1
|
Fransson J, Bird JP. Coherent phonon source based on electron spin resonance in a quantum-dot qubit. Sci Rep 2025; 15:13616. [PMID: 40253472 PMCID: PMC12009408 DOI: 10.1038/s41598-025-96345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/27/2025] [Indexed: 04/21/2025] Open
Abstract
One of the key requirements for quantum phononics, especially for scenarios involving quantum communication and quantum-state transduction, is the implementation of a controlled phonon source, ultimately with the capacity to source single phonons at some desired generation rate. In this article, we describe a scheme for the controlled sourcing of phonons that exploits an electron-spin resonance between the Zeeman-split levels of a gated quantum dot. This on-chip scheme allows for broad tunability of the energy of the generated phonons, with convenient electrical control. By providing a compact and coherent source, this scheme is also well suited to the construction of more-extended phononic circuits, involving the sourcing, transmission and detection of phononic signals.
Collapse
Affiliation(s)
- J Fransson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden.
| | - J P Bird
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
2
|
Wang C, Song L, Wang J, Zhou J, Feng K, Zhang Q, Zou CL, Li G, Zhang P, Zhang T. Sub-nanometer measuring ellipticity of suspended optical nanowaveguides based on nondegenerate mechanical modes. OPTICS EXPRESS 2025; 33:14964-14975. [PMID: 40219418 DOI: 10.1364/oe.551457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Optical waveguides with miniature dimensions to the nanoscale can facilitate the development of highly integrated photonic devices, integrated optical circuits, and hybrid quantum system coupling with emitters. Nondegenerate intrinsic flexural mechanical modes of nanowaveguides provide unique insights into the mechanical properties and structural integrity of materials, which is of great significance to the applications of nanowaveguides. Here, we propose and implement a scheme to measure the nondegenerate intrinsic flexural mechanical modes of a suspended optical nanowaveguide, a tapered optical fiber (TOF). A TOF with an elliptical cross-section can support two nondegenerate intrinsic flexural mechanical modes (IFMMs) because the two orthogonal modes vibrate along the principal axes (major or minor axis) of the elliptical TOF cross-section with splitting vibration frequencies. The frequency ratio for the two IFMMs approaches a constant with increasing mode order, which is equal to the inverse of the TOF ellipticity. Thus, the TOF ellipticity can be determined on the basis of the splitting vibration frequencies of the nondegenerate modes with subnanometer-level accuracy, 0.16 nm, for a TOF radius of 260 ± 5 nm. The elliptical TOF's nondegenerate IFMMs offer a novel pathway for research on nanoscale structures and vector measurement in fields such as quantum optics, atom physics, sensing, optical communications, and micro/nanomechanics.
Collapse
|
3
|
Karwat P, Bello FD, Clarke DDA, Pasławski G, Hess O. Near-field-driven thermal phonon lasing. OPTICS LETTERS 2025; 50:305-308. [PMID: 39815496 DOI: 10.1364/ol.539572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
The extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 101-102 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics.
Collapse
|
4
|
Zhou Y, Wang JW, Cao LZ, Wang GH, Shi ZY, Lü DY, Huang HB, Hu CS. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:100502. [PMID: 39260394 DOI: 10.1088/1361-6633/ad797d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Thechirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) modelsare mimicked in a potential hybrid quantum system, involving two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave cavities. With the assistance of dichromatic classical optical drives featuring chiral designs, it can simulate two-mode LMG-type long-range spin-spin interactions with left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into two-mode spin-squeezed states but also simulate novel quantum critical phenomena and time crystal behaviors, among others. Since this acoustic-based system can generate ion-trap-like interactions without requiring any additional trapping techniques, our work is considered a fresh attempt at realizing chiral quantum manipulation of spin-spin interactions using acoustic hybrid systems.
Collapse
Affiliation(s)
- Yuan Zhou
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Jing-Wei Wang
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- School of Physics and Electronic Information, Weifang University, Weifang 261061, People's Republic of China
| | - Lian-Zhen Cao
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- School of Physics and Electronic Information, Weifang University, Weifang 261061, People's Republic of China
| | - Guang-Hui Wang
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Ze-Yun Shi
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Dong-Yan Lü
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Hai-Bo Huang
- Hubei Key Laboratory of Energy Storage and Power Battery, Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Chang-Sheng Hu
- Anhui Province Key Laboratory of Photo-Electronic Materials Science and Technology, and College of Physics and Electronic Information, Anhui Normal University, Wuhu, People's Republic of China
| |
Collapse
|
5
|
Lipka-Bartosik P, Perarnau-Llobet M, Brunner N. Thermodynamic computing via autonomous quantum thermal machines. SCIENCE ADVANCES 2024; 10:eadm8792. [PMID: 39231232 PMCID: PMC11758477 DOI: 10.1126/sciadv.adm8792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a nonequilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a "thermodynamic neuron," can implement any linearly separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY, and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons) and argue that our model provides an alternative physics-based analog implementation of neural networks, and more generally a platform for thermodynamic computing.
Collapse
Affiliation(s)
| | | | - Nicolas Brunner
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Li X, Lekavicius I, Noeckel J, Wang H. Ultracoherent Gigahertz Diamond Spin-Mechanical Lamb Wave Resonators. NANO LETTERS 2024; 24:10995-11001. [PMID: 39171696 DOI: 10.1021/acs.nanolett.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report the development of an all-optical approach that excites the fundamental compression mode in a diamond Lamb wave resonator with an optical gradient force and detects the induced vibrations via strain coupling to a silicon vacancy center, specifically, via phonon sidebands in the optical excitation spectrum of the silicon vacancy. Sideband optical interferometry has also been used for the detection of in-plane mechanical vibrations, for which conventional optical interferometry is not effective. These experiments demonstrate a gigahertz fundamental compression mode with a Q factor of >107 at temperatures near 7 K, providing a promising platform for reaching the quantum regime of spin mechanics, especially phononic cavity quantum electrodynamics of electron spins.
Collapse
Affiliation(s)
- Xinzhu Li
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Ignas Lekavicius
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Jens Noeckel
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| | - Hailin Wang
- Department of Physics, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
7
|
Hwang Y, Puebla J, Kondou K, Gonzalez-Ballestero C, Isshiki H, Muñoz CS, Liao L, Chen F, Luo W, Maekawa S, Otani Y. Strongly Coupled Spin Waves and Surface Acoustic Waves at Room Temperature. PHYSICAL REVIEW LETTERS 2024; 132:056704. [PMID: 38364117 DOI: 10.1103/physrevlett.132.056704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
Here, we report the observation of strong coupling between magnons and surface acoustic wave (SAW) phonons in a thin CoFeB film constructed in an on-chip SAW resonator by analyzing SAW phonon dispersion anticrossings. We employ a nanostructured SAW resonator design that, in contrast to conventional SAW resonators, allows us to enhance shear-horizontal strain. Crucially, this type of strain couples strongly to magnons. Our device design provides the tunability of the film thickness with a fixed phonon wavelength, which is a departure from the conventional approach in strong magnon-phonon coupling research. We detect a monotonic increase in the coupling strength by expanding the film thickness, which agrees with our theoretical model. Our work offers a significant way to advance fundamental research and the development of devices based on magnon-phonon hybrid quasiparticles.
Collapse
Affiliation(s)
- Yunyoung Hwang
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Jorge Puebla
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Kouta Kondou
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | - Carlos Gonzalez-Ballestero
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Hironari Isshiki
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Carlos Sánchez Muñoz
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Liyang Liao
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Fa Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wei Luo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Sadamichi Maekawa
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yoshichika Otani
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
- Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Clark G, Raniwala H, Koppa M, Chen K, Leenheer A, Zimmermann M, Dong M, Li L, Wen YH, Dominguez D, Trusheim M, Gilbert G, Eichenfield M, Englund D. Nanoelectromechanical Control of Spin-Photon Interfaces in a Hybrid Quantum System on Chip. NANO LETTERS 2024; 24:1316-1323. [PMID: 38227973 PMCID: PMC10835722 DOI: 10.1021/acs.nanolett.3c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.
Collapse
Affiliation(s)
- Genevieve Clark
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Hamza Raniwala
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Matthew Koppa
- Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Kevin Chen
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Andrew Leenheer
- Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Matthew Zimmermann
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
| | - Mark Dong
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Linsen Li
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Y. Henry Wen
- The
MITRE Corporation, 202 Burlington Road, Bedford, Massachusetts 01730, United States
| | - Daniel Dominguez
- Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Matthew Trusheim
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- DEVCOM,
Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Gerald Gilbert
- The
MITRE Corporation, 200
Forrestal Road, Princeton, New Jersey 08540, United States
| | - Matt Eichenfield
- College of
Optical Sciences, University of Arizona, Tucson, Arizona 85719, United States
| | - Dirk Englund
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Ren ZQ, Lu XL, Xiang ZL. Heisenberg-limited spin squeezing in a hybrid system with silicon-vacancy centers. OPTICS EXPRESS 2024; 32:4013-4026. [PMID: 38297610 DOI: 10.1364/oe.499299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
In this paper, we investigate the spin squeezing in a hybrid quantum system consisting of a Silicon-Vacancy (SiV) center ensemble coupled to a diamond acoustic waveguide via the strain interaction. Two sets of non-overlapping driving fields, each contains two time-dependent microwave fields, are applied to this hybrid system. By modulating these fields, the one-axis twist (OAT) interaction and two-axis two-spin (TATS) interaction can be independently realized. In the latter case the squeezing parameter scales to spin number as ξ R2∼1.61N -0.64 with the consideration of dissipation, which is very close to the Heisenberg limit. Furthermore, this hybrid system allows for the study of spin squeezing generated by the simultaneous presence of OAT and TATS interactions, which reveals sensitivity to the parity of the number of spins Ntot, whether it is even or odd. Our scheme enriches the approach for generating Heisenberg-limited spin squeezing in spin-phonon hybrid systems and offers the possibility for future applications in quantum information processing.
Collapse
|
10
|
Xiong K, Ren J, Marchesoni F, Huang J. Phononic band gap in random spring networks. Phys Rev E 2023; 108:044306. [PMID: 37978624 DOI: 10.1103/physreve.108.044306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
We investigate the relation between topological and vibrational properties of networked materials by analyzing, both numerically and analytically, the properties of a random spring network model. We establish a pseudodispersion relation, which allows us to predict the existence of distinct transitions from extended to localized vibrational modes in this class of materials. Consequently, we propose an alternative method to control phonon and elastic wave propagation in disordered networks. In particular, the phonon band gap of our spring network model can be enhanced by either increasing its average degree or decreasing its assortativity coefficient. Applications to phonon band engineering and vibrational energy harvesting are briefly discussed.
Collapse
Affiliation(s)
- Kezhao Xiong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
- College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jie Ren
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fabio Marchesoni
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Physics, University of Camerino, 62032 Camerino, Italy
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Qiao H, Dumur É, Andersson G, Yan H, Chou MH, Grebel J, Conner CR, Joshi YJ, Miller JM, Povey RG, Wu X, Cleland AN. Splitting phonons: Building a platform for linear mechanical quantum computing. Science 2023; 380:1030-1033. [PMID: 37289889 DOI: 10.1126/science.adg8715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Linear optical quantum computing provides a desirable approach to quantum computing, with only a short list of required computational elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing using phonons in place of photons. Although single-phonon sources and detectors have been demonstrated, a phononic beam splitter element remains an outstanding requirement. Here we demonstrate such an element, using two superconducting qubits to fully characterize a beam splitter with single phonons. We further use the beam splitter to demonstrate two-phonon interference, a requirement for two-qubit gates in linear computing. This advances a new solid-state system for implementing linear quantum computing, further providing straightforward conversion between itinerant phonons and superconducting qubits.
Collapse
Affiliation(s)
- H Qiao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - É Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - G Andersson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - H Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - M-H Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - J Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - C R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Y J Joshi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - J M Miller
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - R G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - X Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - A N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
12
|
Louchet-Chauvet A, Chanelière T. Strain-mediated ion-ion interaction in rare-earth-doped solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305501. [PMID: 37072000 DOI: 10.1088/1361-648x/acce17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
It was recently shown that the optical excitation of rare-earth ions produces a local change of the host matrix shape, attributed to a change of the rare-earth ion's electronic orbital geometry. In this work we investigate the consequences of this piezo-orbital backaction and show from a macroscopic model how it yields a disregarded ion-ion interaction mediated by mechanical strain. This interaction scales as1/r3, similarly to the other archetypal ion-ion interactions, namely electric and magnetic dipole-dipole interactions. We quantitatively assess and compare the magnitude of these three interactions from the angle of the instantaneous spectral diffusion mechanism, and re-examine the scientific literature in a range of rare-earth doped systems in the light of this generally underestimated contribution.
Collapse
Affiliation(s)
- A Louchet-Chauvet
- ESPCI Paris, Université PSL, CNRS, Institut Langevin, Paris 75005, France
| | - T Chanelière
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble 38000, France
| |
Collapse
|
13
|
Xiang ZL, Olivares DG, García-Ripoll JJ, Rabl P. Universal Time-Dependent Control Scheme for Realizing Arbitrary Linear Bosonic Transformations. PHYSICAL REVIEW LETTERS 2023; 130:050801. [PMID: 36800447 DOI: 10.1103/physrevlett.130.050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
We study the implementation of arbitrary excitation-conserving linear transformations between two sets of N stationary bosonic modes, which are connected through a photonic quantum channel. By controlling the individual couplings between the modes and the channel, an initial N-partite quantum state in register A can be released as a multiphoton wave packet and, successively, be reabsorbed in register B. Here we prove that there exists a set of control pulses that implement this transfer with arbitrarily high fidelity and, simultaneously, realize a prespecified N×N unitary transformation between the two sets of modes. Moreover, we provide a numerical algorithm for constructing these control pulses and discuss the scaling and robustness of this protocol in terms of several illustrative examples. By being purely control-based and not relying on any adaptations of the underlying hardware, the presented scheme is extremely flexible and can find widespread applications, for example, for boson-sampling experiments, multiqubit state transfer protocols, or in continuous-variable quantum computing architectures.
Collapse
Affiliation(s)
- Ze-Liang Xiang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | - Peter Rabl
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| |
Collapse
|
14
|
Chang H, Zhang J. From cavity optomechanics to cavity-less exciton optomechanics: a review. NANOSCALE 2022; 14:16710-16730. [PMID: 36245359 DOI: 10.1039/d2nr03784j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cavity optomechanical coupling based on radiation pressure, photothermal forces and the photoelastic effect has been investigated widely over the past few decades, including optical measurements of mechanical vibration, dynamic backaction damping and amplification, nonlinear dynamics, quantum state transfer and so on. However, the delicate cavity operation, including cavity stabilization, fine detuning, tapered fibre access etc., limits the integration of cavity optomechanical devices. Dynamic backaction damping and amplification based on cavity-less exciton optomechanical coupling in III-V semiconductor nanomechanical systems, semiconductor nanoribbons and monolayer transition metal dichalcogenides have been demonstrated in recent years. The cavity-less exciton optomechanical systems interconnect photons, phonons and excitons in a highly integrable platform, opening up the development of integrable optomechanics. Furthermore, the highly tunable exciton resonance enables the exciton optomechanical coupling strength to be tuned. In this review, the mechanisms of cavity optomechanical coupling, the principles of exciton optomechanical coupling and the recent progress of cavity-less exciton optomechanics are reviewed. Moreover, the perspectives for exciton optomechanical devices are described.
Collapse
Affiliation(s)
- Haonan Chang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Ren ZQ, Feng CR, Xiang ZL. Deterministic generation of entanglement states between Silicon-Vacancy centers via acoustic modes. OPTICS EXPRESS 2022; 30:41685-41697. [PMID: 36366639 DOI: 10.1364/oe.468293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We propose a scheme to entangle Silicon-Vacancy (SiV) centers embedded in a diamond acoustic waveguide. These SiV centers interact with acoustic modes of the waveguide via strain-induced coupling. Through Morris-Shore transformation, the Hilbert space of this hybrid quantum system can be factorized into a closed subspace in which we can deterministically realize the symmetrical Dicke states between distant SiV centers with high fidelity. In addition, the generation of entangled Dicke states can be controlled by manipulating the strength and frequency of the driving field applied on SiV centers. This protocol provides a promising way to prepare multipartite entanglement in spin-phonon hybrid systems and could have broad applications for future quantum technologies.
Collapse
|
16
|
Kobecki M, Scherbakov AV, Kukhtaruk SM, Yaremkevich DD, Henksmeier T, Trapp A, Reuter D, Gusev VE, Akimov AV, Bayer M. Giant Photoelasticity of Polaritons for Detection of Coherent Phonons in a Superlattice with Quantum Sensitivity. PHYSICAL REVIEW LETTERS 2022; 128:157401. [PMID: 35499885 DOI: 10.1103/physrevlett.128.157401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The functionality of phonon-based quantum devices largely depends on the efficiency of the interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of the phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.g., an exciton, with which a photon forms a polariton. In this work, we discover a giant photoelasticity of exciton-polaritons in a short-period superlattice and exploit it to detect propagating acoustic phonons. We demonstrate that 42 GHz coherent phonons can be detected with extremely high sensitivity in the time domain Brillouin oscillations by probing with photons in the spectral vicinity of the polariton resonance.
Collapse
Affiliation(s)
- Michal Kobecki
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227 Dortmund, Germany
| | - Alexey V Scherbakov
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227 Dortmund, Germany
| | - Serhii M Kukhtaruk
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227 Dortmund, Germany
- Department of Theoretical Physics, V.E. Lashkaryov Institute of Semiconductor Physics, 03028 Kyiv, Ukraine
| | - Dmytro D Yaremkevich
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227 Dortmund, Germany
| | | | - Alexander Trapp
- Department Physik, Universität Paderborn, 33098 Paderborn, Germany
| | - Dirk Reuter
- Department Physik, Universität Paderborn, 33098 Paderborn, Germany
| | - Vitalyi E Gusev
- Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique-Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France
| | - Andrey V Akimov
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, D-44227 Dortmund, Germany
| |
Collapse
|
17
|
Klotz M, Fehler KG, Waltrich R, Steiger ES, Häußler S, Reddy P, Kulikova LF, Davydov VA, Agafonov VN, Doherty MW, Kubanek A. Prolonged Orbital Relaxation by Locally Modified Phonon Density of States for the SiV^{-} Center in Nanodiamonds. PHYSICAL REVIEW LETTERS 2022; 128:153602. [PMID: 35499869 DOI: 10.1103/physrevlett.128.153602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Coherent quantum systems are a key resource for emerging quantum technology. Solid-state spin systems are of particular importance for compact and scalable devices. However, interaction with the solid-state host degrades the coherence properties. The negatively charged silicon vacancy center in diamond is such an example. While spectral properties are outstanding, with optical coherence protected by the defects symmetry, the spin coherence is susceptible to rapid orbital relaxation limiting the spin dephasing time. A prolongation of the orbital relaxation time is therefore of utmost urgency and has been tackled by operating at very low temperatures or by introducing large strain. However, both methods have significant drawbacks: the former requires use of dilution refrigerators and the latter affects intrinsic symmetries. Here, a novel method is presented to prolong the orbital relaxation with a locally modified phonon density of states in the relevant frequency range, by restricting the diamond host to below 100 nm. Subsequently measured coherent population trapping shows an extended spin dephasing time compared to the phonon-limited time in a pure bulk diamond. The method works at liquid helium temperatures of few Kelvin and in the low-strain regime.
Collapse
Affiliation(s)
- M Klotz
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - K G Fehler
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - R Waltrich
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - E S Steiger
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - S Häußler
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - P Reddy
- Laser Physics Centre, Research School of Physics, Australian National University, Australian Capital Territory 2601, Australia
| | - L F Kulikova
- L.F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 142190, Russia
| | - V A Davydov
- L.F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow 142190, Russia
| | - V N Agafonov
- GREMAN, UMR 7347 CNRS, INSA-CVL, Tours University, 37200 Tours, France
| | - M W Doherty
- Laser Physics Centre, Research School of Physics, Australian National University, Australian Capital Territory 2601, Australia
| | - A Kubanek
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
18
|
Hallett D, Foster AP, Whittaker D, Skolnick MS, Wilson LR. Engineering Chiral Light-Matter Interactions in a Waveguide-Coupled Nanocavity. ACS PHOTONICS 2022; 9:706-713. [PMID: 35434181 PMCID: PMC9007567 DOI: 10.1021/acsphotonics.1c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Spin-dependent, directional light-matter interactions form the basis of chiral quantum networks. In the solid state, quantum emitters commonly possess circularly polarized optical transitions with spin-dependent handedness. We demonstrate numerically that spin-dependent chiral coupling can be realized by embedding such an emitter in a waveguide-coupled nanocavity, which supports two near-degenerate, orthogonally polarized cavity modes. The chiral behavior arises due to direction-dependent interference between the cavity modes upon coupling to two single-mode output waveguides. Notably, an experimentally realistic cavity design simultaneously supports near-unity chiral contrast, efficient (>95%) cavity-waveguide coupling and enhanced light-matter interaction strength (Purcell factor F P > 70). In combination, these parameters enable the development of highly coherent spin-photon interfaces ready for integration into nanophotonic circuits.
Collapse
|
19
|
Hernández-Mínguez A, Poshakinskiy AV, Hollenbach M, Santos PV, Astakhov GV. Acoustically induced coherent spin trapping. SCIENCE ADVANCES 2021; 7:eabj5030. [PMID: 34714672 PMCID: PMC8555898 DOI: 10.1126/sciadv.abj5030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Spin centers are promising qubits for quantum technologies. Here, we show that the acoustic manipulation of spin qubits in their electronic excited state provides an approach for coherent spin control inaccessible so far. We demonstrate a giant interaction between the strain field of a surface acoustic wave (SAW) and the excited-state spin of silicon vacancies in silicon carbide, which is about two orders of magnitude stronger than in the ground state. The simultaneous spin driving in the ground and excited states with the same SAW leads to the trapping of the spin along a direction given by the frequency detuning from the corresponding spin resonances. The coherence of the spin-trapped states becomes only limited by relaxation processes intrinsic to the ground state. The coherent acoustic manipulation of spins in the ground and excited state provides new opportunities for efficient on-chip quantum information protocols and coherent sensing.
Collapse
Affiliation(s)
- Alberto Hernández-Mínguez
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | | | - Michael Hollenbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Paulo V. Santos
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Georgy V. Astakhov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
20
|
Abstract
Control over the optical properties of defects in solid-state materials is necessary for their application in quantum technologies. In this study, we demonstrate, from first principles, how to tune these properties via the formation of defect polaritons in an optical cavity. We show that the polaritonic splitting that shifts the absorption energy of the lower polariton is much higher than can be expected from a Jaynes-Cummings interaction. We also find that the absorption intensity of the lower polariton increases by several orders of magnitude, suggesting a possible route toward overcoming phonon-limited single-photon emission from defect centers. These findings are a result of an effective continuum of electronic transitions near the lowest-lying electronic transition that dramatically enhances the strength of the light-matter interaction. We expect our findings to spur experimental investigations of strong light-matter coupling between defect centers and cavity photons for applications in quantum technologies.
Collapse
Affiliation(s)
- Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Susanne F Yelin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
21
|
Bai SY, An JH. Generating Stable Spin Squeezing by Squeezed-Reservoir Engineering. PHYSICAL REVIEW LETTERS 2021; 127:083602. [PMID: 34477431 DOI: 10.1103/physrevlett.127.083602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that N two-level systems (TLSs) located near a one-dimensional waveguide can generate SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.
Collapse
Affiliation(s)
- Si-Yuan Bai
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Jun-Hong An
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Abstract
Scalable quantum information systems would store, manipulate, and transmit quantum information locally and across a quantum network, but no single qubit technology is currently robust enough to perform all necessary tasks. Defect centers in solid-state materials have emerged as potential intermediaries between other physical manifestations of qubits, such as superconducting qubits and photonic qubits, to leverage their complementary advantages. It remains an open question, however, how to design and to control quantum interfaces to defect centers. Such interfaces would enable quantum information to be moved seamlessly between different physical systems. Understanding and constructing the required interfaces would, therefore, unlock the next big steps in quantum computing, sensing, and communications. In this Perspective, we highlight promising coupling mechanisms, including dipole-, phonon-, and magnon-mediated interactions, and discuss how contributions from nanotechnologists will be paramount in realizing quantum information processors in the near-term.
Collapse
Affiliation(s)
- Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael Haas
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
23
|
Dong XL, Li PB, Liu T, Nori F. Unconventional Quantum Sound-Matter Interactions in Spin-Optomechanical-Crystal Hybrid Systems. PHYSICAL REVIEW LETTERS 2021; 126:203601. [PMID: 34110200 DOI: 10.1103/physrevlett.126.203601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
We predict a set of unusual quantum acoustic phenomena resulting from sound-matter interactions in a fully tunable solid-state platform in which an array of solid-state spins in diamond are coupled to quantized acoustic waves in a one-dimensional optomechanical crystal. We find that, by using a spatially varying laser drive that introduces a position-dependent phase in the optomechanical interaction, the mechanical band structure can be tuned in situ, consequently leading to unconventional quantum sound-matter interactions. We show that quasichiral sound-matter interactions can occur, with tunable ranges from bidirectional to quasiunidirectional, when the spins are resonant with the bands. When the solid-state spin frequency lies within the acoustic band gap, we demonstrate the emergence of an exotic polariton bound state that can mediate long-range tunable, odd-neighbor, and complex spin-spin interactions. This work expands the present exploration of quantum phononics and can have wide applications in quantum simulations and quantum information processing.
Collapse
Affiliation(s)
- Xing-Liang Dong
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng-Bo Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Tao Liu
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
24
|
Yaremkevich DD, Scherbakov AV, Kukhtaruk SM, Linnik TL, Khokhlov NE, Godejohann F, Dyatlova OA, Nadzeyka A, Pattnaik DP, Wang M, Roy S, Campion RP, Rushforth AW, Gusev VE, Akimov AV, Bayer M. Protected Long-Distance Guiding of Hypersound Underneath a Nanocorrugated Surface. ACS NANO 2021; 15:4802-4810. [PMID: 33593052 DOI: 10.1021/acsnano.0c09475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In nanoscale communications, high-frequency surface acoustic waves are becoming effective data carriers and encoders. On-chip communications require acoustic wave propagation along nanocorrugated surfaces which strongly scatter traditional Rayleigh waves. Here, we propose the delivery of information using subsurface acoustic waves with hypersound frequencies of ∼20 GHz, which is a nanoscale analogue of subsurface sound waves in the ocean. A bunch of subsurface hypersound modes are generated by pulsed optical excitation in a multilayer semiconductor structure with a metallic nanograting on top. The guided hypersound modes propagate coherently beneath the nanograting, retaining the surface imprinted information, at a distance of more than 50 μm which essentially exceeds the propagation length of Rayleigh waves. The concept is suitable for interfacing single photon emitters, such as buried quantum dots, carrying coherent spin excitations in magnonic devices and encoding the signals for optical communications at the nanoscale.
Collapse
Affiliation(s)
- Dmytro D Yaremkevich
- Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Alexey V Scherbakov
- Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
- Ioffe Institute, Politekhnycheskaya 26, 194021 St. Petersburg, Russia
| | - Serhii M Kukhtaruk
- Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
- Department of Theoretical Physics, V. E. Lashkaryov Institute of Semiconductor Physics, Pr. Nauky 41, 03028 Kyiv, Ukraine
| | - Tetiana L Linnik
- Department of Theoretical Physics, V. E. Lashkaryov Institute of Semiconductor Physics, Pr. Nauky 41, 03028 Kyiv, Ukraine
| | | | - Felix Godejohann
- Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Olga A Dyatlova
- Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Achim Nadzeyka
- Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund, Germany
| | - Debi P Pattnaik
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Mu Wang
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Syamashree Roy
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Richard P Campion
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Andrew W Rushforth
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Vitalyi E Gusev
- LAUM, CNRS UMR 6613, Le Mans Université, 72085 Le Mans, France
| | - Andrey V Akimov
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Manfred Bayer
- Experimentelle Physik 2, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
- Ioffe Institute, Politekhnycheskaya 26, 194021 St. Petersburg, Russia
| |
Collapse
|
25
|
Casulleras S, Gonzalez-Ballestero C, Maurer P, García-Ripoll JJ, Romero-Isart O. Remote Individual Addressing of Quantum Emitters with Chirped Pulses. PHYSICAL REVIEW LETTERS 2021; 126:103602. [PMID: 33784159 DOI: 10.1103/physrevlett.126.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
We propose to use chirped pulses propagating near a band gap to remotely address quantum emitters. We introduce a particular family of chirped pulses that dynamically self-compress to subwavelength spot sizes during their evolution in a medium with a quadratic dispersion relation. We analytically describe how the compression distance and width of the pulse can be tuned through its initial parameters. We show that the interaction of such pulses with a quantum emitter is highly sensitive to its position due to effective Landau-Zener processes induced by the pulse chirping. Our results propose pulse engineering as a powerful control and probing tool in the field of quantum emitters coupled to structured reservoirs.
Collapse
Affiliation(s)
- S Casulleras
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - C Gonzalez-Ballestero
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - P Maurer
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - J J García-Ripoll
- Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b 28006 Madrid, Spain
| | - O Romero-Isart
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
27
|
Neuman T, Wang DS, Narang P. Nanomagnonic Cavities for Strong Spin-Magnon Coupling and Magnon-Mediated Spin-Spin Interactions. PHYSICAL REVIEW LETTERS 2020; 125:247702. [PMID: 33412028 DOI: 10.1103/physrevlett.125.247702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
We present a theoretical approach to use ferromagnetic or ferrimagnetic nanoparticles as microwave nanomagnonic cavities to concentrate microwave magnetic fields into deeply subwavelength volumes ∼10^{-13} mm^{3}. We show that the field in such nanocavities can efficiently couple to isolated spin emitters (spin qubits) positioned close to the nanoparticle surface reaching the single magnon-spin strong-coupling regime and mediate efficient long-range quantum state transfers between isolated spin emitters. Nanomagnonic cavities thus pave the way toward magnon-based quantum networks and magnon-mediated quantum gates.
Collapse
Affiliation(s)
- Tomáš Neuman
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Prineha Narang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
28
|
Li PB, Zhou Y, Gao WB, Nori F. Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System. PHYSICAL REVIEW LETTERS 2020; 125:153602. [PMID: 33095609 DOI: 10.1103/physrevlett.125.153602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.
Collapse
Affiliation(s)
- Peng-Bo Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Yuan Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
29
|
Mahoney EJD, Lalji AKSK, Allden JWR, Truscott BS, Ashfold MNR, Mankelevich YA. Optical Emission Imaging and Modeling Investigations of Microwave-Activated SiH 4/H 2 and SiH 4/CH 4/H 2 Plasmas. J Phys Chem A 2020; 124:5109-5128. [DOI: 10.1021/acs.jpca.0c03396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edward J. D. Mahoney
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | | | | | | | | | - Yuri A. Mankelevich
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia
| |
Collapse
|
30
|
Wigger D, Karakhanyan V, Schneider C, Kamp M, Höfling S, Machnikowski P, Kuhn T, Kasprzak J. Acoustic phonon sideband dynamics during polaron formation in a single quantum dot. OPTICS LETTERS 2020; 45:919-922. [PMID: 32058506 DOI: 10.1364/ol.385602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
When an electron-hole pair is optically excited in a semiconductor quantum dot, the host crystal lattice adapts to the presence of the generated charge distribution. Therefore, the coupled exciton-phonon system has to establish a new equilibrium, which is reached in the form of a quasiparticle called a polaron. Especially, when the exciton is abruptly generated on a timescale faster than the typical lattice dynamics, the lattice cannot follow adiabatically. Consequently, rich dynamics on the picosecond timescale of the coupled system is expected. In this study, we combine simulations and measurements of the ultrafast, coherent, nonlinear optical response, obtained by four-wave mixing (FWM) spectroscopy, to resolve the formation of this polaron. By detecting and investigating the phonon sidebands in the FWM spectra for varying pulse delays and different temperatures, we have access to the influence of phonon emission and absorption processes, which finally result in the emission of an acoustic wave packet.
Collapse
|
31
|
Bin Q, Lü XY, Laussy FP, Nori F, Wu Y. N-Phonon Bundle Emission via the Stokes Process. PHYSICAL REVIEW LETTERS 2020; 124:053601. [PMID: 32083917 DOI: 10.1103/physrevlett.124.053601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate theoretically the bundle emission of n strongly correlated phonons in an acoustic cavity QED system. The mechanism relies on Stokes resonances that generate super-Rabi oscillations between states with a large difference in their number of excitations, which, combined with dissipation, transfer coherently pure n-phonon states outside of the cavity. This process works with close to perfect purity over a wide range of parameters and is tunable optically with well-resolved operation conditions. This broadens the realm of quantum phononics, with potential applications for on-chip quantum information processing, quantum metrology, and engineering of new types of quantum devices, such as optically heralded n-phonon guns.
Collapse
Affiliation(s)
- Qian Bin
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xin-You Lü
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Fabrice P Laussy
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, United Kingdom
- Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Ying Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| |
Collapse
|
32
|
Coherent acoustic control of a single silicon vacancy spin in diamond. Nat Commun 2020; 11:193. [PMID: 31924759 PMCID: PMC6954199 DOI: 10.1038/s41467-019-13822-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022] Open
Abstract
Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate an efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems. Qubits in solid state systems like point defects in diamond can be influenced by local strain. Here the authors use surface acoustic waves to coherently control silicon vacancies in diamond, which have the potential to reach the strong coupling regime necessary for many applications.
Collapse
|
33
|
Lekavicius I, Wang H. Optical coherence of implanted silicon vacancy centers in thin diamond membranes. OPTICS EXPRESS 2019; 27:31299-31306. [PMID: 31684364 DOI: 10.1364/oe.27.031299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
We report the fabrication and optical characterization of thin diamond membranes implanted with negatively charged silicon vacancy (SiV-) centers. The variations in the membrane thickness enable the experimental study of optical coherence of SiV- centers as the membrane thickness is varied from 100 nm to 1100 nm. Photoluminescence excitation spectroscopy at low temperature shows that most of the SiV- centers in these membranes feature an optical linewidth ranging between 200 and 300 MHz. Furthermore, there is no discernable dependence of the optical linewidth on the membrane thickness for membranes as thin as 100 nm, indicating the feasibility of incorporating SiV- centers in a varity of diamond nanostructures and still maintaining the excellent optical coherence of these color centers.
Collapse
|
34
|
Groot-Berning K, Kornher T, Jacob G, Stopp F, Dawkins ST, Kolesov R, Wrachtrup J, Singer K, Schmidt-Kaler F. Deterministic Single-Ion Implantation of Rare-Earth Ions for Nanometer-Resolution Color-Center Generation. PHYSICAL REVIEW LETTERS 2019; 123:106802. [PMID: 31573288 DOI: 10.1103/physrevlett.123.106802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 05/24/2023]
Abstract
Single dopant atoms or dopant-related defect centers in a solid state matrix are of particular importance among the physical systems proposed for quantum computing and communication, due to their potential to realize a scalable architecture compatible with electronic and photonic integrated circuits. Here, using a deterministic source of single laser-cooled Pr^{+} ions, we present the fabrication of arrays of praseodymium color centers in yttrium-aluminum-garnet substrates. The beam of single Pr^{+} ions is extracted from a Paul trap and focused down to 30(9) nm. Using a confocal microscope, we determine a conversion yield into active color centers of up to 50% and realize a placement precision of 34 nm.
Collapse
Affiliation(s)
- Karin Groot-Berning
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Thomas Kornher
- Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Georg Jacob
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Felix Stopp
- QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Samuel T Dawkins
- Experimentalphysik I, Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Roman Kolesov
- Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Jörg Wrachtrup
- Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Kilian Singer
- Experimentalphysik I, Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | | |
Collapse
|
35
|
Abstract
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits. Current diamond quantum optics experiments are restricted to single devices and few quantum emitters due to fabrication constraints. Here, the authors utilize inverse design to overcome constraints of diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications.
Collapse
|
36
|
Wang R, Wang TJ, Wang C. Entanglement purification and concentration based on hybrid spin entangled states of separate nitrogen-vacancy centers. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/40006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Abdi M, Plenio MB. Quantum Effects in a Mechanically Modulated Single-Photon Emitter. PHYSICAL REVIEW LETTERS 2019; 122:023602. [PMID: 30720325 DOI: 10.1103/physrevlett.122.023602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 05/13/2023]
Abstract
Recent observation of quantum emitters in monolayers of hexagonal boron nitride (h-BN) has provided a novel platform for optomechanical experiments where the single-photon emitters can couple to the motion of a freely suspended h-BN membrane. Here, we propose a scheme where the electronic degree of freedom (d.o.f.) of an embedded color center is coupled to the motion of the hosting h-BN resonator via dispersive forces. We show that the coupling of membrane vibrations to the electronic d.o.f. of the emitter can reach the strong regime. By suitable driving of a three-level Λ-system composed of two spin d.o.f. in the electronic ground state as well as an isolated excited state of the emitter, a multiple electromagnetically induced transparency spectrum becomes available. The experimental feasibility of the efficient vibrational ground-state cooling of the membrane via quantum interference effects in the two-color drive scheme is numerically confirmed. More interestingly, the emission spectrum of the defect exhibits a frequency comb with frequency spacings as small as the fundamental vibrational mode, which finds applications in high-precision spectroscopy.
Collapse
Affiliation(s)
- Mehdi Abdi
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Institute of Theoretical Physics and IQST, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
38
|
Patel RN, Wang Z, Jiang W, Sarabalis CJ, Hill JT, Safavi-Naeini AH. Single-Mode Phononic Wire. PHYSICAL REVIEW LETTERS 2018; 121:040501. [PMID: 30095955 DOI: 10.1103/physrevlett.121.040501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 06/08/2023]
Abstract
Photons and electrons transmit information to form complex systems and networks. Phonons on the other hand, the quanta of mechanical motion, are often considered only as carriers of thermal energy. Nonetheless, their flow can also be molded in fabricated nanoscale circuits. We design and experimentally demonstrate wires for phonons by patterning the surface of a silicon chip. Our device eliminates all but one channel of phonon conduction, allowing coherent phonon transport over millimeter length scales. We characterize the phononic wire optically, by coupling it strongly to an optomechanical transducer. The phononic wire enables new ways to manipulate information and energy on a chip. In particular, our result is an important step towards realizing on-chip phonon networks, in which quantum information is transmitted between nodes via phonons.
Collapse
Affiliation(s)
- Rishi N Patel
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Zhaoyou Wang
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Wentao Jiang
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Christopher J Sarabalis
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Jeff T Hill
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics and Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
| |
Collapse
|
39
|
Sohn YI, Meesala S, Pingault B, Atikian HA, Holzgrafe J, Gündoğan M, Stavrakas C, Stanley MJ, Sipahigil A, Choi J, Zhang M, Pacheco JL, Abraham J, Bielejec E, Lukin MD, Atatüre M, Lončar M. Controlling the coherence of a diamond spin qubit through its strain environment. Nat Commun 2018; 9:2012. [PMID: 29789553 PMCID: PMC5964250 DOI: 10.1038/s41467-018-04340-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022] Open
Abstract
The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. For quantum bits in the solid state, decoherence from thermal vibrations of the surrounding lattice can typically only be suppressed by lowering the temperature of operation. Here, we use a nano-electro-mechanical system to mitigate the effect of thermal phonons on a spin qubit - the silicon-vacancy colour centre in diamond - without changing the system temperature. By controlling the strain environment of the colour centre, we tune its electronic levels to probe, control, and eventually suppress the interaction of its spin with the thermal bath. Strain control provides both large tunability of the optical transitions and significantly improved spin coherence. Finally, our findings indicate the possibility to achieve strong coupling between the silicon-vacancy spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.
Collapse
Affiliation(s)
- Young-Ik Sohn
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Srujan Meesala
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Benjamin Pingault
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Haig A Atikian
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffrey Holzgrafe
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Mustafa Gündoğan
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Camille Stavrakas
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Megan J Stanley
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Alp Sipahigil
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA
| | - Joonhee Choi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA
| | - Mian Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Jose L Pacheco
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - John Abraham
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | | | - Mikhail D Lukin
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marko Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|