1
|
Mohebbi E, Pavoni E, Stipa P, Pierantoni L, Laudadio E, Mencarelli D. Tunable Optical Properties of Cu/VSe 2 from the Visible to Terahertz Spectral Range: A First-Principles Study. Int J Mol Sci 2025; 26:2527. [PMID: 40141169 PMCID: PMC11942232 DOI: 10.3390/ijms26062527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
In this study, Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) calculations were used to study two different interfaces of Cu/VSe2 as well as four nanodiodes of VSe2 bulk including/excluding the Cu layer. We calculated the electronic and optical properties of two systems of two Cu/VSe2 in which Cu atoms are positioned on the top and at the corner of the VSe2 monolayer lattice. The electronic band structure calculations revealed that the metallic properties of the VSe2 monolayer did not change with the interface of Cu atoms; however, the peak around the Fermi level (EF) in Cu/VSe2(Top) shifted downward to lower energies. The optical properties showed that in the visible range and the wavelengths related to the interband transition/intraband excitation of Cu atoms, the enhancement of Re(ω) values could be observed for both Cu/VSe2(Top) and Cu/VSe2(Corner) nanostructures, while in infrared/terahertz ranges, less/more negative values of Re(ω) were predicted. Through the effect of Cu atoms on the VSe2 monolayer, the intensity of the peaks in the Im(ω) part of the dielectric constant was increased from 0.2 THz for Cu@VSe2(Top) and 2.9 THz for Cu@VSe2(Corner) instead of the zero constant line in the pure system of VSe2. Refractive index (n) calculations indicated the higher indices at 5.4 and 4.6 for Cu/VSe2(Top) and Cu@VSe2(Corner), respectively, in comparison to the value of 2.9 for VSe2. Finally, DFTB calculations predicted higher current values from I(V) characteristic curves of Au/Cu/VSe2/Au and Ag/Cu/VSe2/Ag nanodiodes concerning two other devices without the presence of the Cu layer.
Collapse
Affiliation(s)
- Elaheh Mohebbi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Marche Polytechnic University, 60131 Ancona, Italy; (E.M.); (E.P.); (P.S.)
| | - Eleonora Pavoni
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Marche Polytechnic University, 60131 Ancona, Italy; (E.M.); (E.P.); (P.S.)
| | - Pierluigi Stipa
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Marche Polytechnic University, 60131 Ancona, Italy; (E.M.); (E.P.); (P.S.)
| | - Luca Pierantoni
- Information Engineering Department, Marche Polytechnic University, 60131 Ancona, Italy; (L.P.); (D.M.)
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Marche Polytechnic University, 60131 Ancona, Italy; (E.M.); (E.P.); (P.S.)
| | - Davide Mencarelli
- Information Engineering Department, Marche Polytechnic University, 60131 Ancona, Italy; (L.P.); (D.M.)
| |
Collapse
|
2
|
Ørsted A, Scarfato A, Barreteau C, Giannini E, Renner C. Doping Tunable CDW Phase Transition in Bulk 1T-ZrSe 2. NANO LETTERS 2025; 25:1729-1735. [PMID: 39814357 PMCID: PMC11783592 DOI: 10.1021/acs.nanolett.4c06377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Tunable electronic properties in transition metal dichalcogenides (TMDs) are essential to further their use in device applications. Here, we present a comprehensive scanning tunneling microscopy and spectroscopy study of a doping-induced charge density wave (CDW) in semiconducting bulk 1T-ZrSe2. We find that atomic impurities that locally shift the Fermi level (EF) into the conduction band trigger a CDW reconstruction concomitantly to the opening of a gap at EF. Our findings shed new light on earlier photoemission spectroscopy and theoretical studies of bulk 1T-ZrSe2 and provide local insight into the electron-doping-mediated CDW transition observed in semiconducting TMDs.
Collapse
Affiliation(s)
- Andreas Ørsted
- Department of Quantum Matter
Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Alessandro Scarfato
- Department of Quantum Matter
Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Céline Barreteau
- Department of Quantum Matter
Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Enrico Giannini
- Department of Quantum Matter
Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Christoph Renner
- Department of Quantum Matter
Physics, University of Geneva, 24, Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
3
|
Yilmaz T, Tong X, Sadowski JT, Hwang S, Lutterodt KE, Kisslinger K, Vescovo E. Evolution of the Fermi Surface of 1T-VSe 2 across a Structural Phase Transition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4498. [PMID: 39336239 PMCID: PMC11433139 DOI: 10.3390/ma17184498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Periodic lattice distortion, known as the charge density wave, is generally attributed to electron-phonon coupling. This correlation is expected to induce a pseudogap at the Fermi level in order to gain the required energy for stable lattice distortion. The transition metal dichalcogenide 1T-VSe2 also undergoes such a transition at 110 K. Here, we present detailed angle-resolved photoemission spectroscopy experiments to investigate the electronic structure in 1T-VSe2 across the structural transition. Previously reported warping of the electronic structure and the energy shift of a secondary peak near the Fermi level as the origin of the charge density wave phase are shown to be temperature independent and hence cannot be attributed to the structural transition. Our work reveals new states that were not resolved in previous studies. Earlier results can be explained by the different dispersion natures of these states and temperature-induced broadening. Only the overall size of the Fermi surface is found to change across the structural transition. These observations, quite different from the charge density wave scenario commonly considered for 1T-VSe2 and other transition metal dichalcogenides, bring fresh perspectives toward correctly describing structural transitions. Therefore, these new results can be applied to material families in which the origin of the structural transition has not been resolved.
Collapse
Affiliation(s)
- Turgut Yilmaz
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (K.E.L.); (E.V.)
- Department of Physics, University of Connecticut, Storrs, CT 06269, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (X.T.); (J.T.S.); (S.H.); (K.K.)
| | - Jerzy T. Sadowski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (X.T.); (J.T.S.); (S.H.); (K.K.)
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (X.T.); (J.T.S.); (S.H.); (K.K.)
| | - Kenneth Evans Lutterodt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (K.E.L.); (E.V.)
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (X.T.); (J.T.S.); (S.H.); (K.K.)
| | - Elio Vescovo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA; (K.E.L.); (E.V.)
| |
Collapse
|
4
|
Roychowdhury S, Yanda P, Samanta K, Yi C, Yao M, Orlandi F, Manuel P, Khalyavin D, Valle EGD, Constantinou P, Strocov VN, Vergniory MG, Shekhar C, Felser C. Giant Room-Temperature Topological Hall Effect in a Square-Net Ferromagnet LaMn 2Ge 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305916. [PMID: 39004883 DOI: 10.1002/adma.202305916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
A topological magnetic material showcases a multitude of intriguing properties resulting from the compelling interplay between topology and magnetism. These include notable phenomena such as a large anomalous Nernst effect (ANE), an anomalous Hall effect (AHE), and a topological Hall effect (THE). In most cases, topological transport phenomena are prevalent at temperatures considerably lower than room temperature, presenting a challenge for practical applications. However, the noncollinear ferromagnetic (FM) LaMn2Ge2, characterized by a Mn square-net lattice and a notably high Curie temperature (TC) of approximately 325 K, defies this trend as a topological semimetal. This work observes a giant topological Hall resistivity,ρ y x T $\rho _{yx}^T$ , of ≈4.5 µΩ cm at room temperature when the angle between the applied field and the c-axis is 75°, which is significantly higher than state-of-the-art materials with noncoplanar spin structures. The single crystal neutron diffraction measurements agree with an incommensurate conical magnetic structure as the ground state. This observation suggests the enhanced spin chirality resulting from the noncoplanar spin configuration when the applied field is away from the magnetic easy axis as the origin of a large contribution to the observed THE. The findings unequivocally demonstrate that the FM LaMn2Ge2 holds great promise as a potential topological semimetal for spintronic applications even at room temperature.
Collapse
Affiliation(s)
- Subhajit Roychowdhury
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Premakumar Yanda
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Kartik Samanta
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Changjiang Yi
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Mengyu Yao
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Fabio Orlandi
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Pascal Manuel
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Dmitry Khalyavin
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | | | | | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Maia G Vergniory
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
- Donostia International Physics Center, Donostia-San Sebastian, 20018, Spain
| | - Chandra Shekhar
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| |
Collapse
|
5
|
Tang X, Zhou J, Wong NLM, Chai J, Liu Y, Wang S, Song X. Strain-Induced Ferromagnetism in Monolayer T″-Phase VTe 2: Unveiling Magnetic States and Anisotropy for Spintronics Advancement. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:704. [PMID: 38668198 PMCID: PMC11054831 DOI: 10.3390/nano14080704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Two-dimensional (2D) ferromagnets have attracted significant interest for their potential in spintronic device miniaturization, especially since the discovery of ferromagnetic ordering in monolayer materials such as CrI3 and Fe3GeTe2 in 2017. This study presents a detailed investigation into the effects of the Hubbard U parameter, biaxial strain, and structural distortions on the magnetic characteristics of T″-phase VTe2. We demonstrate that setting the Hubbard U to 0 eV provides an accurate representation of the observed structural, magnetic, and electronic features for both bulk and monolayer T″-phase VTe2. The application of strain reveals two distinct ferromagnetic states in the monolayer T″-phase VTe2, each characterized by minor structural differences, but notably different magnetic moments. The T″-1 state, with reduced magnetic moments, emerges under compressive strain, while the T″-2 state, featuring increased magnetic moments, develops under tensile strain. Our analysis also compares the magnetic anisotropy between the T and T″ phases of VTe2, highlighting that the periodic lattice distortion in the T″-phase induces an in-plane anisotropy, which makes it a material with an easy-axis of magnetization. Monte Carlo simulations corroborate our findings, indicating a high Curie temperature of approximately 191 K for the T″-phase VTe2. Our research not only sheds light on the critical aspects of the VTe2 system but also suggests new pathways for enhancing low-dimensional magnetism, contributing to the advancement of spintronics and straintronics.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Physics, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Nancy Lai Mun Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Jianwei Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Yi Liu
- Department of Physics, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
- Materials Genome Institute (MGI), Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | | |
Collapse
|
6
|
Hwang J, Ruan W, Chen Y, Tang S, Crommie MF, Shen ZX, Mo SK. Charge density waves in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:044502. [PMID: 38518359 DOI: 10.1088/1361-6633/ad36d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.
Collapse
Affiliation(s)
- Jinwoong Hwang
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shujie Tang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, CA, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA 94720, United States of America
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States of America
| |
Collapse
|
7
|
Reimers S, Odenbreit L, Šmejkal L, Strocov VN, Constantinou P, Hellenes AB, Jaeschke Ubiergo R, Campos WH, Bharadwaj VK, Chakraborty A, Denneulin T, Shi W, Dunin-Borkowski RE, Das S, Kläui M, Sinova J, Jourdan M. Direct observation of altermagnetic band splitting in CrSb thin films. Nat Commun 2024; 15:2116. [PMID: 38459058 PMCID: PMC10923844 DOI: 10.1038/s41467-024-46476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations. In particular, we observe the distinctive splitting of an electronic band on a low-symmetry path in the Brilliouin zone that connects two points featuring symmetry-induced degeneracy. The measured large magnitude of the spin splitting of approximately 0.6 eV and the position of the band just below the Fermi energy underscores the significance of altermagnets for spintronics based on robust broken time reversal symmetry responses arising from exchange energy scales, akin to ferromagnets, while remaining insensitive to external magnetic fields and possessing THz dynamics, akin to antiferromagnets.
Collapse
Affiliation(s)
- Sonka Reimers
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Lukas Odenbreit
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Libor Šmejkal
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
- Inst. of Physics Academy of Sciences of the Czech Republic, Cukrovarnická 10, Praha 6, Czech Republic
| | | | | | - Anna B Hellenes
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | | | - Warlley H Campos
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Venkata K Bharadwaj
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Atasi Chakraborty
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Thibaud Denneulin
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Wen Shi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Suvadip Das
- Department of Physics and Astronomy, George Mason University, Fairfax, VA, 22030, USA
- Center for Quantum Science and Engineering, George Mason University, Fairfax, VA, 22030, USA
| | - Mathias Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
- Centre for Quantum Spintronics, Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway
| | - Jairo Sinova
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
- Department of Physics, Texas A&M University, College Station, TX, 77843-4242, USA
| | - Martin Jourdan
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany.
| |
Collapse
|
8
|
Krempaský J, Šmejkal L, D'Souza SW, Hajlaoui M, Springholz G, Uhlířová K, Alarab F, Constantinou PC, Strocov V, Usanov D, Pudelko WR, González-Hernández R, Birk Hellenes A, Jansa Z, Reichlová H, Šobáň Z, Gonzalez Betancourt RD, Wadley P, Sinova J, Kriegner D, Minár J, Dil JH, Jungwirth T. Altermagnetic lifting of Kramers spin degeneracy. Nature 2024; 626:517-522. [PMID: 38356066 PMCID: PMC10866710 DOI: 10.1038/s41586-023-06907-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024]
Abstract
Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.
Collapse
Affiliation(s)
- J Krempaský
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland.
| | - L Šmejkal
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - S W D'Souza
- New Technologies Research Center, University of West Bohemia, Plzeň, Czech Republic
| | - M Hajlaoui
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University of Linz, Linz, Austria
| | - G Springholz
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University of Linz, Linz, Austria
| | - K Uhlířová
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - F Alarab
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - P C Constantinou
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - V Strocov
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - D Usanov
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - W R Pudelko
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
- Physik-Institut, Universität Zürich, Zürich, Switzerland
| | - R González-Hernández
- Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia
| | - A Birk Hellenes
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Z Jansa
- New Technologies Research Center, University of West Bohemia, Plzeň, Czech Republic
| | - H Reichlová
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Z Šobáň
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - P Wadley
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - J Sinova
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - D Kriegner
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - J Minár
- New Technologies Research Center, University of West Bohemia, Plzeň, Czech Republic.
| | - J H Dil
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - T Jungwirth
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
9
|
Strocov VN, Lev LL, Alarab F, Constantinou P, Wang X, Schmitt T, Stock TJZ, Nicolaï L, Očenášek J, Minár J. High-energy photoemission final states beyond the free-electron approximation. Nat Commun 2023; 14:4827. [PMID: 37563126 PMCID: PMC10415355 DOI: 10.1038/s41467-023-40432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and added broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment.
Collapse
Affiliation(s)
- V N Strocov
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland.
| | - L L Lev
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - F Alarab
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - P Constantinou
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - X Wang
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - T Schmitt
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - T J Z Stock
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - L Nicolaï
- University of West Bohemia, New Technologies Research Centre, 301 00, Plzeň, Czech Republic
| | - J Očenášek
- University of West Bohemia, New Technologies Research Centre, 301 00, Plzeň, Czech Republic
| | - J Minár
- University of West Bohemia, New Technologies Research Centre, 301 00, Plzeň, Czech Republic.
| |
Collapse
|
10
|
Zhou J, Wang Z, Wang S, Feng YP, Yang M, Shen L. Coexistence of ferromagnetism and charge density waves in monolayer LaBr 2. NANOSCALE HORIZONS 2023; 8:1054-1061. [PMID: 37395097 DOI: 10.1039/d3nh00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Charge density waves (CDWs), a common phenomenon of periodic lattice distortions, often suppress ferromagnetism in two-dimensional (2D) materials, hindering their magnetic applications. Here, we report a novel CDW that generates 2D ferromagnetism instead of suppressing it, through the formation of interstitial anionic electrons as the charge modulation mechanism. Via first-principles calculations and a low-energy effective model, we find that the highly symmetrical monolayer LaBr2 undergoes a 2 × 1 CDW transition to a magnetic semiconducting T' phase. Concurrently, the delocalized 5d1 electrons of La in LaBr2 redistribute and accumulate within the interstitial space in the T' phase, forming anionic electrons, also known as 2D electride or electrene. The strongly localized nature of anionic electrons promotes a Mott insulating state and full spin-polarization, while the overlap of their extended tails yields ferromagnetic direct exchange between them. Such transition introduces a new magnetic form of CDWs, offering promising opportunities for exploring novel fundamental physics and advanced spintronics applications.
Collapse
Affiliation(s)
- Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zishen Wang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore.
- Centre for Advanced Two-Dimensional Materials (CA2DM), National University of Singapore, Singapore 117546, Singapore
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, Singapore 117551, Singapore.
- Centre for Advanced Two-Dimensional Materials (CA2DM), National University of Singapore, Singapore 117546, Singapore
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| |
Collapse
|
11
|
Roychowdhury S, Yao M, Samanta K, Bae S, Chen D, Ju S, Raghavan A, Kumar N, Constantinou P, Guin SN, Plumb NC, Romanelli M, Borrmann H, Vergniory MG, Strocov VN, Madhavan V, Shekhar C, Felser C. Anomalous Hall Conductivity and Nernst Effect of the Ideal Weyl Semimetallic Ferromagnet EuCd 2 As 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207121. [PMID: 36828783 PMCID: PMC10161038 DOI: 10.1002/advs.202207121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Indexed: 05/06/2023]
Abstract
Weyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two. If these WPs are located at the Fermi level, they form an ideal Weyl semimetal (WSM). In this study, intrinsic ferromagnetic (FM) EuCd2 As2 are grown, predicted to be an ideal WSM and studied its electronic structure by angle-resolved photoemission spectroscopy, and scanning tunneling microscopy which agrees closely with the first principles calculations. Moreover, anomalous Hall conductivity and Nernst effect are observed, resulting from the non-zero Berry curvature, and the topological Hall effect arising from changes in the band structure caused by spin canting produced by magnetic fields. These findings can help realize several exotic quantum phenomena in inorganic topological materials that are otherwise difficult to assess because of the presence of multiple pairs of Weyl nodes.
Collapse
Affiliation(s)
| | - Mengyu Yao
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| | - Kartik Samanta
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| | - Seokjin Bae
- Department of Physics and Materials Research LaboratoryUniversity of Illinois Urbana, ChampaignUrbanaIL61801USA
| | - Dong Chen
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| | - Sailong Ju
- Swiss Light SourcePaul Scherrer InstituteVilligen‐PSICH‐5232Switzerland
| | - Arjun Raghavan
- Department of Physics and Materials Research LaboratoryUniversity of Illinois Urbana, ChampaignUrbanaIL61801USA
| | - Nitesh Kumar
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
- S. N. Bose National Centre for Basic SciencesSalt Lake CityKolkata700 106India
| | | | - Satya N. Guin
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
- Department of ChemistryBirla Institute of Technology and SciencePilani ‐ Hyderabad CampusHyderabad500078India
| | | | - Marisa Romanelli
- Department of Physics and Materials Research LaboratoryUniversity of Illinois Urbana, ChampaignUrbanaIL61801USA
| | - Horst Borrmann
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| | - Maia G. Vergniory
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
- Donostia International Physics CenterDonostia‐San Sebastian20018Spain
| | | | - Vidya Madhavan
- Department of Physics and Materials Research LaboratoryUniversity of Illinois Urbana, ChampaignUrbanaIL61801USA
| | - Chandra Shekhar
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids01187DresdenGermany
| |
Collapse
|
12
|
Jardine MA, Dardzinski D, Yu M, Purkayastha A, Chen AH, Chang YH, Engel A, Strocov VN, Hocevar M, Palmstro̷m C, Frolov SM, Marom N. First-Principles Assessment of CdTe as a Tunnel Barrier at the α-Sn/InSb Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16288-16298. [PMID: 36940162 PMCID: PMC10064317 DOI: 10.1021/acsami.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as β-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [ npj Computational Materials 2020, 6, 180]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [ Advanced Quantum Technologies 2022, 5, 2100033] is used to resolve the contributions of different kz values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in trilayer interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments.
Collapse
Affiliation(s)
- Malcolm
J. A. Jardine
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Derek Dardzinski
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maituo Yu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amrita Purkayastha
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - An-Hsi Chen
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yu-Hao Chang
- Université
Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| | - Aaron Engel
- Université
Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| | - Vladimir N. Strocov
- Materials
Department, University of California-Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Moïra Hocevar
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chris Palmstro̷m
- Université
Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
- Paul Scherrer
Institut, Swiss Light Source, Villigen PSI CH-5232, Switzerland
| | - Sergey M. Frolov
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Cochran TA, Belopolski I, Manna K, Yahyavi M, Liu Y, Sanchez DS, Cheng ZJ, Yang XP, Multer D, Yin JX, Borrmann H, Chikina A, Krieger JA, Sánchez-Barriga J, Le Fèvre P, Bertran F, Strocov VN, Denlinger JD, Chang TR, Jia S, Felser C, Lin H, Chang G, Hasan MZ. Visualizing Higher-Fold Topology in Chiral Crystals. PHYSICAL REVIEW LETTERS 2023; 130:066402. [PMID: 36827563 DOI: 10.1103/physrevlett.130.066402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.
Collapse
Affiliation(s)
- Tyler A Cochran
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ilya Belopolski
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kaustuv Manna
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mohammad Yahyavi
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - Yiyuan Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Daniel S Sanchez
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Zi-Jia Cheng
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Xian P Yang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Daniel Multer
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jia-Xin Yin
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Horst Borrmann
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Alla Chikina
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jonas A Krieger
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jaime Sánchez-Barriga
- Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein Strasse 15, 12489 Berlin, Germany
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Patrick Le Fèvre
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, F-91190 Saint-Aubin, France
| | - François Bertran
- SOLEIL Synchrotron, L'Orme des Merisiers, Départementale 128, F-91190 Saint-Aubin, France
| | | | - Jonathan D Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tay-Rong Chang
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shuang Jia
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link 637371, Singapore
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Zhang Z, Wang Y, Zhao Z, Song W, Zhou X, Li Z. Interlayer Chemical Modulation of Phase Transitions in Two-Dimensional Metal Chalcogenides. Molecules 2023; 28:molecules28030959. [PMID: 36770625 PMCID: PMC9921675 DOI: 10.3390/molecules28030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Two-dimensional metal chalcogenides (2D-MCs) with complex interactions are usually rich in phase transition behavior, such as superconductivity, charge density wave (CDW), and magnetic transitions, which hold great promise for the exploration of exciting physical properties and functional applications. Interlayer chemical modulation, as a renewed surface modification method, presents congenital advantages to regulate the phase transitions of 2D-MCs due to its confined space, strong guest-host interactions, and local and reversible modulation without destructing the host lattice, whereby new phenomena and functionalities can be produced. Herein, recent achievements in the interlayer chemical modulation of 2D-MCs are reviewed from the aspects of superconducting transition, CDW transition, semiconductor-to-metal transition, magnetic phase transition, and lattice transition. We systematically discuss the roles of charge transfer, spin coupling, and lattice strain on the modulation of phase transitions in the guest-host architectures of 2D-MCs established by electrochemical intercalation, solution-processed intercalation, and solid-state intercalation. New physical phenomena, new insight into the mechanism of phase transitions, and derived functional applications are presented. Finally, a prospectus of the challenges and opportunities of interlayer chemical modulation for future research is pointed out.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Yi Wang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Zelin Zhao
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Weijing Song
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Xiaoli Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
- Purple Mountain Laboratories, Nanjing 211111, China
- Correspondence:
| |
Collapse
|
15
|
Cheng ZJ, Belopolski I, Tien HJ, Cochran TA, Yang XP, Ma W, Yin JX, Chen D, Zhang J, Jozwiak C, Bostwick A, Rotenberg E, Cheng G, Hossain MS, Zhang Q, Litskevich M, Jiang YX, Yao N, Schroeter NBM, Strocov VN, Lian B, Felser C, Chang G, Jia S, Chang TR, Hasan MZ. Visualization of Tunable Weyl Line in A-A Stacking Kagome Magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205927. [PMID: 36385535 DOI: 10.1002/adma.202205927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena, in which the delicate interplay between frustrated crystal structure, magnetization, and spin-orbit coupling (SOC) can engender highly tunable topological states. Here, utilizing angle-resolved photoemission spectroscopy, the Weyl lines are directly visualized with strong out-of-plane dispersion in the A-A stacked kagome magnet GdMn6 Sn6 . Remarkably, the Weyl lines exhibit a strong magnetization-direction-tunable SOC gap and binding energy tunability after substituting Gd with Tb and Li, respectively. These results not only illustrate the magnetization direction and valence counting as efficient tuning knobs for realizing and controlling distinct 3D topological phases, but also demonstrate AMn6 Sn6 (A = rare earth, or Li, Mg, or Ca) as a versatile material family for exploring diverse emergent topological quantum responses.
Collapse
Affiliation(s)
- Zi-Jia Cheng
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Ilya Belopolski
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Hung-Ju Tien
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tyler A Cochran
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Xian P Yang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Wenlong Ma
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Jia-Xin Yin
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Dong Chen
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Junyi Zhang
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Chris Jozwiak
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aaron Bostwick
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Guangming Cheng
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, 08544, USA
| | - Md Shafayat Hossain
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Qi Zhang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Maksim Litskevich
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Yu-Xiao Jiang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Nan Yao
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, 08544, USA
| | | | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Biao Lian
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuang Jia
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Tay-Rong Chang
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort), Tainan, 701, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, 08544, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Friedensen S, Yasini P, Keneipp R, Castan A, Drndić M. Solvent-Induced Degradation of Electrochemically Exfoliated Vanadium Selenide Visualized by Electron Microscopy. ACS OMEGA 2022; 7:42146-42154. [PMID: 36440127 PMCID: PMC9685602 DOI: 10.1021/acsomega.2c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Recently discovered two-dimensional ferromagnetic materials (2DFMs) have rapidly gained much interest in the fields of spintronics and computing, where they may prove powerful tools for miniaturizing devices such as magnetic tunnel junctions and spin-transfer torque memory bits. In addition, heterojunctions and twisted bilayer stacks of such materials may yield exotic spin textures. However, preparation of such devices is complicated by the air sensitivity of many 2DFMs. Here, we report details on the preparation of few-to-monolayer flakes of vanadium selenide (VSe2) using electrochemical exfoliation in propylene carbonate. We also present a detailed study of the effects of air on the structure and magnetic properties of bare and passivated VSe2 after different concentrations of surface passivation treatment. We characterized the microstructure of holes in the VSe2 flakes and the formation of new compounds arising from air exposure, solvent exposure during the exfoliating process, and deliberate electron beam irradiation (sculpting). We sculpt VSe2 flakes while retaining the 1T-VSe2 lattice structure, opening the door for top-down patterned high-resolution 2DFM nanostructures. Additionally, investigation of the magnetic response of nanosheets using magnetic force microscopy (MFM) showed that the oxidation-induced damage only affects the surface fields locally and does not quench large-scale magnetic signal. The findings of this study pave the way toward practical incorporation of 2D ferromagnetic materials in nanoelectronics.
Collapse
Affiliation(s)
| | | | - Rachael Keneipp
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alice Castan
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marija Drndić
- Department of Physics and
Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Göhler F, Ramasubramanian S, Rajak SK, Rösch N, Schütze A, Wolff S, Cordova DLM, Johnson DC, Seyller T. Modulation doping and charge density wave transition in layered PbSe-VSe 2 ferecrystal heterostructures. NANOSCALE 2022; 14:10143-10154. [PMID: 35796182 DOI: 10.1039/d2nr01071b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling charge carrier concentrations remains a major challenge in the application of quasi-two-dimensional materials. A promising approach is the modulation doping of transport channels via charge transfer from neighboring layers in stacked heterostructures. Ferecrystals, which are metastable layered structures created from artificial elemental precursors, are a perfect model system to investigate modulation doping, as they offer unparalleled freedom in the combination of different constituents and variable layering sequences. In this work, differently stacked combinations of rock-salt structured PbSe and VSe2 were investigated using X-ray photoelectron spectroscopy. The PbSe layers act as electron donors in all heterostructures, with about 0.1 to 0.3 donated electrons per VSe2 unit cell. While they initially retain their inherent semiconducting behavior, they themselves become metallic when combined with a larger number of VSe2 layers, as evidenced by a change of the XPS core level lineshape. Additional analysis of the valence band structure was performed for selected stacking orders at different sample temperatures to investigate a predicted charge density wave (CDW) transition. While there appear to be hints of a gap opening, the data so far is inconclusive and the application of spatially resolved techniques such as scanning tunneling microscopy is encouraged for further studies.
Collapse
Affiliation(s)
- Fabian Göhler
- Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| | | | - Sanam Kumari Rajak
- Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
| | - Niels Rösch
- Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
| | - Adrian Schütze
- Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| | - Susanne Wolff
- Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| | | | - David C Johnson
- Department of Chemistry, University of Oregon, Eugene, Oregon 97401, USA
| | - Thomas Seyller
- Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany.
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| |
Collapse
|
18
|
Bao L, Huang L, Guo H, Gao HJ. Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Phys Chem Chem Phys 2022; 24:9082-9117. [PMID: 35383791 DOI: 10.1039/d1cp05981e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decades, construction of nanoscale electronic devices with novel functionalities based on low-dimensional structures, such as single molecules and two-dimensional (2D) materials, has been rapidly developed. To investigate their intrinsic properties for versatile functionalities of nanoscale electronic devices, it is crucial to precisely control the structures and understand the physical properties of low-dimensional structures at the single atomic level. In this review, we provide a comprehensive overview of the construction of nanoelectronic devices based on single molecules and 2D materials and the investigation of their physical properties. For single molecules, we focus on the construction of single-molecule devices, such as molecular motors and molecular switches, by precisely controlling their self-assembled structures on metal substrates and charge transport properties. For 2D materials, we emphasize their spin-related electrical transport properties for spintronic device applications and the role that interfaces among 2D semiconductors, contact electrodes, and dielectric substrates play in the electrical performance of electronic, optoelectronic, and memory devices. Finally, we discuss the future research direction in this field, where we can expect a scientific breakthrough.
Collapse
Affiliation(s)
- Lihong Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Li Huang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hui Guo
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
19
|
Belopolski I, Chang G, Cochran TA, Cheng ZJ, Yang XP, Hugelmeyer C, Manna K, Yin JX, Cheng G, Multer D, Litskevich M, Shumiya N, Zhang SS, Shekhar C, Schröter NBM, Chikina A, Polley C, Thiagarajan B, Leandersson M, Adell J, Huang SM, Yao N, Strocov VN, Felser C, Hasan MZ. Observation of a linked-loop quantum state in a topological magnet. Nature 2022; 604:647-652. [PMID: 35478239 DOI: 10.1038/s41586-022-04512-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/03/2022] [Indexed: 11/09/2022]
Abstract
Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state1-13. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids5, magnets6,7, the quantum Hall effect3,8, topological insulators9,10, Weyl semimetals11-13 and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet14-20. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material's three-torus, T3, bulk Brillouin zone. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked-loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits the linking number (2, 2, 2), providing a direct determination of the invariant structure from the experimental data. We further predict and observe, on the surface of our samples, Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of magnetic and superconducting quantum matter.
Collapse
Affiliation(s)
- Ilya Belopolski
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA. .,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan.
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tyler A Cochran
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Zi-Jia Cheng
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Xian P Yang
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Cole Hugelmeyer
- Department of Mathematics, Princeton University, Princeton, NJ, USA
| | - Kaustuv Manna
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.,Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Jia-Xin Yin
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Guangming Cheng
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, USA
| | - Daniel Multer
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Maksim Litskevich
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Nana Shumiya
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Songtian S Zhang
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA
| | - Chandra Shekhar
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | | | - Alla Chikina
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Craig Polley
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | - Johan Adell
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Shin-Ming Huang
- Department of Physics, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Nan Yao
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, USA
| | | | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, NJ, USA. .,Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Quantum Science Center, Oak Ridge, TN, USA.
| |
Collapse
|
20
|
Chua R, Henke J, Saha S, Huang Y, Gou J, He X, Das T, van Wezel J, Soumyanarayanan A, Wee ATS. Coexisting Charge-Ordered States with Distinct Driving Mechanisms in Monolayer VSe 2. ACS NANO 2022; 16:783-791. [PMID: 34931805 DOI: 10.1021/acsnano.1c08304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thinning crystalline materials to two dimensions (2D) creates a rich playground for electronic phases, including charge, spin, superconducting, and topological order. Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin films, have shown CDW enhancement and tunability. However, charge order confined to only 2D remains elusive. Here we report a distinct charge ordered state emerging in the monolayer limit of 1T-VSe2. Systematic scanning tunneling microscopy experiments reveal that bilayer VSe2 largely retains the bulk electronic structure, hosting a tridirectional CDW. However, monolayer VSe2 ─consistently across distinct substrates─exhibits a dimensional crossover, hosting two CDWs with distinct wavelengths and transition temperatures. Electronic structure calculations reveal that while one CDW is bulk-like and arises from the well-known Peierls mechanism, the other is decidedly unconventional. The observed CDW-lattice decoupling and the emergence of a flat band suggest that the second CDW could arise from enhanced electron-electron interactions in the 2D limit. These findings establish monolayer-VSe2 as a host of coexisting charge orders with distinct origins, and enable the tailoring of electronic phenomena via emergent interactions in 2D materials.
Collapse
Affiliation(s)
- Rebekah Chua
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jans Henke
- Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Surabhi Saha
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Yuli Huang
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Xiaoyue He
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Tanmoy Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Jasper van Wezel
- Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Anjan Soumyanarayanan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Institute of Materials Research & Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
21
|
Kwon IS, Kwak IH, Debela TT, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. Phase-Transition Mo 1-xV xSe 2 Alloy Nanosheets with Rich V-Se Vacancies and Their Enhanced Catalytic Performance of Hydrogen Evolution Reaction. ACS NANO 2021; 15:14672-14682. [PMID: 34496215 DOI: 10.1021/acsnano.1c04453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloys of transition-metal dichalcogenide can display distinctive phase evolution because of their two-dimensional structures. Herein, we report the colloidal synthesis of Mo1-xVxSe2 alloy nanosheets with full composition tuning. Alloying led to a phase transition at x = 0.7 from the semiconducting 2H phase MoSe2 to the metallic 1T phase VSe2. It also produced significant V and Se vacancies, which became the richest in the 2H phase at x = 0.3-0.5. Extensive spin-polarized density functional theory calculations consistently predicted the 2H-1T phase transition at x = 0.7, in agreement with the experimental results. The vacancy formation energy also supports the formation of V and Se vacancies. Alloying in the 2H phase enhanced the electrocatalytic performance toward hydrogen evolution reaction (HER) at x = 0.3 (in 0.5 M H2SO4) or 0.4 (in 1 M KOH). The Gibbs free energy along the HER pathway indicates that this maximum performance is due to the highest concentration of active V and Se vacancy sites.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Tekalign Terfa Debela
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jo Yoo
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
22
|
He Y, Gayles J, Yao M, Helm T, Reimann T, Strocov VN, Schnelle W, Nicklas M, Sun Y, Fecher GH, Felser C. Large linear non-saturating magnetoresistance and high mobility in ferromagnetic MnBi. Nat Commun 2021; 12:4576. [PMID: 34321475 PMCID: PMC8319177 DOI: 10.1038/s41467-021-24692-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
A large non-saturating magnetoresistance has been observed in several nonmagnetic topological Weyl semi-metals with high mobility of charge carriers at the Fermi energy. However, ferromagnetic systems rarely display a large magnetoresistance because of localized electrons in heavy d bands with a low Fermi velocity. Here, we report a large linear non-saturating magnetoresistance and high mobility in ferromagnetic MnBi. MnBi, unlike conventional ferromagnets, exhibits a large linear non-saturating magnetoresistance of 5000% under a pulsed field of 70 T. The electrons and holes' mobilities are both 5000 cm2V-1s-1 at 2 K, which are one of the highest for ferromagnetic materials. These phenomena are due to the spin-polarised Bi 6p band's sharp dispersion with a small effective mass. Our study provides an approach to achieve high mobility in ferromagnetic systems with a high Curie temperature, which is advantageous for topological spintronics.
Collapse
Affiliation(s)
- Yangkun He
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany.
| | - Jacob Gayles
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Mengyu Yao
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
| | - Toni Helm
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tommy Reimann
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Walter Schnelle
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
| | - Michael Nicklas
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
| | - Yan Sun
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
| | - Gerhard H Fecher
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
| | - Claudia Felser
- Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany
| |
Collapse
|
23
|
Bin Subhan M, Suleman A, Moore G, Phu P, Hoesch M, Kurebayashi H, Howard CA, Schofield SR. Charge Density Waves in Electron-Doped Molybdenum Disulfide. NANO LETTERS 2021; 21:5516-5521. [PMID: 34228455 PMCID: PMC8397392 DOI: 10.1021/acs.nanolett.1c00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
We present the discovery of a charge density wave (CDW) ground state in heavily electron-doped molybdenum disulfide (MoS2). This is the first observation of a CDW in any d2 (column 6) transition metal dichalcogenide (TMD). The band structure of MoS2 is distinct from the d0 and d1 TMDs in which CDWs have been previously observed, facilitating new insight into CDW formation. We demonstrate a metal-insulator transition at 85 K, a 25 meV gap at the Fermi level, and two distinct CDW modulations, (2√3 × 2√3) R30° and 2 × 2, attributable to Fermi surface nesting (FSN) and electron-phonon coupling (EPC), respectively. This simultaneous exhibition of FSN and EPC CDW modulations is unique among observations of CDW ground states, and we discuss this in the context of band folding. Our observations provide a route toward the resolution of controversies surrounding the origin of CDW modulations in TMDs.
Collapse
Affiliation(s)
- Mohammed
K. Bin Subhan
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, United Kingdom
| | - Asif Suleman
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, United Kingdom
- London
Centre for Nanotechnology, University College
London, WC1H 0AH London, United Kingdom
| | - Gareth Moore
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, United Kingdom
- London
Centre for Nanotechnology, University College
London, WC1H 0AH London, United Kingdom
| | - Peter Phu
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, United Kingdom
| | - Moritz Hoesch
- Photon
Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Hidekazu Kurebayashi
- London
Centre for Nanotechnology, University College
London, WC1H 0AH London, United Kingdom
- Department
of Electronic and Electrical Engineering, University College London, WC1E 6BT London, United Kingdom
| | - Christopher A. Howard
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, United Kingdom
| | - Steven R. Schofield
- Department
of Physics and Astronomy, University College
London, WC1E 6BT London, United Kingdom
- London
Centre for Nanotechnology, University College
London, WC1H 0AH London, United Kingdom
| |
Collapse
|
24
|
Duan S, Cheng Y, Xia W, Yang Y, Xu C, Qi F, Huang C, Tang T, Guo Y, Luo W, Qian D, Xiang D, Zhang J, Zhang W. Optical manipulation of electronic dimensionality in a quantum material. Nature 2021; 595:239-244. [PMID: 34234338 DOI: 10.1038/s41586-021-03643-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Exotic phenomena can be achieved in quantum materials by confining electronic states into two dimensions. For example, relativistic fermions are realized in a single layer of carbon atoms1, the quantized Hall effect can result from two-dimensional (2D) systems2,3, and the superconducting transition temperature can be considerably increased in a one-atomic-layer material4,5. Ordinarily, a 2D electronic system can be obtained by exfoliating the layered materials, growing monolayer materials on substrates, or establishing interfaces between different materials. Here we use femtosecond infrared laser pulses to invert the periodic lattice distortion sectionally in a three-dimensional (3D) charge density wave material (1T-TiSe2), creating macroscopic domain walls of transient 2D ordered electronic states with unusual properties. The corresponding ultrafast electronic and lattice dynamics are captured by time-resolved and angle-resolved photoemission spectroscopy6 and ultrafast electron diffraction at energies of the order of megaelectronvolts7. Moreover, in the photoinduced 2D domain wall near the surface we identify a phase with enhanced density of states and signatures of potential opening of an energy gap near the Fermi energy. Such optical modulation of atomic motion is an alternative path towards realizing 2D electronic states and will be a useful platform upon which novel phases in quantum materials may be discovered.
Collapse
Affiliation(s)
- Shaofeng Duan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cheng
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xia
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuanyuan Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyang Xu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengfeng Qi
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozhi Huang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianwei Tang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weidong Luo
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China. .,Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Jie Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Zhang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Duvjir G, Choi BK, Thi Ly T, Lam NH, Jang K, Dung DD, Chang YJ, Kim J. Multiple charge density wave phases of monolayer VSe 2manifested by graphene substrates. NANOTECHNOLOGY 2021; 32:364002. [PMID: 34062520 DOI: 10.1088/1361-6528/ac06f3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
A combined study of scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) is conducted to understand the multiple charge density wave (CDW) phases of monolayer (ML) VSe2films manifested by graphene substrates. Submonolayer (∼0.8 ML) VSe2films are prepared on two different substrates of single-layer graphene (SLG) and bi-layer graphene (BLG) on a 6H-SiC(0001). We find that ML VSe2films are less coupled to the SLG substrate compared to that of ML VSe2/BLG. Then, ML VSe2grown on SLG and BLG substrates reveals a very different topography in STM. While ML VSe2/BLG shows one unidirectional modulation of √3 × 2 and √3 × √7 CDW in topography, ML VSe2/SLG presents a clear modulation of 4 × 1 CDW interfering with √3 × 2 and √3 × √7 CDW which has not been previously observed. We explicitly show that the reciprocal vector of 4 × 1 CDW fits perfectly into the long parallel sections of cigar-shaped Fermi surfaces near the M point in ML VSe2, satisfying Fermi surface nesting. Since bulk VSe2is also well-known for the 4 × 4 × 3 CDW formed by Fermi surface nesting, the 4 × 1 CDW in ML VSe2/SLG is attributed to the planar projection of 4 × 4 × 3 CDW in bulk. Our result clarifies the nature of the 4 × 1 CDW in ML VSe2system and is a good example demonstrating the essential role of substrates in two-dimensional transition metal dichalcogenides.
Collapse
Affiliation(s)
- Ganbat Duvjir
- Department of Physics, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Byoung Ki Choi
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Trinh Thi Ly
- Department of Physics, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Nguyen Huu Lam
- Department of Physics, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kyuha Jang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Dang Duc Dung
- Hanoi University of Science and Technology, Hanoi 10000, Vietnam
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
- Department of Smart Cities, University of Seoul, Seoul 02504, Republic of Korea
| | - Jungdae Kim
- Department of Physics, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
26
|
Zhang Y, Zhao M, Wang J, Liu W, Wang B, Hu S, Lu G, Chen A, Cui J, Zhang W, Hsu CW, Liu X, Shi L, Yin H, Zi J. Momentum-space imaging spectroscopy for the study of nanophotonic materials. Sci Bull (Beijing) 2021; 66:824-838. [PMID: 36654139 DOI: 10.1016/j.scib.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 01/20/2023]
Abstract
The novel phenomena in nanophotonic materials, such as the angle-dependent reflection and negative refraction effect, are closely related to the photonic dispersions E(p). E(p) describes the relation between energy E and momentum p of photonic eigenmodes, and essentially determines the optical properties of materials. As E(p) is defined in momentum space (k-space), the experimental method to detect the energy distribution, that is the spectrum, in a momentum-resolved manner is highly required. In this review, the momentum-space imaging spectroscopy (MSIS) system is presented, which can directly study the spectral information in momentum space. Using the MSIS system, the photonic dispersion can be captured in one shot with high energy and momentum resolution. From the experimental momentum-resolved spectrum data, other key features of photonic eigenmodes, such as quality factors and polarization states, can also be extracted through the post-processing algorithm based on the coupled mode theory. In addition, the interference configurations of the MSIS system enable the measurement of coherence properties and phase information of nanophotonic materials, which is important for the study of light-matter interaction and beam shaping with nanostructures. The MSIS system can give the comprehensive information of nanophotonic materials, and is greatly useful for the study of novel photonic phenomena and the development of nanophotonic technologies.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Maoxiong Zhao
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
| | - Jiajun Wang
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
| | - Wenzhe Liu
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
| | - Bo Wang
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
| | - Songting Hu
- Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China
| | - Guopeng Lu
- Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China
| | - Ang Chen
- Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China
| | - Jing Cui
- Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China
| | - Weiyi Zhang
- Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China
| | - Chia Wei Hsu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaohan Liu
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
| | - Lei Shi
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China.
| | - Haiwei Yin
- Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication (SERCOM), Shanghai 200433, China.
| | - Jian Zi
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China.
| |
Collapse
|
27
|
King PDC, Picozzi S, Egdell RG, Panaccione G. Angle, Spin, and Depth Resolved Photoelectron Spectroscopy on Quantum Materials. Chem Rev 2021; 121:2816-2856. [PMID: 33346644 DOI: 10.1021/acs.chemrev.0c00616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal "hidden" spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.
Collapse
Affiliation(s)
- Phil D C King
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Silvia Picozzi
- Consiglio Nazionale delle Ricerche, CNR-SPIN, Via dei Vestini 31, Chieti 66100, Italy
| | - Russell G Egdell
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Giancarlo Panaccione
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| |
Collapse
|
28
|
Biswas D, Jones AJH, Majchrzak P, Choi BK, Lee TH, Volckaert K, Feng J, Marković I, Andreatta F, Kang CJ, Kim HJ, Lee IH, Jozwiak C, Rotenberg E, Bostwick A, Sanders CE, Zhang Y, Karras G, Chapman RT, Wyatt AS, Springate E, Miwa JA, Hofmann P, King PDC, Chang YJ, Lanatà N, Ulstrup S. Ultrafast Triggering of Insulator-Metal Transition in Two-Dimensional VSe 2. NANO LETTERS 2021; 21:1968-1975. [PMID: 33600187 DOI: 10.1021/acs.nanolett.0c04409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transition-metal dichalcogenide VSe2 exhibits an increased charge density wave transition temperature and an emerging insulating phase when thinned to a single layer. Here, we investigate the interplay of electronic and lattice degrees of freedom that underpin these phases in single-layer VSe2 using ultrafast pump-probe photoemission spectroscopy. In the insulating state, we observe a light-induced closure of the energy gap, which we disentangle from the ensuing hot carrier dynamics by fitting a model spectral function to the time-dependent photoemission intensity. This procedure leads to an estimated time scale of 480 fs for the closure of the gap, which suggests that the phase transition in single-layer VSe2 is driven by electron-lattice interactions rather than by Mott-like electronic effects. The ultrafast optical switching of these interactions in SL VSe2 demonstrates the potential for controlling phase transitions in 2D materials with light.
Collapse
Affiliation(s)
- Deepnarayan Biswas
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Alfred J H Jones
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Paulina Majchrzak
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Byoung Ki Choi
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Tsung-Han Lee
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, United States
| | - Klara Volckaert
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Jiagui Feng
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, U.K
- Suzhou Institute of Nano-Tech. and Nanobionics (SINANO), CAS, 398 Ruoshui Road, SEID, SIP, Suzhou 215123, China
| | - Igor Marković
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, U.K
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Federico Andreatta
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Chang-Jong Kang
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, United States
| | - Hyuk Jin Kim
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - In Hak Lee
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Chris Jozwiak
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eli Rotenberg
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron Bostwick
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Charlotte E Sanders
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Yu Zhang
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Gabriel Karras
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Richard T Chapman
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Adam S Wyatt
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Emma Springate
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell 0 × 11 0QX, U.K
| | - Jill A Miwa
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Philip Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Phil D C King
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, U.K
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
- Department of Smart Cities, University of Seoul, Seoul, 02504, Republic of Korea
| | - Nicola Lanatà
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
| | - Søren Ulstrup
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
29
|
van der Waals driven anharmonic melting of the 3D charge density wave in VSe 2. Nat Commun 2021; 12:598. [PMID: 33500397 PMCID: PMC7838422 DOI: 10.1038/s41467-020-20829-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Understanding of charge-density wave (CDW) phases is a main challenge in condensed matter due to their presence in high-Tc superconductors or transition metal dichalcogenides (TMDs). Among TMDs, the origin of the CDW in VSe2 remains highly debated. Here, by means of inelastic x-ray scattering and first-principles calculations, we show that the CDW transition is driven by the collapse at 110 K of an acoustic mode at qCDW = (2.25 0 0.7) r.l.u. The softening starts below 225 K and expands over a wide region of the Brillouin zone, identifying the electron-phonon interaction as the driving force of the CDW. This is supported by our calculations that determine a large momentum-dependence of the electron-phonon matrix-elements that peak at the CDW wave vector. Our first-principles anharmonic calculations reproduce the temperature dependence of the soft mode and the TCDW onset only when considering the out-of-plane van der Waals interactions, which reveal crucial for the melting of the CDW phase. The nature of the charge density wave transition in VSe2 is still debated. Here, the authors demonstrate that the transition is mainly driven by electron-phonon interactions, despite the presence of the Fermi-surface nesting, and that Wan-der-Waals forces are responsible for melting of the charge density wave order.
Collapse
|
30
|
Schröter NBM, Robredo I, Klemenz S, Kirby RJ, Krieger JA, Pei D, Yu T, Stolz S, Schmitt T, Dudin P, Kim TK, Cacho C, Schnyder A, Bergara A, Strocov VN, de Juan F, Vergniory MG, Schoop LM. Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS 2. SCIENCE ADVANCES 2020; 6:eabd5000. [PMID: 33355138 PMCID: PMC11206217 DOI: 10.1126/sciadv.abd5000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS2, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS2 as a spin injector by modifying its spin polarization at interfaces. In addition, we directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS2 cannot be a true half-metal.
Collapse
Affiliation(s)
- Niels B M Schröter
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| | - Iñigo Robredo
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- Condensed Matter Physics Department, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| | - Sebastian Klemenz
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Robert J Kirby
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | - Jonas A Krieger
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratorium für Festkörperphysik, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Ding Pei
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Tianlun Yu
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Samuel Stolz
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Andreas Schnyder
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Aitor Bergara
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- Condensed Matter Physics Department, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- Centro de Física de Materiales, Centro Mixto CSIC -UPV/EHU, 20018 Donostia, Spain
| | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Fernando de Juan
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Maia G Vergniory
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
31
|
Schröter NBM, Stolz S, Manna K, de Juan F, Vergniory MG, Krieger JA, Pei D, Schmitt T, Dudin P, Kim TK, Cacho C, Bradlyn B, Borrmann H, Schmidt M, Widmer R, Strocov VN, Felser C. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 2020; 369:179-183. [DOI: 10.1126/science.aaz3480] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/07/2020] [Indexed: 11/02/2022]
Abstract
Topological semimetals feature protected nodal band degeneracies characterized by a topological invariant known as the Chern number (C). Nodal band crossings with linear dispersion are expected to have at most |C|=4, which sets an upper limit to the magnitude of many topological phenomena in these materials. Here, we show that the chiral crystal palladium gallium (PdGa) displays multifold band crossings, which are connected by exactly four surface Fermi arcs, thus proving that they carry the maximal Chern number magnitude of 4. By comparing two enantiomers, we observe a reversal of their Fermi-arc velocities, which demonstrates that the handedness of chiral crystals can be used to control the sign of their Chern numbers.
Collapse
Affiliation(s)
| | - Samuel Stolz
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Kaustuv Manna
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| | - Fernando de Juan
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Maia G. Vergniory
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Jonas A. Krieger
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratorium für Festkörperphysik, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ding Pei
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Barry Bradlyn
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA
| | - Horst Borrmann
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| | - Marcus Schmidt
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| | - Roland Widmer
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Vladimir N. Strocov
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Claudia Felser
- Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany
| |
Collapse
|
32
|
Knowles P, Yang B, Muramatsu T, Moulding O, Buhot J, Sayers CJ, Da Como E, Friedemann S. Fermi Surface Reconstruction and Electron Dynamics at the Charge-Density-Wave Transition in TiSe_{2}. PHYSICAL REVIEW LETTERS 2020; 124:167602. [PMID: 32383948 DOI: 10.1103/physrevlett.124.167602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
The evolution of the charge carrier concentrations and mobilities are examined across the charge-density-wave (CDW) transition in TiSe_{2}. Combined quantum oscillation and magnetotransport measurements show that a small electron pocket dominates the electronic properties at low temperatures while an electron and hole pocket contribute at room temperature. At the CDW transition, an abrupt Fermi surface reconstruction and a minimum in the electron and hole mobilities are extracted from two-band and Kohler analysis of magnetotransport measurements. The minimum in the mobilities is associated with the overseen role of scattering from the softening CDW mode. With the carrier concentrations and dynamics dominated by the CDW and the associated bosonic mode, our results highlight TiSe_{2} as a prototypical system to study the Fermi surface reconstruction at a density-wave transition.
Collapse
Affiliation(s)
- Patrick Knowles
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Bo Yang
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Takaki Muramatsu
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Owen Moulding
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Jonathan Buhot
- High Field Magnet Laboratory, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Charles J Sayers
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Enrico Da Como
- Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sven Friedemann
- HH Wills Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
33
|
Xue Y, Zhang Y, Wang H, Lin S, Li Y, Dai JY, Lau SP. Thickness-dependent magnetotransport properties in 1T VSe 2 single crystals prepared by chemical vapor deposition. NANOTECHNOLOGY 2020; 31:145712. [PMID: 31860893 DOI: 10.1088/1361-6528/ab6478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) metallic transition metal dichalcogenides (TMDs) exhibit fascinating quantum effects, such as charge-density-wave (CDW) and weak antilocalization (WAL) effect. Herein, low temperature synthesis of 1T phase VSe2 single crystals with thickness ranging from 3 to 41 nm by chemical vapor deposition (CVD) is reported. The VSe2 shows a decreasing phase transition temperature of the CDW when the thickness is decreased. Moreover, low-temperature magnetotransport measurements demonstrate a linear positive and non-saturating magnetoresistance (MR) of 35% from a 35 nm thick VSe2 at 15 T and 2 K due to CDW induce mobility fluctuations. Surprisingly, Kohler's rule analysis of the MR reveals the non-applicability of Kohler's rule for temperature above 50 K indicating that the MR behavior cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Furthermore, WAL effect is observed in the 4.2 nm thick VSe2 at low magnetic fields at 2 K, revealing the contribution of the quantum interference effect at the 2D limit. The phase coherence length [Formula: see text] and spin-orbit scattering length [Formula: see text] were determined to be 73 nm and 18 nm at 2 K, respectively. Our work opens new avenues to study the fundamental quantum phenomena in CVD-deposited TMDs.
Collapse
Affiliation(s)
- Yunzhou Xue
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Duvjir G, Choi BK, Ly TT, Lam NH, Chun SH, Jang K, Soon A, Chang YJ, Kim J. Novel polymorphic phase of two-dimensional VSe 2: the 1T' structure and its lattice dynamics. NANOSCALE 2019; 11:20096-20101. [PMID: 31612892 DOI: 10.1039/c9nr06076f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymorphisms allowing multiple structural phases are among the most fascinating properties of transition metal dichalcogenides (TMDs). Herein, the polymorphic 1T' phase and its lattice dynamics for bilayer VSe2 grown on epitaxial bilayer graphene are investigated via low temperature scanning tunneling microscopy (STM). The 1T' structure, mostly observed in group-6 TMDs, is unexpected in VSe2, which is a group-5 TMD. Emergence of the 1T' structure in bilayer VSe2 suggests the important roles of interface and layer configurations, providing new possibilities regarding the polymorphism of TMDs. Detailed topographical analysis elucidates the microscopic nature of the 1T' structure, confirming that Se-like and V-like surfaces can be resolved depending on the polarity of the sample bias. In addition, bilayer VSe2 can transit from a static state of the 1T' phase to a dynamic state consisting of lattice vibrations, triggered by tunneling current from the STM tip. Topography also shows hysteretic behavior during the static-dynamic transition, which is attributed to latent energy existing between the two states. The observed lattice dynamics involve vibrational motion of the Se atoms and the middle V atoms. Our observations will provide important information to establish in-depth understanding of the microscopic nature of 1T' structures and the polymorphism of two-dimensional TMDs.
Collapse
Affiliation(s)
- Ganbat Duvjir
- Department of Physics, BRL, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea.
| | - Byoung Ki Choi
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea.
| | - Trinh Thi Ly
- Department of Physics, BRL, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea.
| | - Nguyen Huu Lam
- Department of Physics, BRL, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea.
| | - Seung-Hyun Chun
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Kyuha Jang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Aloysius Soon
- Department of Materials Science and Engineering and Center for Artificial Synesthesia Materials Discovery, Yonsei University, Seoul 03722, Korea
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea.
| | - Jungdae Kim
- Department of Physics, BRL, and EHSRC, University of Ulsan, Ulsan 44610, Republic of Korea.
| |
Collapse
|
35
|
Liu H, Bao L, Zhou Z, Che B, Zhang R, Bian C, Ma R, Wu L, Yang H, Li J, Gu C, Shen CM, Du S, Gao HJ. Quasi-2D Transport and Weak Antilocalization Effect in Few-layered VSe 2. NANO LETTERS 2019; 19:4551-4559. [PMID: 31241975 DOI: 10.1021/acs.nanolett.9b01412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With strong spin-orbit coupling (SOC), ultrathin two-dimensional (2D) transitional metal chalcogenides (TMDs) are predicted to exhibit weak antilocalization (WAL) effect at low temperatures. The observation of WAL effect in VSe2 is challenging due to the relative weak SOC and three-dimensional (3D) transport nature in thick VSe2. Here, we report on the observation of quasi-2D transport and WAL effect in sublimed-salt-assisted low-temperature chemical vapor deposition (CVD) grown few-layered high-quality VSe2 nanosheets. The WAL magnitudes in magnetoconductance can be perfectly fitted by the 2D Hikami-Larkin-Nagaoka (HLN) equation in the presence of strong SOC, by which the spin-orbit scattering length lSO and phase coherence length lϕ have been extracted. The phase coherence length lϕ shows a power law dependence with temperature, lϕ∼ T-1/2, revealing an electron-electron interaction-dominated dephasing mechanism. Such sublimed-salt-assisted growth of high-quality few-layered VSe2 and the observation of WAL pave the way for future spintronic and valleytronic applications.
Collapse
Affiliation(s)
- Hongtao Liu
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Lihong Bao
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , P. R. China
| | - Zhang Zhou
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Bingyu Che
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Ruizi Zhang
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Ce Bian
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Ruisong Ma
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Liangmei Wu
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Haifang Yang
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Junjie Li
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Changzhi Gu
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| | - Cheng-Min Shen
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , P. R. China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , P. R. China
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences , Chinese Academy of Sciences, Beijing , 100190 , P. R. China
| |
Collapse
|
36
|
Ma JZ, Nie SM, Yi CJ, Jandke J, Shang T, Yao MY, Naamneh M, Yan LQ, Sun Y, Chikina A, Strocov VN, Medarde M, Song M, Xiong YM, Xu G, Wulfhekel W, Mesot J, Reticcioli M, Franchini C, Mudry C, Müller M, Shi YG, Qian T, Ding H, Shi M. Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd 2As 2. SCIENCE ADVANCES 2019; 5:eaaw4718. [PMID: 31309151 PMCID: PMC6625818 DOI: 10.1126/sciadv.aaw4718] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/10/2019] [Indexed: 05/22/2023]
Abstract
Weyl fermions as emergent quasiparticles can arise in Weyl semimetals (WSMs) in which the energy bands are nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetically induced WSMs is scarce. Here, using photoemission spectroscopy, we observe that the degeneracy of Bloch bands is already lifted in the paramagnetic phase of EuCd2As2. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi-long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Fermi level. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not essential requirements for WSM states in centrosymmetric systems and that WSM states can emerge in a wider range of condensed matter systems than previously thought.
Collapse
Affiliation(s)
- J.-Z. Ma
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, CH-10 15 Lausanne, Switzerland
| | - S. M. Nie
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - C. J. Yi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - J. Jandke
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - T. Shang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, CH-10 15 Lausanne, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - M. Y. Yao
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - M. Naamneh
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - L. Q. Yan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Y. Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - A. Chikina
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - V. N. Strocov
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - M. Medarde
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - M. Song
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Y.-M. Xiong
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - G. Xu
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - W. Wulfhekel
- Physikalisches Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - J. Mesot
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Institute of Condensed Matter Physics, École Polytechnique Fédérale de Lausanne, CH-10 15 Lausanne, Switzerland
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - M. Reticcioli
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, A-1090 Vienna, Austria
| | - C. Franchini
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, A-1090 Vienna, Austria
- Dipartimento di Fisica e Astronomia, Università di Bologna, 40127 Bologna, Italy
| | - C. Mudry
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Institute of Physics, Ecole Polytechnique Federale de Lausanne, CH1015 Lausanne, Switzerland
| | - M. Müller
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Y. G. Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - T. Qian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - H. Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - M. Shi
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
37
|
Yao MY, Xu N, Wu QS, Autès G, Kumar N, Strocov VN, Plumb NC, Radovic M, Yazyev OV, Felser C, Mesot J, Shi M. Observation of Weyl Nodes in Robust Type-II Weyl Semimetal WP_{2}. PHYSICAL REVIEW LETTERS 2019; 122:176402. [PMID: 31107063 DOI: 10.1103/physrevlett.122.176402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 06/09/2023]
Abstract
Distinct to type-I Weyl semimetals (WSMs) that host quasiparticles described by the Weyl equation, the energy dispersion of quasiparticles in type-II WSMs violates Lorentz invariance and the Weyl cones in the momentum space are tilted. Since it was proposed that type-II Weyl fermions could emerge from (W,Mo)Te_{2} and (W,Mo)P_{2} families of materials, a large number of experiments have been dedicated to unveiling the possible manifestation of type-II WSMs, e.g., surface-state Fermi arcs. However, the interpretations of the experimental results are very controversial. Here, using angle-resolved photoemission spectroscopy supported by the first-principles calculations, we probe the tilted Weyl cone bands in the bulk electronic structure of WP_{2} directly, which are at the origin of Fermi arcs at the surfaces and transport properties related to the chiral anomaly in type-II WSMs. Our results ascertain that, due to the spin-orbit coupling, the Weyl nodes originate from the splitting of fourfold degenerate band-crossing points with Chern numbers C=±2 induced by the crystal symmetries of WP_{2}, which is unique among all the discovered WSMs. Our finding also provides a guiding line to observe the chiral anomaly that could manifest in novel transport properties.
Collapse
Affiliation(s)
- M-Y Yao
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - N Xu
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Q S Wu
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - G Autès
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - N Kumar
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - V N Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - N C Plumb
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - M Radovic
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - O V Yazyev
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - C Felser
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - J Mesot
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - M Shi
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
38
|
Chen P, Pai WW, Chan YH, Madhavan V, Chou MY, Mo SK, Fedorov AV, Chiang TC. Unique Gap Structure and Symmetry of the Charge Density Wave in Single-Layer VSe_{2}. PHYSICAL REVIEW LETTERS 2018; 121:196402. [PMID: 30468619 DOI: 10.1103/physrevlett.121.196402] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 06/09/2023]
Abstract
Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe_{2}, which shows a (sqrt[7]×sqrt[3]) CDW in contrast to the (4×4) CDW for the layers in bulk VSe_{2}. Angle-resolved photoemission spectroscopy from the single layer shows a sizable (sqrt[7]×sqrt[3]) CDW gap of ∼100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit.
Collapse
Affiliation(s)
- P Chen
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Woei Wu Pai
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Y-H Chan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - V Madhavan
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902, USA
| | - M Y Chou
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - S-K Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A-V Fedorov
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T-C Chiang
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902, USA
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
39
|
Duvjir G, Choi BK, Jang I, Ulstrup S, Kang S, Thi Ly T, Kim S, Choi YH, Jozwiak C, Bostwick A, Rotenberg E, Park JG, Sankar R, Kim KS, Kim J, Chang YJ. Emergence of a Metal-Insulator Transition and High-Temperature Charge-Density Waves in VSe 2 at the Monolayer Limit. NANO LETTERS 2018; 18:5432-5438. [PMID: 30063833 DOI: 10.1021/acs.nanolett.8b01764] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Emergent phenomena driven by electronic reconstructions in oxide heterostructures have been intensively discussed. However, the role of these phenomena in shaping the electronic properties in van der Waals heterointerfaces has hitherto not been established. By reducing the material thickness and forming a heterointerface, we find two types of charge-ordering transitions in monolayer VSe2 on graphene substrates. Angle-resolved photoemission spectroscopy (ARPES) uncovers that Fermi-surface nesting becomes perfect in ML VSe2. Renormalization-group analysis confirms that imperfect nesting in three dimensions universally flows into perfect nesting in two dimensions. As a result, the charge-density wave-transition temperature is dramatically enhanced to a value of 350 K compared to the 105 K in bulk VSe2. More interestingly, ARPES and scanning tunneling microscopy measurements confirm an unexpected metal-insulator transition at 135 K that is driven by lattice distortions. The heterointerface plays an important role in driving this novel metal-insulator transition in the family of monolayer transition-metal dichalcogenides.
Collapse
Affiliation(s)
- Ganbat Duvjir
- Department of Physics, BRL, and EHSRC , University of Ulsan , Ulsan 44610 , Republic of Korea
| | - Byoung Ki Choi
- Department of Physics , University of Seoul , Seoul 02504 , Republic of Korea
| | - Iksu Jang
- Department of Physics , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Søren Ulstrup
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center , Aarhus University , 8000 Aarhus C , Denmark
| | - Soonmin Kang
- Center for Correlated Electron Systems , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- Department of Physics and Astronomy , Seoul National University (SNU) , Seoul 08826 , Republic of Korea
| | - Trinh Thi Ly
- Department of Physics, BRL, and EHSRC , University of Ulsan , Ulsan 44610 , Republic of Korea
| | - Sanghwa Kim
- Department of Physics, BRL, and EHSRC , University of Ulsan , Ulsan 44610 , Republic of Korea
| | - Young Hwan Choi
- Department of Physics , University of Seoul , Seoul 02504 , Republic of Korea
| | - Chris Jozwiak
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Aaron Bostwick
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Eli Rotenberg
- Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Je-Geun Park
- Center for Correlated Electron Systems , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- Department of Physics and Astronomy , Seoul National University (SNU) , Seoul 08826 , Republic of Korea
| | - Raman Sankar
- Institute of Physics, Academia Sinica , Taipei 10617 , Taiwan
- Center for Condensed Matter Sciences , National Taiwan University , Taipei 10617 , Taiwan
| | - Ki-Seok Kim
- Department of Physics , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea
| | - Jungdae Kim
- Department of Physics, BRL, and EHSRC , University of Ulsan , Ulsan 44610 , Republic of Korea
| | - Young Jun Chang
- Department of Physics , University of Seoul , Seoul 02504 , Republic of Korea
| |
Collapse
|
40
|
Ahn J, Kim D, Kim Y, Yang BJ. Band Topology and Linking Structure of Nodal Line Semimetals with Z_{2} Monopole Charges. PHYSICAL REVIEW LETTERS 2018; 121:106403. [PMID: 30240267 DOI: 10.1103/physrevlett.121.106403] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
We study the band topology and the associated linking structure of topological semimetals with nodal lines carrying Z_{2} monopole charges, which can be realized in three-dimensional systems invariant under the combination of inversion P and time reversal T when spin-orbit coupling is negligible. In contrast to the well-known PT-symmetric nodal lines protected only by the π Berry phase, in which a single nodal line can exist, the nodal lines with Z_{2} monopole charges should always exist in pairs. We show that a pair of nodal lines with Z_{2} monopole charges is created by a double band inversion process and that the resulting nodal lines are always linked by another nodal line formed between the two topmost occupied bands. It is shown that both the linking structure and the Z_{2} monopole charge are the manifestation of the nontrivial band topology characterized by the second Stiefel-Whitney class, which can be read off from the Wilson loop spectrum. We show that the second Stiefel-Whitney class can serve as a well-defined topological invariant of a PT-invariant two-dimensional insulator in the absence of Berry phase. Based on this, we propose that pair creation and annihilation of nodal lines with Z_{2} monopole charges can mediate a topological phase transition between a normal insulator and a three-dimensional weak Stiefel-Whitney insulator. Moreover, using first-principles calculations, we predict ABC-stacked graphdiyne as a nodal line semimetal (NLSM) with Z_{2} monopole charges having the linking structure. Finally, we develop a formula for computing the second Stiefel-Whitney class based on parity eigenvalues at inversion-invariant momenta, which is used to prove the quantized bulk magnetoelectric response of NLSMs with Z_{2} monopole charges under a T-breaking perturbation.
Collapse
Affiliation(s)
- Junyeong Ahn
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
- Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea
| | - Dongwook Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Youngkuk Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Bohm-Jung Yang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
- Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Korea
| |
Collapse
|
41
|
k-space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures. Nat Commun 2018; 9:2653. [PMID: 29992961 PMCID: PMC6041315 DOI: 10.1038/s41467-018-04354-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022] Open
Abstract
Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects, and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor heterostructures with an ultrathin barrier layer, key elements in current high-frequency and high-power electronics. Its electronic structure is accessed with angle-resolved photoelectron spectroscopy whose probing depth is pushed to a few nanometers using soft-X-ray synchrotron radiation. The experiment yields direct k-space images of the electronic structure fundamentals of this system—the Fermi surface, band dispersions and occupancy, and the Fourier composition of wavefunctions encoded in the k-dependent photoemission intensity. We discover significant planar anisotropy of the electron Fermi surface and effective mass connected with relaxation of the interfacial atomic positions, which translates into nonlinear (high-field) transport properties of the GaN/AlGaN heterostructures as an anisotropy of the saturation drift velocity of the 2D electrons. Semiconductor heterostructures hosting two-dimensional electron gases are widely used today in high-electron-mobility transistors. Here, the authors probe the electronic structure in GaN/AlGaN, heterostructures, discovering planar anisotropy of the electron Fermi surface, offering new insights into transport properties.
Collapse
|
42
|
Feng J, Biswas D, Rajan A, Watson MD, Mazzola F, Clark OJ, Underwood K, Marković I, McLaren M, Hunter A, Burn DM, Duffy LB, Barua S, Balakrishnan G, Bertran F, Le Fèvre P, Kim TK, van der Laan G, Hesjedal T, Wahl P, King PDC. Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe 2. NANO LETTERS 2018; 18:4493-4499. [PMID: 29912565 DOI: 10.1021/acs.nanolett.8b01649] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
How the interacting electronic states and phases of layered transition-metal dichalcogenides evolve when thinned to the single-layer limit is a key open question in the study of two-dimensional materials. Here, we use angle-resolved photoemission to investigate the electronic structure of monolayer VSe2 grown on bilayer graphene/SiC. While the global electronic structure is similar to that of bulk VSe2, we show that, for the monolayer, pronounced energy gaps develop over the entire Fermi surface with decreasing temperature below Tc = 140 ± 5 K, concomitant with the emergence of charge-order superstructures evident in low-energy electron diffraction. These observations point to a charge-density wave instability in the monolayer that is strongly enhanced over that of the bulk. Moreover, our measurements of both the electronic structure and of X-ray magnetic circular dichroism reveal no signatures of a ferromagnetic ordering, in contrast to the results of a recent experimental study as well as expectations from density functional theory. Our study thus points to a delicate balance that can be realized between competing interacting states and phases in monolayer transition-metal dichalcogenides.
Collapse
Affiliation(s)
- Jiagui Feng
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
- Suzhou Institute of Nano-Technology and Nanobionics (SINANO), CAS , 398 Ruoshui Road , SEID, SIP, Suzhou 215123 , China
| | - Deepnarayan Biswas
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Akhil Rajan
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Matthew D Watson
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Federico Mazzola
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Oliver J Clark
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Kaycee Underwood
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Igor Marković
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
- Max Planck Institute for Chemical Physics of Solids , Nöthnitzer Straße 40 , 01187 Dresden , Germany
| | - Martin McLaren
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Andrew Hunter
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - David M Burn
- Magnetic Spectroscopy Group, Diamond Light Source , Didcot OX11 0DE , United Kingdom
| | - Liam B Duffy
- Department of Physics , University of Oxford , Oxford OX1 3PU , United Kingdom
- ISIS, STFC, Rutherford Appleton Laboratory , Didcot OX11 0QX , United Kingdom
| | - Sourabh Barua
- Department of Physics , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Geetha Balakrishnan
- Department of Physics , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - François Bertran
- Synchrotron SOLEIL, CNRS-CEA , L'Orme des Merisiers, Saint-Aubin-BP48 , 91192 Gif-sur-Yvette , France
| | - Patrick Le Fèvre
- Synchrotron SOLEIL, CNRS-CEA , L'Orme des Merisiers, Saint-Aubin-BP48 , 91192 Gif-sur-Yvette , France
| | - Timur K Kim
- Diamond Light Source , Harwell Campus , Didcot OX11 0DE , United Kingdom
| | - Gerrit van der Laan
- Magnetic Spectroscopy Group, Diamond Light Source , Didcot OX11 0DE , United Kingdom
| | - Thorsten Hesjedal
- Department of Physics , University of Oxford , Oxford OX1 3PU , United Kingdom
| | - Peter Wahl
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| | - Phil D C King
- SUPA, School of Physics and Astronomy , University of St. Andrews , St. Andrews KY16 9SS , United Kingdom
| |
Collapse
|
43
|
Han GH, Duong DL, Keum DH, Yun SJ, Lee YH. van der Waals Metallic Transition Metal Dichalcogenides. Chem Rev 2018; 118:6297-6336. [PMID: 29957928 DOI: 10.1021/acs.chemrev.7b00618] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition metal dichalcogenides are layered materials which are composed of transition metals and chalcogens of the group VIA in a 1:2 ratio. These layered materials have been extensively investigated over synthesis and optical and electrical properties for several decades. It can be insulators, semiconductors, or metals revealing all types of condensed matter properties from a magnetic lattice distorted to superconducting characteristics. Some of these also feature the topological manner. Instead of covering the semiconducting properties of transition metal dichalcogenides, which have been extensively revisited and reviewed elsewhere, here we present the structures of metallic transition metal dichalcogenides and their synthetic approaches for not only high-quality wafer-scale samples using conventional methods (e.g., chemical vapor transport, chemical vapor deposition) but also local small areas by a modification of the materials using Li intercalation, electron beam irradiation, light illumination, pressures, and strains. Some representative band structures of metallic transition metal dichalcogenides and their strong layer-dependence are reviewed and updated, both in theoretical calculations and experiments. In addition, we discuss the physical properties of metallic transition metal dichalcogenides such as periodic lattice distortion, magnetoresistance, superconductivity, topological insulator, and Weyl semimetal. Approaches to overcome current challenges related to these materials are also proposed.
Collapse
Affiliation(s)
- Gang Hee Han
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea.,Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Dinh Loc Duong
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea.,Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Dong Hoon Keum
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea.,Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Seok Joon Yun
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea.,Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP) , Institute for Basic Science (IBS) , Suwon 16419 , Republic of Korea.,Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea.,Department of Physics , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
44
|
Streun A, Garvey T, Rivkin L, Schlott V, Schmidt T, Willmott P, Wrulich A. SLS-2 - the upgrade of the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:631-641. [PMID: 29714174 PMCID: PMC5929351 DOI: 10.1107/s1600577518002722] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/15/2018] [Indexed: 05/12/2023]
Abstract
An upgrade of the Swiss Light Source (SLS) is planned for 2021-2024 and includes the exchange of the existing storage ring by a new one providing about 40-50 times lower emittance in user operation mode. This will extend the performance of SLS in particular in the fields of coherent imaging, full-field tomography, soft X-ray angle-resolved photoelectron spectroscopy and resonant inelastic X-ray scattering. A science case and a conceptual design for the machine have been established. As a summary of these reports, the novel lattice design, undulator developments and scientific highlights are presented.
Collapse
Affiliation(s)
- Andreas Streun
- Paul Scherrer Institut, 5232 Villigen, Switzerland
- Correspondence e-mail:
| | | | - Lenny Rivkin
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Cattelan M, Fox NA. A Perspective on the Application of Spatially Resolved ARPES for 2D Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E284. [PMID: 29702567 PMCID: PMC5977298 DOI: 10.3390/nano8050284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
In this paper, a perspective on the application of Spatially- and Angle-Resolved PhotoEmission Spectroscopy (ARPES) for the study of two-dimensional (2D) materials is presented. ARPES allows the direct measurement of the electronic band structure of materials generating extremely useful insights into their electronic properties. The possibility to apply this technique to 2D materials is of paramount importance because these ultrathin layers are considered fundamental for future electronic, photonic and spintronic devices. In this review an overview of the technical aspects of spatially localized ARPES is given along with a description of the most advanced setups for laboratory and synchrotron-based equipment. This technique is sensitive to the lateral dimensions of the sample. Therefore, a discussion on the preparation methods of 2D material is presented. Some of the most interesting results obtained by ARPES are reported in three sections including: graphene, transition metal dichalcogenides (TMDCs) and 2D heterostructures. Graphene has played a key role in ARPES studies because it inspired the use of this technique with other 2D materials. TMDCs are presented for their peculiar transport, optical and spin properties. Finally, the section featuring heterostructures highlights a future direction for research into 2D material structures.
Collapse
Affiliation(s)
- Mattia Cattelan
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK; .
| | - Neil A Fox
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK; .
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| |
Collapse
|
46
|
Bonilla M, Kolekar S, Ma Y, Diaz HC, Kalappattil V, Das R, Eggers T, Gutierrez HR, Phan MH, Batzill M. Strong room-temperature ferromagnetism in VSe 2 monolayers on van der Waals substrates. NATURE NANOTECHNOLOGY 2018; 13:289-293. [PMID: 29459653 DOI: 10.1038/s41565-018-0063-9] [Citation(s) in RCA: 513] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 01/04/2018] [Indexed: 05/20/2023]
Abstract
Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic 1 , optical 2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9 ) and Cr2Ge2Te6 (ref. 10 ), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.
Collapse
Affiliation(s)
- Manuel Bonilla
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Sadhu Kolekar
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Yujing Ma
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Horacio Coy Diaz
- Department of Physics, University of South Florida, Tampa, FL, USA
| | | | - Raja Das
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Tatiana Eggers
- Department of Physics, University of South Florida, Tampa, FL, USA
| | | | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Matthias Batzill
- Department of Physics, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
47
|
Electrons and Polarons at Oxide Interfaces Explored by Soft-X-Ray ARPES. SPECTROSCOPY OF COMPLEX OXIDE INTERFACES 2018. [DOI: 10.1007/978-3-319-74989-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Cao Q, Yun FF, Sang L, Xiang F, Liu G, Wang X. Defect introduced paramagnetism and weak localization in two-dimensional metal VSe 2. NANOTECHNOLOGY 2017; 28:475703. [PMID: 28952467 DOI: 10.1088/1361-6528/aa8f6c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have carried out a detailed investigation of the magnetism, valence state, and magnetotransport in VSe2 bulk single crystals, as well as in laminates obtained by mechanical exfoliation. In sharp contrast to the ferromagnetic behavior reported previously, here, no ferromagnetism could be detected for VSe2 single crystal and laminate from room temperature down to 2 K. Neither did we find the Curie paramagnetism expected due to the 3d 1 odd-electronic configuration of covalent V4+ ions. Rather, intrinsic VSe2 is a non-magnetic alloy without local moment. Only a weak paramagnetic contribution introduced by defects is noticeable below 50 K. A weak localization effect due to defects was also observed in VSe2 single crystals for the first time.
Collapse
Affiliation(s)
- Qiang Cao
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2500, Australia. School of Physics and Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Choi BK, Kim M, Jung KH, Kim J, Yu KS, Chang YJ. Temperature dependence of band gap in MoSe 2 grown by molecular beam epitaxy. NANOSCALE RESEARCH LETTERS 2017; 12:492. [PMID: 28812234 PMCID: PMC5557720 DOI: 10.1186/s11671-017-2266-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/03/2017] [Indexed: 05/13/2023]
Abstract
We report on a temperature-dependent band gap property of epitaxial MoSe2 ultrathin films. We prepare uniform MoSe2 films epitaxially grown on graphenized SiC substrates with controlled thicknesses by molecular beam epitaxy. Spectroscopic ellipsometry measurements upon heating sample in ultra-high vacuum showed temperature-dependent optical spectra between room temperature to 850 °C. We observed a gradual energy shift of optical band gap depending on the measurement temperature for different film thicknesses. Fitting with the vibronic model of Huang and Rhys indicates that the constant thermal expansion accounts for the steady decrease of band gap. We also directly probe both optical and stoichiometric changes across the decomposition temperature, which should be useful for developing high-temperature electronic devices and fabrication process with the similar metal chalcogenide films.
Collapse
Affiliation(s)
- Byoung Ki Choi
- Department of Physics, University of Seoul, Seoul, 02504 Republic of Korea
| | - Minu Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826 Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwang-Hwan Jung
- Korea Materials and Analysis Corp, Daejeon, 34028 Republic of Korea
| | - Jwasoon Kim
- Korea Materials and Analysis Corp, Daejeon, 34028 Republic of Korea
| | - Kyu-Sang Yu
- Korea Materials and Analysis Corp, Daejeon, 34028 Republic of Korea
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul, 02504 Republic of Korea
| |
Collapse
|
50
|
Di Sante D, Das PK, Bigi C, Ergönenc Z, Gürtler N, Krieger JA, Schmitt T, Ali MN, Rossi G, Thomale R, Franchini C, Picozzi S, Fujii J, Strocov VN, Sangiovanni G, Vobornik I, Cava RJ, Panaccione G. Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe_{2}. PHYSICAL REVIEW LETTERS 2017; 119:026403. [PMID: 28753342 DOI: 10.1103/physrevlett.119.026403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 06/07/2023]
Abstract
By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first-principles calculations we explored the bulk electron states of WTe_{2}, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe_{2} around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.
Collapse
Affiliation(s)
- Domenico Di Sante
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany
| | - Pranab Kumar Das
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
- International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34100 Trieste, Italy
| | - C Bigi
- Dipartimento di Fisica, Universitá di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - Z Ergönenc
- Computational Materials Physics, University of Vienna, Sensengasse 8/8, A-1090 Vienna, Austria
| | - N Gürtler
- Computational Materials Physics, University of Vienna, Sensengasse 8/8, A-1090 Vienna, Austria
| | - J A Krieger
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
- Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - T Schmitt
- Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen, Switzerland
| | - M N Ali
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - G Rossi
- Dipartimento di Fisica, Universitá di Milano, Via Celoria 16, I-20133 Milano, Italy
| | - R Thomale
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany
| | - C Franchini
- Computational Materials Physics, University of Vienna, Sensengasse 8/8, A-1090 Vienna, Austria
| | - S Picozzi
- Consiglio Nazionale delle Ricerche (CNR-SPIN), Via Vetoio, L'Aquila 67100, Italy
| | - J Fujii
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| | - V N Strocov
- Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen, Switzerland
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany
| | - I Vobornik
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| | - R J Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - G Panaccione
- Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, in Area Science Park, S.S.14, Km 163.5, I-34149 Trieste, Italy
| |
Collapse
|