1
|
Cho W, Kang YG, Cha J, Lee DHD, Kiem DH, Oh J, Joo Y, Yer S, Kim D, Park J, Kim C, Yang Y, Kim Y, Han MJ, Yang H. Singular Hall Response from a Correlated Ferromagnetic Flat Nodal-Line Semimetal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402040. [PMID: 38798189 DOI: 10.1002/adma.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Topological quantum phases are largely understood in weakly correlated systems, which have identified various quantum phenomena, such as the spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, a singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in a van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc = 347 K is reported. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. The scanning tunneling microscopy, circular dichroism in angle-resolved photoemission spectroscopy, and theoretical calculations support the original electronic features of the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.
Collapse
Affiliation(s)
- Woohyun Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yoon-Gu Kang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jaehun Cha
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong Hyun David Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Do Hoon Kiem
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jaewhan Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yanggeun Joo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sangsu Yer
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jongho Park
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, South Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Graduate School of Semiconductor Technology, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yeongkwan Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Graduate School of Semiconductor Technology, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
2
|
Beaulieu S, Dong S, Christiansson V, Werner P, Pincelli T, Ziegler JD, Taniguchi T, Watanabe K, Chernikov A, Wolf M, Rettig L, Ernstorfer R, Schüler M. Berry curvature signatures in chiroptical excitonic transitions. SCIENCE ADVANCES 2024; 10:eadk3897. [PMID: 38941460 PMCID: PMC11212730 DOI: 10.1126/sciadv.adk3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The topology of the electronic band structure of solids can be described by its Berry curvature distribution across the Brillouin zone. We theoretically introduce and experimentally demonstrate a general methodology based on the measurement of energy- and momentum-resolved optical transition rates, allowing to reveal signatures of Berry curvature texture in reciprocal space. By performing time- and angle-resolved photoemission spectroscopy of atomically thin WSe2 using polarization-modulated excitations, we demonstrate that excitons become an asset in extracting the quantum geometrical properties of solids. We also investigate the resilience of our measurement protocol against ultrafast scattering processes following direct chiroptical transitions.
Collapse
Affiliation(s)
- Samuel Beaulieu
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405 Talence, France
| | - Shuo Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tommaso Pincelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Jonas D. Ziegler
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Laurenz Rettig
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Ralph Ernstorfer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Michael Schüler
- Laboratory for Materials Simulations, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Brinkman SS, Tan XL, Brekke B, Mathisen AC, Finnseth Ø, Schenk RJ, Hagiwara K, Huang MJ, Buck J, Kalläne M, Hoesch M, Rossnagel K, Ou Yang KH, Lin MT, Shu GJ, Chen YJ, Tusche C, Bentmann H. Chirality-Driven Orbital Angular Momentum and Circular Dichroism in CoSi. PHYSICAL REVIEW LETTERS 2024; 132:196402. [PMID: 38804933 DOI: 10.1103/physrevlett.132.196402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft x-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopolelike orbital-momentum locking that depends on crystal handedness. We introduce the intrinsic chiral circular dichroism, icCD, as a differential photoemission observable and a natural probe of chiral electron states. Our findings render chiral crystals promising for spin-orbitronics applications.
Collapse
Affiliation(s)
- Stefanie Suzanne Brinkman
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Xin Liang Tan
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich 52425, Germany
- Faculty of Physics, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Bjørnulf Brekke
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anders Christian Mathisen
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Øyvind Finnseth
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Richard Justin Schenk
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kenta Hagiwara
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich 52425, Germany
- Faculty of Physics, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Meng-Jie Huang
- Ruprecht Haensel Laboratory, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, DESY, 22607 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jens Buck
- Ruprecht Haensel Laboratory, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, DESY, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Matthias Kalläne
- Ruprecht Haensel Laboratory, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, DESY, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Moritz Hoesch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Kai Rossnagel
- Ruprecht Haensel Laboratory, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, DESY, 22607 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Kui-Hon Ou Yang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Minn-Tsong Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Guo-Jiun Shu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ying-Jiun Chen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich 52425, Germany
- Faculty of Physics, University of Duisburg-Essen, Duisburg 47057, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Christian Tusche
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich 52425, Germany
- Faculty of Physics, University of Duisburg-Essen, Duisburg 47057, Germany
| | - Hendrik Bentmann
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Zhu YP, Chen X, Liu XR, Liu Y, Liu P, Zha H, Qu G, Hong C, Li J, Jiang Z, Ma XM, Hao YJ, Zhu MY, Liu W, Zeng M, Jayaram S, Lenger M, Ding J, Mo S, Tanaka K, Arita M, Liu Z, Ye M, Shen D, Wrachtrup J, Huang Y, He RH, Qiao S, Liu Q, Liu C. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 2024; 626:523-528. [PMID: 38356068 DOI: 10.1038/s41586-024-07023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.
Collapse
Affiliation(s)
- Yu-Peng Zhu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xiaobing Chen
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xiang-Rui Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yuntian Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Pengfei Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Heming Zha
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gexing Qu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Caiyun Hong
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, Westlake University, Hangzhou, China
| | - Jiayu Li
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhicheng Jiang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ming Ma
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yu-Jie Hao
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Ming-Yuan Zhu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Wenjing Liu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zeng
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Sreehari Jayaram
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Malik Lenger
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Jianyang Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shu Mo
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Kiyohisa Tanaka
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masashi Arita
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Zhengtai Liu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mao Ye
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dawei Shen
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Yaobo Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Rui-Hua He
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, Westlake University, Hangzhou, China
| | - Shan Qiao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Qihang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Chang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China.
| |
Collapse
|
5
|
Heider T, Bihlmayer G, Schusser J, Reinert F, Minár J, Blügel S, Schneider CM, Plucinski L. Geometry-Induced Spin Filtering in Photoemission Maps from WTe_{2} Surface States. PHYSICAL REVIEW LETTERS 2023; 130:146401. [PMID: 37084452 DOI: 10.1103/physrevlett.130.146401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/22/2022] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
We demonstrate that an important quantum material WTe_{2} exhibits a new type of geometry-induced spin filtering effect in photoemission, stemming from low symmetry that is responsible for its exotic transport properties. Through the laser-driven spin-polarized angle-resolved photoemission Fermi surface mapping, we showcase highly asymmetric spin textures of electrons photoemitted from the surface states of WTe_{2}. Such asymmetries are not present in the initial state spin textures, which are bound by the time-reversal and crystal lattice mirror plane symmetries. The findings are reproduced qualitatively by theoretical modeling within the one-step model photoemission formalism. The effect could be understood within the free-electron final state model as an interference due to emission from different atomic sites. The observed effect is a manifestation of time-reversal symmetry breaking of the initial state in the photoemission process, and as such it cannot be eliminated, but only its magnitude influenced, by special experimental geometries.
Collapse
Affiliation(s)
- Tristan Heider
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Gustav Bihlmayer
- Peter Grünberg Institut (PGI-1) and Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich and JARA, 52428 Jülich, Germany
| | - Jakub Schusser
- New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97070 Würzburg, Germany
| | - Friedrich Reinert
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97070 Würzburg, Germany
| | - Jan Minár
- New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic
| | - Stefan Blügel
- Peter Grünberg Institut (PGI-1) and Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich and JARA, 52428 Jülich, Germany
| | - Claus M Schneider
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany
- Physics Department, University of California, Davis, California 95616, USA
| | - Lukasz Plucinski
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
6
|
Schüler M, Schmitt T, Werner P. Probing magnetic orbitals and Berry curvature with circular dichroism in resonant inelastic X-ray scattering. NPJ QUANTUM MATERIALS 2023; 8:6. [PMID: 38666242 PMCID: PMC11041711 DOI: 10.1038/s41535-023-00538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/04/2023] [Indexed: 04/28/2024]
Abstract
Resonant inelastic X-ray scattering (RIXS) can probe localized excitations at selected atoms in materials, including particle-hole transitions between the valence and conduction bands. These transitions are governed by fundamental properties of the corresponding Bloch wave functions, including orbital and magnetic degrees of freedom, and quantum geometric properties such as the Berry curvature. In particular, orbital angular momentum (OAM), which is closely linked to the Berry curvature, can exhibit a nontrivial momentum dependence. We demonstrate how information on such OAM textures can be extracted from the circular dichroism in RIXS. Based on accurate modeling with a first-principles treatment of the key ingredient-the light-matter interaction-we simulate dichroic RIXS spectra for the prototypical transition-metal dichalcogenide MoSe2 and the two-dimensional topological insulator 1T'-MoS2. Guided by an intuitive picture of the optical selection rules, we discuss how the momentum-dependent OAM manifests itself in the dichroic RIXS signal if one controls the momentum transfer. Our calculations are performed for typical experimental geometries and parameter regimes, and demonstrate the possibility of observing the predicted circular dichroism in forthcoming experiments. Thus, our work establishes a new avenue for observing Berry curvature and topological states in quantum materials.
Collapse
Affiliation(s)
- Michael Schüler
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratory for Materials Simulations, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thorsten Schmitt
- Photon Science Division, Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Ünzelmann M, Bentmann H, Figgemeier T, Eck P, Neu JN, Geldiyev B, Diekmann F, Rohlf S, Buck J, Hoesch M, Kalläne M, Rossnagel K, Thomale R, Siegrist T, Sangiovanni G, Sante DD, Reinert F. Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs. Nat Commun 2021; 12:3650. [PMID: 34131129 PMCID: PMC8206138 DOI: 10.1038/s41467-021-23727-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids. Weyl semimetals exhibit Berry flux monopoles in momentum-space, but direct experimental evidence has remained elusive. Here, the authors reveal topologically non-trivial winding of the orbital-angular-momentum at the Weyl nodes and a chirality-dependent spin-angular-momentum of the Weyl bands, as a direct signature of the Berry flux monopoles in TaAs.
Collapse
Affiliation(s)
- M Ünzelmann
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany
| | - H Bentmann
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany.
| | - T Figgemeier
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany
| | - P Eck
- Theoretische Physik I, Universität Würzburg, Würzburg, Germany
| | - J N Neu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA.,National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - B Geldiyev
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany
| | - F Diekmann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Ruprecht Haensel Laboratory, Kiel University and DESY, Kiel, Germany
| | - S Rohlf
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Ruprecht Haensel Laboratory, Kiel University and DESY, Kiel, Germany
| | - J Buck
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Ruprecht Haensel Laboratory, Kiel University and DESY, Kiel, Germany
| | - M Hoesch
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M Kalläne
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Ruprecht Haensel Laboratory, Kiel University and DESY, Kiel, Germany
| | - K Rossnagel
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Ruprecht Haensel Laboratory, Kiel University and DESY, Kiel, Germany.,Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - R Thomale
- Theoretische Physik I, Universität Würzburg, Würzburg, Germany
| | - T Siegrist
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA.,National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - G Sangiovanni
- Theoretische Physik I, Universität Würzburg, Würzburg, Germany
| | - D Di Sante
- Theoretische Physik I, Universität Würzburg, Würzburg, Germany.,Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - F Reinert
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Okamura K. Spin-dependent electron-radiation interaction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:285501. [PMID: 34103459 DOI: 10.1088/1361-648x/abfc6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Spin-dependent electron-radiation interaction is derived from the Foldy-Wouthuysen transformations of the Dirac equation. A spin magnetic moment term is identified both with spin-preserving and spin-flipping transitions and inspected for atoms and condensed matter specifically of GaAs on the basis of first-principles calculation. The connections to spin relaxation and spin-resolved photoemission are also presented.
Collapse
Affiliation(s)
- Koshi Okamura
- Ronin Institute, Montclair, NJ 07043, United States of America
| |
Collapse
|
9
|
Nevola D, Li HX, Yan JQ, Moore RG, Lee HN, Miao H, Johnson PD. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi_{2}Te_{4}. PHYSICAL REVIEW LETTERS 2020; 125:117205. [PMID: 32975987 DOI: 10.1103/physrevlett.125.117205] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Surface magnetism and its correlation with the electronic structure are critical to understanding the topological surface state in the intrinsic magnetic topological insulator MnBi_{2}Te_{4}. Here, using static and time resolved angle-resolved photoemission spectroscopy (ARPES), we find a significant ARPES intensity change together with a gap opening on a Rashba-like conduction band. Comparison with a model simulation strongly indicates that the surface magnetism on cleaved MnBi_{2}Te_{4} is the same as its bulk state. The inability of surface ferromagnetism to open a gap in the topological surface state uncovers the novel complexity of MnBi_{2}Te_{4} that may be responsible for the low quantum anomalous Hall temperature of exfoliated MnBi_{2}Te_{4}.
Collapse
Affiliation(s)
- D Nevola
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - H X Li
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J-Q Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R G Moore
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H-N Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H Miao
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P D Johnson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
10
|
Usachov DY, Nechaev IA, Poelchen G, Güttler M, Krasovskii EE, Schulz S, Generalov A, Kliemt K, Kraiker A, Krellner C, Kummer K, Danzenbächer S, Laubschat C, Weber AP, Sánchez-Barriga J, Chulkov EV, Santander-Syro AF, Imai T, Miyamoto K, Okuda T, Vyalikh DV. Cubic Rashba Effect in the Surface Spin Structure of Rare-Earth Ternary Materials. PHYSICAL REVIEW LETTERS 2020; 124:237202. [PMID: 32603174 DOI: 10.1103/physrevlett.124.237202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Spin-orbit interaction and structure inversion asymmetry in combination with magnetic ordering is a promising route to novel materials with highly mobile spin-polarized carriers at the surface. Spin-resolved measurements of the photoemission current from the Si-terminated surface of the antiferromagnet TbRh_{2}Si_{2} and their analysis within an ab initio one-step theory unveil an unusual triple winding of the electron spin along the fourfold-symmetric constant energy contours of the surface states. A two-band k·p model is presented that yields the triple winding as a cubic Rashba effect. The curious in-plane spin-momentum locking is remarkably robust and remains intact across a paramagnetic-antiferromagnetic transition in spite of spin-orbit interaction on Rh atoms being considerably weaker than the out-of-plane exchange field due to the Tb 4f moments.
Collapse
Affiliation(s)
- D Yu Usachov
- St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg, 199034, Russia
| | - I A Nechaev
- Department of Electricity and Electronics, FCT-ZTF, UPV-EHU, 48080 Bilbao, Spain
| | - G Poelchen
- Institut für Festkörperphysik und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - M Güttler
- Institut für Festkörperphysik und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - E E Krasovskii
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Basque Country, Spain
- Departamento de Física de Materiales UPV/EHU, 20080 Donostia/San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - S Schulz
- Institut für Festkörperphysik und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - A Generalov
- Max IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
| | - K Kliemt
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, D-60438 Frankfurt am Main, Germany
| | - A Kraiker
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, D-60438 Frankfurt am Main, Germany
| | - C Krellner
- Kristall- und Materiallabor, Physikalisches Institut, Goethe-Universität Frankfurt, Max-von-Laue Strasse 1, D-60438 Frankfurt am Main, Germany
| | - K Kummer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, France
| | - S Danzenbächer
- Institut für Festkörperphysik und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - C Laubschat
- Institut für Festkörperphysik und Materialphysik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - A P Weber
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Basque Country, Spain
| | - J Sánchez-Barriga
- Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - E V Chulkov
- St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg, 199034, Russia
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Basque Country, Spain
- Departamento de Física de Materiales UPV/EHU, 20080 Donostia/San Sebastián, Basque Country, Spain
- Centro de Física de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, 20018 Donostia/San Sebastián, Basque Country, Spain
- Tomsk State University, Lenina Avenue 36, 634050, Tomsk, Russia
| | - A F Santander-Syro
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| | - T Imai
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - K Miyamoto
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - T Okuda
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - D V Vyalikh
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
11
|
Ünzelmann M, Bentmann H, Eck P, Kißlinger T, Geldiyev B, Rieger J, Moser S, Vidal RC, Kißner K, Hammer L, Schneider MA, Fauster T, Sangiovanni G, Di Sante D, Reinert F. Orbital-Driven Rashba Effect in a Binary Honeycomb Monolayer AgTe. PHYSICAL REVIEW LETTERS 2020; 124:176401. [PMID: 32412286 DOI: 10.1103/physrevlett.124.176401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The Rashba effect is fundamental to the physics of two-dimensional electron systems and underlies a variety of spintronic phenomena. It has been proposed that the formation of Rashba-type spin splittings originates microscopically from the existence of orbital angular momentum (OAM) in the Bloch wave functions. Here, we present detailed experimental evidence for this OAM-based origin of the Rashba effect by angle-resolved photoemission (ARPES) and two-photon photoemission experiments for a monolayer AgTe on Ag(111). Using quantitative low-energy electron diffraction analysis, we determine the structural parameters and the stacking of the honeycomb overlayer with picometer precision. Based on an orbital-symmetry analysis in ARPES and supported by first-principles calculations, we unequivocally relate the presence and absence of Rashba-type spin splittings in different bands of AgTe to the existence of OAM.
Collapse
Affiliation(s)
- Maximilian Ünzelmann
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Hendrik Bentmann
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Philipp Eck
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Tilman Kißlinger
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Begmuhammet Geldiyev
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Janek Rieger
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Simon Moser
- Experimentelle Physik IV and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Raphael C Vidal
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Katharina Kißner
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lutz Hammer
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - M Alexander Schneider
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Thomas Fauster
- Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
| | - Giorgio Sangiovanni
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Domenico Di Sante
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Friedrich Reinert
- Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
12
|
Prediction and observation of an antiferromagnetic topological insulator. Nature 2019; 576:416-422. [PMID: 31853084 DOI: 10.1038/s41586-019-1840-9] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/18/2019] [Indexed: 11/08/2022]
Abstract
Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering that MnBi2Te4 shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.
Collapse
|
13
|
Min CH, Bentmann H, Neu JN, Eck P, Moser S, Figgemeier T, Ünzelmann M, Kissner K, Lutz P, Koch RJ, Jozwiak C, Bostwick A, Rotenberg E, Thomale R, Sangiovanni G, Siegrist T, Di Sante D, Reinert F. Orbital Fingerprint of Topological Fermi Arcs in the Weyl Semimetal TaP. PHYSICAL REVIEW LETTERS 2019; 122:116402. [PMID: 30951331 DOI: 10.1103/physrevlett.122.116402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The monopnictides TaAs and TaP are well-established Weyl semimetals. Yet, a precise assignment of Fermi arcs, accommodating the predicted chiral charge of the bulk Weyl points, has been difficult in these systems, and the topological character of different surface features in the Fermi surface is not fully understood. Here, employing a joint analysis from linear dichroism in angle-resolved photoemission and first-principles calculations, we unveil the orbital texture on the full Fermi surface of TaP(001). We observe pronounced switches in the orbital texture at the projected Weyl nodes, and show how they facilitate a topological classification of the surface band structure. Our findings establish a critical role of the orbital degrees of freedom in mediating the surface-bulk connectivity in Weyl semimetals.
Collapse
Affiliation(s)
- Chul-Hee Min
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Hendrik Bentmann
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jennifer N Neu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Philipp Eck
- Theoretische Physik I, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Simon Moser
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tim Figgemeier
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Maximilian Ünzelmann
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Katharina Kissner
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter Lutz
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Roland J Koch
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ronny Thomale
- Theoretische Physik I, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Giorgio Sangiovanni
- Theoretische Physik I, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Theo Siegrist
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Domenico Di Sante
- Theoretische Physik I, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Friedrich Reinert
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
14
|
Miyamoto K, Wortelen H, Okuda T, Henk J, Donath M. Circular-polarized-light-induced spin polarization characterized for the Dirac-cone surface state at W(110) with C 2v symmetry. Sci Rep 2018; 8:10440. [PMID: 29993001 PMCID: PMC6041308 DOI: 10.1038/s41598-018-28693-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 11/15/2022] Open
Abstract
The C2v surface symmetry of W(110) strongly influences a spin-orbit-induced Dirac-cone-like surface state and its characterization by spin- and angle-resolved photoelectron spectroscopy. In particular, using circular polarized light, a distinctive k-dependent spin texture is observed along the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{{\boldsymbol{\Gamma }}{\boldsymbol{H}}}$$\end{document}ΓH¯ direction of the surface Brillouin zone. For all spin components Px, Py, and Pz, non-zero values are detected, while the initial-state spin polarization has only a Py component due to mirror symmetry. The observed complex spin texture of the surface state is controlled by transition matrix element effects, which include orbital symmetries of the involved electron states as well as the geometry of the experimental set-up.
Collapse
Affiliation(s)
- K Miyamoto
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan. .,Westfälische Wilhelms-Universität Münster, Physikalisches Institut, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany.
| | - H Wortelen
- Westfälische Wilhelms-Universität Münster, Physikalisches Institut, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - T Okuda
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan
| | - J Henk
- Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, Von-Seckendorff-Platz 1, 06120, Halle, Germany
| | - M Donath
- Westfälische Wilhelms-Universität Münster, Physikalisches Institut, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| |
Collapse
|