1
|
Oliveira AM, Coelho L, Carvalho E, Ferreira-Pinto MJ, Vaz R, Aguiar P. Machine learning for adaptive deep brain stimulation in Parkinson's disease: closing the loop. J Neurol 2023; 270:5313-5326. [PMID: 37530789 PMCID: PMC10576725 DOI: 10.1007/s00415-023-11873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease bearing a severe social and economic impact. So far, there is no known disease modifying therapy and the current available treatments are symptom oriented. Deep Brain Stimulation (DBS) is established as an effective treatment for PD, however current systems lag behind today's technological potential. Adaptive DBS, where stimulation parameters depend on the patient's physiological state, emerges as an important step towards "smart" DBS, a strategy that enables adaptive stimulation and personalized therapy. This new strategy is facilitated by currently available neurotechnologies allowing the simultaneous monitoring of multiple signals, providing relevant physiological information. Advanced computational models and analytical methods are an important tool to explore the richness of the available data and identify signal properties to close the loop in DBS. To tackle this challenge, machine learning (ML) methods applied to DBS have gained popularity due to their ability to make good predictions in the presence of multiple variables and subtle patterns. ML based approaches are being explored at different fronts such as the identification of electrophysiological biomarkers and the development of personalized control systems, leading to effective symptom relief. In this review, we explore how ML can help overcome the challenges in the development of closed-loop DBS, particularly its role in the search for effective electrophysiology biomarkers. Promising results demonstrate ML potential for supporting a new generation of adaptive DBS, with better management of stimulation delivery, resulting in more efficient and patient-tailored treatments.
Collapse
Affiliation(s)
- Andreia M Oliveira
- Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
| | - Luis Coelho
- Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Eduardo Carvalho
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Manuel J Ferreira-Pinto
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rui Vaz
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Paulo Aguiar
- Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal.
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
2
|
Wang K, Yang L, Zhou S, Lin W. Desynchronizing oscillators coupled in multi-cluster networks through adaptively controlling partial networks. CHAOS (WOODBURY, N.Y.) 2023; 33:091101. [PMID: 37676113 DOI: 10.1063/5.0167555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
This article introduces an adaptive control scheme with a feedback delay, specifically designed for controlling partial networks, to achieve desynchronization in a coupled network with two or multiple clusters. The proposed scheme's effectiveness is validated through several representative examples of coupled neuronal networks with two interconnected clusters. The efficacy of this scheme is attributed to the rigorous and numerical analyses on the corresponding transcendental characteristic equation, which includes time delay and other network parameters. In addition to investigating the impact of time delay and inter-connectivity on the stability of an incoherent state, we also rigorously find that controlling only one cluster cannot realize the desynchronization in the coupled oscillators within three or more clusters. All these, we believe, can deepen the understanding of the deep brain stimulation techniques presently used in the clinical treatment of neurodegenerative diseases and suggest future avenues for enhancing these clinical techniques through adaptive feedback settings.
Collapse
Affiliation(s)
- Kaidian Wang
- School of Mathematical Sciences, Shandong University, Jinan, Shandong 250100, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Luan Yang
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Shijie Zhou
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Lin
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
- School of Mathematical Sciences, LMNS, and SCMS, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neuronal Networks by Double-Random Coordinated Reset Stimulation. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:864859. [PMID: 36926109 PMCID: PMC10013062 DOI: 10.3389/fnetp.2022.864859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022]
Abstract
Hypersynchrony of neuronal activity is associated with several neurological disorders, including essential tremor and Parkinson's disease (PD). Chronic high-frequency deep brain stimulation (HF DBS) is the standard of care for medically refractory PD. Symptoms may effectively be suppressed by HF DBS, but return shortly after cessation of stimulation. Coordinated reset (CR) stimulation is a theory-based stimulation technique that was designed to specifically counteract neuronal synchrony by desynchronization. During CR, phase-shifted stimuli are delivered to multiple neuronal subpopulations. Computational studies on CR stimulation of plastic neuronal networks revealed long-lasting desynchronization effects obtained by down-regulating abnormal synaptic connectivity. This way, networks are moved into attractors of stable desynchronized states such that stimulation-induced desynchronization persists after cessation of stimulation. Preclinical and clinical studies confirmed corresponding long-lasting therapeutic and desynchronizing effects in PD. As PD symptoms are associated with different pathological synchronous rhythms, stimulation-induced long-lasting desynchronization effects should favorably be robust to variations of the stimulation frequency. Recent computational studies suggested that this robustness can be improved by randomizing the timings of stimulus deliveries. We study the long-lasting effects of CR stimulation with randomized stimulus amplitudes and/or randomized stimulus timing in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity. Performing computer simulations and analytical calculations, we study long-lasting desynchronization effects of CR with and without randomization of stimulus amplitudes alone, randomization of stimulus times alone as well as the combination of both. Varying the CR stimulation frequency (with respect to the frequency of abnormal target rhythm) and the number of separately stimulated neuronal subpopulations, we reveal parameter regions and related mechanisms where the two qualitatively different randomization mechanisms improve the robustness of long-lasting desynchronization effects of CR. In particular, for clinically relevant parameter ranges double-random CR stimulation, i.e., CR stimulation with the specific combination of stimulus amplitude randomization and stimulus time randomization, may outperform regular CR stimulation with respect to long-lasting desynchronization. In addition, our results provide the first evidence that an effective reduction of the overall stimulation current by stimulus amplitude randomization may improve the frequency robustness of long-lasting therapeutic effects of brain stimulation.
Collapse
Affiliation(s)
| | | | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters. Front Physiol 2021; 12:719680. [PMID: 34630142 PMCID: PMC8497886 DOI: 10.3389/fphys.2021.719680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormally strong synchronized activity is related to several neurological disorders, including essential tremor, epilepsy, and Parkinson's disease. Chronic high-frequency deep brain stimulation (HF DBS) is an established treatment for advanced Parkinson's disease. To reduce the delivered integral electrical current, novel theory-based stimulation techniques such as coordinated reset (CR) stimulation directly counteract the abnormal synchronous firing by delivering phase-shifted stimuli through multiple stimulation sites. In computational studies in neuronal networks with spike-timing-dependent plasticity (STDP), it was shown that CR stimulation down-regulates synaptic weights and drives the network into an attractor of a stable desynchronized state. This led to desynchronization effects that outlasted the stimulation. Corresponding long-lasting therapeutic effects were observed in preclinical and clinical studies. Computational studies suggest that long-lasting effects of CR stimulation depend on the adjustment of the stimulation frequency to the dominant synchronous rhythm. This may limit clinical applicability as different pathological rhythms may coexist. To increase the robustness of the long-lasting effects, we study randomized versions of CR stimulation in networks of leaky integrate-and-fire neurons with STDP. Randomization is obtained by adding random jitters to the stimulation times and by shuffling the sequence of stimulation site activations. We study the corresponding long-lasting effects using analytical calculations and computer simulations. We show that random jitters increase the robustness of long-lasting effects with respect to changes of the number of stimulation sites and the stimulation frequency. In contrast, shuffling does not increase parameter robustness of long-lasting effects. Studying the relation between acute, acute after-, and long-lasting effects of stimulation, we find that both acute after- and long-lasting effects are strongly determined by the stimulation-induced synaptic reshaping, whereas acute effects solely depend on the statistics of administered stimuli. We find that the stimulation duration is another important parameter, as effective stimulation only entails long-lasting effects after a sufficient stimulation duration. Our results show that long-lasting therapeutic effects of CR stimulation with random jitters are more robust than those of regular CR stimulation. This might reduce the parameter adjustment time in future clinical trials and make CR with random jitters more suitable for treating brain disorders with abnormal synchronization in multiple frequency bands.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Khaledi-Nasab A, Kromer JA, Tass PA. Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation. Front Physiol 2021; 11:622620. [PMID: 33613303 PMCID: PMC7893102 DOI: 10.3389/fphys.2020.622620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive neuronal synchrony is a hallmark of neurological disorders such as epilepsy and Parkinson's disease. An established treatment for medically refractory Parkinson's disease is high-frequency (HF) deep brain stimulation (DBS). However, symptoms return shortly after cessation of HF-DBS. Recently developed decoupling stimulation approaches, such as Random Reset (RR) stimulation, specifically target pathological connections to achieve long-lasting desynchronization. During RR stimulation, a temporally and spatially randomized stimulus pattern is administered. However, spatial randomization, as presented so far, may be difficult to realize in a DBS-like setup due to insufficient spatial resolution. Motivated by recently developed segmented DBS electrodes with multiple stimulation sites, we present a RR stimulation protocol that copes with the limited spatial resolution of currently available depth electrodes for DBS. Specifically, spatial randomization is realized by delivering stimuli simultaneously to L randomly selected stimulation sites out of a total of M stimulation sites, which will be called L/M-RR stimulation. We study decoupling by L/M-RR stimulation in networks of excitatory integrate-and-fire neurons with spike-timing dependent plasticity by means of theoretical and computational analysis. We find that L/M-RR stimulation yields parameter-robust decoupling and long-lasting desynchronization. Furthermore, our theory reveals that strong high-frequency stimulation is not suitable for inducing long-lasting desynchronization effects. As a consequence, low and high frequency L/M-RR stimulation affect synaptic weights in qualitatively different ways. Our simulations confirm these predictions and show that qualitative differences between low and high frequency L/M-RR stimulation are present across a wide range of stimulation parameters, rendering stimulation with intermediate frequencies most efficient. Remarkably, we find that L/M-RR stimulation does not rely on a high spatial resolution, characterized by the density of stimulation sites in a target area, corresponding to a large M. In fact, L/M-RR stimulation with low resolution performs even better at low stimulation amplitudes. Our results provide computational evidence that L/M-RR stimulation may present a way to exploit modern segmented lead electrodes for long-lasting therapeutic effects.
Collapse
Affiliation(s)
- Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Zhou S, Lin W. Eliminating synchronization of coupled neurons adaptively by using feedback coupling with heterogeneous delays. CHAOS (WOODBURY, N.Y.) 2021; 31:023114. [PMID: 33653064 DOI: 10.1063/5.0035327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present an adaptive scheme involving heterogeneous delay interactions to suppress synchronization in a large population of oscillators. We analytically investigate the incoherent state stability regions for several specific kinds of distributions for delays. Interestingly, we find that, among the distributions that we discuss, the exponential distribution may offer great convenience to the performance of our adaptive scheme because this distribution renders an unbounded stability region. Moreover, we demonstrate our scheme in the realization of synchronization elimination in some representative, realistic neuronal networks, which makes it possible to deepen the understanding and even refine the existing techniques of deep brain stimulation in the treatment of some synchronization-induced mental disorders.
Collapse
Affiliation(s)
- Shijie Zhou
- School of Mathematical Sciences, LMNS and SCMS, Fudan University, Shanghai 200433, China
| | - Wei Lin
- School of Mathematical Sciences, LMNS and SCMS, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Adaptive delivery of continuous and delayed feedback deep brain stimulation - a computational study. Sci Rep 2019; 9:10585. [PMID: 31332226 PMCID: PMC6646395 DOI: 10.1038/s41598-019-47036-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Adaptive deep brain stimulation (aDBS) is a closed-loop method, where high-frequency DBS is turned on and off according to a feedback signal, whereas conventional high-frequency DBS (cDBS) is delivered permanently. Using a computational model of subthalamic nucleus and external globus pallidus, we extend the concept of adaptive stimulation by adaptively controlling not only continuous, but also demand-controlled stimulation. Apart from aDBS and cDBS, we consider continuous pulsatile linear delayed feedback stimulation (cpLDF), specifically designed to induce desynchronization. Additionally, we combine adaptive on-off delivery with continuous delayed feedback modulation by introducing adaptive pulsatile linear delayed feedback stimulation (apLDF), where cpLDF is turned on and off using pre-defined amplitude thresholds. By varying the stimulation parameters of cDBS, aDBS, cpLDF, and apLDF we obtain optimal parameter ranges. We reveal a simple relation between the thresholds of the local field potential (LFP) for aDBS and apLDF, the extent of the stimulation-induced desynchronization, and the integral stimulation time required. We find that aDBS and apLDF can be more efficient in suppressing abnormal synchronization than continuous simulation. However, apLDF still remains more efficient and also causes a stronger reduction of the LFP beta burst length. Hence, adaptive on-off delivery may further improve the intrinsically demand-controlled pLDF.
Collapse
|
8
|
Santaniello S, Gale JT, Sarma SV. Systems approaches to optimizing deep brain stimulation therapies in Parkinson's disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1421. [PMID: 29558564 PMCID: PMC6148418 DOI: 10.1002/wsbm.1421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/17/2023]
Abstract
Over the last 30 years, deep brain stimulation (DBS) has been used to treat chronic neurological diseases like dystonia, obsessive-compulsive disorders, essential tremor, Parkinson's disease, and more recently, dementias, depression, cognitive disorders, and epilepsy. Despite its wide use, DBS presents numerous challenges for both clinicians and engineers. One challenge is the design of novel, more efficient DBS therapies, which are hampered by the lack of complete understanding about the cellular mechanisms of therapeutic DBS. Another challenge is the existence of redundancy in clinical outcomes, that is, different DBS programs can result in similar clinical benefits but very little information (e.g., predictive models, longitudinal data, metrics, etc.) is available to select one program over another. Finally, there is high variability in patients' responses to DBS, which forces clinicians to carefully adjust the stimulation settings to each patient via lengthy programming sessions. Researchers in neural engineering and systems biology have been tackling these challenges over the past few years with the specific goal of developing novel DBS therapies, design methodologies, and computational tools that optimize the therapeutic effects of DBS in each patient. Furthermore, efforts are being made to automatically adapt the DBS treatment to the fluctuations of disease symptoms. A review of the quantitative approaches currently available for the treatment of Parkinson's disease is presented here with an emphasis on the contributions that systems theoretical approaches have provided to understand the global dynamics of complex neuronal circuits in the brain under DBS. This article is categorized under: Translational, Genomic, and Systems Medicine > Therapeutic Methods Analytical and Computational Methods > Computational Methods Analytical and Computational Methods > Dynamical Methods Physiology > Mammalian Physiology in Health and Disease.
Collapse
Affiliation(s)
- Sabato Santaniello
- Biomedical Engineering Department and CT Institute for the Brain and Cognitive Sciences, University of Connecticut; ORCID-ID: 0000-0002-2133-9471
| | - John T. Gale
- Department of Neurosurgery, Emory University School of Medicine
| | - Sridevi V. Sarma
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University
| |
Collapse
|
9
|
Suppressing bursting synchronization in a modular neuronal network with synaptic plasticity. Cogn Neurodyn 2018; 12:625-636. [PMID: 30483370 DOI: 10.1007/s11571-018-9498-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 06/11/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022] Open
Abstract
Excessive synchronization of neurons in cerebral cortex is believed to play a crucial role in the emergence of neuropsychological disorders such as Parkinson's disease, epilepsy and essential tremor. This study, by constructing a modular neuronal network with modified Oja's learning rule, explores how to eliminate the pathological synchronized rhythm of interacted busting neurons numerically. When all neurons in the modular neuronal network are strongly synchronous within a specific range of coupling strength, the result reveals that synaptic plasticity with large learning rate can suppress bursting synchronization effectively. For the relative small learning rate not capable of suppressing synchronization, the technique of nonlinear delayed feedback control including differential feedback control and direct feedback control is further proposed to reduce the synchronized bursting state of coupled neurons. It is demonstrated that the two kinds of nonlinear feedback control can eliminate bursting synchronization significantly when the control parameters of feedback strength and feedback delay are appropriately tuned. For the former control technique, the control domain of effective synchronization suppression is similar to a semi-elliptical domain in the simulated parameter space of feedback strength and feedback delay, while for the latter one, the effective control domain is similar to a fan-shaped domain in the simulated parameter space.
Collapse
|
10
|
How stimulation frequency and intensity impact on the long-lasting effects of coordinated reset stimulation. PLoS Comput Biol 2018; 14:e1006113. [PMID: 29746458 PMCID: PMC5963814 DOI: 10.1371/journal.pcbi.1006113] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 05/22/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Several brain diseases are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was computationally designed to specifically counteract abnormal neuronal synchronization processes by desynchronization. In the presence of spike-timing-dependent plasticity (STDP) this may lead to a decrease of synaptic excitatory weights and ultimately to an anti-kindling, i.e. unlearning of abnormal synaptic connectivity and abnormal neuronal synchrony. The long-lasting desynchronizing impact of CR stimulation has been verified in pre-clinical and clinical proof of concept studies. However, as yet it is unclear how to optimally choose the CR stimulation frequency, i.e. the repetition rate at which the CR stimuli are delivered. This work presents the first computational study on the dependence of the acute and long-term outcome on the CR stimulation frequency in neuronal networks with STDP. For this purpose, CR stimulation was applied with Rapidly Varying Sequences (RVS) as well as with Slowly Varying Sequences (SVS) in a wide range of stimulation frequencies and intensities. Our findings demonstrate that acute desynchronization, achieved during stimulation, does not necessarily lead to long-term desynchronization after cessation of stimulation. By comparing the long-term effects of the two different CR protocols, the RVS CR stimulation turned out to be more robust against variations of the stimulation frequency. However, SVS CR stimulation can obtain stronger anti-kindling effects. We revealed specific parameter ranges that are favorable for long-term desynchronization. For instance, RVS CR stimulation at weak intensities and with stimulation frequencies in the range of the neuronal firing rates turned out to be effective and robust, in particular, if no closed loop adaptation of stimulation parameters is (technically) available. From a clinical standpoint, this may be relevant in the context of both invasive as well as non-invasive CR stimulation.
Collapse
|
11
|
Manos T, Zeitler M, Tass PA. Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization. Front Physiol 2018; 9:376. [PMID: 29706900 PMCID: PMC5906576 DOI: 10.3389/fphys.2018.00376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/27/2018] [Indexed: 11/23/2022] Open
Abstract
In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies.
Collapse
Affiliation(s)
- Thanos Manos
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Magteld Zeitler
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Popovych OV, Tass PA. Multisite Delayed Feedback for Electrical Brain Stimulation. Front Physiol 2018; 9:46. [PMID: 29449814 PMCID: PMC5799832 DOI: 10.3389/fphys.2018.00046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Demand-controlled deep brain stimulation (DBS) appears to be a promising approach for the treatment of Parkinson's disease (PD) as revealed by computational, pre-clinical and clinical studies. Stimulation delivery is adapted to brain activity, for example, to the amount of neuronal activity considered to be abnormal. Such a closed-loop stimulation setup might help to reduce the amount of stimulation current, thereby maintaining therapeutic efficacy. In the context of the development of stimulation techniques that aim to restore desynchronized neuronal activity on a long-term basis, specific closed-loop stimulation protocols were designed computationally. These feedback techniques, e.g., pulsatile linear delayed feedback (LDF) or pulsatile nonlinear delayed feedback (NDF), were computationally developed to counteract abnormal neuronal synchronization characteristic for PD and other neurological disorders. By design, these techniques are intrinsically demand-controlled methods, where the amplitude of the stimulation signal is reduced when the desired desynchronized regime is reached. We here introduce a novel demand-controlled stimulation method, pulsatile multisite linear delayed feedback (MLDF), by employing MLDF to modulate the pulse amplitude of high-frequency (HF) DBS, in this way aiming at a specific, MLDF-related desynchronizing impact, while maintaining safety requirements with the charge-balanced HF DBS. Previously, MLDF was computationally developed for the control of spatio-temporal synchronized patterns and cluster states in neuronal populations. Here, in a physiologically motivated model network comprising neurons from subthalamic nucleus (STN) and external globus pallidus (GPe), we compare pulsatile MLDF to pulsatile LDF for the case where the smooth feedback signals are used to modulate the amplitude of charge-balanced HF DBS and suggest a modification of pulsatile MLDF which enables a pronounced desynchronizing impact. Our results may contribute to further clinical development of closed-loop DBS techniques.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil 2017; 14:79. [PMID: 28800738 PMCID: PMC5553781 DOI: 10.1186/s12984-017-0295-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Millions of patients around the world are affected by neurological and psychiatric disorders. Deep brain stimulation (DBS) is a device-based therapy that could have fewer side-effects and higher efficiencies in drug-resistant patients compared to other therapeutic options such as pharmacological approaches. Thus far, several efforts have been made to incorporate a feedback loop into DBS devices to make them operate in a closed-loop manner. METHODS This paper presents a comprehensive investigation into the existing research-based and commercial closed-loop DBS devices. It describes a brief history of closed-loop DBS techniques, biomarkers and algorithms used for closing the feedback loop, components of the current research-based and commercial closed-loop DBS devices, and advancements and challenges in this field of research. This review also includes a comparison of the closed-loop DBS devices and provides the future directions of this area of research. RESULTS Although we are in the early stages of the closed-loop DBS approach, there have been fruitful efforts in design and development of closed-loop DBS devices. To date, only one commercial closed-loop DBS device has been manufactured. However, this system does not have an intelligent and patient dependent control algorithm. A closed-loop DBS device requires a control algorithm to learn and optimize the stimulation parameters according to the brain clinical state. CONCLUSIONS The promising clinical effects of open-loop DBS have been demonstrated, indicating DBS as a pioneer technology and treatment option to serve neurological patients. However, like other commercial devices, DBS needs to be automated and modernized.
Collapse
Affiliation(s)
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
14
|
Dynamics of oscillators globally coupled via two mean fields. Sci Rep 2017; 7:2104. [PMID: 28522836 PMCID: PMC5437098 DOI: 10.1038/s41598-017-02283-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Many studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing a potential generalized framework for understanding of complex phenomena in natural oscillatory systems.
Collapse
|
15
|
Popovych OV, Lysyansky B, Tass PA. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci Rep 2017; 7:1033. [PMID: 28432303 PMCID: PMC5430852 DOI: 10.1038/s41598-017-01067-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/27/2017] [Indexed: 01/15/2023] Open
Abstract
Computationally it was shown that desynchronizing delayed feedback stimulation methods are effective closed-loop techniques for the control of synchronization in ensembles of interacting oscillators. We here computationally design stimulation signals for electrical stimulation of neuronal tissue that preserve the desynchronizing delayed feedback characteristics and comply with mandatory charge deposit-related safety requirements. For this, the amplitude of the high-frequency (HF) train of biphasic charge-balanced pulses used by the standard HF deep brain stimulation (DBS) is modulated by the smooth feedback signals. In this way we combine the desynchronizing delayed feedback approach with the HF DBS technique. We show that such a pulsatile delayed feedback stimulation can effectively and robustly desynchronize a network of model neurons comprising subthalamic nucleus and globus pallidus external and suggest this approach for desynchronizing closed-loop DBS. Intriguingly, an interphase gap introduced between the recharging phases of the charge-balanced biphasic pulses can significantly improve the stimulation-induced desynchronization and reduce the amount of the administered stimulation. In view of the recent experimental and clinical studies indicating a superiority of the closed-loop DBS to open-loop HF DBS, our results may contribute to a further development of effective stimulation methods for the treatment of neurological disorders characterized by abnormal neuronal synchronization.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany.
| | - Borys Lysyansky
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany.,Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Popovych OV, Lysyansky B, Rosenblum M, Pikovsky A, Tass PA. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation. PLoS One 2017; 12:e0173363. [PMID: 28273176 PMCID: PMC5342235 DOI: 10.1371/journal.pone.0173363] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/20/2017] [Indexed: 01/19/2023] Open
Abstract
High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.
Collapse
Affiliation(s)
- Oleksandr V. Popovych
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
- * E-mail:
| | - Borys Lysyansky
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Michael Rosenblum
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Arkady Pikovsky
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Peter A. Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
A bio-inspired stimulator to desynchronize epileptic cortical population models: A digital implementation framework. Neural Netw 2015; 67:74-83. [DOI: 10.1016/j.neunet.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/13/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
|
18
|
Popovych OV, Xenakis MN, Tass PA. The spacing principle for unlearning abnormal neuronal synchrony. PLoS One 2015; 10:e0117205. [PMID: 25714553 PMCID: PMC4340932 DOI: 10.1371/journal.pone.0117205] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 01/14/2023] Open
Abstract
Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.
Collapse
Affiliation(s)
- Oleksandr V. Popovych
- Institute of Neuroscience and Medicine—Neuromodulation, Jülich Research Center, Jülich, Germany
- * E-mail:
| | - Markos N. Xenakis
- Institute of Neuroscience and Medicine—Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Peter A. Tass
- Institute of Neuroscience and Medicine—Neuromodulation, Jülich Research Center, Jülich, Germany
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
- Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Padmanaban E, Boccaletti S, Dana SK. Emergent hybrid synchronization in coupled chaotic systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022920. [PMID: 25768582 DOI: 10.1103/physreve.91.022920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 06/04/2023]
Abstract
We evidence an interesting kind of hybrid synchronization in coupled chaotic systems where complete synchronization is restricted to only a subset of variables of two systems while other subset of variables may be in a phase synchronized state or desynchronized. Such hybrid synchronization is a generic emergent feature of coupled systems when a controller based coupling, designed by the Lyapunov function stability, is first engineered to induce complete synchronization in the identical case, and then a large parameter mismatch is introduced. We distinguish between two different hybrid synchronization regimes that emerge with parameter perturbation. The first, called hard hybrid synchronization, occurs when the coupled systems display global phase synchronization, while the second, called soft hybrid synchronization, corresponds to a situation where, instead, the global synchronization feature no longer exists. We verify the existence of both classes of hybrid synchronization in numerical examples of the Rössler system, a Lorenz-like system, and also in electronic experiment.
Collapse
Affiliation(s)
- E Padmanaban
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Stefano Boccaletti
- Consiglio Nazionale delle Ricerche, Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
- Italian Embassy in Israel, 25 Hamered Street, 68125 Tel Aviv, Israel
| | - S K Dana
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| |
Collapse
|
20
|
Montaseri G, Yazdanpanah MJ, Bahrami F. Designing a deep brain stimulator to suppress pathological neuronal synchrony. Neural Netw 2015; 63:282-92. [PMID: 25601718 DOI: 10.1016/j.neunet.2014.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Some of neuropathologies are believed to be related to abnormal synchronization of neurons. In the line of therapy, designing effective deep brain stimulators to suppress the pathological synchrony among neuronal ensembles is a challenge of high clinical relevance. The stimulation should be able to disrupt the synchrony in the presence of latencies due to imperfect knowledge about parameters of a neuronal ensemble and stimulation impacts on the ensemble. We propose an adaptive desynchronizing deep brain stimulator capable of dealing with these uncertainties. We analyze the collective behavior of the stimulated neuronal ensemble and show that, using the designed stimulator, the resulting asynchronous state is stable. Simulation results reveal the efficiency of the proposed technique.
Collapse
Affiliation(s)
- Ghazal Montaseri
- Advanced Control Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Systems Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Mohammad Javad Yazdanpanah
- Advanced Control Systems Laboratory, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fariba Bahrami
- Human Motor Control and Computational Neuroscience Laboratory, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Popovych OV, Tass PA. Control of abnormal synchronization in neurological disorders. Front Neurol 2014; 5:268. [PMID: 25566174 PMCID: PMC4267271 DOI: 10.3389/fneur.2014.00268] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/28/2014] [Indexed: 11/13/2022] Open
Abstract
In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center , Jülich , Germany
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center , Jülich , Germany ; Department of Neurosurgery, Stanford University , Stanford, CA , USA ; Department of Neuromodulation, University of Cologne , Cologne , Germany
| |
Collapse
|
22
|
Ratas I, Pyragas K. Controlling synchrony in oscillatory networks via an act-and-wait algorithm. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032914. [PMID: 25314511 DOI: 10.1103/physreve.90.032914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 06/04/2023]
Abstract
The act-and-wait control algorithm is proposed to suppress synchrony in globally coupled oscillatory networks in the situation when the simultaneous registration and stimulation of the system is not possible. The algorithm involves the periodic repetition of the registration (wait) and stimulation (act) stages, such that in the first stage the mean field of the free system is recorded in a memory and in the second stage the system is stimulated with the recorded signal. A modified version of the algorithm that takes into account the charge-balanced requirement is considered as well. The efficiency of our algorithm is demonstrated analytically and numerically for globally coupled Landau-Stuart oscillators and synaptically all-to-all coupled FitzHugh-Nagumo as well as Hodgkin-Huxley neurons.
Collapse
Affiliation(s)
- Irmantas Ratas
- Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
| | - Kestutis Pyragas
- Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania and Department of Theoretical Physics, Faculty of Physics, Vilnius University, LT-10222 Vilnius, Lithuania
| |
Collapse
|
23
|
MONTASERI GHAZAL, YAZDANPANAH MOHAMMADJAVAD. DESYNCHRONIZATION OF TWO COUPLED LIMIT-CYCLE OSCILLATORS USING AN ASTROCYTE-INSPIRED CONTROLLER. INT J BIOMATH 2014. [DOI: 10.1142/s1793524514500016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Astrocytes have potential to break synchrony between neurons. Authors' recent researches reveal that astrocytes vary the synchronization threshold and provide an appropriate feedback control in stabilizing neural activities. In this study, we propose an astrocyte-inspired controller for desynchronization of two coupled limit-cycle oscillators as a minimal network model. The design procedure consists of two parts. First, based on the astrocyte model, the structure of the dynamic controller is suggested. Then, to have an efficient controller, parameters of controller are tuned through an optimization algorithm. The proposed bio-inspired controller takes advantages of three important properties: (1) the controller desynchronizes the oscillators without any undesirable effects (e.g. stopping, annihilating or starting divergent oscillations); (2) it consumes little effort to preserve the desirable desynchronized state; and (3) the controller is robust with respect to parameters' variations. Simulation results reveal the ability of the proposed controller.
Collapse
Affiliation(s)
- GHAZAL MONTASERI
- Advanced Control Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - MOHAMMAD JAVAD YAZDANPANAH
- Advanced Control Systems Laboratory, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Montaseri G, Yazdanpanah MJ, Pikovsky A, Rosenblum M. Synchrony suppression in ensembles of coupled oscillators via adaptive vanishing feedback. CHAOS (WOODBURY, N.Y.) 2013; 23:033122. [PMID: 24089958 DOI: 10.1063/1.4817393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Synchronization and emergence of a collective mode is a general phenomenon, frequently observed in ensembles of coupled self-sustained oscillators of various natures. In several circumstances, in particular in cases of neurological pathologies, this state of the active medium is undesirable. Destruction of this state by a specially designed stimulation is a challenge of high clinical relevance. Typically, the precise effect of an external action on the ensemble is unknown, since the microscopic description of the oscillators and their interactions are not available. We show that, desynchronization in case of a large degree of uncertainty about important features of the system is nevertheless possible; it can be achieved by virtue of a feedback loop with an additional adaptation of parameters. The adaptation also ensures desynchronization of ensembles with non-stationary, time-varying parameters. We perform the stability analysis of the feedback-controlled system and demonstrate efficient destruction of synchrony for several models, including those of spiking and bursting neurons.
Collapse
Affiliation(s)
- Ghazal Montaseri
- Advanced Control Systems Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
25
|
Adamchic I, Toth T, Hauptmann C, Tass PA. Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation. Hum Brain Mapp 2013; 35:2099-118. [PMID: 23907785 PMCID: PMC4216412 DOI: 10.1002/hbm.22314] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/24/2013] [Accepted: 04/08/2013] [Indexed: 01/19/2023] Open
Abstract
Acoustic Coordinated Reset (CR) neuromodulation is a patterned stimulation with tones adjusted to the patient's dominant tinnitus frequency, which aims at desynchronizing pathological neuronal synchronization. In a recent proof-of-concept study, CR therapy, delivered 4-6 h/day more than 12 weeks, induced a significant clinical improvement along with a significant long-lasting decrease of pathological oscillatory power in the low frequency as well as γ band and an increase of the α power in a network of tinnitus-related brain areas. As yet, it remains unclear whether CR shifts the brain activity toward physiological levels or whether it induces clinically beneficial, but nonetheless abnormal electroencephalographic (EEG) patterns, for example excessively decreased δ and/or γ. Here, we compared the patients' spontaneous EEG data at baseline as well as after 12 weeks of CR therapy with the spontaneous EEG of healthy controls by means of Brain Electrical Source Analysis source montage and standardized low-resolution brain electromagnetic tomography techniques. The relationship between changes in EEG power and clinical scores was investigated using a partial least squares approach. In this way, we show that acoustic CR neuromodulation leads to a normalization of the oscillatory power in the tinnitus-related network of brain areas, most prominently in temporal regions. A positive association was found between the changes in tinnitus severity and the normalization of δ and γ power in the temporal, parietal, and cingulate cortical regions. Our findings demonstrate a widespread CR-induced normalization of EEG power, significantly associated with a reduction of tinnitus severity.
Collapse
Affiliation(s)
- Ilya Adamchic
- Institute of Neuroscience and Medicine-Neuromodulation (INM-7), Jülich Research Center, Jülich, Germany
| | | | | | | |
Collapse
|
26
|
Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson's disease. PLoS One 2013; 8:e58264. [PMID: 23469272 PMCID: PMC3585780 DOI: 10.1371/journal.pone.0058264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson's disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson's disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson's disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.
Collapse
|
27
|
Yu H, Wang J, Liu Q, Deng B, Wei X. Delayed feedback control of bursting synchronization in small-world neuronal networks. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Parpura V, Silva GA, Tass PA, Bennet KE, Meyyappan M, Koehne J, Lee KH, Andrews RJ. Neuromodulation: selected approaches and challenges. J Neurochem 2012. [PMID: 23190025 DOI: 10.1111/jnc.12105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The brain operates through complex interactions in the flow of information and signal processing within neural networks. The 'wiring' of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromodulation are discussed. The use of water-dispersible carbon nanotubes has been proven effective in the modulation of neurite outgrowth in culture and in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing 'misfiring' neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real-time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy and Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghosh D, Grosu I, Dana SK. Design of coupling for synchronization in time-delayed systems. CHAOS (WOODBURY, N.Y.) 2012; 22:033111. [PMID: 23020450 DOI: 10.1063/1.4731797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a design of delay coupling for targeting desired synchronization in delay dynamical systems. We target synchronization, antisynchronization, lag-and antilag-synchronization, amplitude death (or oscillation death), and generalized synchronization in mismatched oscillators. A scaling of the size of an attractor is made possible in different synchronization regimes. We realize a type of mixed synchronization where synchronization and antisynchronization coexist in different pairs of state variables of the coupled system. We establish the stability condition of synchronization using the Krasovskii-Lyapunov function theory and the Hurwitz matrix criterion. We present numerical examples using the Mackey-Glass system and a delay Rössler system.
Collapse
Affiliation(s)
- Dibakar Ghosh
- Department of Mathematics, University of Kalyani, West Bengal 741235, India
| | | | | |
Collapse
|
30
|
|
31
|
Popovych OV, Tass PA. Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 2012; 6:58. [PMID: 22454622 PMCID: PMC3308339 DOI: 10.3389/fnhum.2012.00058] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/03/2012] [Indexed: 11/13/2022] Open
Abstract
Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Research Center Jülich, Institute of Neuroscience and Medicine - Neuromodulation (INM-7) Jülich, Germany
| | | |
Collapse
|
32
|
Luo M, Xu J. Suppression of collective synchronization in a system of neural groups with washout-filter-aided feedback. Neural Netw 2011; 24:538-43. [DOI: 10.1016/j.neunet.2011.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/24/2011] [Accepted: 02/28/2011] [Indexed: 12/01/2022]
|
33
|
Komarov M, Pikovsky A. Effects of nonresonant interaction in ensembles of phase oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:016210. [PMID: 21867276 DOI: 10.1103/physreve.84.016210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/06/2011] [Indexed: 05/20/2023]
Abstract
We consider general properties of groups of interacting oscillators, for which the natural frequencies are not in resonance. Such groups interact via nonoscillating collective variables like the amplitudes of the order parameters defined for each group. We treat the phase dynamics of the groups using the Ott-Antonsen ansatz and reduce it to a system of coupled equations for the order parameters. We describe different regimes of cosynchrony in the groups. For a large number of groups, heteroclinic cycles, corresponding to a sequential synchronous activity of groups and chaotic states where the order parameters oscillate irregularly, are possible.
Collapse
Affiliation(s)
- Maxim Komarov
- Faculty of Computational Mathematics and Cybernetics, Nizhni Novgorod University, Nizhni Novgorod, Russia
| | | |
Collapse
|
34
|
Padmanaban E, Hens C, Dana SK. Engineering synchronization of chaotic oscillators using controller based coupling design. CHAOS (WOODBURY, N.Y.) 2011; 21:013110. [PMID: 21456824 DOI: 10.1063/1.3548066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We propose a general formulation of coupling for engineering synchronization in chaotic oscillators for unidirectional as well as bidirectional mode. In the synchronization regimes, it is possible to amplify or to attenuate a chaotic attractor with respect to other chaotic attractors. Numerical examples are presented for a Lorenz system, Rössler oscillator, and a Sprott system. We physically realized the controller based coupling design in electronic circuits to verify the theory. We extended the theory to a network of coupled oscillators and provided a numerical example with four Sprott oscillators.
Collapse
Affiliation(s)
- E Padmanaban
- Central Instrumentation, Indian Institute of Chemical Biology, (Council of Scientific and Industrial Research), Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
35
|
Popovych OV, Krachkovskyi V, Tass PA. Phase-locking swallows in coupled oscillators with delayed feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:046203. [PMID: 21230361 DOI: 10.1103/physreve.82.046203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Indexed: 05/30/2023]
Abstract
We show that a nonlinear coupling with delayed feedback between two limit-cycle oscillators can lead to phase-locked, periodically modulated, and chaotic phase synchronization as well as to desynchronization. Parameter regions with stable phase-locked states attain the well-known form of the swallows or shrimps found and studied for nonlinear maps. We demonstrate that the swallow regions can be accompanied by a different bifurcation scenario where the periodic orbits of the phase-locked states undergo a torus bifurcation instead of a previously reported period-doubling bifurcation. This property has an impact on the spatial organization of the swallows in the parameter space. The swallow regions contribute to the synchronization domain of the considered system, and we analytically approximate the parameter synchronization threshold.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine-Neuromodulation (INM-7), Research Center Jülich, 52425 Jülich, Germany
| | | | | |
Collapse
|
36
|
Perlikowski P, Yanchuk S, Popovych OV, Tass PA. Periodic patterns in a ring of delay-coupled oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:036208. [PMID: 21230162 DOI: 10.1103/physreve.82.036208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/24/2010] [Indexed: 05/30/2023]
Abstract
We describe the appearance and stability of spatiotemporal periodic patterns (rotating waves) in unidirectional rings of coupled oscillators with delayed couplings. We show how delays in the coupling lead to the splitting of each rotating wave into several new ones. The appearance of rotating waves is mediated by the Hopf bifurcations of the symmetric equilibrium. We also conclude that the coupling delays can be effectively replaced by increasing the number of oscillators in the chain. The phenomena are shown for the Stuart-Landau oscillators as well as for the coupled FitzHugh-Nagumo systems modeling an ensemble of spiking neurons interacting via excitatory chemical synapses.
Collapse
Affiliation(s)
- P Perlikowski
- Institute of Mathematics, Humboldt University of Berlin, 10099 Berlin, Germany
| | | | | | | |
Collapse
|