1
|
Huang Y, Zeng X, Ma X, Lin Z, Sun J, Xiao W, Liu SH, Yin J, Yang GF. A visible light-activated azo-fluorescent switch for imaging-guided and light-controlled release of antimycotics. Nat Commun 2024; 15:8670. [PMID: 39375340 PMCID: PMC11458760 DOI: 10.1038/s41467-024-52855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Azo switches are widely employed as essential components in light-responsive systems. Here, we develop an azo-fluorescent switch that is visible light-responsive and its light-responsive processes can be monitored using fluorescence imaging. Visible light irradiation promotes isomerization, accompanied by changes in fluorescence that enable the process to be monitored through fluorescence imaging. Furthermore, we document that the nanocavity size of liposome encapsulated nanoparticles containing azo changes in the isomerization process and show that this change enables construction of a light-responsive nanoplatform for optically controlled release of antimycotics. Also, natural light activation of nanoparticles of the switch loaded with an antimycotic agent causes death of Rhizoctonia solani. The results show that these nanoparticles can double the holding period in comparison to small molecule antimycotics. The strategy used to design the imaging-guided light-controlled nano-antimycotic release system can be applicable to protocols for controlled delivery of a wide variety of drugs.
Collapse
Affiliation(s)
- Yurou Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiaoyan Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiaoxie Ma
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Zibo Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jiayue Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Wang Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
2
|
Sisodiya DS, Chattopadhyay A. The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system. J Chem Phys 2024; 161:034307. [PMID: 39017425 DOI: 10.1063/5.0206946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2'-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5-5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K. K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
3
|
Anderson MC, Dodin A, Fay TP, Limmer DT. Coherent control from quantum commitment probabilities. J Chem Phys 2024; 161:024115. [PMID: 38995082 DOI: 10.1063/5.0213444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
We introduce a general definition of a quantum committor in order to clarify reaction mechanisms and facilitate control in processes where coherent effects are important. With a quantum committor, we generalize the notion of a transition state to quantum superpositions and quantify the effect of interference on the progress of the reaction. The formalism is applicable to any linear quantum master equation supporting metastability for which absorbing boundary conditions designating the reactant and product states can be applied. We use this formalism to determine the dependence of the quantum transition state on coherences in a polaritonic system and optimize the initialization state of a conical intersection model to control reactive outcomes, achieving yields of the desired state approaching 100%. In addition to providing a practical tool, the quantum committor provides a conceptual framework for understanding reactions in cases when classical intuitions fail.
Collapse
Affiliation(s)
- Michelle C Anderson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Amro Dodin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thomas P Fay
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Ashworth EK, Ashworth SH, Bull JN. Spectroscopy and dynamics of isolated anions: Versatile instrumentation for photodetachment and photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:075103. [PMID: 38984887 DOI: 10.1063/5.0207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Molecular anions are appealing targets for study because, compared with their neutral and cationic counterparts, they can be probed with conventional laboratory lasers without the need for multiphoton ionization schemes, and they provide spectroscopic details on the corresponding neutral molecules. Here, we describe a section of a modular instrument designed to perform high-throughput photoelectron and photodetachment spectroscopy of gas-phase anions, with future provision for time-resolved and isomer-selective spectroscopy. The instrument framework allows for the incorporation and adaptation of several ion sources, as demonstrated here with plasma (electric) discharge sources providing variable hard to soft ion generation conditions. The generated anions are separated according to their mass-to-charge ratio through time-of-flight mass spectrometry (m/zΔm/z = 500-600) and are focused into a set of perpendicular velocity-map imaging electrodes (ΔEE≈4%), where mass-selected anions are probed using laser light and the ejected electrons are velocity-map imaged. Instrument performance is demonstrated through the acquisition of photodetachment and photoelectron spectra for CH2CN-, showing sharp resonances in the vicinity of the detachment threshold assigned to rovibrational states of a dipole-bound anion and broader lifetime-limited spectral features at photon energies well above the threshold assigned to prompt autodetachment from a temporary anion resonance. Similar measurements could be performed on any molecular anions generated in the sources.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stephen H Ashworth
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
5
|
Ito R, Ohshimo K, Misaizu F. Intra-host π-π interactions in crown ether complexes revealed by cryogenic ion mobility-mass spectrometry. Phys Chem Chem Phys 2024; 26:12537-12544. [PMID: 38619106 DOI: 10.1039/d4cp00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cryogenic ion mobility-mass spectrometry was performed to investigate the relative abundance of conformers of dinaphtho-24-crown-8 (DN24C8) complexes with alkali metal cations M+ (M = Li, Na, K, Rb, and Cs). The "closed" conformers of M+(DN24C8) with short distances between two naphthalene rings in the crown ethers were predominantly observed for all complexes at 86 K. The two noncovalent interactions, host-guest and intra-host interactions, were analyzed separately by density functional theory calculations to reveal the origin of the stability of the closed conformers. As a result, it was revealed that the intra-host π-π interactions have a more critical role in determining the stability of the conformers than the host-guest interactions. The closed conformers of M+(DN24C8) also have wider regions of the π-π interactions than those of the M+(dibenzo-24-crown-8) complexes.
Collapse
Affiliation(s)
- Ryosuke Ito
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Sisodiya DS, Ali SM, Chattopadhyay A. Unexplored Isomerization Pathways of Azobis(benzo-15-crown-5): Computational Studies on a Butterfly Crown Ether. J Phys Chem A 2023; 127:7080-7093. [PMID: 37526572 DOI: 10.1021/acs.jpca.3c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Computational studies on trans → cis and cis → trans isomerizations of photoresponsive azobis(benzo-15-crown-5) have been reported in this work. The photoexcited ππ* state (S2) of the trans isomer relaxes through the planar S2 minimum and the planar S2/S1 conical intersection (both situated around 9 kcal/mol below the vertically excited S2 state) arising along the N═N stretching coordinate. The nπ* state (S1) of this isomer has both planar and rotated (clockwise and anticlockwise) minima, which may lead to a torsional conical intersection (S0/S1) geometry having a
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| |
Collapse
|
7
|
Ashworth EK, Dezalay J, Ryan CRM, Ieritano C, Hopkins WS, Chambrier I, Cammidge AN, Stockett MH, Noble JA, Bull JN. Protomers of the green and cyan fluorescent protein chromophores investigated using action spectroscopy. Phys Chem Chem Phys 2023. [PMID: 37465988 DOI: 10.1039/d3cp02661b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The photophysics of biochromophore ions often depends on the isomeric or protomeric distribution, yet this distribution, and the individual isomer contributions to an action spectrum, can be difficult to quantify. Here, we use two separate photodissociation action spectroscopy instruments to record electronic spectra for protonated forms of the green (pHBDI+) and cyan (Cyan+) fluorescent protein chromophores. One instrument allows for cryogenic (T = 40 ± 10 K) cooling of the ions, while the other offers the ability to perform protomer-selective photodissociation spectroscopy. We show that both chromophores are generated as two protomers when using electrospray ionisation, and that the protomers have partially overlapping absorption profiles associated with the S1 ← S0 transition. The action spectra for both species span the 340-460 nm range, although the spectral onset for the pHBDI+ protomer with the proton residing on the carbonyl oxygen is red-shifted by ≈40 nm relative to the lower-energy imine protomer. Similarly, the imine and carbonyl protomers are the lowest energy forms of Cyan+, with the main band for the carbonyl protomer red-shifted by ≈60 nm relative to the lower-energy imine protomer. The present strategy for investigating protomers can be applied to a wide range of other biochromophore ions.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Jordan Dezalay
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Isabelle Chambrier
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Andrew N Cammidge
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
8
|
Muramatsu S, Ohshimo K, Shi Y, Kida M, Shang R, Yamamoto Y, Misaizu F, Inokuchi Y. Gas-Phase Characterization of Hypervalent Carbon Compounds Bearing 7-6-7-Ring Skeleton: Penta- versus Tetra-Coordinate Isomers. Chemistry 2023; 29:e202203163. [PMID: 36417203 DOI: 10.1002/chem.202203163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
In this study, we afford explicit characterizations of the electronic and geometrical structures of recently reported hypervalent penta-coordinate carbon compounds by using gas-phase characterization techniques: photodissociation spectroscopy (PDS) and ion mobility-mass spectrometry (IM-MS). In particular for a compound with moderately electron-donating ligands, bearing p-methylthiophenyl substituents, the coexistence of tetra- and penta-coordinate isomers is confirmed, consistent with solution characterizations. It is in sharp contrast to the exclusive tetra-coordinate form (with normal valence of the central carbon atom) in the single crystal. This suggests that a non-polar environment makes the penta-coordinate structure thermodynamically most stable. This delicate difference between the tetra- and penta-coordinate structures, which depends on the environment, is a close reflection of the lower activation barrier of the SN 2 reaction found in neutral solvent or gas-phase reactions.
Collapse
Affiliation(s)
- Satoru Muramatsu
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yuan Shi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Motoki Kida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
9
|
Ashworth EK, Langeland J, Stockett MH, Lindkvist TT, Kjær C, Bull JN, Nielsen SB. Cryogenic Fluorescence Spectroscopy of Ionic Fluorones in Gaseous and Condensed Phases: New Light on Their Intrinsic Photophysics. J Phys Chem A 2022; 126:9553-9563. [PMID: 36529970 DOI: 10.1021/acs.jpca.2c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescence spectroscopy of gas-phase ions generated through electrospray ionization is an emerging technique able to probe intrinsic molecular photophysics directly without perturbations from solvent interactions. While there is ample scope for the ongoing development of gas-phase fluorescence techniques, the recent expansion into low-temperature operating conditions accesses a wealth of data on intrinsic fluorophore photophysics, offering enhanced spectral resolution compared with room-temperature measurements, without matrix effects hindering the excited-state dynamics. This perspective reviews current progress on understanding the photophysics of anionic fluorone dyes, which exhibit an unusually large Stokes shift in the gas phase, and discusses how comparison of gas- and condensed-phase fluorescence spectra can fingerprint structural dynamics. The capacity for temperature-dependent measurements of both fluorescence emission and excitation spectra helps establish the foundation for the use of fluorone dyes as fluorescent tags in macromolecular structure determination. We suggest ideas for technique development.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691Stockholm, Sweden
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - James N Bull
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | | |
Collapse
|
10
|
Ashworth E, Coughlan NJA, Hopkins WS, Bieske EJ, Bull JN. Excited-State Barrier Controls E → Z Photoisomerization in p-Hydroxycinnamate Biochromophores. J Phys Chem Lett 2022; 13:9028-9034. [PMID: 36149746 PMCID: PMC9549896 DOI: 10.1021/acs.jpclett.2c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Molecules based on the deprotonated p-hydroxycinnamate moiety are widespread in nature, including serving as UV filters in the leaves of plants and as the biochromophore in photoactive yellow protein. The photophysical behavior of these chromophores is centered around a rapid E → Z photoisomerization by passage through a conical intersection seam. Here, we use photoisomerization and photodissociation action spectroscopies with deprotonated 4-hydroxybenzal acetone (pCK-) to characterize a wavelength-dependent bifurcation between electron autodetachment (spontaneous ejection of an electron from the S1 state because it is situated in the detachment continuum) and E → Z photoisomerization. While autodetachment occurs across the entire S1(ππ*) band (370-480 nm), E → Z photoisomerization occurs only over a blue portion of the band (370-430 nm). No E → Z photoisomerization is observed when the ketone functional group in pCK- is replaced with an ester or carboxylic acid. The wavelength-dependent bifurcation is consistent with potential energy surface calculations showing that a barrier separates the Franck-Condon region from the E → Z isomerizing conical intersection. The barrier height, which is substantially higher in the gas phase than in solution, depends on the functional group and governs whether E → Z photoisomerization occurs more rapidly than autodetachment.
Collapse
Affiliation(s)
- Eleanor
K. Ashworth
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Neville J. A. Coughlan
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- WaterMine
Innovation, Inc., Waterloo, Ontario N0B 2T0, Canada
| | - W. Scott Hopkins
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- WaterMine
Innovation, Inc., Waterloo, Ontario N0B 2T0, Canada
| | - Evan J. Bieske
- School
of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - James N. Bull
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
12
|
Ito R, He X, Ohshimo K, Misaizu F. Large Conformational Change in the Isomerization of Flexible Crown Ether Observed at Low Temperature. J Phys Chem A 2022; 126:4359-4366. [PMID: 35786937 DOI: 10.1021/acs.jpca.2c02271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamic processes of conformational changes of supramolecules are important to understand the motion in synthetic supramolecules. Although a host-guest complex is the most basic supramolecule, a detailed mechanism of its conformational changes has rarely been studied. Here, we observed the large conformational change of a dibenzo-24-crown-8 complex with four guest ions (Ag+, Na+, K+, and NH4+) at low temperature in the gas phase. The isomerization between the two types of conformers, which have different distances between the two benzene rings, proceeds even at 86 K. Using variable-temperature ion mobility-mass spectrometry (IM-MS) at 100-210 K, the activation energy for the isomerization is determined to be rather small (4.8-9.0 kJ mol-1). Reaction pathway calculations revealed that the isomerization is caused by the sequential rotation of two single bonds in the crown ether ring. The present cryogenic IM-MS study of the host-guest complexes at the molecular level opens an approach to detailed understanding of the motion in supramolecules.
Collapse
Affiliation(s)
- Ryosuke Ito
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Xi He
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Buntine JT, Carrascosa E, Bull JN, Muller G, Jacovella U, Glasson CR, Vamvounis G, Bieske EJ. Photo-induced 6π-electrocyclisation and cycloreversion of isolated dithienylethene anions. Phys Chem Chem Phys 2022; 24:16628-16636. [PMID: 35766319 DOI: 10.1039/d2cp01240e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diarylethene chromophore is commonly used in light-triggered molecular switches. The chromophore undergoes reversible 6π-electrocyclisation (ring closing) and cycloreversion (ring opening) reactions upon exposure to UV and visible light, respectively, providing bidirectional photoswitching. Here, we investigate the gas-phase photoisomerisation of meta- (m) and para- (p) substituted dithienylethene carboxylate anions (DTE-) using tandem ion mobility mass spectrometry coupled with laser excitation. The ring-closed forms of p-DTE- and m-DTE- are found to undergo cycloreversion in the gas phase with maximum responses associated with bands in the visible (λmax ≈ 600 nm) and the ultraviolet (λmax ≈ 360 nm). The ring-open p-DTE- isomer undergoes 6π-electrocyclisation in the ultraviolet region at wavelengths shorter than 350 nm, whereas no evidence is found for the corresponding electrocyclisation of ring-open m-DTE-, a situation attributed to the fact that the antiparallel geometry required for electrocyclisation of m-DTE- is energetically disfavoured. This highlights the influence of the carboxylate substitution position on the photochemical properties of DTE molecules. We find no evidence for the formation in the gas phase of the undesirable cyclic byproduct, which causes fatigue of DTE photoswitches in solution.
Collapse
Affiliation(s)
- Jack T Buntine
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Eduardo Carrascosa
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359 Bremen, Germany
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Giel Muller
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ugo Jacovella
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Christopher R Glasson
- Environmental Research Institute, School of Science, University of Waikato, Tauranga, 3110, New Zealand
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Jeong H, Jung BJ, Kim JH, Choi SH, Lee YJ, Kim KS. Instant pH sensor based on the functionalized cellulose for detecting strong acid leaks. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211660. [PMID: 35308630 PMCID: PMC8924762 DOI: 10.1098/rsos.211660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 05/03/2023]
Abstract
Acid spills cause large-scale environmental damage and casualties. To respond to such incidents, a sensor capable of detecting acid leaks is required. Cellulose is a useful substrate material for the fast detection of acid leaks because it has high hydrophilicity and porosity. On the other hand, methods of manufacturing cellulose-based sensors are still complicated or time-consuming. Thus, in this study, a simple and rapid synthesis method for a cellulose-based pH sensor was proposed. The functionalization of α-cellulose was achieved via chloroacetyl chloride, and Congo red was covalently immobilized to the functionalized cellulose for detecting strong acids. The manufacturing process was composed of two steps as above and finished within 8 h. The developed sensor exhibited absorbance changes in the pH range of 0.2 to 3.0, and response time was shorter than 1 s. A prototype system using this sensor was manufactured and tested, and it detected acid leaks easily and quickly.
Collapse
Affiliation(s)
- Hoseong Jeong
- Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Byung Jun Jung
- Department of Materials Science and Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jae Hyun Kim
- Department of Architectural Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Seung-Ho Choi
- Department of Architectural Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Yoon Jung Lee
- Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Kang Su Kim
- Department of Architectural Engineering and Smart City Interdisciplinary Major Program, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
15
|
Ashworth EK, Stockett MH, Kjær C, Bulman Page PC, Meech SR, Nielsen SB, Bull JN. Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects. J Phys Chem A 2022; 126:1158-1167. [PMID: 35138862 DOI: 10.1021/acs.jpca.1c10628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photophysics of green fluorescent protein (GFP) and red Kaede fluorescent protein (rKFP) are defined by the intrinsic properties of the light-absorbing chromophore and its interaction with the protein binding pocket. This work deploys photodissociation action spectroscopy to probe the absorption profiles for a series of synthetic GFP and rKFP chromophores as the bare anions and as complexes with the betaine zwitterion, which is assumed as a model for dipole microsolvation. Electronic structure calculations and energy decomposition analysis using Symmetry-Adapted Perturbation Theory are used to characterize gas-phase structures and complex cohesion forces. The calculations reveal a preponderance for coordination of betaine to the phenoxide deprotonation site predominantly through electrostatic forces. Calculations using the STEOM-DLPNO-CCSD method are able to reproduce absolute and relative vertical excitation energies for the bare anions and anion-betaine complexes. On the other hand, treatment of the betaine molecule with a point-charge model, in which the charges are computed from some common electron density population analysis schemes, show that just electrostatic and point-charge induction interactions are unable to account for the betaine-induced spectral shift. The present methodology could be applied to investigate cluster forces and optical properties in other gas-phase ion-zwitterion complexes.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Philip C Bulman Page
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | - James N Bull
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
16
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
17
|
Carrascosa E, Bull JN, Martínez-Núñez E, Scholz MS, Buntine JT, Bieske EJ. Photoisomerization of Linear and Stacked Isomers of a Charged Styryl Dye: A Tandem Ion Mobility Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2842-2851. [PMID: 34787413 PMCID: PMC8640989 DOI: 10.1021/jasms.1c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James N. Bull
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emilio Martínez-Núñez
- Departamento
de Química Física, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Michael S. Scholz
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jack T. Buntine
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan J. Bieske
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Polewski L, Springer A, Pagel K, Schalley CA. Gas-Phase Structural Analysis of Supramolecular Assemblies. Acc Chem Res 2021; 54:2445-2456. [PMID: 33900743 DOI: 10.1021/acs.accounts.1c00080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ion mobility spectrometry and gas-phase IR action spectroscopy are two structure-sensitive mass-spectrometric methods becoming more popular recently. While ion mobility spectrometry provides collision cross sections as a size and shape dependent parameter of an ion of interest, gas-phase spectroscopy identifies functional groups and is capable of distinguishing different isomers. Both methods have recently found application for the investigation of supramolecular assemblies. We here highlight several aspects.Starting with the characterization of switching states in azobenzene photoswitches as well as redox-switchable lasso-type pseudorotaxanes, structures of isomers can be distinguished and mechanistic details analyzed. Ion mobility mass spectrometry in combination with gas-phase H/D-exchange reactions unravels subtle structural details as described for the chiral recognition of crown ether amino acid complexes. Gas-phase IR spectroscopy allows identification of details of the binding patterns in dimeric amino acid clusters as well as the serine octamer. This research can be extended into the analysis of peptide assemblies that are of medical relevance, for example, in Alzheimer's disease, and into a general hydrophobicity scale for natural as well as synthetic amino acids. The development of ultracold gas-phase spectroscopy that for example makes use of ions trapped in liquid helium droplets provides access to very well resolved spectra. The combination of ion mobility separation of ions with subsequent spectroscopic analysis even permits separation of different isomers and studying them separately with respect to their structure. This represents a great advantage of these gas-phase methods over solution experiments, in which the supramolecular complexes under study typically equilibrate and thus prevent a separate investigation of different isomers. At the end of this overview, we will discuss larger and more complex supramolecules, among them giant halogen-bonded cages and complex intertwined topologies such as molecular knots and Solomon links.
Collapse
Affiliation(s)
- Lukasz Polewski
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| | - Andreas Springer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20-22, 14195 Berlin, Germany
| |
Collapse
|
19
|
Krohn OA, Catani KJ, Greenberg J, Sundar SP, da Silva G, Lewandowski HJ. Isotope-specific reactions of acetonitrile (CH 3CN) with trapped, translationally cold CCl . J Chem Phys 2021; 154:074305. [PMID: 33607907 DOI: 10.1063/5.0038113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gas-phase reaction of CCl+ with acetonitrile (CH3CN) is studied using a linear Paul ion trap coupled to a time-of-flight mass spectrometer. This work builds on a previous study of the reaction of CCl+ with acetylene [K. J. Catani et al., J. Chem. Phys. 152, 234310 (2020)] and further explores the reactivity of CCl+ with organic neutral molecules. Both of the reactant species are relevant in observations and models of chemistry in the interstellar medium. Nitriles, in particular, are noted for their relevance in prebiotic chemistry and are found in the atmosphere of Titan, one of Saturn's moons. This work represents one of the first studied reactions of a halogenated carbocation with a nitrile and the first exploration of CCl+ with a nitrile. Reactant isotopologues are used to unambiguously assign ionic primary products from this reaction: HNCCl+ and C2H3 +. Branching ratios are measured, and both primary products are determined to be equally probable. Quantum chemical and statistical reaction rate theory calculations illuminate pertinent information for interpreting the reaction data, including reaction thermodynamics and a potential energy surface for the reaction, as well as rate constants and branching ratios for the observed products. In particular, the reaction products and potential energy surface stimulate questions regarding the strength and role of the nitrile functional group, which can be further explored with more reactions of this class.
Collapse
Affiliation(s)
- O A Krohn
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - K J Catani
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - J Greenberg
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - S P Sundar
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - G da Silva
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - H J Lewandowski
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
20
|
Stockett MH, Kjær C, Daly S, Bieske EJ, Verlet JRR, Nielsen SB, Bull JN. Photophysics of Isolated Rose Bengal Anions. J Phys Chem A 2020; 124:8429-8438. [PMID: 32966075 DOI: 10.1021/acs.jpca.0c07123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dye molecules based on the xanthene moiety are widely used as fluorescent probes in bioimaging and technological applications due to their large absorption cross-section for visible light and high fluorescence quantum yield. These applications require a clear understanding of the dye's inherent photophysics and the effect of a condensed-phase environment. Here, the gas-phase photophysics of the rose bengal doubly deprotonated dianion [RB - 2H]2-, deprotonated monoanion [RB - H]-, and doubly deprotonated radical anion [RB - 2H]•- is investigated using photodetachment, photoelectron, and dispersed fluorescence action spectroscopies, and tandem ion mobility spectrometry (IMS) coupled with laser excitation. For [RB - 2H]2-, photodetachment action spectroscopy reveals a clear band in the visible (450-580 nm) with vibronic structure. Electron affinity and repulsive Coulomb barrier (RCB) properties of the dianion are characterized using frequency-resolved photoelectron spectroscopy, revealing a decreased RCB compared with that of fluorescein dianions due to electron delocalization over halogen atoms. Monoanions [RB - H]- and [RB - 2H]•- differ in nominal mass by 1 Da but are difficult to study individually using action spectroscopies that isolate target ions using low-resolution mass spectrometry. This work shows that the two monoanions are readily distinguished and probed using the IMS-photo-IMS and photo-IMS-photo-IMS strategies, providing distinct but overlapping photodissociation action spectra in the visible spectral range. Gas-phase fluorescence was not detected from photoexcited [RB - 2H]2- due to rapid electron ejection. However, both [RB - H]- and [RB - 2H]•- show a weak fluorescence signal. The [RB - H]- action spectra show a large Stokes shift of ∼1700 cm-1, while the [RB - 2H]•- action spectra show no appreciable Stokes shift. This difference is explained by considering geometries of the ground and fluorescing states.
Collapse
Affiliation(s)
- Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Steven Daly
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére UMR 5306, F-69100 Villeurbanne, France
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | | | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
21
|
Zelenka J, Roithová J. Mechanistic Investigation of Photochemical Reactions by Mass Spectrometry. Chembiochem 2020; 21:2232-2240. [DOI: 10.1002/cbic.202000072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
22
|
Bull JN, Anstöter CS, Verlet JRR. Fingerprinting the Excited-State Dynamics in Methyl Ester and Methyl Ether Anions of Deprotonated para-Coumaric Acid. J Phys Chem A 2020; 124:2140-2151. [PMID: 32105474 DOI: 10.1021/acs.jpca.9b11993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chromophores based on the para-hydroxycinnamate moiety are widespread in the natural world, including as the photoswitching unit in photoactive yellow protein and as a sunscreen in the leaves of plants. Here, photodetachment action spectroscopy combined with frequency- and angle-resolved photoelectron imaging is used to fingerprint the excited-state dynamics over the first three bright action-absorption bands in the methyl ester anions (pCEs-) of deprotonated para-coumaric acid at a temperature of ∼300 K. The excited states associated with the action-absorption bands are classified as resonances because they are situated in the detachment continuum and are open to autodetachment. The frequency-resolved photoelectron spectrum for pCEs- indicates that all photon energies over the S1(ππ*) band lead to similar vibrational autodetachment dynamics. The S2(nπ*) band is Herzberg-Teller active and has comparable brightness to the higher lying 21(ππ*) band. The frequency-resolved photoelectron spectrum over the S2(nπ*) band indicates more efficient internal conversion to the S1(ππ*) state for photon energies resonant with the Franck-Condon modes (∼80%) compared with the Herzberg-Teller modes (∼60%). The third action-absorption band, which corresponds to excitation of the 21(ππ*) state, shows complex and photon energy-dependent dynamics, with 20-40% of photoexcited population internally converting to the S1(ππ*) state. There is also evidence for a mode-specific competition between prompt autodetachment and internal conversion on the red edge of the 21(ππ*) band. There is no evidence for recovery of the ground electronic state and statistical electron ejection (thermionic emission) following photoexcitation over any of the three action-absorption bands. The photoelectron spectra for the deprotonated methyl ether derivative (pCEt-) at photon energies over the S1(ππ*) and S2(nπ*) bands indicate diametrically opposed dynamics compared with pCEs-, namely, intense thermionic emission due to efficient recovery of the ground electronic state.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
23
|
Carrascosa E, Bull JN, Buntine JT, da Silva G, Santos PF, Bieske EJ. Near-infrared reversible photoswitching of an isolated azobenzene-stilbene dye. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Bull JN, West CW, Anstöter CS, da Silva G, Bieske EJ, Verlet JRR. Ultrafast photoisomerisation of an isolated retinoid. Phys Chem Chem Phys 2019; 21:10567-10579. [PMID: 31073587 DOI: 10.1039/c9cp01624d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoinduced excited state dynamics of gas-phase trans-retinoate (deprotonated trans-retinoic acid, trans-RA-) are studied using tandem ion mobility spectrometry coupled with laser spectroscopy, and frequency-, angle- and time-resolved photoelectron imaging. Photoexcitation of the bright S3(ππ*) ← S0 transition leads to internal conversion to the S1(ππ*) state on a ≈80 fs timescale followed by recovery of S0 and concomitant isomerisation to give the 13-cis (major) and 9-cis (minor) photoisomers on a ≈180 fs timescale. The sub-200 fs stereoselective photoisomerisation parallels that for the retinal protonated Schiff base chromophore in bacteriorhodopsin. Measurements on trans-RA- in methanol using the solution photoisomerisation action spectroscopy technique show that 13-cis-RA- is also the principal photoisomer, although the 13-cis and 9-cis photoisomers are formed with an inverted branching ratio with photon energy in methanol when compared with the gas phase, presumably due to solvent-induced modification of potential energy surfaces and inhibition of electron detachment processes. Comparison of the gas-phase time-resolved data with transient absorption spectroscopy measurements on retinoic acid in methanol suggest that photoisomerisation is roughly six times slower in solution. This work provides clear evidence that solvation significantly affects the photoisomerisation dynamics of retinoid molecules.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
25
|
Bull JN, Silva GD, Scholz MS, Carrascosa E, Bieske EJ. Photoinitiated Intramolecular Proton Transfer in Deprotonated para-Coumaric Acid. J Phys Chem A 2019; 123:4419-4430. [DOI: 10.1021/acs.jpca.9b02023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James N. Bull
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael S. Scholz
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Evan J. Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|