting against a pathogen causing a less contagious or deadlier disease are maximised if the average size of groups of individuals of the same species is significantly limited, reducing the dimensions of groups of organisms significantly. Our findings may help biologists understand the effects of dispersal control as a conservation strategy in ecosystems affected by epidemic outbreaks.
Collapse
Affiliation(s)
- J Menezes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| | - E Rangel
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil.
| |
Collapse
|
3
|
Combination of survival movement strategies in cyclic game systems during an epidemic. Biosystems 2022; 217:104689. [DOI: 10.1016/j.biosystems.2022.104689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022]
|
4
|
Bestehorn M, Michelitsch TM, Collet BA, Riascos AP, Nowakowski AF. Simple model of epidemic dynamics with memory effects. Phys Rev E 2022; 105:024205. [PMID: 35291108 DOI: 10.1103/physreve.105.024205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
We introduce a compartment model with memory for the dynamics of epidemic spreading in a constant population of individuals. Each individual is in one of the states S=susceptible, I=infected, or R=recovered (SIR model). In state R an individual is assumed to stay immune within a finite-time interval. In the first part, we introduce a random lifetime or duration of immunity which is drawn from a certain probability density function. Once the time of immunity is elapsed an individual makes an instantaneous transition to the susceptible state. By introducing a random duration of immunity a memory effect is introduced into the process which crucially determines the epidemic dynamics. In the second part, we investigate the influence of the memory effect on the space-time dynamics of the epidemic spreading by implementing this approach into computer simulations and employ a multiple random walker's model. If a susceptible walker meets an infectious one on the same site, then the susceptible one gets infected with a certain probability. The computer experiments allow us to identify relevant parameters for spread or extinction of an epidemic. In both parts, the finite duration of immunity causes persistent oscillations in the number of infected individuals with ongoing epidemic activity preventing the system from relaxation to a steady state solution. Such oscillatory behavior is supported by real-life observations and not captured by the classical standard SIR model.
Collapse
Affiliation(s)
- Michael Bestehorn
- Brandenburgische Technische Universität Cottbus-Senftenberg, Institut für Physik, Erich-Weinert-Straße 1, 03046 Cottbus, Germany
| | - Thomas M Michelitsch
- Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Bernard A Collet
- Sorbonne Université, Institut Jean le Rond d'Alembert, CNRS UMR 7190, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de México, México
| | - Andrzej F Nowakowski
- Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
5
|
Avelino PP, Menezes J, de Oliveira BF, Pereira TA. Expanding spatial domains and transient scaling regimes in populations with local cyclic competition. Phys Rev E 2019; 99:052310. [PMID: 31212535 DOI: 10.1103/physreve.99.052310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Indexed: 11/07/2022]
Abstract
We investigate a six-species class of May-Leonard models leading to the formation of two types of competing spatial domains, each one inhabited by three species with their own internal cyclic rock-paper-scissors dynamics. We study the resulting population dynamics using stochastic numerical simulations in two-dimensional space. We find that as three-species domains shrink, there is an increasing probability of extinction of two of the species inhabiting the domain, with the consequent creation of one-species domains. We determine the critical initial radius beyond which these one-species spatial domains are expected to expand. We further show that a transient scaling regime, with a slower average growth rate of the characteristic length scale L of the spatial domains with time t, takes place before the transition to a standard L∝t^{1/2} scaling law, resulting in an extended period of coexistence.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - J Menezes
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970 Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - T A Pereira
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| |
Collapse
|
6
|
Menezes J, Moura B, Pereira TA. Uneven rock-paper-scissors models: Patterns and coexistence. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/18003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Jentsch PC, Anand M, Bauch CT. Spatial correlation as an early warning signal of regime shifts in a multiplex disease-behaviour network. J Theor Biol 2018; 448:17-25. [DOI: 10.1016/j.jtbi.2018.03.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 11/24/2022]
|
8
|
Emergence of unusual coexistence states in cyclic game systems. Sci Rep 2017; 7:7465. [PMID: 28785001 PMCID: PMC5547111 DOI: 10.1038/s41598-017-07911-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.
Collapse
|
9
|
Souza-Filho CA, Bazeia D, Ramos JGGS. Apex predator and the cyclic competition in a rock-paper-scissors game of three species. Phys Rev E 2017; 95:062411. [PMID: 28709300 DOI: 10.1103/physreve.95.062411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
This work deals with the effects of an apex predator on the cyclic competition among three distinct species that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations but is motivated by a procedure which is explained in the work. We add the apex predator as the fourth species in a system that contains three species that evolve following the standard rules of migration, reproduction, and predation, and study how the system evolves in this new environment, in comparison with the case in the absence of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the clusters of the species that compete cyclically.
Collapse
Affiliation(s)
- C A Souza-Filho
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, Campus Princesa Isabel, 58755-000, Princesa Isabel, Paraíba, Brazil
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | - J G G S Ramos
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| |
Collapse
|
10
|
Roman A, Dasgupta D, Pleimling M. A theoretical approach to understand spatial organization in complex ecologies. J Theor Biol 2016; 403:10-16. [DOI: 10.1016/j.jtbi.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
11
|
Szolnoki A, Perc M. Zealots tame oscillations in the spatial rock-paper-scissors game. Phys Rev E 2016; 93:062307. [PMID: 27415280 DOI: 10.1103/physreve.93.062307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 06/06/2023]
Abstract
The rock-paper-scissors game is a paradigmatic model for biodiversity, with applications ranging from microbial populations to human societies. Research has shown, however, that mobility jeopardizes biodiversity by promoting the formation of spiral waves, especially if there is no conservation law in place for the total number of competing players. First, we show that even if such a conservation law applies, mobility still jeopardizes biodiversity in the spatial rock-paper-scissors game if only a small fraction of links of the square lattice is randomly rewired. Secondly, we show that zealots are very effective in taming the amplitude of oscillations that emerge due to mobility and/or interaction randomness, and this regardless of whether the later is quenched or annealed. While even a tiny fraction of zealots brings significant benefits, at 5% occupancy zealots practically destroy all oscillations regardless of the intensity of mobility, and regardless of the type and strength of randomness in the interaction structure. Interestingly, by annealed randomness the impact of zealots is qualitatively the same as by mobility, which highlights that fast diffusion does not necessarily destroy the coexistence of species, and that zealotry thus helps to recover the stable mean-field solution. Our results strengthen the important role of zealots in models of cyclic dominance, and they reveal fascinating evolutionary outcomes in structured populations that are a unique consequence of such uncompromising behavior.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| |
Collapse
|
12
|
Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theissen G, Schroeter A, Schuster S. Evolutionary game theory: cells as players. MOLECULAR BIOSYSTEMS 2015; 10:3044-65. [PMID: 25270362 DOI: 10.1039/c3mb70602h] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.
Collapse
Affiliation(s)
- Sabine Hummert
- Fachhochschule Schmalkalden, Faculty of Electrical Engineering, Blechhammer, 98574 Schmalkalden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Information Transfer between Generations Linked to Biodiversity in Rock-Paper-Scissors Games. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/128980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ecological processes, such as reproduction, mobility, and interaction between species, play important roles in the maintenance of biodiversity. Classically, the cyclic dominance of species has been modelled using the nonhierarchical interactions among competing species, represented by the “Rock-Paper-Scissors” (RPS) game. Here we propose a cascaded channel model for analyzing the existence of biodiversity in the RPS game. The transition between successive generations is modelled as communication of information over a noisy communication channel. The rate of transfer of information over successive generations is studied using mutual information and it is found that “greedy” information transfer between successive generations may lead to conditions for extinction. This generalized framework can be used to study biodiversity in any number of interacting species, ecosystems with unequal rates for different species, and also competitive networks.
Collapse
|
14
|
Universal scaling for the dilemma strength in evolutionary games. Phys Life Rev 2015; 14:1-30. [PMID: 25979121 DOI: 10.1016/j.plrev.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.
Collapse
|
15
|
Intoy B, Pleimling M. Synchronization and extinction in cyclic games with mixed strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052135. [PMID: 26066147 DOI: 10.1103/physreve.91.052135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 06/04/2023]
Abstract
We consider cyclic Lotka-Volterra models with three and four strategies where at every interaction agents play a strategy using a time-dependent probability distribution. Agents learn from a loss by reducing the probability to play a losing strategy at the next interaction. For that, an agent is described as an urn containing β balls of three and four types, respectively, where after a loss one of the balls corresponding to the losing strategy is replaced by a ball representing the winning strategy. Using both mean-field rate equations and numerical simulations, we investigate a range of quantities that allows us to characterize the properties of these cyclic models with time-dependent probability distributions. For the three-strategy case in a spatial setting we observe a transition from neutrally stable to stable when changing the level of discretization of the probability distribution. For large values of β, yielding a good approximation to a continuous distribution, spatially synchronized temporal oscillations dominate the system. For the four-strategy game the system is always neutrally stable, but different regimes emerge, depending on the size of the system and the level of discretization.
Collapse
Affiliation(s)
- Ben Intoy
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| |
Collapse
|
16
|
Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. Sci Rep 2014; 4:7486. [PMID: 25501627 PMCID: PMC4265771 DOI: 10.1038/srep07486] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.
Collapse
|
17
|
Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M. Cyclic dominance in evolutionary games: a review. J R Soc Interface 2014; 11:20140735. [PMID: 25232048 PMCID: PMC4191105 DOI: 10.1098/rsif.2014.0735] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022] Open
Abstract
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, 325035 Wenzhou, People's Republic of China
| | - Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
18
|
Szolnoki A, Vukov J, Perc M. From pairwise to group interactions in games of cyclic dominance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062125. [PMID: 25019743 DOI: 10.1103/physreve.89.062125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 06/03/2023]
Abstract
We study the rock-paper-scissors game in structured populations, where the invasion rates determine individual payoffs that govern the process of strategy change. The traditional version of the game is recovered if the payoffs for each potential invasion stem from a single pairwise interaction. However, the transformation of invasion rates to payoffs also allows the usage of larger interaction ranges. In addition to the traditional pairwise interaction, we therefore consider simultaneous interactions with all nearest neighbors, as well as with all nearest and next-nearest neighbors, thus effectively going from single pair to group interactions in games of cyclic dominance. We show that differences in the interaction range affect not only the stationary fractions of strategies but also their relations of dominance. The transition from pairwise to group interactions can thus decelerate and even revert the direction of the invasion between the competing strategies. Like in evolutionary social dilemmas, in games of cyclic dominance, too, the indirect multipoint interactions that are due to group interactions hence play a pivotal role. Our results indicate that, in addition to the invasion rates, the interaction range is at least as important for the maintenance of biodiversity among cyclically competing strategies.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
| |
Collapse
|
19
|
Avelino PP, Bazeia D, Losano L, Menezes J, de Oliveira BF. Interfaces with internal structures in generalized rock-paper-scissors models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042710. [PMID: 24827281 DOI: 10.1103/physreve.89.042710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Indexed: 06/03/2023]
Abstract
In this work we investigate the development of stable dynamical structures along interfaces separating domains belonging to enemy partnerships in the context of cyclic predator-prey models with an even number of species N≥8. We use both stochastic and field theory simulations in one and two spatial dimensions, as well as analytical arguments, to describe the association at the interfaces of mutually neutral individuals belonging to enemy partnerships and to probe their role in the development of the dynamical structures at the interfaces. We identify an interesting behavior associated with the symmetric or asymmetric evolution of the interface profiles depending on whether N/2 is odd or even, respectively. We also show that the macroscopic evolution of the interface network is not very sensitive to the internal structure of the interfaces. Although this work focuses on cyclic predator-prey models with an even number of species, we argue that the results are expected to be quite generic in the context of spatial stochastic May-Leonard models.
Collapse
Affiliation(s)
- P P Avelino
- Centro de Astrofísica da Universidade do Porto, 4150-762 Porto, Portugal and Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba 58051-970 João Pessoa, PB, Brazil
| | - L Losano
- Departamento de Física, Universidade Federal da Paraíba 58051-970 João Pessoa, PB, Brazil
| | - J Menezes
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970, Natal, RN, Brazil and Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
20
|
Vukov J, Szolnoki A, Szabó G. Diverging fluctuations in a spatial five-species cyclic dominance game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022123. [PMID: 24032791 DOI: 10.1103/physreve.88.022123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 06/02/2023]
Abstract
A five-species predator-prey model is studied on a square lattice where each species has two prey and two predators on the analogy to the rock-paper-scissors-lizard-Spock game. The evolution of the spatial distribution of species is governed by site exchange and invasion between the neighboring predator-prey pairs, where the cyclic symmetry can be characterized by two different invasion rates. The mean-field analysis has indicated periodic oscillations in the species densities with a frequency becoming zero for a specific ratio of invasion rates. When varying the ratio of invasion rates, the appearance of this zero-eigenvalue mode is accompanied by neutrality between the species associations. Monte Carlo simulations of the spatial system reveal diverging fluctuations at a specific invasion rate, which can be related to the vanishing dominance between all pairs of species associations.
Collapse
Affiliation(s)
- Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
21
|
Park J, Do Y, Huang ZG, Lai YC. Persistent coexistence of cyclically competing species in spatially extended ecosystems. CHAOS (WOODBURY, N.Y.) 2013; 23:023128. [PMID: 23822493 DOI: 10.1063/1.4811298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account the suitability of their local environment. We incorporate local habitat suitability into the RMF model and investigate its effect on coexistence. In particular, we hypothesize the use of "basic instinct" of an individual to determine its movement at any time step. That is, an individual is more likely to move when the local habitat becomes hostile and is no longer favorable for survival and growth. We show that, when such local habitat suitability is taken into account, robust coexistence can emerge even in the high-mobility regime where extinction is certain in the RMF model. A surprising finding is that coexistence is accompanied by the occurrence of substantial empty space in the system. Reexamination of the RMF model confirms the necessity and the important role of empty space in coexistence. Our study implies that adaptation/movements according to local habitat suitability are a fundamental factor to promote species coexistence and, consequently, biodiversity.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
22
|
Avelino PP, Bazeia D, Losano L, Menezes J. von Neummann's and related scaling laws in rock-paper-scissors-type games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031119. [PMID: 23030878 DOI: 10.1103/physreve.86.031119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Indexed: 06/01/2023]
Abstract
We introduce a family of rock-paper-scissors-type models with Z(N) symmetry (N is the number of species), and we show that it has a very rich structure with many completely different phases. We study realizations that lead to the formation of domains, where individuals of one or more species coexist, separated by interfaces whose (average) dynamics is curvature driven. This type of behavior, which might be relevant for the development of biological complexity, leads to an interface network evolution and pattern formation similar to the ones of several other nonlinear systems in condensed matter and cosmology.
Collapse
Affiliation(s)
- P P Avelino
- Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
| | | | | | | |
Collapse
|
23
|
Avelino PP, Bazeia D, Losano L, Menezes J, Oliveira BF. Junctions and spiral patterns in generalized rock-paper-scissors models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:036112. [PMID: 23030985 DOI: 10.1103/physreve.86.036112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/16/2012] [Indexed: 06/01/2023]
Abstract
We investigate the population dynamics in generalized rock-paper-scissors models with an arbitrary number of species N. We show that spiral patterns with N arms may develop both for odd and even N, in particular in models where a bidirectional predation interaction of equal strength between all species is modified to include one N-cyclic predator-prey rule. While the former case gives rise to an interface network with Y-type junctions obeying the scaling law L∝t1/2, where L is the characteristic length of the network and t is the time, the latter can lead to a population network with N-armed spiral patterns, having a roughly constant characteristic length scale. We explicitly demonstrate the connection between interface junctions and spiral patterns in these models and compute the corresponding scaling laws. This work significantly extends the results of previous studies of population dynamics and could have profound implications for the understanding of biological complexity in systems with a large number of species.
Collapse
Affiliation(s)
- P P Avelino
- Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
| | | | | | | | | |
Collapse
|
24
|
Jiang LL, Zhou T, Perc M, Wang BH. Effects of competition on pattern formation in the rock-paper-scissors game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021912. [PMID: 21929025 DOI: 10.1103/physreve.84.021912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Indexed: 05/31/2023]
Abstract
We investigate the impact of cyclic competition on pattern formation in the rock-paper-scissors game. By separately considering random and prepared initial conditions, we observe a critical influence of the competition rate p on the stability of spiral waves and on the emergence of biodiversity. In particular, while increasing values of p promote biodiversity, they may act detrimentally on spatial pattern formation. For random initial conditions, we observe a phase transition from biodiversity to an absorbing phase, whereby the critical value of mobility grows linearly with increasing values of p on a log-log scale but then saturates as p becomes large. For prepared initial conditions, we observe the formation of single-armed spirals, but only for values of p that are below a critical value. Once above that value, the spirals break up and form disordered spatial structures, mainly because of the percolation of vacant sites. Thus there exists a critical value of the competition rates p(c) for stable single-armed spirals in finite populations. Importantly though, p(c) increases with increasing system size because noise reinforces the disintegration of ordered patterns. In addition, we also find that p(c) increases with the mobility. These phenomena are reproduced by a deterministic model that is based on nonlinear partial differential equations. Our findings indicate that competition is vital for the sustenance of biodiversity and the emergence of pattern formation in ecosystems governed by cyclical interactions.
Collapse
Affiliation(s)
- Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325027, China
| | | | | | | |
Collapse
|
25
|
Durney CH, Case SO, Pleimling M, Zia RKP. Saddles, arrows, and spirals: deterministic trajectories in cyclic competition of four species. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051108. [PMID: 21728491 DOI: 10.1103/physreve.83.051108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Indexed: 05/31/2023]
Abstract
Population dynamics in systems composed of cyclically competing species has been of increasing interest recently. Here we investigate a system with four or more species. Using mean field theory, we study in detail the trajectories in configuration space of the population fractions. We discover a variety of orbits, shaped like saddles, spirals, and straight lines. Many of their properties are found explicitly. Most remarkably, we identify a collective variable that evolves simply as an exponential: Q ∝ e(λt), where λ is a function of the reaction rates. It provides information on the state of the system for late times (as well as for t→-∞). We discuss implications of these results for the evolution of a finite, stochastic system. A generalization to an arbitrary number of cyclically competing species yields valuable insights into universal properties of such systems.
Collapse
Affiliation(s)
- C H Durney
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | | | | | | |
Collapse
|
26
|
Wang WX, Ni X, Lai YC, Grebogi C. Pattern formation, synchronization, and outbreak of biodiversity in cyclically competing games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:011917. [PMID: 21405723 PMCID: PMC3654227 DOI: 10.1103/physreve.83.011917] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/16/2010] [Indexed: 05/30/2023]
Abstract
Species in nature are typically mobile over diverse distance scales, examples of which range from bacteria run to long-distance animal migrations. These behaviors can have a significant impact on biodiversity. Addressing the role of migration in biodiversity microscopically is fundamental but remains a challenging problem in interdisciplinary science. We incorporate both intra- and inter-patch migrations in stochastic games of cyclic competitions and find that the interplay between the migrations at the local and global scales can lead to robust species coexistence characterized dynamically by the occurrence of remarkable target-wave patterns in the absence of any external control. The waves can emerge from either mixed populations or isolated species in different patches, regardless of the size and the location of the migration target. We also find that, even in a single-species system, target waves can arise from rare mutations, leading to an outbreak of biodiversity. A surprising phenomenon is that target waves in different patches can exhibit synchronization and time-delayed synchronization, where the latter potentially enables the prediction of future evolutionary dynamics. We provide a physical theory based on the spatiotemporal organization of the target waves to explain the synchronization phenomena. We also investigate the basins of coexistence and extinction to establish the robustness of biodiversity through migrations. Our results are relevant to issues of general and broader interest such as pattern formation, control in excitable systems, and the origin of order arising from self-organization in social and natural systems.
Collapse
Affiliation(s)
- Wen-Xu Wang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | |
Collapse
|
27
|
Ni X, Yang R, Wang WX, Lai YC, Grebogi C. Basins of coexistence and extinction in spatially extended ecosystems of cyclically competing species. CHAOS (WOODBURY, N.Y.) 2010; 20:045116. [PMID: 21198128 DOI: 10.1063/1.3526993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microscopic models based on evolutionary games on spatially extended scales have recently been developed to address the fundamental issue of species coexistence. In this pursuit almost all existing works focus on the relevant dynamical behaviors originated from a single but physically reasonable initial condition. To gain comprehensive and global insights into the dynamics of coexistence, here we explore the basins of coexistence and extinction and investigate how they evolve as a basic parameter of the system is varied. Our model is cyclic competitions among three species as described by the classical rock-paper-scissors game, and we consider both discrete lattice and continuous space, incorporating species mobility and intraspecific competitions. Our results reveal that, for all cases considered, a basin of coexistence always emerges and persists in a substantial part of the parameter space, indicating that coexistence is a robust phenomenon. Factors such as intraspecific competition can, in fact, promote coexistence by facilitating the emergence of the coexistence basin. In addition, we find that the extinction basins can exhibit quite complex structures in terms of the convergence time toward the final state for different initial conditions. We have also developed models based on partial differential equations, which yield basin structures that are in good agreement with those from microscopic stochastic simulations. To understand the origin and emergence of the observed complicated basin structures is challenging at the present due to the extremely high dimensional nature of the underlying dynamical system.
Collapse
Affiliation(s)
- Xuan Ni
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|
28
|
Szolnoki A, Wang Z, Wang J, Zhu X. Dynamically generated cyclic dominance in spatial prisoner's dilemma games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:036110. [PMID: 21230142 DOI: 10.1103/physreve.82.036110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/29/2010] [Indexed: 05/30/2023]
Abstract
We have studied the impact of time-dependent learning capacities of players in the framework of spatial prisoner's dilemma game. In our model, this capacity of players may decrease or increase in time after strategy adoption according to a steplike function. We investigated both possibilities separately and observed significantly different mechanisms that form the stationary pattern of the system. The time decreasing learning activity helps cooperator domains to recover the possible intrude of defectors hence supports cooperation. In the other case the temporary restrained learning activity generates a cyclic dominance between defector and cooperator strategies, which helps to maintain the diversity of strategies via propagating waves. The results are robust and remain valid by changing payoff values, interaction graphs or functions characterizing time dependence of learning activity. Our observations suggest that dynamically generated mechanisms may offer alternative ways to keep cooperators alive even at very larger temptation to defect.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | | | |
Collapse
|