1
|
Hu Z, He J, Ye R, Lin X, Zhou F, Xu N. Suppressing Thermal Noise to Sub-Millikelvin Level in a Single-Spin Quantum System Using Realtime Frequency Tracking. MICROMACHINES 2024; 15:911. [PMID: 39064422 PMCID: PMC11278624 DOI: 10.3390/mi15070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains.
Collapse
Affiliation(s)
- Zhiyi Hu
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China;
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Runchuan Ye
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Xue Lin
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| | - Feifei Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; (J.H.); (R.Y.); (X.L.)
| |
Collapse
|
2
|
Xiao R, Zhao YX. Revealing the spatial nature of sublattice symmetry. Nat Commun 2024; 15:3787. [PMID: 38710685 DOI: 10.1038/s41467-024-48170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
The sublattice symmetry on a bipartite lattice is commonly regarded as the chiral symmetry in the AIII class of the tenfold Altland-Zirnbauer classification. Here, we reveal the spatial nature of sublattice symmetry and show that this assertion holds only if the periodicity of primitive unit cells agrees with that of the sublattice labeling. In cases where the periodicity does not agree, sublattice symmetry is represented as a glide reflection in energy-momentum space, which inverts energy and simultaneously translates some k by π, leading to substantially different physics. Particularly, it introduces novel constraints on zero modes in semimetals and completely alters the classification table of topological insulators compared to class AIII. Notably, the dimensions corresponding to trivial and nontrivial classifications are switched, and the nontrivial classification becomesZ 2 instead of Z . We have applied these results to several models, including the Hofstadter model both with and without dimerization.
Collapse
Affiliation(s)
- Rong Xiao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Y X Zhao
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
3
|
Zhang H, Wang WW, Qiao C, Zhang L, Liang MC, Wu R, Wang XJ, Liu XJ, Zhang X. Topological spin-orbit-coupled fermions beyond rotating wave approximation. Sci Bull (Beijing) 2024; 69:747-755. [PMID: 38331706 DOI: 10.1016/j.scib.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The realization of spin-orbit-coupled ultracold gases has driven a wide range of research and is typically based on the rotating wave approximation (RWA). By neglecting the counter-rotating terms, RWA characterizes a single near-resonant spin-orbit (SO) coupling in a two-level system. Here, we propose and experimentally realize a new scheme for achieving a pair of two-dimensional (2D) SO couplings for ultracold fermions beyond RWA. This work not only realizes the first anomalous Floquet topological Fermi gas beyond RWA, but also significantly improves the lifetime of the 2D-SO-coupled Fermi gas. Based on pump-probe quench measurements, we observe a deterministic phase relation between two sets of SO couplings, which is characteristic of our beyond-RWA scheme and enables the two SO couplings to be simultaneously tuned to the optimum 2D configurations. We observe intriguing band topology by measuring two-ring band-inversion surfaces, quantitatively consistent with a Floquet topological Fermi gas in the regime of high Chern numbers. Our study can open an avenue to explore exotic SO physics and anomalous topological states based on long-lived SO-coupled ultracold fermions.
Collapse
Affiliation(s)
- Han Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Wen-Wei Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Chang Qiao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
| | - Long Zhang
- School of Physics and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hefei National Laboratory, Hefei 230088, China
| | - Ming-Cheng Liang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Rui Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xu-Jie Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Hefei National Laboratory, Hefei 230088, China; International Quantum Academy, Shenzhen 518048, China.
| | - Xibo Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Hefei National Laboratory, Hefei 230088, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Hu Z, Jiang F, He J, Dai Y, Wang Y, Xu N, Du J. Four-Order Power Reduction in Nanoscale Electron-Nuclear Double Resonance with a Nitrogen-Vacancy Center in Diamonds. NANO LETTERS 2024; 24:2846-2852. [PMID: 38391130 DOI: 10.1021/acs.nanolett.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Detecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower. Meanwhile, the microwave-induced broadening to the line-width of the spectroscopy is significantly canceled, and we achieve a nuclear-spin spectrum with a resolution down to 2.1 kHz under a magnetic field at 1840 Gs. The spectral resolution can be further improved by upgrading the experimental control precision. This scheme can also be used in sensing microwave fields and can be extended to a wide range of applications in the future.
Collapse
Affiliation(s)
- Zhiyi Hu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Fengjian Jiang
- School of Information Engineering, Huangshan University, Huangshan 245041, China
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yulin Dai
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiangfeng Du
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Zhang M, Yuan X, Li Y, Luo XW, Liu C, Zhu M, Qin X, Zhang C, Lin Y, Du J. Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion. PHYSICAL REVIEW LETTERS 2022; 129:250501. [PMID: 36608231 DOI: 10.1103/physrevlett.129.250501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Triply degenerate points (TDPs), which correspond to new types of topological semimetals, can support novel quasiparticles possessing effective integer spins while preserving Fermi statistics. Here by mapping the momentum space to the parameter space of a three-level system in a trapped ion, we experimentally explore the transitions between different types of TDPs driven by spin-tensor-momentum couplings. We observe the phase transitions between TDPs with different topological charges by measuring the Berry flux on a loop surrounding the gap-closing lines, and the jump of the Berry flux gives the jump of the topological charge (up to a 2π factor) across the transitions. For the Berry flux measurement, we employ a new method by examining the geometric rotations of both spin vectors and tensors, which lead to a generalized solid angle equal to the Berry flux. The controllability of a multilevel ion offers a versatile platform to study high-spin physics, and our Letter paves the way to explore novel topological phenomena therein.
Collapse
Affiliation(s)
- Mengxiang Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinxing Yuan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yue Li
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xi-Wang Luo
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chang Liu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mingdong Zhu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xi Qin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuanwei Zhang
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | - Yiheng Lin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
6
|
Zhang L, Jia W, Liu XJ. Universal topological quench dynamics for Z2 topological phases. Sci Bull (Beijing) 2022; 67:1236-1242. [DOI: 10.1016/j.scib.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
7
|
Wang K, Li T, Xiao L, Han Y, Yi W, Xue P. Detecting Non-Bloch Topological Invariants in Quantum Dynamics. PHYSICAL REVIEW LETTERS 2021; 127:270602. [PMID: 35061422 DOI: 10.1103/physrevlett.127.270602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian topological systems, and are a key concept in the contemporary study of non-Hermitian topology. Here we report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks, revealed through the biorthogonal chiral displacement, and crosschecked with the dynamic spin textures in the generalized quasimomentum-time domain following a quantum quench. Both detection schemes are robust against symmetry-preserving disorders, and yield consistent results with theoretical predictions. Our experiments are performed far away from any boundaries, and therefore underline non-Bloch topological invariants as intrinsic properties of the system that persist in the thermodynamic limit. Our work sheds new light on the experimental investigation of non-Hermitian topology.
Collapse
Affiliation(s)
- Kunkun Wang
- Beijing Computational Science Research Center, Beijing 100084, China
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Tianyu Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Lei Xiao
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Yiwen Han
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Peng Xue
- Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
8
|
Yu D, Peng B, Chen X, Liu XJ, Yuan L. Topological holographic quench dynamics in a synthetic frequency dimension. LIGHT, SCIENCE & APPLICATIONS 2021; 10:209. [PMID: 34620837 PMCID: PMC8497532 DOI: 10.1038/s41377-021-00646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 05/06/2023]
Abstract
The notion of topological phases extended to dynamical systems stimulates extensive studies, of which the characterization of nonequilibrium topological invariants is a central issue and usually necessitates the information of quantum dynamics in both the time and momentum dimensions. Here, we propose the topological holographic quench dynamics in synthetic dimension, and also show it provides a highly efficient scheme to characterize photonic topological phases. A pseudospin model is constructed with ring resonators in a synthetic lattice formed by frequencies of light, and the quench dynamics is induced by initializing a trivial state, which evolves under a topological Hamiltonian. Our key prediction is that the complete topological information of the Hamiltonian is encoded in quench dynamics solely in the time dimension, and is further mapped to lower-dimensional space, manifesting the holographic features of the dynamics. In particular, two fundamental time scales emerge in the dynamical evolution, with one mimicking the topological band on the momentum dimension and the other characterizing the residue time evolution of the state after the quench. For this, a universal duality between the quench dynamics and the equilibrium topological phase of the spin model is obtained in the time dimension by extracting information from the field evolution dynamics in modulated ring systems in simulations. This work also shows that the photonic synthetic frequency dimension provides an efficient and powerful way to explore the topological nonequilibrium dynamics.
Collapse
Affiliation(s)
- Danying Yu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bo Peng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
- Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
- Jinan Institute of Quantum Technology, 250101, Jinan, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, 250358, Jinan, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials and School of Physics, Peking University, 100871, Beijing, China.
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Luqi Yuan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
9
|
Li L, Gong J. Probing higher-order band topology via spin texture measurements: quantum simulation. Sci Bull (Beijing) 2021; 66:1817-1818. [PMID: 36654388 DOI: 10.1016/j.scib.2021.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Linhu Li
- Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, School of Physics and Astronomy, Sun Yat-sen University Zhuhai Campus, Zhuhai 519082, China.
| | - Jiangbin Gong
- Department of Physics, National University of Singapore, Singapore 117551, Singapore.
| |
Collapse
|
10
|
Direct dynamical characterization of higher-order topological phases with nested band inversion surfaces. Sci Bull (Beijing) 2021; 66:1502-1510. [PMID: 36654278 DOI: 10.1016/j.scib.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
Higher-order topological phases (HOTPs) are systems with topologically protected in-gap boundary states localized at their (d-n)-dimensional boundaries, with d the system dimension and n the order of the topology. This work proposes a dynamics-based characterization of one large class of Z-type HOTPs without specifically relying on any crystalline symmetry considerations. The key element of our innovative approach is to connect quantum quench dynamics with nested configurations of the so-called band inversion surfaces (BISs) of momentum-space Hamiltonians as a sum of operators from the Clifford algebra (a condition that can be partially relaxed), thereby making it possible to dynamically detect each and every order of topology on an equal footing. Given that experiments on synthetic topological matter can directly measure the winding of certain pseudospin texture to determine topological features of BISs, the topological invariants defined through nested BISs are all within reach of ongoing experiments. Further, the necessity of having nested BISs in defining higher-order topology offers a unique perspective to investigate and engineer higher-order topological phase transitions.
Collapse
|
11
|
Niu J, Yan T, Zhou Y, Tao Z, Li X, Liu W, Zhang L, Jia H, Liu S, Yan Z, Chen Y, Yu D. Simulation of higher-order topological phases and related topological phase transitions in a superconducting qubit. Sci Bull (Beijing) 2021; 66:1168-1175. [PMID: 36654354 DOI: 10.1016/j.scib.2021.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 01/20/2023]
Abstract
Higher-order topological phases give rise to new bulk and boundary physics, as well as new classes of topological phase transitions. While the realization of higher-order topological phases has been confirmed in many platforms by detecting the existence of gapless boundary modes, a direct determination of the higher-order topology and related topological phase transitions through the bulk in experiments has still been lacking. To bridge the gap, in this work we carry out the simulation of a two-dimensional second-order topological phase in a superconducting qubit. Owing to the great flexibility and controllability of the quantum simulator, we observe the realization of higher-order topology directly through the measurement of the pseudo-spin texture in momentum space of the bulk for the first time, in sharp contrast to previous experiments based on the detection of gapless boundary modes in real space. Also through the measurement of the evolution of pseudo-spin texture with parameters, we further observe novel topological phase transitions from the second-order topological phase to the trivial phase, as well as to the first-order topological phase with nonzero Chern number. Our work sheds new light on the study of higher-order topological phases and topological phase transitions.
Collapse
Affiliation(s)
- Jingjing Niu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tongxing Yan
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Zhou
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyu Tao
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaole Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiyang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Zhang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Jia
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhongbo Yan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuanzhen Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Mizoguchi T, Kuno Y, Hatsugai Y. Detecting Bulk Topology of Quadrupolar Phase from Quench Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:016802. [PMID: 33480756 DOI: 10.1103/physrevlett.126.016802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Direct measurement of a bulk topological observable in topological phase of matter has been a long-standing issue. Recently, detection of bulk topology through quench dynamics has attracted growing interests. Here, we propose that topological characters of a quantum quadrupole insulator can be read out by quench dynamics. Specifically, we introduce a quantity, a quadrupole moment weighted by the eigenvalues of the chiral operator, which takes zero for the trivial phase and finite for the quadrupolar topological phase. By utilizing an efficient numerical method to track the unitary time evolution, we elucidate that the quantity we propose indeed serves as an indicator of topological character for both noninteracting and interacting cases. The robustness against disorders is also demonstrated.
Collapse
Affiliation(s)
- Tomonari Mizoguchi
- Department of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yoshihito Kuno
- Department of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhiro Hatsugai
- Department of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
13
|
Zhang L, Zhang L, Liu XJ. Unified Theory to Characterize Floquet Topological Phases by Quench Dynamics. PHYSICAL REVIEW LETTERS 2020; 125:183001. [PMID: 33196215 DOI: 10.1103/physrevlett.125.183001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 05/22/2023]
Abstract
The conventional characterization of periodically driven systems usually necessitates the time-domain information beyond Floquet bands, hence lacking universal and direct schemes of measuring Floquet topological invariants. Here we propose a unified theory, based on quantum quenches, to characterize generic d-dimensional Floquet topological phases in which the topological invariants are constructed with only minimal information of the static Floquet bands. For a d-dimensional phase that is initially static and trivial, we introduce the quench dynamics by suddenly turning on the periodic driving. We show that the quench dynamics exhibits emergent topological patterns in (d-1)-dimensional momentum subspaces where Floquet bands cross, from which the Floquet topological invariants are directly obtained. This result provides a simple and unified characterization in which one can extract the number of conventional and anomalous Floquet boundary modes and identify the topologically protected singularities in the phase bands. These applications are illustrated with one- and two-dimensional models that are readily accessible in cold-atom experiments. Our study opens a new framework for the characterization of Floquet topological phases.
Collapse
Affiliation(s)
- Long Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Lin Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiong-Jun Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
14
|
Xin T, Li Y, Fan YA, Zhu X, Zhang Y, Nie X, Li J, Liu Q, Lu D. Quantum Phases of Three-Dimensional Chiral Topological Insulators on a Spin Quantum Simulator. PHYSICAL REVIEW LETTERS 2020; 125:090502. [PMID: 32915602 DOI: 10.1103/physrevlett.125.090502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 05/22/2023]
Abstract
The detection of topological phases of matter has become a central issue in recent years. Conventionally, the realization of a specific topological phase in condensed matter physics relies on probing the underlying surface band dispersion or quantum transport signature of a real material, which may be imperfect or even absent. On the other hand, quantum simulation offers an alternative approach to directly measure the topological invariant on a universal quantum computer. However, experimentally demonstrating high-dimensional topological phases remains a challenge due to the technical limitations of current experimental platforms. Here, we investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class, which yet lack experimental realization. Using the nuclear magnetic resonance system, we experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted and the dynamical bulk-boundary correspondence in the momentum space is observed. As a result, the topological invariants are measured with high precision on the band-inversion surface, exhibiting robustness to the decoherence effect. Our Letter paves the way toward the quantum simulation of topological phases of matter in higher dimensions and more complex systems through controllable quantum phases transitions.
Collapse
Affiliation(s)
- Tao Xin
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yishan Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Ang Fan
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuanran Zhu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingjie Zhang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinfang Nie
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dawei Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|