1
|
Young E, Melaugh G, Allen RJ. Active layer dynamics drives a transition to biofilm fingering. NPJ Biofilms Microbiomes 2023; 9:17. [PMID: 37024470 PMCID: PMC10079924 DOI: 10.1038/s41522-023-00380-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
The emergence of spatial organisation in biofilm growth is one of the most fundamental topics in biofilm biophysics and microbiology. It has long been known that growing biofilms can adopt smooth or rough interface morphologies, depending on the balance between nutrient supply and microbial growth; this 'fingering' transition has been linked with the average width of the 'active layer' of growing cells at the biofilm interface. Here we use long-time individual-based simulations of growing biofilms to investigate in detail the driving factors behind the biofilm-fingering transition. We show that the transition is associated with dynamical changes in the active layer. Fingering happens when gaps form in the active layer, which can cause local parts of the biofilm interface to pin, or become stationary relative to the moving front. Pinning can be transient or permanent, leading to different biofilm morphologies. By constructing a phase diagram for the transition, we show that the controlling factor is the magnitude of the relative fluctuations in the active layer thickness, rather than the active layer thickness per se. Taken together, our work suggests a central role for active layer dynamics in controlling the pinning of the biofilm interface and hence biofilm morphology.
Collapse
Affiliation(s)
- Ellen Young
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Gavin Melaugh
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom.
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Buchaer Strasse 6, 07745, Jena, Germany.
| |
Collapse
|
2
|
Moore-Ott JA, Chiu S, Amchin DB, Bhattacharjee T, Datta SS. A biophysical threshold for biofilm formation. eLife 2022; 11:e76380. [PMID: 35642782 PMCID: PMC9302973 DOI: 10.7554/elife.76380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobilized surface-attached biofilms. These different phenotypic states play key roles in agriculture, environment, industry, and medicine; hence, it is critically important to be able to predict the conditions under which bacteria transition from one state to the other. Unfortunately, these transitions depend on a dizzyingly complex array of factors that are determined by the intrinsic properties of the individual cells as well as those of their surrounding environments, and are thus challenging to describe. To address this issue, here, we develop a generally-applicable biophysical model of the interplay between motility-mediated dispersal and biofilm formation under positive quorum sensing control. Using this model, we establish a universal rule predicting how the onset and extent of biofilm formation depend collectively on cell concentration and motility, nutrient diffusion and consumption, chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quantitatively predicting and controlling biofilm formation in diverse and complex settings.
Collapse
Affiliation(s)
- Jenna A Moore-Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Selena Chiu
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
3
|
Amchin DB, Ott JA, Bhattacharjee T, Datta SS. Influence of confinement on the spreading of bacterial populations. PLoS Comput Biol 2022; 18:e1010063. [PMID: 35533196 PMCID: PMC9119553 DOI: 10.1371/journal.pcbi.1010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/19/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings—despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading via motility that also incorporates cellular growth and division, and explicitly considers the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading—eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments. The spreading of bacteria through their environments critically impacts our everyday lives; it can be harmful, underlying the progression of infections and spoilage of foods, or can be beneficial, enabling the delivery of therapeutics, sustaining plant growth, and remediating polluted terrain. In all these cases, bacteria typically inhabit crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and regulate their spreading. However, existing models of spreading typically focus on cells in unconfined settings, and thus are frequently not applicable to cells in more complex environments. Here, we address this gap in knowledge by extending the classic Keller-Segel model of bacterial spreading via motility to also incorporate cellular growth and division, and explicitly consider the influence of confinement. Through numerical simulations of this extended model, we show how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations—in particular, driving a transition from chemotactic spreading of motile cells to growth-driven spreading via a slower, jammed front. These results provide a foundation for further investigations of the influence of confinement on bacterial spreading, both by yielding testable predictions for future experiments, and by providing guidelines to predict and control the dynamics of bacterial populations in complex and crowded environments.
Collapse
Affiliation(s)
- Daniel B. Amchin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Jenna A. Ott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey, United States of America
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
4
|
Gerbersdorf SU, Koca K, de Beer D, Chennu A, Noss C, Risse-Buhl U, Weitere M, Eiff O, Wagner M, Aberle J, Schweikert M, Terheiden K. Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. WATER RESEARCH 2020; 185:116182. [PMID: 32763530 DOI: 10.1016/j.watres.2020.116182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy. In this Review, we summarize the current state of the art and methodological approaches in the flow-biofilm-sediment research with an emphasis on biostabilization and fine sediment dynamics mainly in the benthic zone of lotic and lentic environments. Example studies of this three-way interaction across a range of spatial scales from cell (nm - µm) to patch scale (mm - dm) are highlighted in view of the urgent need for interdisciplinary approaches. As a contribution to the review, we combine a literature survey with results of a pilot experiment that was conducted in the framework of a joint workshop to explore the feasibility of asking interdisciplinary questions. Further, within this workshop various observation and measuring approaches were tested and the quality of the achieved results was evaluated individually and in combination. Accordingly, the paper concludes by highlighting the following research challenges to be considered within the forthcoming years in the triangle of flow-biofilm-sediment: i) Establish a collaborative work among hydraulic and sedimentation engineers as well as ecologists to study mutual goals with appropriate methods. Perform realistic experimental studies to test hypotheses on flow-biofilm-sediment interactions as well as structural and mechanical characteristics of the bed. ii) Consider spatially varying characteristics of flow at the sediment-water interface. Utilize combinations of microsensors and non-intrusive optical methods, such as particle image velocimetry and laser scanner to elucidate the mechanism behind biofilm growth as well as mass and momentum flux exchanges between biofilm and water. Use molecular approaches (DNA, pigments, staining, microscopy) for sophisticated community analyses. Link varying flow regimes to microbial communities (and processes) and fine sediment properties to explore the role of key microbial players and functions in enhancing sediment stability (biostabilization). iii) Link laboratory-scale observations to larger scales relevant for management of water bodies. Conduct field experiments to better understand the complex effects of variable flow and sediment regimes on biostabilization. Employ scalable and informative observation techniques (e.g., hyperspectral imaging, particle tracking) that can support predictions on the functional aspects, such as metabolic activity, bed stability, nutrient fluxes under variable regimes of flow-biofilm-sediment.
Collapse
Affiliation(s)
- Sabine Ulrike Gerbersdorf
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Kaan Koca
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; Leibniz Center for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany.
| | - Christian Noss
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7, 76829 Landau, Germany; Federal Waterways Engineering and Research Institute, Hydraulic Engineering in Inland Areas, Kußmaulstraße 17, 76187 Karlsruhe, Germany.
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Olivier Eiff
- KIT Karlsruhe Institute of Technology, Institute for Hydromechanics, Otto-Ammann Platz 1, 76131 Karlsruhe, Germany.
| | - Michael Wagner
- KIT Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Jochen Aberle
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Beethovenstraße 51a, 38106 Braunschweig, Germany.
| | - Michael Schweikert
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Kristina Terheiden
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| |
Collapse
|
5
|
Allen RJ, Waclaw B. Bacterial growth: a statistical physicist's guide. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:016601. [PMID: 30270850 PMCID: PMC6330087 DOI: 10.1088/1361-6633/aae546] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial growth presents many beautiful phenomena that pose new theoretical challenges to statistical physicists, and are also amenable to laboratory experimentation. This review provides some of the essential biological background, discusses recent applications of statistical physics in this field, and highlights the potential for future research.
Collapse
Affiliation(s)
- Rosalind J Allen
- School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | | |
Collapse
|
6
|
Oyebamiji OK, Wilkinson DJ, Jayathilake PG, Rushton SP, Bridgens B, Li B, Zuliani P. A Bayesian approach to modelling the impact of hydrodynamic shear stress on biofilm deformation. PLoS One 2018; 13:e0195484. [PMID: 29649240 PMCID: PMC5896950 DOI: 10.1371/journal.pone.0195484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/24/2018] [Indexed: 11/18/2022] Open
Abstract
We investigate the feasibility of using a surrogate-based method to emulate the deformation and detachment behaviour of a biofilm in response to hydrodynamic shear stress. The influence of shear force, growth rate and viscoelastic parameters on the patterns of growth, structure and resulting shape of microbial biofilms was examined. We develop a statistical modelling approach to this problem, using combination of Bayesian Poisson regression and dynamic linear models for the emulation. We observe that the hydrodynamic shear force affects biofilm deformation in line with some literature. Sensitivity results also showed that the expected number of shear events, shear flow, yield coefficient for heterotrophic bacteria and extracellular polymeric substance (EPS) stiffness per unit EPS mass are the four principal mechanisms governing the bacteria detachment in this study. The sensitivity of the model parameters is temporally dynamic, emphasising the significance of conducting the sensitivity analysis across multiple time points. The surrogate models are shown to perform well, and produced ≈ 480 fold increase in computational efficiency. We conclude that a surrogate-based approach is effective, and resulting biofilm structure is determined primarily by a balance between bacteria growth, viscoelastic parameters and applied shear stress.
Collapse
Affiliation(s)
- Oluwole K. Oyebamiji
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- * E-mail:
| | - Darren J. Wilkinson
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | | - Steve P. Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ben Bridgens
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Bowen Li
- School of Computing Science, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom
| | - Paolo Zuliani
- School of Computing Science, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom
| |
Collapse
|
7
|
Farrell FD, Gralka M, Hallatschek O, Waclaw B. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations. J R Soc Interface 2018; 14:rsif.2017.0073. [PMID: 28592660 PMCID: PMC5493792 DOI: 10.1098/rsif.2017.0073] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 11/12/2022] Open
Abstract
Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in nature and play an important role in industry and medicine. In contrast to well-mixed cultures routinely used in microbial research, bacteria in a microcolony interact mechanically with one another and with the substrate to which they are attached. Here, we use a computer model of a microbial colony of rod-shaped cells to investigate how physical interactions between cells determine their motion in the colony and how this affects biological evolution. We show that the probability that a faster-growing mutant ‘surfs’ at the colony's frontier and creates a macroscopic sector depends on physical properties of cells (shape, elasticity and friction). Although all these factors contribute to the surfing probability in seemingly different ways, their effects can be summarized by two summary statistics that characterize the front roughness and cell alignment. Our predictions are confirmed by experiments in which we measure the surfing probability for colonies of different front roughness. Our results show that physical interactions between bacterial cells play an important role in biological evolution of new traits, and suggest that these interactions may be relevant to processes such as de novo evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Fred D Farrell
- Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Matti Gralka
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, University of Edinburgh, JCMB, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK .,Centre for Synthetic and Systems Biology, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
8
|
Jayathilake PG, Gupta P, Li B, Madsen C, Oyebamiji O, González-Cabaleiro R, Rushton S, Bridgens B, Swailes D, Allen B, McGough AS, Zuliani P, Ofiteru ID, Wilkinson D, Chen J, Curtis T. A mechanistic Individual-based Model of microbial communities. PLoS One 2017; 12:e0181965. [PMID: 28771505 PMCID: PMC5542553 DOI: 10.1371/journal.pone.0181965] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/10/2017] [Indexed: 01/12/2023] Open
Abstract
Accurate predictive modelling of the growth of microbial communities requires the credible representation of the interactions of biological, chemical and mechanical processes. However, although biological and chemical processes are represented in a number of Individual-based Models (IbMs) the interaction of growth and mechanics is limited. Conversely, there are mechanically sophisticated IbMs with only elementary biology and chemistry. This study focuses on addressing these limitations by developing a flexible IbM that can robustly combine the biological, chemical and physical processes that dictate the emergent properties of a wide range of bacterial communities. This IbM is developed by creating a microbiological adaptation of the open source Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). This innovation should provide the basis for “bottom up” prediction of the emergent behaviour of entire microbial systems. In the model presented here, bacterial growth, division, decay, mechanical contact among bacterial cells, and adhesion between the bacteria and extracellular polymeric substances are incorporated. In addition, fluid-bacteria interaction is implemented to simulate biofilm deformation and erosion. The model predicts that the surface morphology of biofilms becomes smoother with increased nutrient concentration, which agrees well with previous literature. In addition, the results show that increased shear rate results in smoother and more compact biofilms. The model can also predict shear rate dependent biofilm deformation, erosion, streamer formation and breakup.
Collapse
Affiliation(s)
- Pahala Gedara Jayathilake
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PGJ); (SR); (TC); (JC)
| | - Prashant Gupta
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bowen Li
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Curtis Madsen
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Oluwole Oyebamiji
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebeca González-Cabaleiro
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steve Rushton
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PGJ); (SR); (TC); (JC)
| | - Ben Bridgens
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Swailes
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Allen
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - A. Stephen McGough
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paolo Zuliani
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina Dana Ofiteru
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Darren Wilkinson
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jinju Chen
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PGJ); (SR); (TC); (JC)
| | - Tom Curtis
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PGJ); (SR); (TC); (JC)
| |
Collapse
|
9
|
Jayathilake PG, Gupta P, Li B, Madsen C, Oyebamiji O, González-Cabaleiro R, Rushton S, Bridgens B, Swailes D, Allen B, McGough AS, Zuliani P, Ofiteru ID, Wilkinson D, Chen J, Curtis T. A mechanistic Individual-based Model of microbial communities. PLoS One 2017. [PMID: 28771505 DOI: 10.1371/jou0181965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Accurate predictive modelling of the growth of microbial communities requires the credible representation of the interactions of biological, chemical and mechanical processes. However, although biological and chemical processes are represented in a number of Individual-based Models (IbMs) the interaction of growth and mechanics is limited. Conversely, there are mechanically sophisticated IbMs with only elementary biology and chemistry. This study focuses on addressing these limitations by developing a flexible IbM that can robustly combine the biological, chemical and physical processes that dictate the emergent properties of a wide range of bacterial communities. This IbM is developed by creating a microbiological adaptation of the open source Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). This innovation should provide the basis for "bottom up" prediction of the emergent behaviour of entire microbial systems. In the model presented here, bacterial growth, division, decay, mechanical contact among bacterial cells, and adhesion between the bacteria and extracellular polymeric substances are incorporated. In addition, fluid-bacteria interaction is implemented to simulate biofilm deformation and erosion. The model predicts that the surface morphology of biofilms becomes smoother with increased nutrient concentration, which agrees well with previous literature. In addition, the results show that increased shear rate results in smoother and more compact biofilms. The model can also predict shear rate dependent biofilm deformation, erosion, streamer formation and breakup.
Collapse
Affiliation(s)
- Pahala Gedara Jayathilake
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Prashant Gupta
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bowen Li
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Curtis Madsen
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Oluwole Oyebamiji
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebeca González-Cabaleiro
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Steve Rushton
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Bridgens
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Swailes
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Allen
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - A Stephen McGough
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paolo Zuliani
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina Dana Ofiteru
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Darren Wilkinson
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jinju Chen
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom Curtis
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Head DA, Marsh PD, Devine DA. Non-lethal control of the cariogenic potential of an agent-based model for dental plaque. PLoS One 2014; 9:e105012. [PMID: 25144538 PMCID: PMC4140729 DOI: 10.1371/journal.pone.0105012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments.
Collapse
Affiliation(s)
- David A. Head
- School of Computing, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Phil D. Marsh
- Microbiology Services, PHE Porton, Salisbury, United Kingdom
- Department of Oral Biology, School of Dentistry, University of Leeds, United Kingdom
| | - Deirdre A. Devine
- Department of Oral Biology, School of Dentistry, University of Leeds, United Kingdom
| |
Collapse
|
11
|
Farrell FDC, Hallatschek O, Marenduzzo D, Waclaw B. Mechanically driven growth of quasi-two-dimensional microbial colonies. PHYSICAL REVIEW LETTERS 2013; 111:168101. [PMID: 24182305 DOI: 10.1103/physrevlett.111.168101] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 05/10/2023]
Abstract
We study colonies of nonmotile, rod-shaped bacteria growing on solid substrates. In our model, bacteria interact purely mechanically, by pushing each other away as they grow, and consume a diffusing nutrient. We show that mechanical interactions control the velocity and shape of the advancing front, which leads to features that cannot be captured by established Fisher-Kolmogorov models. In particular, we find that the velocity depends on the elastic modulus of bacteria or their stickiness to the surface. Interestingly, we predict that the radius of an incompressible, strictly two-dimensional colony cannot grow linearly in time, unless it develops branches. Importantly, mechanical interactions can also account for the nonequilibrium transition between circular and branching colonies, often observed in the lab.
Collapse
Affiliation(s)
- F D C Farrell
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | | | | | | |
Collapse
|