1
|
Stridfeldt F, Pandey V, Kylhammar H, Talebian Gevari M, Metem P, Agrawal V, Görgens A, Mamand DR, Gilbert J, Palmgren L, Holme MN, Gustafsson O, El Andaloussi S, Mitra D, Dev A. Force spectroscopy reveals membrane fluctuations and surface adhesion of extracellular nanovesicles impact their elastic behavior. Proc Natl Acad Sci U S A 2025; 122:e2414174122. [PMID: 40249788 PMCID: PMC12037009 DOI: 10.1073/pnas.2414174122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/07/2025] [Indexed: 04/20/2025] Open
Abstract
The elastic properties of nanoscale extracellular vesicles (EVs) are believed to influence their cellular interactions, thus having a profound implication in intercellular communication. However, accurate quantification of their elastic modulus is challenging due to their nanoscale dimensions and their fluid-like lipid bilayer. We show that the previous attempts to develop atomic force microscopy-based protocol are flawed as they lack theoretical underpinning as well as ignore important contributions arising from the surface adhesion forces and membrane fluctuations. We develop a protocol comprising a theoretical framework, experimental technique, and statistical approach to accurately quantify the bending and elastic modulus of EVs. The method reveals that membrane fluctuations play a dominant role even for a single EV. The method is then applied to EVs derived from human embryonic kidney cells and their genetically engineered classes altering the tetraspanin expression. The data show a large spread; the area modulus is in the range of 4 to 19 mN/m and the bending modulus is in the range of 15 to 33 [Formula: see text], respectively. Surprisingly, data for a single EV, revealed by repeated measurements, also show a spread that is attributed to their compositionally heterogeneous fluid membrane and thermal effects. Our protocol uncovers the influence of membrane protein alterations on the elastic modulus of EVs.
Collapse
Affiliation(s)
- Fredrik Stridfeldt
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | - Vikash Pandey
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
| | - Hanna Kylhammar
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | | | - Prattakorn Metem
- Division of Applied Electrochemistry, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | - Vipin Agrawal
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
- Department of Physics, Stockholm University, Stockholm11419, Sweden
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45147, Germany
| | - Doste R. Mamand
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm75105, Sweden
- Karolinska Advanced Therapy Medicinal Products Center, ANA Futura, Huddinge17177, Sweden
| | - Jennifer Gilbert
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Lukas Palmgren
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Margaret N. Holme
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
| | - Dhrubaditya Mitra
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
| | - Apurba Dev
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
- Department of Electrical Engineering, Uppsala University, Uppsala75237, Sweden
| |
Collapse
|
2
|
Chen T, Karedla N, Enderlein J. Measuring sub-nanometer undulations at microsecond temporal resolution with metal- and graphene-induced energy transfer spectroscopy. Nat Commun 2024; 15:1789. [PMID: 38413608 PMCID: PMC10899616 DOI: 10.1038/s41467-024-45822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Out-of-plane fluctuations, also known as stochastic displacements, of biological membranes play a crucial role in regulating many essential life processes within cells and organelles. Despite the availability of various methods for quantifying membrane dynamics, accurately quantifying complex membrane systems with rapid and tiny fluctuations, such as mitochondria, remains a challenge. In this work, we present a methodology that combines metal/graphene-induced energy transfer (MIET/GIET) with fluorescence correlation spectroscopy (FCS) to quantify out-of-plane fluctuations of membranes with simultaneous spatiotemporal resolution of approximately one nanometer and one microsecond. To validate the technique and spatiotemporal resolution, we measure bending undulations of model membranes. Furthermore, we demonstrate the versatility and applicability of MIET/GIET-FCS for studying diverse membrane systems, including the widely studied fluctuating membrane system of human red blood cells, as well as two unexplored membrane systems with tiny fluctuations, a pore-spanning membrane, and mitochondrial inner/outer membranes.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| | - Narain Karedla
- The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 OFA, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.
| |
Collapse
|
3
|
Abdelrahman A, Smith AS, Sengupta K. Observing Membrane and Cell Adhesion via Reflection Interference Contrast Microscopy. Methods Mol Biol 2023; 2654:123-135. [PMID: 37106179 DOI: 10.1007/978-1-0716-3135-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Reflection interference contrast microscopy (RICM) is an optical microscopy technique ideally suited for imaging adhesion. While RICM (and the closely related interference reflection microscopy (IRM)) has been extensively used qualitatively or semiquantitatively to image cells, including immune cells, it can also be used quantitatively to measure membrane to surface distance, especially for model membranes. Here, we present a protocol for RICM and IRM imaging and the details of semiquantitative and quantitative analysis.
Collapse
Affiliation(s)
- Ahmed Abdelrahman
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics, Centre for Computational Materials and Processes, Friedrich Alexander University Erlangen-Nürnberg, IZNF, Erlangen, Germany.
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Kheya Sengupta
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
4
|
Oh D, Chen Z, Biswas KH, Bai F, Ong HT, Sheetz MP, Groves JT. Competition for shared downstream signaling molecules establishes indirect negative feedback between EGFR and EphA2. Biophys J 2022; 121:1897-1908. [DOI: 10.1016/j.bpj.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022] Open
|
5
|
Souissi M, Pernier J, Rossier O, Giannone G, Le Clainche C, Helfer E, Sengupta K. Integrin-Functionalised Giant Unilamellar Vesicles via Gel-Assisted Formation: Good Practices and Pitfalls. Int J Mol Sci 2021; 22:6335. [PMID: 34199292 PMCID: PMC8231826 DOI: 10.3390/ijms22126335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Giant unilamellar vesicles (GUV) are powerful tools to explore physics and biochemistry of the cell membrane in controlled conditions. For example, GUVs were extensively used to probe cell adhesion, but often using non-physiological linkers, due to the difficulty of incorporating transmembrane adhesion proteins into model membranes. Here we describe a new protocol for making GUVs incorporating the transmembrane protein integrin using gel-assisted swelling. We report an optimised protocol, enumerating the pitfalls encountered and precautions to be taken to maintain the robustness of the protocol. We characterise intermediate steps of small proteoliposome formation and the final formed GUVs. We show that the integrin molecules are successfully incorporated and are functional.
Collapse
Affiliation(s)
- Mariem Souissi
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, 13009 Marseille, France;
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (J.P.); (C.L.C.)
| | - Olivier Rossier
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; (O.R.); (G.G.)
| | - Gregory Giannone
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; (O.R.); (G.G.)
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (J.P.); (C.L.C.)
| | - Emmanuèle Helfer
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, 13009 Marseille, France;
| | - Kheya Sengupta
- Aix Marseille Univ, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), Turing Centre for Living Systems, 13009 Marseille, France;
| |
Collapse
|
6
|
Le Goff T, To TBT, Pierre-Louis O. Shear dynamics of confined membranes. SOFT MATTER 2021; 17:5467-5485. [PMID: 34019067 DOI: 10.1039/d1sm00322d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We model the nonlinear response of a lubricated contact composed of a two-dimensional lipid membrane immersed in a simple fluid between two parallel flat and porous walls under shear. The nonlinear dynamics of the membrane gives rise to a rich dynamical behavior depending on the shear velocity. In quiescent conditions (i.e., absence of shear), the membrane freezes into a disordered labyrinthine wrinkle pattern. We determine the wavelength of this pattern as a function of the excess area of the membrane for a fairly general form of the confinement potential using a sine-profile ansatz for the wrinkles. In the presence of shear, we find four different regimes depending on the shear rate. Regime I. For small shear, the labyrinthine pattern is still frozen, but exhibits a small drift which is mainly along the shear direction. In this regime, the tangential forces on the walls due to the presence of the membrane increase linearly with the shear rate. Regime II. When the shear rate is increased above a critical value, the membrane rearranges, and wrinkles start to align along the shear direction. This regime is accompanied by a sharp drop of the tangential forces on the wall. The membrane usually reaches a steady-state configuration drifting with a small constant velocity at long times. However, we also rarely observe oscillatory dynamics in this regime. Regime III. For larger shear rates, the wrinkles align strongly along the shear direction, with a set of dislocation defects which assemble in pairs. The tangential forces are then controlled by the number of dislocations, and by the number of wrinkles between the two dislocations within each dislocation pairs. In this dislocation-dominated regime, the tangential forces in the transverse direction most often exceed those in the shear direction. Regime IV. For even larger shear, the membrane organizes into a perfect array of parallel stripes with no defects. The wavelength of the wrinkles is still identical to the wavelength in the absence of shear. In this final regime, the tangential forces due to the membrane vanish. These behaviors give rise to a non-linear rheological behavior of lubricated contacts containing membranes.
Collapse
Affiliation(s)
- Thomas Le Goff
- Aix-Marseille Univ, CNRS, IBDM, Turing Centre for Living System, Marseille, France
| | - Tung B T To
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| |
Collapse
|
7
|
Rodríguez-García R, Volkov VA, Chen CY, Katrukha EA, Olieric N, Aher A, Grigoriev I, López MP, Steinmetz MO, Kapitein LC, Koenderink G, Dogterom M, Akhmanova A. Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Curr Biol 2020; 30:972-987.e12. [PMID: 32032506 PMCID: PMC7090928 DOI: 10.1016/j.cub.2020.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Microtubule-dependent organization of membranous organelles occurs through motor-based pulling and by coupling microtubule dynamics to membrane remodeling. For example, tubules of endoplasmic reticulum (ER) can be extended by kinesin- and dynein-mediated transport and through the association with the tips of dynamic microtubules. The binding between ER and growing microtubule plus ends requires End Binding (EB) proteins and the transmembrane protein STIM1, which form a tip-attachment complex (TAC), but it is unknown whether these proteins are sufficient for membrane remodeling. Furthermore, EBs and their partners undergo rapid turnover at microtubule ends, and it is unclear how highly transient protein-protein interactions can induce load-bearing processive motion. Here, we reconstituted membrane tubulation in a minimal system with giant unilamellar vesicles, dynamic microtubules, an EB protein, and a membrane-bound protein that can interact with EBs and microtubules. We showed that these components are sufficient to drive membrane remodeling by three mechanisms: membrane tubulation induced by growing microtubule ends, motor-independent membrane sliding along microtubule shafts, and membrane pulling by shrinking microtubules. Experiments and modeling demonstrated that the first two mechanisms can be explained by adhesion-driven biased membrane spreading on microtubules. Optical trapping revealed that growing and shrinking microtubule ends can exert forces of ∼0.5 and ∼5 pN, respectively, through attached proteins. Rapidly exchanging molecules that connect membranes to dynamic microtubules can thus bear a sufficient load to induce membrane deformation and motility. Furthermore, combining TAC components and a membrane-attached kinesin in the same in vitro assays demonstrated that they can cooperate in promoting membrane tubule extension.
Collapse
Affiliation(s)
- Ruddi Rodríguez-García
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Vladimir A Volkov
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands
| | - Chiung-Yi Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland; University of Basel, Biozentrum, Klingelbergstrasse, Basel 4056, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Gijsje Koenderink
- Department of Living Matter, AMOLF, Science Park 104, Amsterdam 1098, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands.
| |
Collapse
|
8
|
To TBT, Le Goff T, Pierre-Louis O. Adhesion dynamics of confined membranes. SOFT MATTER 2018; 14:8552-8569. [PMID: 30328887 DOI: 10.1039/c8sm01567h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report on the modeling of the dynamics of confined lipid membranes. We derive a thin film model in the lubrication limit which describes an inextensible liquid membrane with bending rigidity confined between two adhesive walls. The resulting equations share similarities with the Swift-Hohenberg model. However, inextensibility is enforced by a time-dependent nonlocal tension. Depending on the excess membrane area available in the system, three different dynamical regimes, denoted as A, B and C, are found from the numerical solution of the model. In regime A, membranes with small excess area form flat adhesion domains and freeze. Such freezing is interpreted by means of an effective model for curvature-driven domain wall motion. The nonlocal membrane tension tends to a negative value corresponding to the linear stability threshold of flat domain walls in the Swift-Hohenberg equation. In regime B, membranes with intermediate excess areas exhibit endless coarsening with coexistence of flat adhesion domains and wrinkle domains. The tension tends to the nonlinear stability threshold of flat domain walls in the Swift-Hohenberg equation. The fraction of the system covered by the wrinkle phase increases linearly with the excess area in regime B. In regime C, membranes with large excess area are completely covered by a frozen labyrinthine pattern of wrinkles. As the excess area is increased, the tension increases and the wavelength of the wrinkles decreases. For large membrane area, there is a crossover to a regime where the extrema of the wrinkles are in contact with the walls. In all regimes after an initial transient, robust localised structures form, leading to an exact conservation of the number of adhesion domains.
Collapse
Affiliation(s)
- Tung B T To
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France.
| | | | | |
Collapse
|
9
|
Dejardin MJ, Hemmerle A, Sadoun A, Hamon Y, Puech PH, Sengupta K, Limozin L. Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). NANO LETTERS 2018; 18:6544-6550. [PMID: 30179011 DOI: 10.1021/acs.nanolett.8b03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.
Collapse
Affiliation(s)
| | | | - Anaïs Sadoun
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| | - Yannick Hamon
- Aix Marseille Univ , CNRS, INSERM, CIML , Marseille 13288 , France
| | | | - Kheya Sengupta
- Aix Marseille Univ , CNRS, CINAM , Marseille 13288 , France
| | - Laurent Limozin
- Aix Marseille Univ , CNRS, INSERM, LAI , Marseille 13288 , France
| |
Collapse
|
10
|
Yu H, Yang Y, Yang Y, Zhang F, Wang S, Tao N. Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. NANOSCALE 2018; 10:5133-5139. [PMID: 29488990 PMCID: PMC5854544 DOI: 10.1039/c7nr09483c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cellular membranes are important biomaterials with highly dynamic structures. Membrane dynamics plays an important role in numerous cellular processes, but precise tracking it is challenging due to the lack of tools with a highly sensitive and fast detection capability. Here we demonstrate a broad bandwidth optical imaging technique to measure cellular membrane displacements in the normal direction at sub-nm level detection limits and 20 μs temporal resolution (1 Hz-50 kHz). This capability allows us to study the intrinsic cellular membrane dynamics over a broad temporal and spatial spectrum. We measured the nanometer-scale stochastic fluctuations of the plasma membrane of HEK-293 cells, and found them to be highly dependent on the cytoskeletal structure of the cells. By analyzing the fluctuations, we further determine the mechanical properties of the cellular membranes. We anticipate that the method will contribute to the understanding of the basic cellular processes, and applications, such as mechanical phenotyping of cells at the single-cell level.
Collapse
Affiliation(s)
- Hui Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuting Yang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
11
|
Xie X, Deliorman M, Qasaimeh MA, Percipalle P. The relative composition of actin isoforms regulates cell surface biophysical features and cellular behaviors. Biochim Biophys Acta Gen Subj 2018; 1862:1079-1090. [PMID: 29410074 DOI: 10.1016/j.bbagen.2018.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell surface mechanics is able to physically and biomechanically affect cell shape and motility, vesicle trafficking and actin dynamics. The biophysical properties of cell surface are strongly influenced by cytoskeletal elements. In mammals, tissue-specific expression of six actin isoforms is thought to confer differential biomechanical properties. However, the relative contribution of actin isoforms to cell surface properties is not well understood. Here, we sought to investigate whether and how the composition of endogenous actin isoforms directly affects the biomechanical features of cell surface and cellular behavior. METHODS We used fibroblasts isolated from wild type (WT), heterozygous (HET) and from knockout (KO) mouse embryos where both β-actin alleles are not functional. We applied a combination of genome-wide analysis and biophysical methods such as RNA-seq and atomic force microscopy. RESULTS We found that endogenous β-actin levels are essential in controlling cell surface stiffness and pull-off force, which was not compensated by the up-regulation of other actin isoforms. The variations of surface biophysical features and actin contents were associated with distinct cell behaviors in 2D and 3D WT, HET and KO cell cultures. Since β-actin in WT cells and smooth muscle α-actin up-regulated in KO cells showed different organization patterns, our data support the differential localization and organization as a mechanism to regulate the biophysical properties of cell surface by actin isoforms. CONCLUSIONS We propose that variations in actin isoforms composition impact on the biophysical features of cell surface and cause the changes in cell behavior.
Collapse
Affiliation(s)
- Xin Xie
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Muhammedin Deliorman
- Engineering Division, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammad A Qasaimeh
- Engineering Division, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates; Department of Mechanical and Aerospace Engineering, New York University, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Irajizad E, Agrawal A. Vesicle adhesion reveals novel universal relationships for biophysical characterization. Biomech Model Mechanobiol 2017; 17:103-109. [DOI: 10.1007/s10237-017-0947-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
|
13
|
Le Goff T, To TBT, Pierre-Louis O. Thixotropy and shear thinning of lubricated contacts with confined membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:44. [PMID: 28389826 DOI: 10.1140/epje/i2017-11532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
We have modeled the nonlinear dynamics and the rheological behavior of a system under shear containing a membrane confined between two attractive walls. The presence of the membrane induces additional tangential forces on the walls that always increase the global friction. At low shear rates, the membrane exhibits chaotic dynamics with slow coarsening leading to thixotropy, i.e. to a slow decrease of the membrane-induced tangential forces on the walls. At intermediate shear rates, the membrane profile presents stationary periodic patterns. At higher shear rates, membrane dynamics are governed by a nonlinear evolution equation which is similar to the Kuramoto-Sivashinski equation, but with a sixth-order stabilizing term. The membrane experiences chaotic dynamics without coarsening. As a consequence of the nonlinear dynamics of the membrane at intermediate and large shear rates, the system exhibits shear thinning.
Collapse
Affiliation(s)
- Thomas Le Goff
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne, France
| | - Tung B T To
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne, France
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
14
|
Dillard P, Pi F, Lellouch AC, Limozin L, Sengupta K. Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization. Integr Biol (Camb) 2016; 8:287-301. [PMID: 26887857 DOI: 10.1039/c5ib00293a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigate the adhesion and molecular organization of the plasma membrane of T lymphocytes interacting with a surrogate antigen presenting cell comprising glass supported ordered arrays of antibody (α-CD3) nano-dots dispersed in a non-adhesive matrix of polyethylene glycol (PEG). The local membrane adhesion and topography, as well as the distribution of the T cell receptors (TCRs) and the kinase ZAP-70, are influenced by dot-geometry, whereas the cell spreading area is determined by the overall average density of the ligands rather than specific characteristics of the dots. TCR clusters are recruited preferentially to the nano-dots and the TCR cluster size distribution has a weak dot-size dependence. On the patterns, the clusters are larger, more numerous, and more enriched in TCRs, as compared to the homogeneously distributed ligands at comparable concentrations. These observations support the idea that non-ligated TCRs residing in the non-adhered parts of the proximal membrane are able to diffuse and enrich the existing clusters at the ligand dots. However, long distance transport is impaired and cluster centralization in the form of a central supramolecular cluster (cSMAC) is not observed. Time-lapse imaging of early cell-surface contacts indicates that the ZAP-70 microclusters are directly recruited to the site of the antibody dots and this process is concomitant with membrane adhesion. These results together point to a complex interplay of adhesion, molecular organization and activation in response to spatially modulated stimulation.
Collapse
Affiliation(s)
- Pierre Dillard
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France. and Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Fuwei Pi
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France.
| | - Annemarie C Lellouch
- Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Laurent Limozin
- Laboratoire Adhésion & Inflammation Aix-Marseille Université\Inserm U1067\CNRS-UMR7333, Marseille 13288, France.
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille, 13288, France.
| |
Collapse
|
15
|
Monzel C, Schmidt D, Seifert U, Smith AS, Merkel R, Sengupta K. Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution. SOFT MATTER 2016; 12:4755-4768. [PMID: 27142463 DOI: 10.1039/c6sm00412a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We probe the bending fluctuations of bio-membranes using highly deflated giant unilamellar vesicles (GUVs) bound to a substrate by a weak potential arising from generic interactions. The substrate is either homogeneous, with GUVs bound only by the weak potential, or is chemically functionalized with a micro-pattern of very strong specific binders. In both cases, the weakly adhered membrane is seen to be confined at a well-defined distance above the surface while it continues to fluctuate strongly. We quantify the fluctuations of the weakly confined membrane at the substrate proximal surface as well as of the free membrane at the distal surface of the same GUV. This strategy enables us to probe in detail the damping of fluctuations in the presence of the substrate, and to independently measure the membrane tension and the strength of the generic interaction potential. Measurements were done using two complementary techniques - dynamic optical displacement spectroscopy (DODS, resolution: 20 nm, 10 μs), and dual wavelength reflection interference contrast microscopy (DW-RICM, resolution: 4 nm, 50 ms). After accounting for the spatio-temporal resolution of the techniques, an excellent agreement between the two measurements was obtained. For both weakly confined systems we explore in detail the link between fluctuations on the one hand and membrane tension and the interaction potential on the other hand.
Collapse
Affiliation(s)
- Cornelia Monzel
- Aix-Marseille Université, CNRS UMR 7325 (Centre Interdisciplinaire de Nanosciences de Marseille - CINaM), Marseille Cedex 9, France. and Institute of Complex Systems 7 (ICS-7), Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Schmidt
- II. Institut für Theoretische Physik, Universität Stuttgart, Germany and Institut für Theoretische Physik, Friedrich Alexander Universität Erlangen-Nürnberg, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Germany
| | - Ana-Sunčana Smith
- Institut für Theoretische Physik, Friedrich Alexander Universität Erlangen-Nürnberg, Germany and Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Rudolf Merkel
- Institute of Complex Systems 7 (ICS-7), Forschungszentrum Jülich, Jülich, Germany
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS UMR 7325 (Centre Interdisciplinaire de Nanosciences de Marseille - CINaM), Marseille Cedex 9, France.
| |
Collapse
|
16
|
A two phase field model for tracking vesicle–vesicle adhesion. J Math Biol 2016; 73:1293-1319. [DOI: 10.1007/s00285-016-0994-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/22/2015] [Indexed: 10/22/2022]
|
17
|
Shiba H, Noguchi H, Fournier JB. Monte Carlo study of the frame, fluctuation and internal tensions of fluctuating membranes with fixed area. SOFT MATTER 2016; 12:2373-2380. [PMID: 26796575 DOI: 10.1039/c5sm01900a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three types of surface tensions can be defined for lipid membranes: the internal tension, σ, conjugated to the real membrane area in the Hamiltonian, the mechanical frame tension, τ, conjugated to the projected area, and the "fluctuation tension", r, obtained from the fluctuation spectrum of the membrane height. We investigate these surface tensions by means of a Monge gauge lattice Monte Carlo simulation involving the exact, nonlinear, Helfrich Hamiltonian and a measure correction for the excess entropy of the Monge gauge. Our results for the relation between σ and τ agrees well with the theoretical prediction of [J.-B. Fournier and C. Barbetta, Phys. Rev. Lett., 2008, 100, 078103] based on a Gaussian approximation. This provides a valuable knowledge of τ in the standard Gaussian models where the tension is controlled by σ. However, contrary to the conjecture in the above paper, we find that r exhibits no significant difference from τ over more than five decades of tension. Our results appear to be valid in the thermodynamic limit and are robust to changing the ensemble in which the membrane area is controlled.
Collapse
Affiliation(s)
- Hayato Shiba
- Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
| | - Jean-Baptiste Fournier
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, F-75205, Paris, France.
| |
Collapse
|
18
|
Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nat Commun 2015; 6:8162. [PMID: 26437911 PMCID: PMC4600712 DOI: 10.1038/ncomms9162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/25/2015] [Indexed: 01/09/2023] Open
Abstract
Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique—dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes. Precise quantification of stochastic motions of biological membranes is limited by a lack of suitable detection methods. Here Monzel et al. develop dynamic optical displacement spectroscopy to measure stochastic membrane displacements at 20 nm/10 μs spatiotemporal resolution.
Collapse
|
19
|
Le Goff T, Politi P, Pierre-Louis O. Transition to coarsening for confined one-dimensional interfaces with bending rigidity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022918. [PMID: 26382487 DOI: 10.1103/physreve.92.022918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 06/05/2023]
Abstract
We discuss the nonlinear dynamics and fluctuations of interfaces with bending rigidity under the competing attractions of two walls with arbitrary permeabilities. This system mimics the dynamics of confined membranes. We use a two-dimensional hydrodynamic model, where membranes are effectively one-dimensional objects. In a previous work [T. Le Goff et al., Phys. Rev. E 90, 032114 (2014)], we have shown that this model predicts frozen states caused by bending rigidity-induced oscillatory interactions between kinks (or domain walls). We here demonstrate that in the presence of tension, potential asymmetry, or thermal noise, there is a finite threshold above which frozen states disappear, and perpetual coarsening is restored. Depending on the driving force, the transition to coarsening exhibits different scenarios. First, for membranes under tension, small tensions can only lead to transient coarsening or partial disordering, while above a finite threshold, membrane oscillations disappear and perpetual coarsening is found. Second, potential asymmetry is relevant in the nonconserved case only, i.e., for permeable walls, where it induces a drift force on the kinks, leading to a fast coarsening process via kink-antikink annihilation. However, below some threshold, the drift force can be balanced by the oscillatory interactions between kinks, and frozen adhesion patches can still be observed. Finally, at long times, noise restores coarsening with standard exponents depending on the permeability of the walls. However, the typical time for the appearance of coarsening exhibits an Arrhenius form. As a consequence, a finite noise amplitude is needed in order to observe coarsening in observable time.
Collapse
Affiliation(s)
- Thomas Le Goff
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne, France
| | - Paolo Politi
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- INFN Sezione di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne, France
| |
Collapse
|
20
|
Bihr T, Fenz S, Sackmann E, Merkel R, Seifert U, Sengupta K, Smith AS. Association rates of membrane-coupled cell adhesion molecules. Biophys J 2014; 107:L33-6. [PMID: 25468354 PMCID: PMC4255260 DOI: 10.1016/j.bpj.2014.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022] Open
Abstract
Thus far, understanding how the confined cellular environment affects the lifetime of bonds, as well as the extraction of complexation rates, has been a major challenge in studies of cell adhesion. Based on a theoretical description of the growth curves of adhesion domains, we present a new (to our knowledge) method to measure the association rate k(on) of ligand-receptor pairs incorporated into lipid membranes. As a proof of principle, we apply this method to several systems. We find that the k(on) for the interaction of biotin with neutravidin is larger than that for integrin binding to RGD or sialyl Lewis(x) to E-selectin. Furthermore, we find k(on) to be enhanced by membrane fluctuations that increase the probability for encounters between the binders. The opposite effect on k(on) could be attributed to the presence of repulsive polymers that mimic the glycocalyx, which points to two potential mechanisms for controlling the speed of protein complexation during the cell recognition process.
Collapse
Affiliation(s)
- Timo Bihr
- Institut für Theoretische Physik and Cluster of Excellence Engineering of Advanced Materials, Friedrich-Alexander-Universität, Erlangen, Germany; II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Susanne Fenz
- Institute of Complex Systems 7: Biomechanics Forschungszentrum Jülich, Jülich, Germany; Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Universität Würzburg, Würzburg, Germany
| | - Erich Sackmann
- Physics Department, Biophysics E22, Technische Universität München, München, Germany
| | - Rudolf Merkel
- Institute of Complex Systems 7: Biomechanics Forschungszentrum Jülich, Jülich, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Marseille, France
| | - Ana-Sunčana Smith
- Institut für Theoretische Physik and Cluster of Excellence Engineering of Advanced Materials, Friedrich-Alexander-Universität, Erlangen, Germany; Institute Ruđer Bošković, Division of Physical Chemistry, Zagreb, Croatia.
| |
Collapse
|
21
|
Ligand-mediated friction determines morphodynamics of spreading T cells. Biophys J 2014; 107:2629-38. [PMID: 25468342 DOI: 10.1016/j.bpj.2014.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022] Open
Abstract
Spreading of T cells on antigen presenting cells is a crucial initial step in immune response. Spreading occurs through rapid morphological changes concomitant with the reorganization of surface receptors and of the cytoskeleton. Ligand mobility and frictional coupling of receptors to the cytoskeleton were separately recognized as important factors but a systematic study to explore their biophysical role in spreading was hitherto missing. To explore the impact of ligand mobility, we prepared chemically identical substrates on which molecules of anti-CD3 (capable of binding and activating the T cell receptor complex), were either immobilized or able to diffuse. We quantified the T cell spreading area and cell edge dynamics using quantitative reflection interference contrast microscopy, and imaged the actin distribution. On mobile ligands, as compared to fixed ligands, the cells spread much less, the actin is centrally, rather than peripherally distributed and the edge dynamics is largely altered. Blocking myosin-II or adding molecules of ICAM1 on the substrate largely abrogates these differences. We explain these observations by building a model based on the balance of forces between activation-dependent actin polymerization and actomyosin-generated tension on one hand, and on the frictional coupling of the ligand-receptor complexes with the actin cytoskeleton, the membrane and the substrate, on the other hand. Introducing the measured edge velocities in the model, we estimate the coefficient of frictional coupling between T Cell receptors or LFA-1 and the actin cytoskeleton. Our results provide for the first time, to our knowledge, a quantitative framework bridging T cell-specific biology with concepts developed for integrin-based mechanisms of spreading.
Collapse
|
22
|
Le Goff T, Politi P, Pierre-Louis O. Frozen states and order-disorder transition in the dynamics of confined membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032114. [PMID: 25314402 DOI: 10.1103/physreve.90.032114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 06/04/2023]
Abstract
The adhesion dynamics of a membrane confined between two permeable walls is studied using a two-dimensional hydrodynamic model. The membrane morphology decomposes into adhesion patches on the upper and the lower walls and obeys a nonlinear evolution equation that resembles that of phase-separation dynamics, which is known to lead to coarsening, i.e., to the endless growth of the adhesion patches. However, due to the membrane bending rigidity, the system evolves toward a frozen state without coarsening. This frozen state exhibits an order-disorder transition when increasing the permeability of the walls.
Collapse
Affiliation(s)
- Thomas Le Goff
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Paolo Politi
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy and INFN Sezione di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
23
|
Sackmann E, Smith AS. Physics of cell adhesion: some lessons from cell-mimetic systems. SOFT MATTER 2014; 10:1644-59. [PMID: 24651316 PMCID: PMC4028615 DOI: 10.1039/c3sm51910d] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM-cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin-microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department Technical University Munich, Germany
- Department of Physics, Ludwig-Maximillian University, Munich, Germany
| | - Ana-Sunčana Smith
- Institute for Theoretical Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute Rud̷er Bošković, Zagreb, Croatia.
| |
Collapse
|
24
|
A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces. Nat Commun 2013; 4:1919. [PMID: 23715278 PMCID: PMC3675327 DOI: 10.1038/ncomms2865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/11/2013] [Indexed: 12/03/2022] Open
Abstract
Interferometric techniques have proven useful to infer proximity and local surface profiles of microscopic objects near surfaces. But a critical trade-off emerges between accuracy and mathematical complexity when these methods are applied outside the vicinity of closest approach. Here we introduce a significant advancement that enables reflection interference contrast microscopy to provide nearly instantaneous reconstruction of an arbitrary convex object’s contour next to a bounding surface with nanometre resolution, making it possible to interrogate microparticle/surface interaction phenomena at radii of curvature 1,000 times smaller than those accessible by the conventional surface force apparatus. The unique view-from-below perspective of reflection interference contrast microscopy also reveals previously unseen deformations and allows the first direct observation of femtolitre-scale capillary condensation dynamics underneath micron-sized particles. Our implementation of reflection interference contrast microscopy provides a generally applicable nanometre-scale resolution tool that can be potentially exploited to dynamically probe ensembles of objects near surfaces so that statistical/probabilistic behaviour can be realistically captured. Interferometric techniques can provide valuable contact and profile information of microscopic objects on surfaces. This work uses reflection interference contrast microscopy to directly observe contact phenomena and presents novel analytical methods offering high-accuracy nanoscale resolution.
Collapse
|
25
|
Frostad JM, Collins MC, Leal LG. Cantilevered-capillary force apparatus for measuring multiphase fluid interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4715-4725. [PMID: 23540603 DOI: 10.1021/la304115k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new instrument is presented for investigating interactions between individual colloidal particles, emulsion droplets, foam bubbles, and other particle-particle or particle-surface interactions. Measurement capabilities are demonstrated by measuring interfacial tension, coalescence time for emulsion droplets, adhesion between giant multilamellar vesicles, and adhesion between model food emulsion particles. The magnitude of the interaction force that can be measured or imposed, ranges from 1 nN to 1 mN for particles ranging in size from 10 μm to 1 mm in diameter.
Collapse
Affiliation(s)
- John M Frostad
- Department of Chemical Engineering, University of California, Santa Barbara, California 93016-5080, United States.
| | | | | |
Collapse
|
26
|
Investigating cell-ECM contact changes in response to hypoosmotic stimulation of hepatocytes in vivo with DW-RICM. PLoS One 2012; 7:e48100. [PMID: 23110181 PMCID: PMC3482193 DOI: 10.1371/journal.pone.0048100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/20/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatocyte volume regulation has been shown to play an important role in cellular metabolism, proliferation, viability and especially in hepatic functions such as bile formation and proteolysis. Recent studies on liver explants led to the assumption that cell volume changes present a trigger for outside-in signaling via integrins, a protein family involved in mediating cellular response to binding to the extracellular matrix (ECM). However, it remains elusive how these volume change related signaling events are transducted on a single cell level and how these events are influenced and controlled by ECM interactions. One could speculate that an increase in cell volume leads to an increase in integrin/ECM contacts which causes activation of integrins, which act as mechano-sensors. In order to test this idea, it was an important issue to quantify the cell volume-dependence of the contact areas between the cell and the surrounding ECM. In this study we used two wavelength reflection interference contrast microscopy (DW-RICM) to directly observe the dynamics of cell-substrate contacts, mimicking cell-ECM interactions, in response to a controlled and well-defined volume change induced by hypoosmotic stimulation. This is the first time a non-invasive, label-free method is used to uncover a volume change related response of in vitro hepatocytes in real time. The cell cluster analysis we present here agrees well with previous studies on ex vivo whole liver explants. Moreover, we show that the increase in contact area after cell swelling is a reversible process, while the reorganisation of contacts depends on the type of ECM molecules presented to the cells. As our method complements common whole liver studies providing additional insight on a cell cluster level, we expect this technique to be particular suitable for further detailed studies of osmotic stimulation not only in hepatocytes, but also other cell types.
Collapse
|
27
|
Abstract
Tremendous progress has been made in recent years in understanding the working of the living cell, including its micro-anatomy, signalling networks, and regulation of genes. However, an understanding of cellular phenomena using fundamental laws starting from first principles is still very far away. Part of the reason is that a cell is an active and exquisitely complex system where every part is linked to the other. Thus, it is difficult or even impossible to design experiments that selectively and exclusively probe a chosen aspect of the cell. Various kinds of idealised systems and cell models have been used to circumvent this problem. An important example is a giant unilamellar vesicle (GUV, also called giant liposome), which provides a cell-sized confined volume to study biochemical reactions as well as self-assembly processes that occur on the membrane. The GUV membrane can be designed suitably to present selected, correctly-oriented cell-membrane proteins, whose mobility is confined to two dimensions. Here, we present recent advances in GUV design and the use of GUVs as cell models that enable quantitative testing leading to insight into the working of real cells. We briefly recapitulate important classical concepts in membrane biophysics emphasising the advantages and limitations of GUVs. We then present results obtained over the last decades using GUVs, choosing the formation of membrane domains and cell adhesion as examples for in-depth treatment. Insight into cell adhesion obtained using micro-interferometry is treated in detail. We conclude by summarising the open questions and possible future directions.
Collapse
Affiliation(s)
- Susanne F Fenz
- Leiden Institute of Physics: Physics of Life Processes, Leiden University, The Netherlands
| | | |
Collapse
|
28
|
Diamant H. Model-free thermodynamics of fluid vesicles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061123. [PMID: 22304056 DOI: 10.1103/physreve.84.061123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Motivated by a long-standing debate concerning the nature and interrelations of surface-tension variables in fluid membranes, we reformulate the thermodynamics of a membrane vesicle as a generic two-dimensional finite system enclosing a three-dimensional volume. The formulation is shown to require two tension variables, conjugate to the intensive constraints of area per molecule and volume-to-area ratio. We obtain the relation between these two variables in various scenarios, as well as their correspondence to other definitions of tension variables for membranes. Several controversies related to membrane tension are thereby resolved on a model-free thermodynamic level. The thermodynamic formulation may be useful also for treating large-scale properties of vesicles that are insensitive to the membrane's detailed statistical mechanics and interactions.
Collapse
Affiliation(s)
- Haim Diamant
- Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv, IL-69978, Israel
| |
Collapse
|
29
|
Robert P, Nicolas A, Aranda-Espinoza S, Bongrand P, Limozin L. Minimal encounter time and separation determine ligand-receptor binding in cell adhesion. Biophys J 2011; 100:2642-51. [PMID: 21641309 DOI: 10.1016/j.bpj.2011.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022] Open
Abstract
The binding properties of biomolecules play a crucial role in many biological phenomena, especially cell adhesion. Whereas the attachment kinetics of soluble proteins is considered well known, complex behavior arises when protein molecules are bound to the cell membrane. We probe the hidden kinetics of ligand-receptor bond formation using single-molecule flow chamber assays and Brownian dynamics simulations. We show that, consistent with our recently proposed hypothesis, association requires a minimum duration of contact between the reactive species. In our experiments, ICAM-1 anchored on a flat substrate binds to anti-ICAM-1 coated onto flowing microbeads. The interaction potential between bead and substrate is measured by microinterferometry and is used as an ingredient to simulate bead movement. Our simulation calculates the duration of ligand-receptor contacts imposed by the bead movement. We quantitatively predict the reduction of adhesion probability measured for shorter tether length of the ligand or if a repulsive hyaluronan layer is added onto the surface. To account for our results, we propose that bond formation may occur in our system by crossing of a diffusive plateau in the energy landscape, on the timescale of 5 ms and an energy barrier of 5 k(B)T, before reaching the first detectable bound state. Our results show how to relate cell-scale behavior to the combined information of molecular reactivity and biomolecule submicron-scale environment.
Collapse
Affiliation(s)
- Philippe Robert
- Adhesion & Inflammation, INSERM UMR 600 and Centre National de la Recherche Scientifique UMR 6212, Aix-Marseille University, Campus Luminy, Marseille, France
| | | | | | | | | |
Collapse
|
30
|
Fenz SF, Bihr T, Merkel R, Seifert U, Sengupta K, Smith AS. Switching from ultraweak to strong adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2622-6. [PMID: 21495083 DOI: 10.1002/adma.201004097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Indexed: 05/13/2023]
Affiliation(s)
- Susanne F Fenz
- Institute of Complex Systems 7: Biomechanics Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Thalmann F, Billot V, Marques CM. Lipid bilayer adhesion on sparse DNA carpets: theoretical analysis of membrane deformations induced by single-end-grafted polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061922. [PMID: 21797418 DOI: 10.1103/physreve.83.061922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 04/20/2011] [Indexed: 05/31/2023]
Abstract
We consider a single-end-grafted polymer chain covered by a membrane in contact with a flat and rigid surface in the context of supported membrane adhesion on surfaces carrying dilute polymer brushes. The fluid membrane adheres to the surface due to attractive interactions; the presence of a macromolecule locally hinders the membrane-surface contact and creates a protuberant membrane bulge. We study both the size and elevation of such membrane deformations as a function of curvature modulus, surface tension, adhesion energy, and chain size. Scaling results are derived, valid for both ideal and nonideal chain statistics, leading to complex diagrams of states depending on curvature modulus, tension, and adhesion values. We also compute quantitatively the membrane deformation profile for shallow bulges and make predictions for realistic systems involving DNA grafted chains covered by lipid membranes.
Collapse
Affiliation(s)
- F Thalmann
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR 22, Strasbourg, France.
| | | | | |
Collapse
|
32
|
Raudino A, Pannuzzo M. Adhesion Kinetics between a Membrane and a Flat Substrate. An Ideal Upper Bound to the Spreading Rate of an Adhesive Patch. J Phys Chem B 2010; 114:15495-505. [DOI: 10.1021/jp106722w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio Raudino
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6-95125, Catania, Italy
| | - Martina Pannuzzo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6-95125, Catania, Italy
| |
Collapse
|
33
|
Weil N, Farago O. Entropy-driven aggregation of adhesion sites of supported membranes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:81-87. [PMID: 20848152 DOI: 10.1140/epje/i2010-10646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
We study, by means of mean-field calculations and Monte Carlo simulations of a lattice gas model, the distribution of adhesion sites of a bilayer membrane and a supporting flat surface. Our model accounts for the many-body character of the attractive interactions between adhesion points induced by the membrane thermal fluctuations. We show that while the fluctuation-mediated interactions alone are not sufficient to allow the formation of aggregation domains, they greatly reduce the strength of the direct interactions required to facilitate cluster formation. Specifically, for adhesion molecules interacting via a short-range attractive potential, the strength of the direct interactions required for aggregation is reduced by about a factor of two to below the thermal energy k(B)T.
Collapse
Affiliation(s)
- N Weil
- Department of Biomedical Engineering, Ben Gurion University, Be'er Sheva 84105, Israel
| | | |
Collapse
|
34
|
Speck T, Reister E, Seifert U. Specific adhesion of membranes: Mapping to an effective bond lattice gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:021923. [PMID: 20866853 DOI: 10.1103/physreve.82.021923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/07/2010] [Indexed: 05/29/2023]
Abstract
We theoretically consider specific adhesion of a fluctuating membrane to a hard substrate via the formation of bonds between receptors attached to the substrate and ligands in the membrane. By integrating out the degrees of freedom of the membrane shape, we show that in the biologically relevant limit specific adhesion is well described by a lattice gas model, where lattice sites correspond to bond sites. We derive an explicit expression for the effective bond interactions induced by the thermal undulations of the membrane. Furthermore, we compare kinetic Monte Carlo simulations for our lattice gas model with full dynamic simulations that take into account both the shape fluctuations of the membrane and reactions between receptors and ligands at bond sites. We demonstrate that an appropriate mapping of the height dependent binding and unbinding rates in the full scheme to rates in the lattice gas model leads to good agreement.
Collapse
Affiliation(s)
- Thomas Speck
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|