1
|
Robinson PA. Near-critical corticothalamic eigenmodes: Effects of nonuniform connectivity on modes, activity, and communication channels. Phys Rev E 2025; 111:014404. [PMID: 39972850 DOI: 10.1103/physreve.111.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025]
Abstract
The effects of nonuniformities in axonal connectivity on natural modes of brain activity are explored to determine their contributions to modal eigenvalues, structure, and communication and to clarify the limits of validity of widely used uniform-connectivity approximations. Preferred channels of communication are demonstrated that are supported by natural modes of mean connectivity and resulting activity. The effects of axonal tracts on these modes are calculated using perturbation methods, and it is found that modes and their spectra are only moderately perturbed by even the largest white matter tracts. However, perturbations of activity are greatly magnified when modes are near-critical and realistic connectivity and gain perturbations can then enable rapid responses to stimuli on the observed timescales of evoked responses. It is thus argued that dynamic mode-mode communication channels complement ones based on white matter tracts and that both rely on near-criticality to have their observed effects.
Collapse
Affiliation(s)
- P A Robinson
- University of Sydney, School of Physics, New South Wales 2006, Australia
| |
Collapse
|
2
|
El Zghir RK, Gabay NC, Robinson PA. Unified theory of alpha, mu, and tau rhythms via eigenmodes of brain activity. Front Comput Neurosci 2024; 18:1335130. [PMID: 39286332 PMCID: PMC11403587 DOI: 10.3389/fncom.2024.1335130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
A compact description of the frequency structure and topography of human alpha-band rhythms is obtained by use of the first four brain activity eigenmodes previously derived from corticothalamic neural field theory. Just two eigenmodes that overlap in frequency are found to reproduce the observed topography of the classical alpha rhythm for subjects with a single, occipitally concentrated alpha peak in their electroencephalograms. Alpha frequency splitting and relative amplitudes of double alpha peaks are explored analytically and numerically within this four-mode framework using eigenfunction expansion and perturbation methods. These effects are found to result primarily from the different eigenvalues and corticothalamic gains corresponding to the eigenmodes. Three modes with two non-overlapping frequencies suffice to reproduce the observed topography for subjects with a double alpha peak, where the appearance of a distinct second alpha peak requires an increase of the corticothalamic gain of higher eigenmodes relative to the first. Conversely, alpha blocking is inferred to be linked to a relatively small attention-dependent reduction of the gain of the relevant eigenmodes, whose effect is enhanced by the near-critical state of the brain and whose sign is consistent with inferences from neural field theory. The topographies and blocking of the mu and tau rhythms within the alpha-band are explained analogously via eigenmodes. Moreover, the observation of three rhythms in the alpha band is due to there being exactly three members of the first family of spatially nonuniform modes. These results thus provide a simple, unified description of alpha band rhythms and enable experimental observations of spectral structure and topography to be linked directly to theory and underlying physiology.
Collapse
Affiliation(s)
- Rawan Khalil El Zghir
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - P A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
4
|
Liu Y, Ge E, Kang Z, Qiang N, Liu T, Ge B. Spatial-temporal convolutional attention for discovering and characterizing functional brain networks in task fMRI. Neuroimage 2024; 287:120519. [PMID: 38280690 DOI: 10.1016/j.neuroimage.2024.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Functional brain networks (FBNs) are spatial patterns of brain function that play a critical role in understanding human brain function. There are many proposed methods for mapping the spatial patterns of brain function, however they oversimplify the underlying assumptions of brain function and have various limitations such as linearity and independence. Additionally, current methods fail to account for the dynamic nature of FBNs, which limits their effectiveness in accurately characterizing these networks. To address these limitations, we present a novel deep learning and spatial-wise attention based model called Spatial-Temporal Convolutional Attention (STCA) to accurately model dynamic FBNs. Specifically, we train STCA in a self-supervised manner by utilizing a Convolutional Autoencoder to guide the STCA module in assigning higher attention weights to regions of functional activity. To validate the reliability of the results, we evaluate our approach on the HCP-task motor behavior dataset, the experimental results demonstrate that the STCA derived FBNs have higher spatial similarity with the templates and that the spatial similarity between the templates and the FBNs derived by STCA fluctuates with the task design over time, suggesting that STCA can reflect the dynamic changes of brain function, providing a powerful tool to better understand human brain function. Code is available at https://github.com/SNNUBIAI/STCAE.
Collapse
Affiliation(s)
- Yiheng Liu
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, China
| | - Enjie Ge
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zili Kang
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, China
| | - Ning Qiang
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, China
| | - Tianming Liu
- School of Computing, University of Georgia, GA, USA
| | - Bao Ge
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
5
|
Kulik SD, Douw L, van Dellen E, Steenwijk MD, Geurts JJG, Stam CJ, Hillebrand A, Schoonheim MM, Tewarie P. Comparing individual and group-level simulated neurophysiological brain connectivity using the Jansen and Rit neural mass model. Netw Neurosci 2023; 7:950-965. [PMID: 37781149 PMCID: PMC10473283 DOI: 10.1162/netn_a_00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/24/2022] [Indexed: 10/03/2023] Open
Abstract
Computational models are often used to assess how functional connectivity (FC) patterns emerge from neuronal population dynamics and anatomical brain connections. It remains unclear whether the commonly used group-averaged data can predict individual FC patterns. The Jansen and Rit neural mass model was employed, where masses were coupled using individual structural connectivity (SC). Simulated FC was correlated to individual magnetoencephalography-derived empirical FC. FC was estimated using phase-based (phase lag index (PLI), phase locking value (PLV)), and amplitude-based (amplitude envelope correlation (AEC)) metrics to analyze their goodness of fit for individual predictions. Individual FC predictions were compared against group-averaged FC predictions, and we tested whether SC of a different participant could equally well predict participants' FC patterns. The AEC provided a better match between individually simulated and empirical FC than phase-based metrics. Correlations between simulated and empirical FC were higher using individual SC compared to group-averaged SC. Using SC from other participants resulted in similar correlations between simulated and empirical FC compared to using participants' own SC. This work underlines the added value of FC simulations using individual instead of group-averaged SC for this particular computational model and could aid in a better understanding of mechanisms underlying individual functional network trajectories.
Collapse
Affiliation(s)
- S. D. Kulik
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Brain Tumour Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - L. Douw
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Brain Tumour Center Amsterdam, Amsterdam, The Netherlands
| | - E. van Dellen
- University Medical Center Utrecht, Department of Psychiatry, Brain Center, Utrecht, The Netherlands
| | - M. D. Steenwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - J. J. G. Geurts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - C. J. Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| | - A. Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| | - M. M. Schoonheim
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - P. Tewarie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| |
Collapse
|
6
|
Pang JC, Aquino KM, Oldehinkel M, Robinson PA, Fulcher BD, Breakspear M, Fornito A. Geometric constraints on human brain function. Nature 2023; 618:566-574. [PMID: 37258669 PMCID: PMC10266981 DOI: 10.1038/s41586-023-06098-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.
Collapse
Affiliation(s)
- James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Kevin M Aquino
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter A Robinson
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Ghosh S, Raj A, Nagarajan SS. A joint subspace mapping between structural and functional brain connectomes. Neuroimage 2023; 272:119975. [PMID: 36870432 PMCID: PMC11244732 DOI: 10.1016/j.neuroimage.2023.119975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the connection between the brain's structural connectivity and its functional connectivity is of immense interest in computational neuroscience. Although some studies have suggested that whole brain functional connectivity is shaped by the underlying structure, the rule by which anatomy constraints brain dynamics remains an open question. In this work, we introduce a computational framework that identifies a joint subspace of eigenmodes for both functional and structural connectomes. We found that a small number of those eigenmodes are sufficient to reconstruct functional connectivity from the structural connectome, thus serving as low-dimensional basis function set. We then develop an algorithm that can estimate the functional eigen spectrum in this joint space from the structural eigen spectrum. By concurrently estimating the joint eigenmodes and the functional eigen spectrum, we can reconstruct a given subject's functional connectivity from their structural connectome. We perform elaborate experiments and demonstrate that the proposed algorithm for estimating functional connectivity from the structural connectome using joint space eigenmodes gives competitive performance as compared to the existing benchmark methods with better interpretability.
Collapse
Affiliation(s)
- Sanjay Ghosh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Ave, San Francisco, 94143, California, USA.
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Ave, San Francisco, 94143, California, USA.
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Ave, San Francisco, 94143, California, USA.
| |
Collapse
|
8
|
Mata‐Marín D, Pineda‐Pardo JÁ, Michiels M, Pagge C, Ammann C, Martínez‐Fernández R, Molina JA, Vela‐Desojo L, Alonso‐Frech F, Obeso I. A circuit-based approach to modulate hypersexuality in Parkinson's disease. Psychiatry Clin Neurosci 2023; 77:223-232. [PMID: 36579893 PMCID: PMC11488615 DOI: 10.1111/pcn.13523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
AIM Impulse-control disorder is a common neuropsychiatric complication in Parkinson's disease (PD) under dopamine replacement therapy. Prior studies tested the balance between enhanced desire towards reward and cognitive control deficits, hypothesized to be biased towards the former in impulse control disorders. We provide evidence for this hypothesis by measuring behavioral and neural patterns behind the influence of sexual desire over response inhibition and tools towards functional restoration using repetitive transcranial stimulation in patients with hypersexuality as predominant impulsive disorder. METHODS The effect of sexual cues on inhibition was measured with a novel erotic stop-signal task under on and off dopaminergic medication. Task-related functional and anatomical connectivity models were estimated in 16 hypersexual and 17 nonhypersexual patients with PD as well as in 17 healthy controls. Additionally, excitatory neuromodulation using intermittent theta-burst stimulation (sham-controlled) was applied over the pre-supplementary motor area in 20 additional hypersexual patients with PD aiming to improve response inhibition. RESULTS Compared with their nonhypersexual peers, patients with hypersexuality recruited caudate, pre-supplementary motor area, ventral tegmental area, and anterior cingulate cortex while on medication. Reduced connectivity was found between pre-supplementary motor area and caudate nucleus in hypersexual compared with nonhypersexual patients (while medicated), a result paralleled by compensatory enhanced anatomical connectivity. Furthermore, stimulation over the pre-supplementary motor area improved response inhibition in hypersexual patients with PD when exposed to sexual cues. CONCLUSION This study, therefore, has identified a specific fronto-striatal and mesolimbic circuitry underlying uncontrolled sexual responses in medicated patients with PD where cortical neuromodulation halts its expression.
Collapse
Affiliation(s)
- David Mata‐Marín
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
- PhD program in NeuroscienceAutonoma University of MadridMadridSpain
| | - José Ángel Pineda‐Pardo
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
| | - Mario Michiels
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
- PhD program in NeuroscienceAutonoma University of MadridMadridSpain
| | - Cristina Pagge
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- PhD program in NeuroscienceAutonoma University of MadridMadridSpain
| | - Claudia Ammann
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
| | - Raúl Martínez‐Fernández
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
| | | | | | | | - Ignacio Obeso
- Centro Integral de Neurociencias Abarca Campal (HM CINAC)Hospital Universitario HM Puerta del Sur. HM HospitalesMadridSpain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED)Instituto Carlos IIIMadridSpain
- Department of Psychobiology & Methods for the Behavioral Sciences DepartmentComplutense University of MadridMadridSpain
| |
Collapse
|
9
|
Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage 2022; 257:119321. [PMID: 35580807 DOI: 10.1016/j.neuroimage.2022.119321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
Collapse
|
10
|
Tewarie P, Prasse B, Meier J, Mandke K, Warrington S, Stam CJ, Brookes MJ, Van Mieghem P, Sotiropoulos SN, Hillebrand A. Predicting time-resolved electrophysiological brain networks from structural eigenmodes. Hum Brain Mapp 2022; 43:4475-4491. [PMID: 35642600 PMCID: PMC9435022 DOI: 10.1002/hbm.25967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/20/2023] Open
Abstract
How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-state magnetoencephalography and diffusion magnetic resonance imaging data at the individual subject level. Our results show that even at short timescales, phase and amplitude connectivity can partly be expressed by structural eigenmodes, but hardly by direct structural connections. Albeit a stronger relationship was found between structural eigenmodes and time-resolved amplitude connectivity. Time-resolved connectivity for both phase and amplitude was mostly characterised by a stationary process, superimposed with very brief periods that showed deviations from this stationary process. For these brief periods, dynamic network states were extracted that showed different expressions of eigenmodes. Furthermore, the eigenmode expression was related to overall cognitive performance and co-occurred with fluctuations in community structure of functional networks. These results implicate that ongoing time-resolved resting-state networks, even at short timescales, can to some extent be understood in terms of activation and deactivation of structural eigenmodes and that these eigenmodes play a role in the dynamic integration and segregation of information across the cortex, subserving cognitive functions.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bastian Prasse
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jil Meier
- Department of Neurology, Brain Simulation Section, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
11
|
A Riemannian approach to predicting brain function from the structural connectome. Neuroimage 2022; 257:119299. [PMID: 35636736 DOI: 10.1016/j.neuroimage.2022.119299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.
Collapse
|
12
|
Siu PH, Müller E, Zerbi V, Aquino K, Fulcher BD. Extracting Dynamical Understanding From Neural-Mass Models of Mouse Cortex. Front Comput Neurosci 2022; 16:847336. [PMID: 35547660 PMCID: PMC9081874 DOI: 10.3389/fncom.2022.847336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.
Collapse
Affiliation(s)
- Pok Him Siu
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Eli Müller
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Valerio Zerbi
- Neural Control of Movement Lab, D-HEST, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Griffiths JD, Bastiaens SP, Kaboodvand N. Whole-Brain Modelling: Past, Present, and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:313-355. [DOI: 10.1007/978-3-030-89439-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Kulik SD, Nauta IM, Tewarie P, Koubiyr I, van Dellen E, Ruet A, Meijer KA, de Jong BA, Stam CJ, Hillebrand A, Geurts JJG, Douw L, Schoonheim MM. Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Netw Neurosci 2021; 6:339-356. [PMID: 35733434 PMCID: PMC9208024 DOI: 10.1162/netn_a_00226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
Abstract
Multiple sclerosis (MS) features extensive connectivity changes, but how structural and functional connectivity relate, and whether this relation could be a useful biomarker for cognitive impairment in MS is unclear.
This study included 79 MS patients and 40 healthy controls (HCs). Patients were classified as cognitively impaired (CI) or cognitively preserved (CP). Structural connectivity was determined using diffusion MRI and functional connectivity using resting-state magnetoencephalography (MEG) data (theta, alpha1 and alpha2 bands). Structure-function coupling was assessed by correlating modalities, and further explored in frequency bands that significantly correlated with whole-brain structural connectivity. Functional correlates of short- and long-range structural connections (based on tract length) were then specifically assessed. ROC analyses were performed on coupling values to identify biomarker potential.
Only the theta band showed significant correlations between whole-brain structural and functional connectivity (rho = −0.26, p = 0.023, only in MS). Long-range structure-function coupling was higher in CI patients compared to HCs (p = 0.005). Short-range coupling showed no group differences. Structure-function coupling was not a significant classifier of cognitive impairment for any tract length (short-range AUC = 0.498, p = 0.976, long-range AUC = 0.611, p = 0.095).
Long-range structure-function coupling was higher in CI-MS compared to HC, but more research is needed to further explore this measure as biomarkers in MS.
Collapse
Affiliation(s)
- Shanna D. Kulik
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ilse M. Nauta
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Prejaas Tewarie
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ismail Koubiyr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Edwin van Dellen
- University Medical Center Utrecht, Psychiatry, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Aurelie Ruet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
- CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Kim A. Meijer
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cornelis J. Stam
- Department of Neurology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen J. G. Geurts
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Douw
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M. Schoonheim
- Departments of Anatomy and Neurosciences, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Robinson PA. Integrals and series related to propagators of neural and haemodynamic waves. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211562. [PMID: 34966557 PMCID: PMC8633804 DOI: 10.1098/rsos.211562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The propagator, or Green function, of a class of neural activity fields and of haemodynamic waves is evaluated exactly. The results enable a number of related integrals to be evaluated, along with series expansions of key results in terms of Bessel functions of the second kind. Connections to other related equations are also noted.
Collapse
Affiliation(s)
- P. A. Robinson
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Robinson PA. Discrete spectral eigenmode-resonance network of brain dynamics and connectivity. Phys Rev E 2021; 104:034411. [PMID: 34654199 DOI: 10.1103/physreve.104.034411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
The problem of finding a compact natural representation of brain dynamics and connectivity is addressed using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be analyzed in compact form in terms of natural dynamic "atoms," each of which is a frequency resonance of an eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT) approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific brain model. This means that dynamic equations can be inferred using system identification methods from control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters. The results link brain activity and connectivity with control-systems functions such as prediction and attention via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also be tracked to provide a more direct and temporally localized representation of the dynamics than correlations and covariances, which are widely used in the field. By synthesizing many different lines of research, this work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain dynamics, and function. This underlines the need to move between coordinate and spectral representations as required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks, which are highly prone to selection effects and artifacts.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Robinson PA, Henderson JA, Gabay NC, Aquino KM, Babaie-Janvier T, Gao X. Determination of Dynamic Brain Connectivity via Spectral Analysis. Front Hum Neurosci 2021; 15:655576. [PMID: 34335207 PMCID: PMC8323754 DOI: 10.3389/fnhum.2021.655576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Spectral analysis based on neural field theory is used to analyze dynamic connectivity via methods based on the physical eigenmodes that are the building blocks of brain dynamics. These approaches integrate over space instead of averaging over time and thereby greatly reduce or remove the temporal averaging effects, windowing artifacts, and noise at fine spatial scales that have bedeviled the analysis of dynamical functional connectivity (FC). The dependences of FC on dynamics at various timescales, and on windowing, are clarified and the results are demonstrated on simple test cases, demonstrating how modes provide directly interpretable insights that can be related to brain structure and function. It is shown that FC is dynamic even when the brain structure and effective connectivity are fixed, and that the observed patterns of FC are dominated by relatively few eigenmodes. Common artifacts introduced by statistical analyses that do not incorporate the physical nature of the brain are discussed and it is shown that these are avoided by spectral analysis using eigenmodes. Unlike most published artificially discretized “resting state networks” and other statistically-derived patterns, eigenmodes overlap, with every mode extending across the whole brain and every region participating in every mode—just like the vibrations that give rise to notes of a musical instrument. Despite this, modes are independent and do not interact in the linear limit. It is argued that for many purposes the intrinsic limitations of covariance-based FC instead favor the alternative of tracking eigenmode coefficients vs. time, which provide a compact representation that is directly related to biophysical brain dynamics.
Collapse
Affiliation(s)
- Peter A Robinson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - James A Henderson
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Natasha C Gabay
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Kevin M Aquino
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Tara Babaie-Janvier
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Xiao Gao
- School of Physics, University of Sydney, Sydney, NSW, Australia.,Center of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Structurally constrained effective brain connectivity. Neuroimage 2021; 239:118288. [PMID: 34147631 DOI: 10.1016/j.neuroimage.2021.118288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/01/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function. Or simply, it can be used to find novel biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re-weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of an autoregressive model constrained by the structural connectivity prior. The model has been designed to also include indirect connections, allowing to split direct and indirect components in the functional connectivity, and it can be used with raw and deconvoluted BOLD signal. The derived representation of dependencies was compared to the well known dynamic causal model, giving results closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the functional interactions in the community detection task, while maintaining the original structural organization, and obtaining a better discrimination in the case-control classification task.
Collapse
|
19
|
Messaritaki E, Foley S, Schiavi S, Magazzini L, Routley B, Jones DK, Singh KD. Predicting MEG resting-state functional connectivity from microstructural information. Netw Neurosci 2021; 5:477-504. [PMID: 34189374 PMCID: PMC8233113 DOI: 10.1162/netn_a_00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding how human brain microstructure influences functional connectivity is an important endeavor. In this work, magnetic resonance imaging data from 90 healthy participants were used to calculate structural connectivity matrices using the streamline count, fractional anisotropy, radial diffusivity, and a myelin measure (derived from multicomponent relaxometry) to assign connection strength. Unweighted binarized structural connectivity matrices were also constructed. Magnetoencephalography resting-state data from those participants were used to calculate functional connectivity matrices, via correlations of the Hilbert envelopes of beamformer time series in the delta, theta, alpha, and beta frequency bands. Nonnegative matrix factorization was performed to identify the components of the functional connectivity. Shortest path length and search-information analyses of the structural connectomes were used to predict functional connectivity patterns for each participant. The microstructure-informed algorithms predicted the components of the functional connectivity more accurately than they predicted the total functional connectivity. This provides a methodology to understand functional mechanisms better. The shortest path length algorithm exhibited the highest prediction accuracy. Of the weights of the structural connectivity matrices, the streamline count and the myelin measure gave the most accurate predictions, while the fractional anisotropy performed poorly. Overall, different structural metrics paint very different pictures of the structural connectome and its relationship to functional connectivity.
Collapse
Affiliation(s)
- Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Bethany Routley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
20
|
Robinson PA. Neural field theory of neural avalanche exponents. BIOLOGICAL CYBERNETICS 2021; 115:237-243. [PMID: 33939016 DOI: 10.1007/s00422-021-00875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The power-law exponents of observed size and lifetime distributions of near-critical neural avalanches are calculated from neural field theory using diagrammatic methods. This brings neural avalanches within the ambit of neural field theory, which has also previously explained near-critical 1/f spectra and many other observed features of neural activity. This strengthens the case for near-criticality of the brain and opens the way for these other phenomena to be interrelated with avalanches and their dynamics.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
21
|
Wein S, Deco G, Tomé AM, Goldhacker M, Malloni WM, Greenlee MW, Lang EW. Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:5573740. [PMID: 34135951 PMCID: PMC8177997 DOI: 10.1155/2021/5573740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
This short survey reviews the recent literature on the relationship between the brain structure and its functional dynamics. Imaging techniques such as diffusion tensor imaging (DTI) make it possible to reconstruct axonal fiber tracks and describe the structural connectivity (SC) between brain regions. By measuring fluctuations in neuronal activity, functional magnetic resonance imaging (fMRI) provides insights into the dynamics within this structural network. One key for a better understanding of brain mechanisms is to investigate how these fast dynamics emerge on a relatively stable structural backbone. So far, computational simulations and methods from graph theory have been mainly used for modeling this relationship. Machine learning techniques have already been established in neuroimaging for identifying functionally independent brain networks and classifying pathological brain states. This survey focuses on methods from machine learning, which contribute to our understanding of functional interactions between brain regions and their relation to the underlying anatomical substrate.
Collapse
Affiliation(s)
- Simon Wein
- CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, University Pompeu Fabra, Carrer Tanger, 122-140, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats, University Barcelona, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Ana Maria Tomé
- IEETA/DETI, University de Aveiro, Aveiro 3810-193, Portugal
| | - Markus Goldhacker
- CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Wilhelm M. Malloni
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Mark W. Greenlee
- Experimental Psychology, University of Regensburg, Regensburg 93040, Germany
| | - Elmar W. Lang
- CIML, Biophysics, University of Regensburg, Regensburg 93040, Germany
| |
Collapse
|
22
|
Brain dynamics and structure-function relationships via spectral factorization and the transfer function. Neuroimage 2021; 235:117989. [PMID: 33819612 DOI: 10.1016/j.neuroimage.2021.117989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
It is shown how the brain's linear transfer function provides a means to systematically analyze brain connectivity and dynamics, and to infer connectivity, eigenmodes, and activity measures such as spectra, evoked responses, coherence, and causality, all of which are widely used in brain monitoring. In particular, the Wilson spectral factorization algorithm is outlined and used to efficiently obtain linear transfer functions from experimental two-point correlation functions. The algorithm is tested on a series of brain-like structures of increasing complexity which include time delays, asymmetry, two-dimensionality, and complex network connectivity. These tests are used to verify the algorithm is suitable for application to brain dynamics, specify sampling requirements for experimental time series, and to verify that its runtime is short enough to obtain accurate results for systems of similar size to current experiments. The results can equally well be applied to inference of the transfer function in complex linear systems other than brains.
Collapse
|
23
|
Deco G, Vidaurre D, Kringelbach ML. Revisiting the global workspace orchestrating the hierarchical organization of the human brain. Nat Hum Behav 2021; 5:497-511. [PMID: 33398141 PMCID: PMC8060164 DOI: 10.1038/s41562-020-01003-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
A central challenge in neuroscience is how the brain organizes the information necessary to orchestrate behaviour. Arguably, this whole-brain orchestration is carried out by a core subset of integrative brain regions, a 'global workspace', but its constitutive regions remain unclear. We quantified the global workspace as the common regions across seven tasks as well as rest, in a common 'functional rich club'. To identify this functional rich club, we determined the information flow between brain regions by means of a normalized directed transfer entropy framework applied to multimodal neuroimaging data from 1,003 healthy participants and validated in participants with retest data. This revealed a set of regions orchestrating information from perceptual, long-term memory, evaluative and attentional systems. We confirmed the causal significance and robustness of our results by systematically lesioning a generative whole-brain model. Overall, this framework describes a complex choreography of the functional hierarchical organization of the human brain.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Diego Vidaurre
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Liégeois R, Santos A, Matta V, Van De Ville D, Sayed AH. Revisiting correlation-based functional connectivity and its relationship with structural connectivity. Netw Neurosci 2020; 4:1235-1251. [PMID: 33409438 PMCID: PMC7781609 DOI: 10.1162/netn_a_00166] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Patterns of brain structural connectivity (SC) and functional connectivity (FC) are known to be related. In SC-FC comparisons, FC has classically been evaluated from correlations between functional time series, and more recently from partial correlations or their unnormalized version encoded in the precision matrix. The latter FC metrics yield more meaningful comparisons to SC because they capture ‘direct’ statistical dependencies, that is, discarding the effects of mediators, but their use has been limited because of estimation issues. With the rise of high-quality and large neuroimaging datasets, we revisit the relevance of different FC metrics in the context of SC-FC comparisons. Using data from 100 unrelated Human Connectome Project subjects, we first explore the amount of functional data required to reliably estimate various FC metrics. We find that precision-based FC yields a better match to SC than correlation-based FC when using 5 minutes of functional data or more. Finally, using a linear model linking SC and FC, we show that the SC-FC match can be used to further interrogate various aspects of brain structure and function such as the timescales of functional dynamics in different resting-state networks or the intensity of anatomical self-connections.
Collapse
Affiliation(s)
- Raphael Liégeois
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland; Centre for Informatics and Systems, University of Coimbra, Portugal
| | - Augusto Santos
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland; Centre for Informatics and Systems, University of Coimbra, Portugal
| | - Vincenzo Matta
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Italy
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland; Centre for Informatics and Systems, University of Coimbra, Portugal
| | - Ali H Sayed
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland; Centre for Informatics and Systems, University of Coimbra, Portugal
| |
Collapse
|
25
|
Gao X, Robinson PA. Importance of self-connections for brain connectivity and spectral connectomics. BIOLOGICAL CYBERNETICS 2020; 114:643-651. [PMID: 33242165 PMCID: PMC7733589 DOI: 10.1007/s00422-020-00847-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Spectral analysis and neural field theory are used to investigate the role of local connections in brain connectivity matrices (CMs) that quantify connectivity between pairs of discretized brain regions. This work investigates how the common procedure of omitting such self-connections (i.e., the diagonal elements of CMs) in published studies of brain connectivity affects the properties of functional CMs (fCMs) and the mutually consistent effective CMs (eCMs) that correspond to them. It is shown that retention of self-connections in the fCM calculated from two-point activity covariances is essential for the fCM to be a true covariance matrix, to enable correct inference of the direct total eCMs from the fCM, and to ensure their compatibility with it; the deCM and teCM represent the strengths of direct connections and all connections between points, respectively. When self-connections are retained, inferred eCMs are found to have net inhibitory self-connections that represent the local inhibition needed to balance excitation via white matter fibers at longer ranges. This inference of spatially unresolved connectivity exemplifies the power of spectral connectivity methods, which also enable transformation of CMs to compact diagonal forms that allow accurate approximation of the fCM and total eCM in terms of just a few modes, rather than the full [Formula: see text] CM entries for connections between N brain regions. It is found that omission of fCM self-connections affects both local and long-range connections in eCMs, so they cannot be omitted even when studying the large-scale. Moreover, retention of local connections enables inference of subgrid short-range inhibitory connectivity. The results are verified and illustrated using the NKI-Rockland dataset from the University of Southern California Multimodal Connectivity Database. Deletion of self-connections is common in the field; this does not affect case-control studies but the present results imply that such fCMs must have self-connections restored before eCMs can be inferred from them.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3052 Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006 Australia
- Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW 2006 Australia
| | - P. A. Robinson
- School of Physics, The University of Sydney, Sydney, NSW 2006 Australia
- Center of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
26
|
Sokolov AA, Zeidman P, Razi A, Erb M, Ryvlin P, Pavlova MA, Friston KJ. Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Netw Neurosci 2020; 4:871-890. [PMID: 33615094 PMCID: PMC7888488 DOI: 10.1162/netn_a_00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bridging the gap between symmetric, direct white matter brain connectivity and neural dynamics that are often asymmetric and polysynaptic may offer insights into brain architecture, but this remains an unresolved challenge in neuroscience. Here, we used the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion processes akin to particles spreading through white matter pathways. The simulated indirect structural connectivity outperformed direct as well as absent anatomical information in sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially, an asymmetric diffusion process determined by the sensitivity of the network nodes to their afferents best predicted effective connectivity. The outcome is consistent with brain regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric network communication models offer a promising perspective for understanding the relationship between structural and functional brain connectomes, both in normalcy and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Arseny A. Sokolov
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Department of Neurology, University Neurorehabilitation, University Hospital Inselspital, University of Bern, Bern, Switzerland
- Service de Neurologie and Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Neuroscape Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Monash Institute of Cognitive and Clinical Neurosciences & Monash Biomedical Imaging, Monash University, Clayton, Australia
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen Medical School, Tübingen, Germany
| | - Philippe Ryvlin
- Service de Neurologie and Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marina A. Pavlova
- Department of Psychiatry and Psychotherapy, University of Tübingen Medical School, Tübingen, Germany
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
27
|
Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches. Neuroimage 2020; 216:116805. [PMID: 32335264 DOI: 10.1016/j.neuroimage.2020.116805] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Functional brain networks are shaped and constrained by the underlying structural network. However, functional networks are not merely a one-to-one reflection of the structural network. Several theories have been put forward to understand the relationship between structural and functional networks. However, it remains unclear how these theories can be unified. Two existing recent theories state that 1) functional networks can be explained by all possible walks in the structural network, which we will refer to as the series expansion approach, and 2) functional networks can be explained by a weighted combination of the eigenmodes of the structural network, the so-called eigenmode approach. To elucidate the unique or common explanatory power of these approaches to estimate functional networks from the structural network, we analysed the relationship between these two existing views. Using linear algebra, we first show that the eigenmode approach can be written in terms of the series expansion approach, i.e., walks on the structural network associated with different hop counts correspond to different weightings of the eigenvectors of this network. Second, we provide explicit expressions for the coefficients for both the eigenmode and series expansion approach. These theoretical results were verified by empirical data from Diffusion Tensor Imaging (DTI) and functional Magnetic Resonance Imaging (fMRI), demonstrating a strong correlation between the mappings based on both approaches. Third, we analytically and empirically demonstrate that the fit of the eigenmode approach to measured functional data is always at least as good as the fit of the series expansion approach, and that errors in the structural data lead to large errors of the estimated coefficients for the series expansion approach. Therefore, we argue that the eigenmode approach should be preferred over the series expansion approach. Results hold for eigenmodes of the weighted adjacency matrices as well as eigenmodes of the graph Laplacian. Taken together, these results provide an important step towards unification of existing theories regarding the structure-function relationships in brain networks.
Collapse
|
28
|
Cauda F, Nani A, Manuello J, Premi E, Palermo S, Tatu K, Duca S, Fox PT, Costa T. Brain structural alterations are distributed following functional, anatomic and genetic connectivity. Brain 2019; 141:3211-3232. [PMID: 30346490 DOI: 10.1093/brain/awy252] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022] Open
Abstract
The pathological brain is characterized by distributed morphological or structural alterations in the grey matter, which tend to follow identifiable network-like patterns. We analysed the patterns formed by these alterations (increased and decreased grey matter values detected with the voxel-based morphometry technique) conducting an extensive transdiagnostic search of voxel-based morphometry studies in a large variety of brain disorders. We devised an innovative method to construct the networks formed by the structurally co-altered brain areas, which can be considered as pathological structural co-alteration patterns, and to compare these patterns with three associated types of connectivity profiles (functional, anatomical, and genetic). Our study provides transdiagnostical evidence that structural co-alterations are influenced by connectivity constraints rather than being randomly distributed. Analyses show that although all the three types of connectivity taken together can account for and predict with good statistical accuracy, the shape and temporal development of the co-alteration patterns, functional connectivity offers the better account of the structural co-alteration, followed by anatomic and genetic connectivity. These results shed new light on the possible mechanisms at the root of neuropathological processes and open exciting prospects in the quest for a better understanding of brain disorders.
Collapse
Affiliation(s)
- Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Enrico Premi
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Spedali Civili Hospital, Brescia, Italy.,Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sara Palermo
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Karina Tatu
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.,FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
29
|
MacLaurin JN, Robinson PA. Determination of effective brain connectivity from activity correlations. Phys Rev E 2019; 99:042404. [PMID: 31108587 DOI: 10.1103/physreve.99.042404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/07/2022]
Abstract
Effective connectivity embodied in transfer functions is derived from symmetric-network activity correlations under task-free conditions via a recent causal spectral factorization method. This generalizes previous covariance-based analyses to include frequency dependencies and time delays. Results are verified against analytic solutions of equations that have reproduced many aspects of experimental brain dynamics and against cases of more complex connectivity. Robustness to noise is also demonstrated.
Collapse
Affiliation(s)
- J N MacLaurin
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia, and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Robinson PA. Neural field theory of effects of brain modifications and lesions on functional connectivity: Acute effects, short-term homeostasis, and long-term plasticity. Phys Rev E 2019; 99:042407. [PMID: 31108595 DOI: 10.1103/physreve.99.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/07/2022]
Abstract
Neural field theory is used to predict the functional connectivity effects of lesions or other modifications to effective connectivity. Widespread initial changes are predicted after localized or diffuse changes to white or gray matter, consistent with observations, and enabling lesion severity indexes to be defined. It is shown how short-term homeostasis and longer-term plasticity can reduce perturbations while maintaining brain criticality under conditions where some connections remain fixed because of damage in the lesion core. The extent to which such effects can compensate for initial connectivity changes is then explored, showing that the strongest corrective changes are concentrated toward the edges of the perturbation if it is localized and its core is fixed. The results are applicable to inferring underlying connectivity changes and to interpreting and monitoring functional connectivity modifications after lesions, injury, surgery, drugs, or brain stimulation.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
31
|
Abstract
Brain connectivity and structure-function relationships are analyzed from a physical perspective in place of common graph-theoretic and statistical approaches that overwhelmingly ignore the brain's physical structure and geometry. Field theory is used to define connectivity tensors in terms of bare and dressed propagators, and discretized representations are implemented that respect the physical nature and dimensionality of the quantities involved, retain the correct continuum limit, and enable diagrammatic analysis. Eigenfunction analysis is used to simultaneously characterize and probe patterns of brain connectivity and activity, in place of statistical or phenomenological patterns. Physically based measures that characterize the connectivity are then developed in coordinate and spectral domains; some of which generalize or rectify graph-theoretic measures to implement correct dimensionality and continuum limits, and some replace graph-theoretic quantities. Traditional graph-based measures are shown to be highly prone to artifacts introduced by discretization and threshold, often because essential physical constraints have not been imposed, dimensionality has not been included, and/or distinctions between scalar, vector, and tensor quantities have not been considered. The results can replace them in ways that converge correctly and measure properties of brain structure, rather than of its discretization, and thus potentially enable physical interpretation of the many phenomenological results in the literature. Geometric effects are shown to dominate in determining many brain properties and care must be taken not to interpret geometric differences as differences in intrinsic neural connectivity. The results demonstrate the need to use systematic physical methods to analyze the brain and the potential of such methods to obtain new insights from data, make new predictions for experimental test, and go beyond phenomenological classification to dynamics and mechanisms.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Allali G, Blumen HM, Devanne H, Pirondini E, Delval A, Van De Ville D. Brain imaging of locomotion in neurological conditions. Neurophysiol Clin 2018; 48:337-359. [PMID: 30487063 PMCID: PMC6563601 DOI: 10.1016/j.neucli.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.
Collapse
Affiliation(s)
- Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.
| | - Helena M Blumen
- Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; EA 7369, URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université du Littoral Côte d'Opale, Calais, France
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Delval
- Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France; Unité Inserm 1171, Faculté de Médecine, Université de Lille, Lille, France
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes. Neuroimage 2018; 186:211-220. [PMID: 30399418 DOI: 10.1016/j.neuroimage.2018.10.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023] Open
Abstract
Functional networks obtained from magnetoencephalography (MEG) from different frequency bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG networks emerge given a single underlying structural network. Recent work has suggested that the eigenmodes of the structural network might serve as a basis set for functional network patterns in the case of functional MRI. Here, we take this notion further in the context of frequency band specific MEG networks. We show that a selected set of eigenmodes of the structural network can predict different frequency band specific networks in the resting state, ranging from delta (1-4 Hz) to the high gamma band (40-70 Hz). These predictions outperform predictions based from surrogate data, suggesting a genuine relationship between eigenmodes of the structural network and frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited in a network of neural mass models using linear stability analysis only by including delays. Excitation of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial pattern with a corresponding coherent temporal oscillation. Simulations verify the results from linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to the bifurcation. The delta and gamma bands in the resting state emerges further away from the bifurcation. These results show for the first time how delayed interactions can excite the relevant set of eigenmodes that give rise to frequency specific functional connectivity patterns.
Collapse
|
34
|
O'Neill GC, Tewarie P, Vidaurre D, Liuzzi L, Woolrich MW, Brookes MJ. Dynamics of large-scale electrophysiological networks: A technical review. Neuroimage 2018; 180:559-576. [PMID: 28988134 DOI: 10.1016/j.neuroimage.2017.10.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/23/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022] Open
Abstract
For several years it has been argued that neural synchronisation is crucial for cognition. The idea that synchronised temporal patterns between different neural groups carries information above and beyond the isolated activity of these groups has inspired a shift in focus in the field of functional neuroimaging. Specifically, investigation into the activation elicited within certain regions by some stimulus or task has, in part, given way to analysis of patterns of co-activation or functional connectivity between distal regions. Recently, the functional connectivity community has been looking beyond the assumptions of stationarity that earlier work was based on, and has introduced methods to incorporate temporal dynamics into the analysis of connectivity. In particular, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)), which provides direct measurement of whole-brain activity and rich temporal information, offers an exceptional window into such (potentially fast) brain dynamics. In this review, we discuss challenges, solutions, and a collection of analysis tools that have been developed in recent years to facilitate the investigation of dynamic functional connectivity using these imaging modalities. Further, we discuss the applications of these approaches in the study of cognition and neuropsychiatric disorders. Finally, we review some existing developments that, by using realistic computational models, pursue a deeper understanding of the underlying causes of non-stationary connectivity.
Collapse
Affiliation(s)
- George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lucrezia Liuzzi
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
35
|
Abdelnour F, Dayan M, Devinsky O, Thesen T, Raj A. Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure. Neuroimage 2018; 172:728-739. [PMID: 29454104 PMCID: PMC6170160 DOI: 10.1016/j.neuroimage.2018.02.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/20/2017] [Accepted: 02/08/2018] [Indexed: 11/28/2022] Open
Abstract
How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. Here we mathematically derive a simple relationship between SC measured from diffusion tensor imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially related. This gives, for the first time, a simple and analytical relationship between the graph spectra of structural and functional networks. Laplacian eigenvectors are shown to be good predictors of functional eigenvectors and networks based on independent component analysis of functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-consuming simulations. It was tested on two empirical SC/FC datasets, and was found to significantly outperform generative model simulations of coupled neural masses.
Collapse
Affiliation(s)
| | - Michael Dayan
- Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Thomas Thesen
- Neurology, New York University, New York, NY, USA; Department of Physiology, Neuroscience & Behavioral Sciences, St. George's University, Grenada, West Indies
| | - Ashish Raj
- Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
36
|
Daffertshofer A, Ton R, Pietras B, Kringelbach ML, Deco G. Scale-freeness or partial synchronization in neural mass phase oscillator networks: Pick one of two? Neuroimage 2018; 180:428-441. [PMID: 29625237 DOI: 10.1016/j.neuroimage.2018.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022] Open
Abstract
Modeling and interpreting (partial) synchronous neural activity can be a challenge. We illustrate this by deriving the phase dynamics of two seminal neural mass models: the Wilson-Cowan firing rate model and the voltage-based Freeman model. We established that the phase dynamics of these models differed qualitatively due to an attractive coupling in the first and a repulsive coupling in the latter. Using empirical structural connectivity matrices, we determined that the two dynamics cover the functional connectivity observed in resting state activity. We further searched for two pivotal dynamical features that have been reported in many experimental studies: (1) a partial phase synchrony with a possibility of a transition towards either a desynchronized or a (fully) synchronized state; (2) long-term autocorrelations indicative of a scale-free temporal dynamics of phase synchronization. Only the Freeman phase model exhibited scale-free behavior. Its repulsive coupling, however, let the individual phases disperse and did not allow for a transition into a synchronized state. The Wilson-Cowan phase model, by contrast, could switch into a (partially) synchronized state, but it did not generate long-term correlations although being located close to the onset of synchronization, i.e. in its critical regime. That is, the phase-reduced models can display one of the two dynamical features, but not both.
Collapse
Affiliation(s)
- Andreas Daffertshofer
- Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, van der Boechorststraat 9, 1081BT, Amsterdam, The Netherlands.
| | - Robert Ton
- Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, van der Boechorststraat 9, 1081BT, Amsterdam, The Netherlands; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Carrer Tanger 122-140, 08018, Barcelona, Spain
| | - Bastian Pietras
- Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, van der Boechorststraat 9, 1081BT, Amsterdam, The Netherlands; Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Morten L Kringelbach
- University Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Carrer Tanger 122-140, 08018, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu Fabra, Carrer Tanger 122-140, 08018, Barcelona, Spain
| |
Collapse
|
37
|
Robinson PA, Pagès JC, Gabay NC, Babaie T, Mukta KN. Neural field theory of perceptual echo and implications for estimating brain connectivity. Phys Rev E 2018; 97:042418. [PMID: 29758729 DOI: 10.1103/physreve.97.042418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - J C Pagès
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - N C Gabay
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - T Babaie
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| | - K N Mukta
- School of Physics, University of Sydney, NSW 2006, Australia and Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
38
|
Robinson PA. The balanced and introspective brain. J R Soc Interface 2018; 14:rsif.2016.0994. [PMID: 28566506 PMCID: PMC5454281 DOI: 10.1098/rsif.2016.0994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Transfers of large-scale neural activity into, within and between corticothalamic neural populations and brain hemispheres are analysed using time-integrated transfer functions and state parameters obtained from neural field theory for a variety of arousal states. It is shown that the great majority of activity results from feedbacks within the corticothalamic system, including significant transfer between hemispheres, but only a small minority arises via net input from the external world, with the brain thus in a near-critical, highly introspective state. Notably, the total excitatory and inhibitory influences on cortical neurons are balanced to within a few per cent across arousal states. Strong negative intrahemispheric feedforward exists to the cortex, and even larger interhemispheric positive feedforward, but these are modified by feedback loops to yield near-critical positive overall gain. The results underline the utility of transfer functions for the analysis of brain activity.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia .,Center for Integrative Brain Function, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
39
|
Mandke K, Meier J, Brookes MJ, O'Dea RD, Van Mieghem P, Stam CJ, Hillebrand A, Tewarie P. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations. Neuroimage 2018; 166:371-384. [DOI: 10.1016/j.neuroimage.2017.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/27/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
|
40
|
Becker CO, Pequito S, Pappas GJ, Miller MB, Grafton ST, Bassett DS, Preciado VM. Spectral mapping of brain functional connectivity from diffusion imaging. Sci Rep 2018; 8:1411. [PMID: 29362436 PMCID: PMC5780460 DOI: 10.1038/s41598-017-18769-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/15/2017] [Indexed: 01/22/2023] Open
Abstract
Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.
Collapse
Affiliation(s)
- Cassiano O Becker
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | - Sérgio Pequito
- Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - George J Pappas
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA
| | - Michael B Miller
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, USA
| | - Danielle S Bassett
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Victor M Preciado
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
41
|
Wang MB, Owen JP, Mukherjee P, Raj A. Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease. PLoS Comput Biol 2017. [PMID: 28640803 PMCID: PMC5480812 DOI: 10.1371/journal.pcbi.1005550] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome. While the structural connectome of the brain has emerged as a powerful tool towards understanding the progression of neurologic and psychiatric disorders, links between the anatomy of connections within the brain and the effects of localized white matter pathology on cognition are still an active area of investigation. Here, we propose the use of the diffusion process towards understanding perturbations of brain connectivity. We find that while the dynamics of this process are strongly conserved in healthy subjects, they display significant, interpretable deviations in agenesis of the corpus callosum, one of the most common brain malformations. These findings, including the strong similarity between regions identified to be crucial towards diffusion and nexus regions of white matter from edge density imaging, show converging evidence towards understanding the relationship between white matter anatomy and the structural connectome.
Collapse
Affiliation(s)
- Maxwell B. Wang
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, United States of America
| | - Julia P. Owen
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, United States of America
| | - Pratik Mukherjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, United States of America
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Mehta-Pandejee G, Robinson PA, Henderson JA, Aquino KM, Sarkar S. Inference of direct and multistep effective connectivities from functional connectivity of the brain and of relationships to cortical geometry. J Neurosci Methods 2017; 283:42-54. [PMID: 28342831 DOI: 10.1016/j.jneumeth.2017.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND The problem of inferring effective brain connectivity from functional connectivity is under active investigation, and connectivity via multistep paths is poorly understood. NEW METHOD A method is presented to calculate the direct effective connection matrix (deCM), which embodies direct connection strengths between brain regions, from functional CMs (fCMs) by minimizing the difference between an experimental fCM and one calculated via neural field theory from an ansatz deCM based on an experimental anatomical CM. RESULTS The best match between fCMs occurs close to a critical point, consistent with independent published stability estimates. Residual mismatch between fCMs is identified to be largely due to interhemispheric connections that are poorly estimated in an initial ansatz deCM due to experimental limitations; improved ansatzes substantially reduce the mismatch and enable interhemispheric connections to be estimated. Various levels of significant multistep connections are then imaged via the neural field theory (NFT) result that these correspond to powers of the deCM; these are shown to be predictable from geometric distances between regions. COMPARISON WITH EXISTING METHODS This method gives insight into direct and multistep effective connectivity from fCMs and relating to physiology and brain geometry. This contrasts with other methods, which progressively adjust connections without an overarching physiologically based framework to deal with multistep or poorly estimated connections. CONCLUSIONS deCMs can be usefully estimated using this method and the results enable multistep connections to be investigated systematically.
Collapse
Affiliation(s)
- Grishma Mehta-Pandejee
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia
| | - James A Henderson
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia; School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia
| | - K M Aquino
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia; Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Somwrita Sarkar
- Center of Excellence for Integrative Brain Function, The University of Sydney, New South Wales 2006, Australia; Design Lab, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
43
|
Saggio ML, Ritter P, Jirsa VK. Analytical Operations Relate Structural and Functional Connectivity in the Brain. PLoS One 2016; 11:e0157292. [PMID: 27536987 PMCID: PMC4990451 DOI: 10.1371/journal.pone.0157292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 05/26/2016] [Indexed: 11/18/2022] Open
Abstract
Resting-state large-scale brain models vary in the amount of biological elements they incorporate and in the way they are being tested. One might expect that the more realistic the model is, the closer it should reproduce real functional data. It has been shown, instead, that when linear correlation across long BOLD fMRI time-series is used as a measure for functional connectivity (FC) to compare simulated and real data, a simple model performs just as well, or even better, than more sophisticated ones. The model in question is a simple linear model, which considers the physiological noise that is pervasively present in our brain while it diffuses across the white-matter connections, that is structural connectivity (SC). We deeply investigate this linear model, providing an analytical solution to straightforwardly compute FC from SC without the need of computationally costly simulations of time-series. We provide a few examples how this analytical solution could be used to perform a fast and detailed parameter exploration or to investigate resting-state non-stationarities. Most importantly, by inverting the analytical solution, we propose a method to retrieve information on the anatomical structure directly from functional data. This simple method can be used to complement or guide DTI/DSI and tractography results, especially for a better assessment of inter-hemispheric connections, or to provide an estimate of SC when only functional data are available.
Collapse
Affiliation(s)
- Maria Luisa Saggio
- Institut de Neurosciences des Systèmes, Aix-Marseille Université Faculté de Médecine, Marseille, France
- INSERM UMR 1106, Aix-Marseille Université, Marseille, France
| | - Petra Ritter
- Minerva Research Group BrainModes, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Dept. Neurology, Charité - University Medicine, Berlin, Germany
- Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany
- Berlin School of Mind and Brain & Mind and Brain Institute, Humboldt University, Berlin, Germany
| | - Viktor K. Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Université Faculté de Médecine, Marseille, France
- INSERM UMR 1106, Aix-Marseille Université, Marseille, France
| |
Collapse
|
44
|
Robinson PA, Zhao X, Aquino KM, Griffiths JD, Sarkar S, Mehta-Pandejee G. Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. Neuroimage 2016; 142:79-98. [PMID: 27157788 DOI: 10.1016/j.neuroimage.2016.04.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/13/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Neural field theory of the corticothalamic system is applied to predict and analyze the activity eigenmodes of the bihemispheric brain, focusing particularly on their spatial structure. The eigenmodes of a single brain hemisphere are found to be close analogs of spherical harmonics, which are the natural modes of the sphere. Instead of multiple eigenvalues being equal, as in the spherical case, cortical folding splits them to have distinct values. Inclusion of interhemispheric connections between homologous regions via the corpus callosum leads to further splitting that depends on symmetry or antisymmetry of activity between brain hemispheres, and the strength and sign of the interhemispheric connections. Symmetry properties of the lowest observed eigenmodes strongly constrain the interhemispheric connectivity strengths and unihemispheric mode spectra, and it is predicted that most spontaneous brain activity will be symmetric between hemispheres, consistent with observations. Comparison with the eigenmodes of an experimental anatomical connectivity matrix confirms these results, permits the relative strengths of intrahemispheric and interhemispheric connectivities to be approximately inferred from their eigenvalues, and lays the foundation for further experimental tests. The results are consistent with brain activity being in corticothalamic eigenmodes, rather than discrete "networks" and open the way to new approaches to brain analysis.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.
| | - X Zhao
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - K M Aquino
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham NG7 2RD, UK, EU
| | - J D Griffiths
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Rotman Research Institute at Baycrest, 3560 Bathurst St, Toronto, Ontario, M6A 2E1, Canada
| | - S Sarkar
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Design Lab, School of Architecture, Design, and Planning, University of Sydney, New South Wales 2006, Australia
| | - Grishma Mehta-Pandejee
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
45
|
Meier J, Tewarie P, Hillebrand A, Douw L, van Dijk BW, Stufflebeam SM, Van Mieghem P. A Mapping Between Structural and Functional Brain Networks. Brain Connect 2016; 6:298-311. [PMID: 26860437 DOI: 10.1089/brain.2015.0408] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relationship between structural and functional brain networks is still highly debated. Most previous studies have used a single functional imaging modality to analyze this relationship. In this work, we use multimodal data, from functional MRI, magnetoencephalography, and diffusion tensor imaging, and assume that there exists a mapping between the connectivity matrices of the resting-state functional and structural networks. We investigate this mapping employing group averaged as well as individual data. We indeed find a significantly high goodness of fit level for this structure-function mapping. Our analysis suggests that a functional connection is shaped by all walks up to the diameter in the structural network in both modality cases. When analyzing the inverse mapping, from function to structure, longer walks in the functional network also seem to possess minor influence on the structural connection strengths. Even though similar overall properties for the structure-function mapping are found for different functional modalities, our results indicate that the structure-function relationship is modality dependent.
Collapse
Affiliation(s)
- Jil Meier
- 1 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology , The Netherlands
| | - Prejaas Tewarie
- 2 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam, The Netherlands
| | - Arjan Hillebrand
- 3 Department of Clinical Neurophysiology and Magnetoencephalography Center, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam, The Netherlands
| | - Linda Douw
- 4 Department of Anatomy and Neurosciences, VU University Medical Center , Amsterdam, The Netherlands .,5 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging/Massachusetts General Hospital , Boston, Massachusetts
| | - Bob W van Dijk
- 3 Department of Clinical Neurophysiology and Magnetoencephalography Center, Neuroscience Campus Amsterdam, VU University Medical Center , Amsterdam, The Netherlands
| | - Steven M Stufflebeam
- 5 Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging/Massachusetts General Hospital , Boston, Massachusetts.,6 Department of Radiology, Harvard Medical School , Boston, Massachusetts
| | - Piet Van Mieghem
- 1 Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology , The Netherlands
| |
Collapse
|
46
|
Robinson PA, Roy N. Neural field theory of nonlinear wave-wave and wave-neuron processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062719. [PMID: 26172747 DOI: 10.1103/physreve.91.062719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
- Neurosleep, 431 Glebe Point Road, Glebe, New South Wales 2037, Australia
| | - N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
A Multiscale “Working Brain” Model. VALIDATING NEURO-COMPUTATIONAL MODELS OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS 2015. [DOI: 10.1007/978-3-319-20037-8_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Papo D, Zanin M, Pineda-Pardo JA, Boccaletti S, Buldú JM. Functional brain networks: great expectations, hard times and the big leap forward. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130525. [PMID: 25180303 PMCID: PMC4150300 DOI: 10.1098/rstb.2013.0525] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode.
Collapse
Affiliation(s)
- David Papo
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimiliano Zanin
- Faculdade de Cîencias e Tecnologia, Departamento de Engenharia, Electrotécnica, Universidade Nova de Lisboa, Lisboa, Portugal Innaxis Foundation and Research Institute, Madrid, Spain
| | | | | | - Javier M Buldú
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain Complex Systems Group, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
49
|
Robinson PA. Determination of effective brain connectivity from functional connectivity using propagator-based interferometry and neural field theory with application to the corticothalamic system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042712. [PMID: 25375528 DOI: 10.1103/physreve.90.042712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 06/04/2023]
Abstract
It is shown how to compute both direct and total effective connection matrices (deCMs and teCMs), which embody the strengths of neural connections between regions, from correlation-based functional CMs using propagator-based interferometry, a method that stems from geophysics and acoustics, coupled with the recent identification of deCMs and teCMs with bare and dressed propagators, respectively. The approach incorporates excitatory and inhibitory connections, multiple structures and populations, and measurement effects. The propagator is found for a generalized scalar wave equation derived from neural field theory, and expressed in terms of neural activity correlations and covariances, and wave damping rates. It is then related to correlation matrices that are commonly used to express functional and effective connectivities in the brain. The results are illustrated in analytically tractable test cases.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Westmead Millennium Institute, Darcy Rd, Westmead, New South Wales 2145, Australia; Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, New South Wales 2006, Australia; and Neurosleep, 431 Glebe Point Rd., Glebe, New South Wales 2037, Australia
| |
Collapse
|
50
|
Robinson PA, Sarkar S, Pandejee GM, Henderson JA. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012707. [PMID: 25122335 DOI: 10.1103/physreve.90.012707] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 06/03/2023]
Abstract
Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, New South Wales 2006, Australia Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia Center for Integrative Research and Understanding of Sleep, 431 Glebe Pt Rd, Glebe, New South Wales 2037, Australia and Brain Dynamics Center, Westmead Millennium Institute, Darcy Rd, Westmead, New South Wales 2145, Australia
| | - S Sarkar
- School of Physics, University of Sydney, New South Wales 2006, Australia and Design Lab, Faculty of Architecture, Design, and Planning, University of Sydney, New South Wales 2006, Australia
| | | | - J A Henderson
- School of Physics, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|