1
|
Shelyapina MG. NMR Relaxation to Probe Zeolites: Mobility of Adsorbed Molecules, Surface Acidity, Pore Size Distribution and Connectivity. Molecules 2024; 29:5432. [PMID: 39598821 PMCID: PMC11597874 DOI: 10.3390/molecules29225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Unique structural and chemical properties, such as ion exchange, developed inner surface, etc., as well as the wide possibilities and flexibility of regulating these properties, cause a keen interest in zeolites. They are widely used in industry as molecular sieves, ion exchangers and catalysts. Current trends in the development of zeolite-based catalysts include the adaptation of their cationic composition, acidity and porosity for a specific catalytic process. Recent studies have shown that mesoporosity is beneficial to the rational design of catalysts with controlled product selectivity and an improved catalyst lifetime due to its efficient mass-transport properties. Nuclear magnetic resonance (NMR) has proven to be a reliable method for studying zeolites. Solid-state NMR spectroscopy allows for the quantification of both Lewis and Brønsted acidity in zeolite catalysts and, nowadays, 27Al and 29Si magic angle spinning NMR spectroscopy has become firmly established in the set of approved methods for characterizing zeolites. The use of probe molecules opens up the possibility for the indirect measurement of the characteristics of acid sites. NMR relaxation is less common, although it is especially informative and enlightening for studying the mobility of guest molecules in the porous matrix. Moreover, the NMR relaxation of guest molecules and NMR cryoporometry can quantify pore size distribution on a broader scale (compared to traditional methods), which is especially important for systems with complex pore organization. Over the last few years, there has been a growing interest in the use of 2D NMR relaxation techniques to probe porous catalysts, such as 2D T1-T2 correlation to study the acidity of the surface of catalysts and 2D T2-T2 exchange to study pore connectivity. This contribution provides a comprehensive review of various NMR relaxation techniques for studying porous media and recent results of their applications in probing micro- and mesoporous zeolites, mainly focused on the mobility of adsorbed molecules, the acidity of the zeolite surface and the pore size distribution and connectivity of zeolites with hierarchical porosity.
Collapse
Affiliation(s)
- Marina G Shelyapina
- Department of Nuclear Physics Research Methods, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|
2
|
Li J, Léonce E, Coutellier C, Boutin C, Chighine K, Rivron C, Davidson A, Berthault P. Integrated Stopped-Flow Device for the Study of Porous Materials Using Hyperpolarized 129Xe NMR. Anal Chem 2024; 96:9430-9437. [PMID: 38819299 DOI: 10.1021/acs.analchem.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A simple, low-cost, and efficient device is proposed for the study of porous materials via NMR using small gas probes. Mainly built through additive manufacturing and being equipped with a radiofrequency solenoid microcoil, it only requires tiny quantities of sample and/or gas and is particularly suited for hyperpolarized xenon. The performances of this device have been accessed on a commercial sample of MCM-41 exhibiting multiporosity. Both the delivery mode of hyperpolarized xenon and the stopped-flow system are judged as efficient according to 2D 129Xe self-diffusion and EXSY experiments.
Collapse
Affiliation(s)
- Jing Li
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Corentin Coutellier
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Kévin Chighine
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Charles Rivron
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Anne Davidson
- Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Université Paris 06, UMR CNRS 7197, 4 Place Jussieu, 75005 Paris, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Wiström E, Hyacinthe JN, Lê TP, Gruetter R, Capozzi A. 129Xe Dynamic Nuclear Polarization Demystified: The Influence of the Glassing Matrix on the Radical Properties. J Phys Chem Lett 2024; 15:2957-2965. [PMID: 38453156 PMCID: PMC10961830 DOI: 10.1021/acs.jpclett.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
129Xe dissolution dynamic nuclear polarization (DNP) is a controversial topic. The gold standard technique for hyperpolarized xenon magnetic resonance imaging (MRI) is spin exchange optical pumping, which received FDA approval in 2022. Nevertheless, the versatility of DNP for enhancing the signal of any NMR active nucleus might provide new perspectives for hyperpolarized 129Xe NMR/MRI. Initial publications about 129Xe DNP underlined the increased complexity in the sample preparation and lower polarization levels when compared to more conventional 13C-labeled molecules, at same experimental conditions, despite very close gyromagnetic ratios. Herein, we introduce, using a Custom Fluid Path system, a user-friendly and very robust sample preparation method. Moreover, investigating the radical properties at real DNP conditions by means of LOngitudinal Detected Electron Spin Resonance, we discovered a dramatic shortening of the electron spin longitudinal relaxation time (T1e) of nitroxyl radicals in xenon DNP samples' matrices, with respect to more commonly used water:glycerol ones. Mitigating those challenges through microwave frequency modulation, we achieved over 20% 129Xe polarization without employing any deuterated solvent.
Collapse
Affiliation(s)
- Emma Wiström
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Thanh Phong Lê
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Rolf Gruetter
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Andrea Capozzi
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG,
Department of Health Technology, Technical
University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
4
|
Lê TP, Hyacinthe JN, Capozzi A. Multi-sample/multi-nucleus parallel polarization and monitoring enabled by a fluid path technology compatible cryogenic probe for dissolution dynamic nuclear polarization. Sci Rep 2023; 13:7962. [PMID: 37198242 DOI: 10.1038/s41598-023-34958-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Low throughput is one of dissolution Dynamic Nuclear Polarization (dDNP) main shortcomings. Especially for clinical and preclinical applications, where direct 13C nuclei polarization is usually pursued, it takes hours to generate one single hyperpolarized (HP) sample. Being able to hyperpolarize more samples at once represents a clear advantage and can expand the range and complexity of the applications. In this work, we present the design and performance of a highly versatile and customizable dDNP cryogenic probe, herein adapted to a 5 T "wet" preclinical polarizer, that can accommodate up to three samples at once and, most importantly, it is capable of monitoring the solid-state spin dynamics of each sample separately, regardless of the kind of radical used and the nuclear species of interest. Within 30 min, the system was able to dispense three HP solutions with high repeatability across the channels (30.0 ± 1.2% carbon polarization for [1-13C]pyruvic acid doped with trityl radical). Moreover, we tested multi-nucleus NMR capability by polarizing and monitoring simultaneously 13C, 1H and 129Xe. Finally, we implemented [1-13C]lactate/[1-13C]pyruvate polarization and back-to-back dissolution and injection in a healthy mouse model to perform multiple-substrate HP Magnetic Resonance Spectroscopy (MRS) at 14.1 T.
Collapse
Affiliation(s)
- Thanh Phong Lê
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland
- Image Guided Intervention Laboratory, Department of Radiology and Medical Informatics, University of Geneva, 4 Rue Gabrielle - Perret - Gentil, 1211, Geneva, Switzerland
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, 47 Avenue de Champel, 1206, Geneva, Switzerland
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015, Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
5
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Kim Y, Samouei H, Hilty C. Polyolefin catalysis of propene, 1-butene and isobutene monitored using hyperpolarized NMR. Chem Sci 2021; 12:2823-2828. [PMID: 34164046 PMCID: PMC8179394 DOI: 10.1039/d0sc05408a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polymerization reactions of the dissolved gases propene, 1-butene, and isobutene catalyzed by [Zr(Cp)2Me][B(C6F5)4] were characterized using in situ NMR. Hyperpolarization of 13C spins by the dissolution dynamic nuclear polarization (DNP) technique provided a signal enhancement of up to 5000-fold for these monomers. For DNP hyperpolarization, liquid aliquots containing monomers were prepared at a temperature between the freezing point of the solvent toluene and the boiling point of the monomer, mixed with the polarizing agent α,γ-bis-diphenylene-β-phenylallyl free radical, and subsequently frozen. The hyperpolarized signals after dissolution enabled the observation of reaction kinetics, as well as polymer products and side products within a time of 30 s from the start of the reaction. The observed kinetic rate constants for polymerization followed a decreasing trend for propene, 1-butene, and isobutene, with the lowest rate constant for the latter explained by steric bulk. For all reactions, partial deactivation was further observed during the measurement time. The line shape and the chemical shift of the monomer signals with respect to a toluene signal were both dependent on catalyst concentration and reaction time, with the strongest dependence observed for isobutene. These changes are consistent with the characteristics of a rapid binding and unbinding process of the monomer to the catalyst occurring during the reaction. Hyperpolarization by dissolution dynamic nuclear polarization (DNP) enhances 13C NMR signals of normally gaseous olefins. The polymerization reactions of these dissolved gases catalyzed by a metallocene catalyst are characterized in real time.![]()
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA .,Dutch Polymer Institute (DPI) P.O. Box 902 5600 AX Eindhoven The Netherlands
| | - Hamidreza Samouei
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA .,Dutch Polymer Institute (DPI) P.O. Box 902 5600 AX Eindhoven The Netherlands
| | - Christian Hilty
- Department of Chemistry, Texas A&M University College Station TX 77843-3255 USA
| |
Collapse
|
7
|
Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules 2020; 25:molecules25235576. [PMID: 33261035 PMCID: PMC7730728 DOI: 10.3390/molecules25235576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides consisting of multiple glucose subunits. CDs are widely used in host–guest chemistry and biochemistry due to their structural advantages, biocompatibility, and ability to form inclusion complexes. Recently, CDs have become of high interest in the field of medical imaging as a potential scaffold for the development of a large variety of the contrast agents suitable for magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, positron emission tomography, single photon emission computed tomography, and computed tomography. The aim of this review is to summarize and highlight the achievements in the field of cyclodextrin-based contrast agents for medical imaging.
Collapse
|
8
|
Skinner JG, Menichetti L, Flori A, Dost A, Schmidt AB, Plaumann M, Gallagher FA, Hövener JB. Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20:902-918. [PMID: 30120644 DOI: 10.1007/s11307-018-1265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Collapse
Affiliation(s)
- Jason Graham Skinner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anna Dost
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Benjamin Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Markus Plaumann
- Institute of Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Jan-Bernd Hövener
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| |
Collapse
|
9
|
He Z, Guo K. Exploration of cell division times during bacterial cytokinesis. Phys Chem Chem Phys 2018; 19:32038-32046. [PMID: 29181464 DOI: 10.1039/c7cp05050j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filamenting temperature-sensitive mutant Z (FtsZ), an essential cell division protein in bacteria, has recently emerged as an important and exploitable antibacterial target. The perturbation of FtsZ assembly is found to have an effect on cell cytokinesis and cell survival. Cell division time is an important physical parameter in cell cytokinesis. Here, the theoretical framework that has been developed by combining a phase field model for rod-shaped cells with a kinetic description for FtsZ ring maintenance is extended to explore cell division times during bacterial cytokinesis. The cell division times of around 72 s in the numerical studies have the same magnitude as the division time of several minutes observed physiologically. The dependence of the cell division time on parameters such as the initial state of rod-shaped cells and various kinetic rates of FtsZ assembly dynamics is thoroughly investigated. The theoretical analysis of the relations between the cell division time and these parameters is found to coincide well with the numerical calculated results.
Collapse
Affiliation(s)
- Zi He
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | | |
Collapse
|
10
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
11
|
Hyperpolarized MRS: New tool to study real-time brain function and metabolism. Anal Biochem 2016; 529:270-277. [PMID: 27665679 DOI: 10.1016/j.ab.2016.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]
Abstract
The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed.
Collapse
|
12
|
Vuichoud B, Canet E, Milani J, Bornet A, Baudouin D, Veyre L, Gajan D, Emsley L, Lesage A, Copéret C, Thieuleux C, Bodenhausen G, Koptyug I, Jannin S. Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. J Phys Chem Lett 2016; 7:3235-9. [PMID: 27483034 DOI: 10.1021/acs.jpclett.6b01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.
Collapse
Affiliation(s)
- Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - Estel Canet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM) , 24 rue Lhomond, 75005 Paris, France
- Sorbonnes Universités , UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoires des Biomolécules (LBM), 75005 Paris, France
| | - Jonas Milani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - David Baudouin
- Université de Lyon , Institut de Chimie de Lyon, LC2P2, UMR 5265 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Laurent Veyre
- Université de Lyon , Institut de Chimie de Lyon, LC2P2, UMR 5265 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - David Gajan
- Université de Lyon , Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, rue de la Doua, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - Anne Lesage
- Université de Lyon , Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, rue de la Doua, 69100 Villeurbanne, France
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Chloé Thieuleux
- Université de Lyon , Institut de Chimie de Lyon, LC2P2, UMR 5265 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM) , 24 rue Lhomond, 75005 Paris, France
- Sorbonnes Universités , UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoires des Biomolécules (LBM), 75005 Paris, France
| | - Igor Koptyug
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM) , 24 rue Lhomond, 75005 Paris, France
- Sorbonnes Universités , UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoires des Biomolécules (LBM), 75005 Paris, France
- International Tomography Center , SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University , Pirogova St. 2, Novosibirsk, 630090, Russia
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proc Natl Acad Sci U S A 2016; 113:3164-8. [PMID: 26961001 DOI: 10.1073/pnas.1600379113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.
Collapse
|
14
|
Comment A. Dissolution DNP for in vivo preclinical studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:39-48. [PMID: 26920829 DOI: 10.1016/j.jmr.2015.12.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.
Collapse
Affiliation(s)
- Arnaud Comment
- General Electric Healthcare, Pollards Wood, Nightingales Lane, Chalfont St Giles, Buckinghamshire HP8 4SP, United Kingdom; Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Bornet A, Jannin S. Optimizing dissolution dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:13-21. [PMID: 26920826 DOI: 10.1016/j.jmr.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 05/15/2023]
Abstract
This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows. (i) Using broad line polarizing agents to efficiently polarize 1H spins. (ii) Increasing the magnetic field to 6.7 T and above. (iii) Applying microwave frequency modulation. (iv) Applying (1)H-(13)C cross polarization. (v) Transferring hyperpolarized solution through a magnetic tunnel.
Collapse
Affiliation(s)
- Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland.
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland; Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland.
| |
Collapse
|
16
|
Pourfathi M, Clapp J, Kadlecek SJ, Keenan CD, Ghosh RK, Kuzma NN, Rizi RR. Low-temperature dynamic nuclear polarization of gases in Frozen mixtures. Magn Reson Med 2015; 76:1007-14. [PMID: 26444315 DOI: 10.1002/mrm.26002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/17/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE To present a new cryogenic technique for preparing gaseous compounds in solid mixtures for polarization using dynamic nuclear polarization (DNP). METHODS (129) Xe and (15) N2 O samples were prepared using the presented method. Samples were hyperpolarized at 1.42K at 5 Tesla. (129) Xe was polarized at 1.65K and 1.42K to compare enhancement. Polarization levels for both samples and T1 relaxation times for the (129) Xe sample were measured. Sample pulverization for the (129) Xe and controlled annealing for both samples were introduced as additional steps in sample preparation. RESULTS Enhancement increased by 15% due to a temperature drop from 1.65K to 1.42K for the (129) Xe sample. A polarization level of 20 ± 3% for the (129) Xe sample was achieved, a two-fold increase from 10 ± 1% after pulverization of the sample at 1.42K. T1 of the (129) Xe sample was increased by more than three-fold by means of annealing. In the case of (15) N2 O, annealing led to a ∼two-fold increase in the signal level after DNP. CONCLUSION The presented technique for producing and manipulating solid gas/glassing agent/radical mixtures for DNP led to high polarization levels in (129) Xe and (15) N2 O samples. These methods show potential for polarizing other gases using DNP technology. Magn Reson Med 76:1007-1014, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Pennsylvania, USA
| | - Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caroline D Keenan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajat K Ghosh
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas N Kuzma
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
He Z, Liu Z, Guo K, Ding L. Effects of various kinetic rates of FtsZ filaments on bacterial cytokinesis. Phys Chem Chem Phys 2015; 17:31966-77. [DOI: 10.1039/c5cp00183h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell morphodynamics during bacterial cytokinesis is extensively investigated by a combination of phase field model for rod-shaped cells and a kinetic description for FtsZ ring maintenance.
Collapse
Affiliation(s)
- Zi He
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Zhuan Liu
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Kunkun Guo
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Lina Ding
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
18
|
|
19
|
Xiao W, Guo K. Shapes of vesicles encapsulating two aqueous phases. SOFT MATTER 2014; 10:2539-2549. [PMID: 24647539 DOI: 10.1039/c3sm52404c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Motivated by recent experiments, vesicles encapsulating two aqueous phases are theoretically explored using a combination of Helfrich curvature elasticity theory for fluid membranes and self-consistent field theory for polymers. The spatial distributions of two polymers, α and β, have been obtained, and two thermodynamic phases occur, as expected. Stable or metastable shapes of fluid and closed vesicles have also been achieved. Due to the impenetrability of the membrane to polymer, the available spaces of polymers α and β are limited and the conformational entropies for the polymers are reduced. Different chain segments that possess different permeability to the membrane would induce different inhomogeneous entropic pressures on the membrane, thereby leading to shape transformations of the vesicles. In the present study, the typical shapes of vesicles encapsulating two phases are studied as functions of the concentrations of polymers α and β, and the interactions between the chain segments and the membrane. The two phases formed by polymers α and β are also found to be altered and have been discussed in detail. In addition, morphological phase diagrams are presented as a function of the reduced volume, v. The phase boundaries between oblates and prolates, and oblates and stomatocytes of vesicles encapsulating two phases are found to move toward the higher reduced volume, and oblates occupy a much wider range of the reduced volume compared with 'neat' vesicles.
Collapse
Affiliation(s)
- Wenjia Xiao
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | | |
Collapse
|
20
|
Vuichoud B, Milani J, Bornet A, Melzi R, Jannin S, Bodenhausen G. Hyperpolarization of deuterated metabolites via remote cross-polarization and dissolution dynamic nuclear polarization. J Phys Chem B 2014; 118:1411-5. [PMID: 24397585 DOI: 10.1021/jp4118776] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In deuterated molecules such as [1-(13)C]pyruvate-d3, the nuclear spin polarization of (13)C nuclei can be enhanced by combining Hartmann-Hahn cross-polarization (CP) at low temperatures (1.2 K) with dissolution dynamic nuclear polarization (D-DNP). The polarization is transferred from remote solvent protons to the (13)C spins of interest. This allows one not only to slightly reduce build-up times but also to increase polarization levels and extend the lifetimes T1((13)C) of the enhanced (13)C polarization during and after transfer from the polarizer to the NMR or MRI system. This extends time scales over which metabolic processes and chemical reactions can be monitored.
Collapse
Affiliation(s)
- Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cell morphodynamics during bacterial cell division is extensively investigated by a combination of a phase field model for rod-shaped cells and a kinetic description for FtsZ ring maintenance.
Collapse
Affiliation(s)
- Zhuan Liu
- College of Materials Science and Engineering
- Hunan University
- Changsha, China
| | - Kunkun Guo
- College of Materials Science and Engineering
- Hunan University
- Changsha, China
| |
Collapse
|
22
|
Pourfathi M, Kuzma NN, Kara H, Ghosh RK, Shaghaghi H, Kadlecek SJ, Rizi RR. Propagation of dynamic nuclear polarization across the xenon cluster boundaries: elucidation of the spin-diffusion bottleneck. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 235:71-76. [PMID: 23981341 PMCID: PMC3832897 DOI: 10.1016/j.jmr.2013.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/24/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
Earlier Dynamic Nuclear Polarization (DNP) experiments with frozen xenon/1-propanol/trityl mixtures have demonstrated spontaneous formation of pure xenon clusters above 120 K, enabling spectrally-resolved real-time measurements of (129)Xe nuclear magnetization in the clusters and in the surrounding radical-rich matrix. A spin-diffusion bottleneck was postulated to explain the peculiar time evolution of (129)Xe signals in the clusters as well as the apparent discontinuity of (129)Xe polarization across the cluster boundaries. A self-contained ab initio model of nuclear spin diffusion in heterogeneous systems is developed here, incorporating the intrinsic T1 relaxation towards the temperature-dependent equilibrium polarization and the spin-diffusion coefficients based on the measured NMR line widths and the known atomic densities in each compartment. This simple model provides the physical basis for the observed spin-diffusion bottleneck and is in a good quantitative agreement with the earlier measurements. A simultaneous fit of the model to the time-dependent NMR data at two different DNP frequencies provides excellent estimates of the cluster size, the intrinsic sample temperature, and (129)Xe T1 constants. The model was also applied to the NMR data acquired during relaxation towards the thermal equilibrium after the microwaves were turned off, to estimate T1 relaxation time constants inside and outside the clusters. Fitting the model to the data during and after DNP provides consistent estimates of the cluster size.
Collapse
Affiliation(s)
- M Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | | | |
Collapse
|
23
|
Witte C, Schröder L. NMR of hyperpolarised probes. NMR IN BIOMEDICINE 2013; 26:788-802. [PMID: 23033215 DOI: 10.1002/nbm.2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Increasing the sensitivity of NMR experiments is an ongoing field of research to help realise the exquisite molecular specificity of this technique. Hyperpolarisation of various nuclei is a powerful approach that enables the use of NMR for molecular and cellular imaging. Substantial progress has been achieved over recent years in terms of both tracer preparation and detection schemes. This review summarises recent developments in probe design and optimised signal encoding, and promising results in sensitive disease detection and efficient therapeutic monitoring. The different methods have great potential to provide molecular specificity not available by other diagnostic modalities.
Collapse
Affiliation(s)
- Christopher Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
24
|
Lilburn DM, Pavlovskaya GE, Meersmann T. Perspectives of hyperpolarized noble gas MRI beyond 3He. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:173-86. [PMID: 23290627 PMCID: PMC3611600 DOI: 10.1016/j.jmr.2012.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 05/29/2023]
Abstract
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.
Collapse
Affiliation(s)
| | | | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
25
|
Delacour L, Kotera N, Traoré T, Garcia-Argote S, Puente C, Leteurtre F, Gravel E, Tassali N, Boutin C, Léonce E, Boulard Y, Berthault P, Rousseau B. “Clickable” Hydrosoluble PEGylated Cryptophane as a Universal Platform for129Xe Magnetic Resonance Imaging Biosensors. Chemistry 2013; 19:6089-93. [DOI: 10.1002/chem.201204218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/30/2013] [Indexed: 11/08/2022]
|
26
|
Bornet A, Melzi R, Perez Linde AJ, Hautle P, van den Brandt B, Jannin S, Bodenhausen G. Boosting Dissolution Dynamic Nuclear Polarization by Cross Polarization. J Phys Chem Lett 2013; 4:111-114. [PMID: 26291221 DOI: 10.1021/jz301781t] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The efficiency of dissolution dynamic nuclear polarization can be boosted by Hartmann-Hahn cross polarization at temperatures near 1.2 K. This enables high throughput of hyperpolarized solutions with substantial gains in buildup times and polarization levels. During dissolution and transport, the (13)C nuclear spin polarization P((13)C) merely decreases from 45 to 40%.
Collapse
Affiliation(s)
- Aurélien Bornet
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Roberto Melzi
- ‡Bruker Italia S.r.l., Viale V. Lancetti 43, 20158 Milano, Italy
| | - Angel J Perez Linde
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | | | | | - Sami Jannin
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Geoffrey Bodenhausen
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
- ⊥Département de Chimie, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
- #Université Pierre-et-Marie Curie, Paris, France
- ∇UMR 7203, CNRS/UPMC/ENS, Paris, France
| |
Collapse
|
27
|
Six JS, Hughes-Riley T, Stupic KF, Pavlovskaya GE, Meersmann T. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129. PLoS One 2012; 7:e49927. [PMID: 23209620 PMCID: PMC3507956 DOI: 10.1371/journal.pone.0049927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process.
Collapse
Affiliation(s)
- Joseph S. Six
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Karl F. Stupic
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Kuzma NN, Pourfathi M, Kara H, Manasseh P, Ghosh RK, Ardenkjaer-Larsen JH, Kadlecek SJ, Rizi RR. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures. J Chem Phys 2012; 137:104508. [PMID: 22979875 PMCID: PMC3460970 DOI: 10.1063/1.4751021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/20/2012] [Indexed: 11/14/2022] Open
Abstract
During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, (129)Xe nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by (1)H neighbors. A second peak appears upon annealing for several hours at 125 K. Its characteristic width and chemical shift indicate the presence of spontaneously formed pure Xe clusters. Microwave irradiation at the appropriate frequencies can bring both peaks to either positive or negative polarization. The peculiar time evolution of (129)Xe polarization in pure Xe clusters during DNP can be modelled as an interplay of spin diffusion and T(1) relaxation. Our simple spherical-cluster model offers a sensitive tool to evaluate major DNP parameters in situ, revealing a severe spin-diffusion bottleneck at the cluster boundaries and a significant sample overheating due to microwave irradiation. Subsequent DNP system modifications designed to reduce the overheating resulted in four-fold increase of (129)Xe polarization, from 5.3% to 21%.
Collapse
Affiliation(s)
- N N Kuzma
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Boutin C, Stopin A, Lenda F, Brotin T, Dutasta JP, Jamin N, Sanson A, Boulard Y, Leteurtre F, Huber G, Bogaert-Buchmann A, Tassali N, Desvaux H, Carrière M, Berthault P. Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. Bioorg Med Chem 2011; 19:4135-43. [PMID: 21605977 DOI: 10.1016/j.bmc.2011.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/26/2011] [Accepted: 05/01/2011] [Indexed: 10/18/2022]
Abstract
For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and (129)Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon.
Collapse
Affiliation(s)
- Céline Boutin
- CEA, IRAMIS, SIS2M, Laboratoire Structure et Dynamique par Résonance Magnétique, UMR CEA/CNRS 3299, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|