1
|
Bodrova AS, Osinsky AI. Anomalous diffusion in polydisperse granular gases. Phys Rev E 2025; 111:035402. [PMID: 40247501 DOI: 10.1103/physreve.111.035402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/19/2025] [Indexed: 04/19/2025]
Abstract
We investigate both ensemble and time-averaged mean-squared displacements of particles in a polydisperse granular system in a homogeneous cooling state and derive rigorous analytical expressions valid both at short and long time scales. The discrepancies in ensemble and time-averaged mean-squared displacements indicate ergodicity breaking in granular systems consisting of an arbitrary number of species of different sizes and masses. We compare the results of our study with Monte Carlo simulations in terms of a powerful low-rank algorithm and find a nice agreement.
Collapse
Affiliation(s)
- Anna S Bodrova
- HSE University, Moscow Institute of Electronics and Mathematics, 123458 Moscow, Russia
| | | |
Collapse
|
2
|
Noirhomme M, Opsomer E, Vandewalle N. Onsager variational principle for granular fluids. Phys Rev E 2024; 110:054901. [PMID: 39690623 DOI: 10.1103/physreve.110.054901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Granular fluids, as defined by a collection of moving solid particles, is a paradigm of a dissipative system out of equilibrium. Inelastic collisions between particles is the source of dissipation, and is the origin of a transition from a gas to a liquidlike state. This transition can be triggered by an increase of the solid fraction. Moreover, in compartmentalized systems, this condensation is driving the entire granular fluid into a Maxwell demon phenomenon, localizing most of the grains into a specific compartment. Classical approaches fail to capture these phenomena, thus motivating many experimental and numerical works. Herein, we demonstrate that the Onsager variational principle is able to predict accurately the coexistence of gas-liquid states in granular systems, opening ways to model other phenomena observed in such dissipative systems like segregation or the jamming transition.
Collapse
|
3
|
Trittel T, Puzyrev D, Harth K, Stannarius R. Rotational and translational motions in a homogeneously cooling granular gas. NPJ Microgravity 2024; 10:81. [PMID: 39085254 PMCID: PMC11291629 DOI: 10.1038/s41526-024-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
A granular gas composed of monodisperse spherical particles was studied in microgravity experiments in a drop tower. Translations and rotations of the particles were extracted from optical video data. Equipartition is violated, the rotational degrees of freedom were excited only to roughly 2/3 of the translational ones. After stopping the mechanical excitation, we observed granular cooling of the ensemble for a period of three times the Haff time, where the kinetic energy dropped to about 5% of its initial value. The cooling rates of all observable degrees of freedom were comparable, and the ratio of rotational and translational kinetic energies fluctuated around a constant value. The distributions of translational and rotational velocity components showed slight but systematic deviations from Gaussians at the start of cooling.
Collapse
Affiliation(s)
- Torsten Trittel
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, Brandenburg an der Havel, 14770, Germany
- MARS, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Dmitry Puzyrev
- MARS, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
- Department MTRM, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Kirsten Harth
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, Brandenburg an der Havel, 14770, Germany
- MARS, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Ralf Stannarius
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, Brandenburg an der Havel, 14770, Germany.
- MARS, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Department MTRM, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, 39106, Germany.
| |
Collapse
|
4
|
Puzyrev D, Trittel T, Harth K, Stannarius R. Cooling of a granular gas mixture in microgravity. NPJ Microgravity 2024; 10:36. [PMID: 38519479 PMCID: PMC10959983 DOI: 10.1038/s41526-024-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024] Open
Abstract
Granular gases are fascinating non-equilibrium systems with interesting features such as spontaneous clustering and non-Gaussian velocity distributions. Mixtures of different components represent a much more natural composition than monodisperse ensembles but attracted comparably little attention so far. We present the observation and characterization of a mixture of rod-like particles with different sizes and masses in a drop tower experiment. Kinetic energy decay rates during granular cooling and collision rates were determined and Haff's law for homogeneous granular cooling was confirmed. Thereby, energy equipartition between the mixture components and between individual degrees of freedom is violated. Heavier particles keep a slightly higher average kinetic energy than lighter ones. Experimental results are supported by numerical simulations.
Collapse
Affiliation(s)
- Dmitry Puzyrev
- Department of Nonlinear Phenomena, Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Torsten Trittel
- Department of Nonlinear Phenomena, Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Kirsten Harth
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Ralf Stannarius
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
- Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
5
|
Gómez González R, Abad E, Bravo Yuste S, Garzó V. Diffusion of intruders in granular suspensions: Enskog theory and random walk interpretation. Phys Rev E 2023; 108:024903. [PMID: 37723720 DOI: 10.1103/physreve.108.024903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023]
Abstract
The Enskog kinetic theory is applied to compute the mean square displacement of impurities or intruders (modeled as smooth inelastic hard spheres) immersed in a granular gas of smooth inelastic hard spheres (grains). Both species (intruders and grains) are surrounded by an interstitial molecular gas (background) that plays the role of a thermal bath. The influence of the latter on the motion of intruders and grains is modeled via a standard viscous drag force supplemented by a stochastic Langevin-like force proportional to the background temperature. We solve the corresponding Enskog-Lorentz kinetic equation by means of the Chapman-Enskog expansion truncated to first order in the gradient of the intruder number density. The integral equation for the diffusion coefficient is solved by considering the first two Sonine approximations. To test these results, we also compute the diffusion coefficient from the numerical solution of the inelastic Enskog equation by means of the direct simulation Monte Carlo method. We find that the first Sonine approximation generally agrees well with the simulation results, although significant discrepancies arise when the intruders become lighter than the grains. Such discrepancies are largely mitigated by the use of the second Sonine approximation, in excellent agreement with computer simulations even for moderately strong inelasticities and/or dissimilar mass and diameter ratios. We invoke a random walk picture of the intruders' motion to shed light on the physics underlying the intricate dependence of the diffusion coefficient on the main system parameters. This approach, recently employed to study the case of an intruder immersed in a granular gas, also proves useful in the present case of a granular suspension. Finally, we discuss the applicability of our model to real systems in the self-diffusion case. We conclude that collisional effects may strongly impact the diffusion coefficient of the grains.
Collapse
Affiliation(s)
| | - Enrique Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06800 Mérida, Spain
| | - Santos Bravo Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Vicente Garzó
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
6
|
Gómez González R, Garzó V. Enskog kinetic theory of binary granular suspensions: Heat flux and stability analysis of the homogeneous steady state. Phys Rev E 2022; 106:064902. [PMID: 36671144 DOI: 10.1103/physreve.106.064902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The Enskog kinetic theory of multicomponent granular suspensions employed previously [Gómez González, Khalil, and Garzó, Phys. Rev. E 101, 012904 (2020)2470-004510.1103/PhysRevE.101.012904] is considered further to determine the four transport coefficients associated with the heat flux. These transport coefficients are obtained by solving the Enskog equation by means of the application of the Chapman-Enskog method around the local version of the homogeneous state. Explicit forms of the heat flux transport coefficients are provided in steady-state conditions by considering the so-called second Sonine approximation to the distribution function of each species. Their quantitative variation on the control parameters of the mixture (masses and diameters, coefficients of restitution, concentration, volume fraction, and the background temperature) is demonstrated and the results show that in general the dependence of the heat flux transport coefficients on inelasticity is clearly different from that found in the absence of the gas phase (dry granular mixtures). As an application of the general results, the stability of the homogeneous steady state is analyzed by solving the linearized Navier-Stokes hydrodynamic equations. The linear stability analysis (which holds for wavelengths long compared with the mean free path) shows that the transversal and longitudinal modes are always stable with respect to long-enough wavelength excitations. This conclusion agrees with previous results derived for monocomponent and (dilute) bidisperse granular suspensions but contrasts with the instabilities found in previous works in dry (no gas phase) granular mixtures.
Collapse
Affiliation(s)
- Rubén Gómez González
- Departamento de Física, Universidad de Extremadura, Avenida de Elvas s/n, E-06006 Badajoz, Spain
| | - Vicente Garzó
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Avenida de Elvas s/n, Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
7
|
Pitikaris S, Bartz P, Yu P, Cristoforetti S, Sperl M. Granular cooling of ellipsoidal particles in microgravity. NPJ Microgravity 2022; 8:11. [PMID: 35444243 PMCID: PMC9021203 DOI: 10.1038/s41526-022-00196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
A three-dimensional granular gas of ellipsoids is established by exposing the system to the microgravity environment of the International Space Station. We use two methods to measure the dynamics of the constituent particles and report the long-time development of the granular temperature until no further particle movement is detectable. The resulting cooling behavior can be well described by Haff’s cooling law with time scale τ. Different analysis methods show evidence of particle clustering towards the end of the experiment. By using the kinetic theory for ellipsoids we compare the translational energy dissipation of individual collision events with the overall cooling time scale τ. The difference from this comparison indicates how energy is distributed in different degrees of freedom including both translation and rotation during the cooling.
Collapse
Affiliation(s)
- Sebastian Pitikaris
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170, Köln, Germany
| | - Patricia Bartz
- Institut für Theoretische Physik, Universität zu Köln, 50937, Köln, Germany
| | - Peidong Yu
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170, Köln, Germany. .,Institut für Theoretische Physik, Universität zu Köln, 50937, Köln, Germany.
| | | | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170, Köln, Germany.,Institut für Theoretische Physik, Universität zu Köln, 50937, Köln, Germany
| |
Collapse
|
8
|
Shaebani MR, Török J, Maleki M, Madani M, Harrington M, Rice A, Losert W. Gravity Governs Shear Localization in Confined Dense Granular Flows. PHYSICAL REVIEW LETTERS 2021; 127:278003. [PMID: 35061419 DOI: 10.1103/physrevlett.127.278003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/10/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The prediction of flow profiles of slowly sheared granular materials is a major geophysical and industrial challenge. Understanding the role of gravity is particularly important for future planetary exploration in varying gravitational environments. Using the principle of minimization of energy dissipation, and combining experiments and variational analysis, we disentangle the contributions of the gravitational acceleration, confining pressure, and layer thickness on shear strain localization induced by moving fault boundaries at the bottom of a granular layer. The flow profile is independent of the gravity for geometries with a free top surface. However, under a confining pressure or if the sheared layer withstands the weight of the upper layers, increasing gravity promotes the transition from closed shear zones buried in the bulk to open ones that intersect the top surface. We show that the center position and width of the shear zone and the axial angular velocity at the top surface follow universal scaling laws when properly scaled by the gravity, applied pressure, and layer thickness. Our finding that the flow profiles lie on a universal master curve opens the possibility to predict the quasistatic shear flow of granular materials in varying gravitational environments.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - János Török
- MTA-BME Morphodynamics Research Group, Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Maniya Maleki
- Department of Physics & Optics Research Center, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Mahnoush Madani
- Department of Physics & Optics Research Center, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Matt Harrington
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Allyson Rice
- Department of Biophysics Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
9
|
Escobar A, Donado F, Moctezuma RE, Weeks ER. Direct observation of crystal nucleation and growth in a quasi-two-dimensional nonvibrating granular system. Phys Rev E 2021; 104:044904. [PMID: 34781520 DOI: 10.1103/physreve.104.044904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
We study a quasi-two-dimensional macroscopic system of magnetic spherical particles settled on a shallow concave dish under a temporally oscillating magnetic field. The system reaches a stationary state where the energy losses from collisions and friction with the concave dish surface are compensated by the continuous energy input coming from the oscillating magnetic field. Random particle motions show some similarities with the motions of atoms and molecules in a glass or a crystal-forming fluid. Because of the curvature of the surface, particles experience an additional force toward the center of the concave dish. When decreasing the magnetic field, the effective temperature is decreased and diffusive particle motion slows. For slow cooling rates we observe crystallization, where the particles organize into a hexagonal lattice. We study the birth of the crystalline nucleus and the subsequent growth of the crystal. Our observations support nonclassical theories of crystal formation. Initially a dense amorphous aggregate of particles forms, and then in a second stage this aggregate rearranges internally to form the crystalline nucleus. As the aggregate grows, the crystal grows in its interior. After a certain size, all the aggregated particles are part of the crystal and after that crystal growth follows the classical theory for crystal growth.
Collapse
Affiliation(s)
- A Escobar
- Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca 42184, Pachuca, México
| | - F Donado
- Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca 42184, Pachuca, México
| | - R E Moctezuma
- CONACYT-Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, México
| | - Eric R Weeks
- Physics Department, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
10
|
Visual analysis of density and velocity profiles in dense 3D granular gases. Sci Rep 2021; 11:10621. [PMID: 34012072 PMCID: PMC8134476 DOI: 10.1038/s41598-021-89949-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow-based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.
Collapse
|
11
|
Noirhomme M, Cazaubiel A, Falcon E, Fischer D, Garrabos Y, Lecoutre-Chabot C, Mawet S, Opsomer E, Palencia F, Pillitteri S, Vandewalle N. Particle Dynamics at the Onset of the Granular Gas-Liquid Transition. PHYSICAL REVIEW LETTERS 2021; 126:128002. [PMID: 33834798 DOI: 10.1103/physrevlett.126.128002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
We study experimentally the dynamical behavior of few large tracer particles placed in a quasi-2D granular "gas" made of many small beads in a low-gravity environment. Multiple inelastic collisions transfer momentum from the uniaxially driven gas to the tracers whose velocity distributions are studied through particle tracking. Analyzing these distributions for an increasing system density reveals that translational energy equipartition is reached at the onset of the gas-liquid granular transition corresponding to the emergence of local clusters. The dynamics of a few tracer particles thus appears as a simple and accurate tool to detect this transition. A model is proposed for describing accurately the formation of local heterogeneities.
Collapse
Affiliation(s)
- M Noirhomme
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - A Cazaubiel
- Université de Paris, Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75013 Paris, France
| | - E Falcon
- Université de Paris, Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75013 Paris, France
| | - D Fischer
- Institute of Physics, Otto von Guericke University, D-39106 Magdeburg, Germany
| | - Y Garrabos
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - C Lecoutre-Chabot
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - S Mawet
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - E Opsomer
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - F Palencia
- CNRS, Université de Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - S Pillitteri
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| | - N Vandewalle
- GRASP, CESAM Research Unit, Institut de Physique B5a, Sart Tilman, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
12
|
Puzyrev D, Cruz Hidalgo R, Fischer D, Harth K, Trittel T, Stannarius R. Cluster dynamics in dense granular gases of rod-like particles. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124904004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Granular gases are interesting multiparticle systems which, irrespective of the apparent simplicity of particle interactions, exhibit a rich scenario of so far only little understood features. We have numerically investigated a dense granular gas composed of frictional spherocylinders which are excited mechanically by lateral vibrating container walls. This study was stimulated by experiments in microgravity on parabolic flights. The formation of spatial inhomogeneities (clusters) was observed in a region near the corners of the container, about halfway from the excitation plates. The particles in the clusters show a tendency to align parallel to the container walls, seemingly increasing the stabilizing effect of friction. The simulation results provide hints that the phase difference of the vibrations of the two excitation walls might affect the cluster dynamics.
Collapse
|
13
|
Yu P, Schröter M, Adachi M, Sperl M. Magnetically heated granular gas in a low-gravity environment. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124904002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Magnetic forces are used to heat up thousands of spherical particles under low-gravity. This long range external excitation, combined with the induced particle-particle interactions, results in a homogeneous spatial distribution of the particles. Comparisons with predictions of kinetic theories can hence be carried out. Haff’s cooling law is verified qualitatively, while the measured cooling time scale is quantitatively different from the prediction. The high velocity tail of the velocity distribution during homogeneous cooling state (HCS) is measured, while the expected cluster formation after HCS can not be verified by our experiment.
Collapse
|
14
|
Pongó T, Puzyrev D, Harth K, Stannarius R, Cruz Hidalgo R. Continuously heated granular gas of elongated particles. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124904003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Some years ago, Harth et al. experimentally explored the steady state dynamics of a heated granular gas of rod-like particles in microgravity [K. Harth et al. Phys. Rev. Lett. 110, 144102 (2013)]. Here, we report numerical results that quantitatively reproduce their experimental findings and provide additional insight into the process. A system of sphero-cylinders is heated by the vibration of three flat side walls, resulting in one symmetrically heated direction, one non-symmetrically heated direction, and one non-heated direction. In the non-heated direction, the speed distribution follows a stretched exponential distribution $$p(\upsilon )\, \propto \,{\rm{exp}}\left( { - {{\left( {{{\left| \upsilon \right|} \mathord{\left/ {\vphantom {{\left| \upsilon \right|} C}} \right. \kern-\nulldelimiterspace} C}} \right)}^{1.5}}} \right)$$. In the symmetrically heated direction, the velocity statistics at low speeds is similar but it develops pronounced exponential tails at high speeds. In the non-symmetrically heated direction (not accessed experimentally), the distribution also follows $$p(\upsilon )\, \propto \,{\rm{exp}}\left( { - {{\left( {{{\left| \upsilon \right|} \mathord{\left/ {\vphantom {{\left| \upsilon \right|} C}} \right. \kern-\nulldelimiterspace} C}} \right)}^{1.5}}} \right)$$
, but the velocity statistics of rods moving toward the vibrating wall resembles the indirectly excited direction, whereas the velocity statistics of those moving away from the wall resembles the direct excited direction.
Collapse
|
15
|
Mandal S, Kurzthaler C, Franosch T, Löwen H. Crowding-Enhanced Diffusion: An Exact Theory for Highly Entangled Self-Propelled Stiff Filaments. PHYSICAL REVIEW LETTERS 2020; 125:138002. [PMID: 33034497 DOI: 10.1103/physrevlett.125.138002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament number density by more than one order of magnitude. This counterintuitive "crowded is faster" behavior can be rationalized by extending the concept of a confining tube pioneered by Doi and Edwards for highly entangled, crowded, passive to active systems. We predict a scaling theory for the effective diffusivity as a function of the Péclet number and the filament number density. Subsequently, we show that an exact expression derived for a single self-propelled filament with motility parameters as input can predict the nontrivial spatiotemporal dynamics over the entire range of length and timescales. In particular, our theory captures short-time diffusion, directed swimming motion at intermediate times, and the transition to complete orientational relaxation at long times.
Collapse
Affiliation(s)
- Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Wang S, Zhuravkov M, Ji S. Granular flow of cylinder-like particles in a cylindrical hopper under external pressure based on DEM simulations. SOFT MATTER 2020; 16:7760-7777. [PMID: 32744286 DOI: 10.1039/c9sm02435b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Granular flow is widely found in nature or industrial production. Although the external driving force significantly affects the dynamic behavior of a granular system, a large number of numerical simulations have been conducted to study granular flows driven by gravity. In this study, a superquadric equation was used to construct spherical and cylindrical elements, and the flow processes of granular materials under external pressure were simulated by the discrete element method. To examine the validity of the DEM model, the Janssen effect of spherical particles, the static packing of cylindrical particles and the flow process of spherical particles under external pressure are simulated and compared with the previous experimental and theoretical results. Subsequently, the effects of blockiness, orifice diameter, and particle friction on the flow characteristics are investigated. Results show that the flow rate of spherical particles increases as the external pressure and opening diameter increase or the particle friction decreases. However, the flow rate of cylindrical particles decreases as the blockiness parameter increases, and the external pressure has little effect on the flow rate of the cylindrical particles when the blockiness parameter is greater than 4. Furthermore, the external pressure causes a change in the flow pattern of granular systems. In a gravity-driven granular flow, cylindrical particles appear in funnel flow, and spherical particles in both mass and funnel flows. In a pressure-driven granular flow, spherical particles appear in mass flow, and cylindrical particles in both mass and funnel flows. The critical height of the transition between mass and funnel flows decreases with increasing external pressure and eventually reaches a steady state. Meanwhile, the critical height increases with the blockiness parameter, which indicates that more cylindrical than spherical particles appear in funnel flow. Finally, the basic flow characteristics of granular materials under external pressure are further analyzed by the velocity uniformity index, the normal contact force between particles, and the bottom pressure. Overall, the numerical results are useful for understanding the changes in the flow characteristics of spherical and cylindrical granular materials under external pressure, and further provide guidance for the appropriate design and optimization of cylindrical hoppers.
Collapse
Affiliation(s)
- Siqiang Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China.
| | | | | |
Collapse
|
17
|
Yu P, Schröter M, Sperl M. Velocity Distribution of a Homogeneously Cooling Granular Gas. PHYSICAL REVIEW LETTERS 2020; 124:208007. [PMID: 32501095 DOI: 10.1103/physrevlett.124.208007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
In contrast to molecular gases, granular gases are characterized by inelastic collisions and require therefore permanent driving to maintain a constant kinetic energy. The kinetic theory of granular gases describes how the average velocity of the particles decreases after the driving is shut off. Moreover, it predicts that the rescaled particle velocity distribution will approach a stationary state with overpopulated high-velocity tails as compared to the Maxwell-Boltzmann distribution. While this fundamental theoretical result was reproduced by numerical simulations, an experimental confirmation is still missing. Using a microgravity experiment that allows the spatially homogeneous excitation of spheres via magnetic fields, we confirm the theoretically predicted exponential decay of the tails of the velocity distribution.
Collapse
Affiliation(s)
- Peidong Yu
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| | - Matthias Schröter
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Cologne, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
| |
Collapse
|
18
|
Bai Q, Mazza MG. Crystallization via shaking in a granular gas with van der Waals interactions. Phys Rev E 2019; 100:042910. [PMID: 31770995 DOI: 10.1103/physreve.100.042910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Indexed: 11/07/2022]
Abstract
We investigate the effect of van der Waals forces on a collection of granular particles by means of molecular dynamics simulations of a vibrated system in three dimensions. The van der Waals interactions introduce two phase coexistences: one between a random close packing and a gas and a second between a polycrystalline dense state and a gas, where the dense, disordered component crystallizes when the driving amplitude exceeds a threshold value. The region of stability of the ordered state in the nonequilibrium phase diagram grows in size as the Hamaker constant increases or the degree of dissipation increases.
Collapse
Affiliation(s)
- Qiong Bai
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany.,Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
19
|
Scholz C, Jahanshahi S, Ldov A, Löwen H. Inertial delay of self-propelled particles. Nat Commun 2018; 9:5156. [PMID: 30514839 PMCID: PMC6279816 DOI: 10.1038/s41467-018-07596-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
The motion of self-propelled massive particles through a gaseous medium is dominated by inertial effects. Examples include vibrated granulates, activated complex plasmas and flying insects. However, inertia is usually neglected in standard models. Here, we experimentally demonstrate the significance of inertia on macroscopic self-propelled particles. We observe a distinct inertial delay between orientation and velocity of particles, originating from the finite relaxation times in the system. This effect is fully explained by an underdamped generalisation of the Langevin model of active Brownian motion. In stark contrast to passive systems, the inertial delay profoundly influences the long-time dynamics and enables new fundamental strategies for controlling self-propulsion in active matter.
Collapse
Affiliation(s)
- Christian Scholz
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Soudeh Jahanshahi
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Anton Ldov
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Santos A. Interplay between polydispersity, inelasticity, and roughness in the freely cooling regime of hard-disk granular gases. Phys Rev E 2018; 98:012904. [PMID: 30110735 DOI: 10.1103/physreve.98.012904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/07/2022]
Abstract
A polydisperse granular gas made of inelastic and rough hard disks is considered. Focus is laid on the kinetic-theory derivation of the partial energy production rates and the total cooling rate as functions of the partial densities and temperatures (both translational and rotational) and of the parameters of the mixture (masses, diameters, moments of inertia, and mutual coefficients of normal and tangential restitution). The results are applied to the homogeneous cooling state of the system and the associated nonequipartition of energy among the different components and degrees of freedom. It is found that disks typically present a stronger rotational-translational nonequipartition but a weaker component-component nonequipartition than spheres. A noteworthy "mimicry" effect is unveiled, according to which a polydisperse gas of disks having common values of the coefficient of restitution and of the reduced moment of inertia can be made indistinguishable from a monodisperse gas in what concerns the degree of rotational-translational energy nonequipartition. This effect requires the mass of a disk of component i to be approximately proportional to 2σ_{i}+〈σ〉, where σ_{i} is the diameter of the disk and 〈σ〉 is the mean diameter.
Collapse
Affiliation(s)
- Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
21
|
Aumaître S, Behringer RP, Cazaubiel A, Clément E, Crassous J, Durian DJ, Falcon E, Fauve S, Fischer D, Garcimartín A, Garrabos Y, Hou M, Jia X, Lecoutre C, Luding S, Maza D, Noirhomme M, Opsomer E, Palencia F, Pöschel T, Schockmel J, Sperl M, Stannarius R, Vandewalle N, Yu P. An instrument for studying granular media in low-gravity environment. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:075103. [PMID: 30068123 DOI: 10.1063/1.5034061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new experimental facility has been designed and constructed to study driven granular media in a low-gravity environment. This versatile instrument, fully automatized, with a modular design based on several interchangeable experimental cells, allows us to investigate research topics ranging from dilute to dense regimes of granular media such as granular gas, segregation, convection, sound propagation, jamming, and rheology-all without the disturbance by gravitational stresses active on Earth. Here, we present the main parameters, protocols, and performance characteristics of the instrument. The current scientific objectives are then briefly described and, as a proof of concept, some first selected results obtained in low gravity during parabolic flight campaigns are presented.
Collapse
Affiliation(s)
- S Aumaître
- SPEC, DSM, CEA-Saclay, CNRS URA 2464, F-91191 Gif-sur-Yvette, France
| | - R P Behringer
- Department of Physics, Duke University, Durham, North Carolina 27708-0305, USA
| | - A Cazaubiel
- Université Paris Diderot, SPC, MSC, UMR 7057 CNRS, F-75013 Paris, France
| | - E Clément
- PMMH, ESPCI, UMR 7636 CNRS, F-75005 Paris, France
| | - J Crassous
- Université Rennes 1, IPR, UMR 6251 CNRS, F-35042 Rennes, France
| | - D J Durian
- University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | - E Falcon
- Université Paris Diderot, SPC, MSC, UMR 7057 CNRS, F-75013 Paris, France
| | - S Fauve
- École Normale Supérieure, LPS, CNRS, UMR 8550, F-75005 Paris, France
| | - D Fischer
- IEP, Otto von Guericke Universität, D-39106 Magdeburg, Germany
| | - A Garcimartín
- DFMA, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Y Garrabos
- CNRS, ICMCB, Université de Bordeaux, UMR 5026, F-33600 Pessac, France
| | - M Hou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - X Jia
- Institut Langevin, ESPCI Paris, PSL, CNRS, F-75005 Paris, France
| | - C Lecoutre
- CNRS, ICMCB, Université de Bordeaux, UMR 5026, F-33600 Pessac, France
| | - S Luding
- MSM, University of Twente, 7500 AE Enschede, The Netherlands
| | - D Maza
- DFMA, Universidad de Navarra, E-31080 Pamplona, Spain
| | - M Noirhomme
- GRASP, Institute of Physics B5a, University of Liège, B-4000 Liège, Belgium
| | - E Opsomer
- GRASP, Institute of Physics B5a, University of Liège, B-4000 Liège, Belgium
| | - F Palencia
- CNRS, ICMCB, Université de Bordeaux, UMR 5026, F-33600 Pessac, France
| | - T Pöschel
- Friedrich-Alexander Universität, IMS, D-91052 Erlangen, Germany
| | - J Schockmel
- GRASP, Institute of Physics B5a, University of Liège, B-4000 Liège, Belgium
| | - M Sperl
- Institut für Materialphysik im Weltraum, DLR, D-51170 Köln, Germany
| | - R Stannarius
- IEP, Otto von Guericke Universität, D-39106 Magdeburg, Germany
| | - N Vandewalle
- GRASP, Institute of Physics B5a, University of Liège, B-4000 Liège, Belgium
| | - P Yu
- MSM, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|