1
|
Kumar A, Sénéchal D, Tremblay AMS. Cluster dynamical mean-field study of intra-unit-cell charge nematicity in hole-doped cuprates. Proc Natl Acad Sci U S A 2025; 122:e2419534122. [PMID: 40030024 PMCID: PMC11912365 DOI: 10.1073/pnas.2419534122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Recent scanning-tunneling microscopy on hole-doped Bi[Formula: see text]Sr[Formula: see text]CaCu[Formula: see text]O[Formula: see text], one of the materials of the cuprate family, finds a long-range ordered spontaneous splitting of the energy levels of oxygen orbitals inside the CuO[Formula: see text] unit cells [S. Wang et al., Nat. Mat. 23, 492-498 (2024)]. This spontaneous intra-unit-cell orbital ordering, also known as electronic nematicity, breaks [Formula: see text] symmetry and is thought to arise from the Coulomb interaction (denoted by [Formula: see text]) between oxygen [Formula: see text] and [Formula: see text] electrons. In this work, we study the spontaneous emergence of electronic nematicity within the three-band Hubbard [aka the Emery-VSA (Varma-Schmitt-Rink-Abrahams) model], using cluster dynamical mean-field theory. This method incorporates short-range electronic correlations and gives us access to the density of states, a quantity that is directly probed in experiments. We argue that there is a delicate competition between [Formula: see text] and [Formula: see text] (the latter being the Coulomb interaction between copper [Formula: see text] and oxygen [Formula: see text] electrons) that must be taken into account in order to find a Zhang-Rice singlet band well-resolved from the upper Hubbard band, and a splitting of the charge-transfer band (one of the signatures of charge nematicity) by roughly 50 meV, as observed recently.
Collapse
Affiliation(s)
- Abhishek Kumar
- Département de physique and Institut Quantique, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| | - David Sénéchal
- Département de physique and Institut Quantique, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| | - A.-M. S. Tremblay
- Département de physique and Institut Quantique, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
| |
Collapse
|
2
|
Wang S, Yao S, Zhang F, Ji K, Ji Y, Li J, Fu W, Liu Y, Yang J, Liu R, Xie J, Yang Z, Yan YM. Quantum Spin Exchange Interactions Trigger O p Band Broadening for Enhanced Aqueous Zinc-Ion Battery Performance. Angew Chem Int Ed Engl 2025; 64:e202415997. [PMID: 39305188 DOI: 10.1002/anie.202415997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 11/01/2024]
Abstract
The pressing demand for large-scale energy storage solutions has propelled the development of advanced battery technologies, among which zinc-ion batteries (ZIBs) are prominent due to their resource abundance, high capacity, and safety in aqueous environments. However, the use of manganese oxide cathodes in ZIBs is challenged by their poor electrical conductivity and structural stability, stemming from the intrinsic properties of MnO2 and the destabilizing effects of ion intercalation. To overcome these limitations, our research delves into atomic-level engineering, emphasizing quantum spin exchange interactions (QSEI). These essential for modifying electronic characteristics, can significantly influence material efficiency and functionality. We demonstrate through density functional theory (DFT) calculations that enhanced QSEI in manganese oxides broadens the O p band, narrows the band gap, and optimizes both proton adsorption and electron transport. Empirical evidence is provided through the synthesis of Ru-MnO2 nanosheets, which display a marked increase in energy storage capacity, achieving 314.4 mAh g-1 at 0.2 A g-1 and maintaining high capacity after 2000 cycles. Our findings underscore the potential of QSEI to enhance the performance of TMO cathodes in ZIBs, pointing to new avenues for advancing battery technology.
Collapse
Affiliation(s)
- Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Feike Zhang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Kang Ji
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Yingjie Ji
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Jingxian Li
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Jinghua Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Ruilong Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, 2052, Sydney, New South Wales, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, People's Republic of China
| |
Collapse
|
3
|
Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, Shen D, Wang M, Hu J, Lu Y, Zhou KJ, Feng D. Electronic and magnetic excitations in La 3Ni 2O 7. Nat Commun 2024; 15:9597. [PMID: 39505866 PMCID: PMC11541582 DOI: 10.1038/s41467-024-53863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
High-temperature superconductivity was discovered in the pressurized nickelate La3Ni2O7 which has a unique bilayer structure and mixed valence state of nickel. The properties at ambient pressure contain crucial information of the fundamental interactions and bosons mediating superconducting pairing. Here, using X-ray absorption spectroscopy and resonant inelastic X-ray scattering, we identified that Ni 3d x 2 - y 2 , Ni 3d z 2 , and ligand oxygen 2p orbitals dominate the low-energy physics with a small charge-transfer energy. Well-defined optical-like magnetic excitations soften into quasi-static spin-density-wave ordering, evidencing the strong electronic correlation and rich magnetic properties. Based on an effective Heisenberg spin model, we extract a much stronger inter-layer effective magnetic superexchange than the intra-layer ones and propose two viable magnetic structures. Our findings emphasize that the Ni 3d z 2 orbital bonding within the bilayer induces novel electronic and magnetic excitations, setting the stage for further exploration of La3Ni2O7 superconductor.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai, China
| | | | - Zhicheng Jiang
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Jiong Mei
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | | | | | - Hualei Sun
- School of Science, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dawei Shen
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Meng Wang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Beijing, China
| | - Yi Lu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
| | | | - Donglai Feng
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
- New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Xu M, Zhao Y, Chen Y, Ding X, Leng H, Hu Z, Wu X, Yi J, Yu X, Breese MB, Xi S, Li M, Qiao L. Robust Superconductivity in Infinite-Layer Nickelates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305252. [PMID: 38685606 PMCID: PMC11462288 DOI: 10.1002/advs.202305252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/20/2024] [Indexed: 05/02/2024]
Abstract
The recent discovery of nickelate superconductivity represents an important step toward understanding the four-decade mastery of unconventional high-temperature superconductivity. However, the synthesis of the infinite-layer nickelate superconductors shows great challenges. Particularly, surface capping layers are usually unitized to facilitate the sample synthesis. This leads to an important question whether nickelate superconductors with d9 configuration and ultralow valence of Ni1+ are in metastable state and whether nickelate superconductivity can be robust? In this work, a series of redox cycling experiments are performed across the phase transition between perovskite Nd0.8Sr0.2NiO3 and infinite-layer Nd0.8Sr0.2NiO2. The infinite-layer Nd0.8Sr0.2NiO2 is quite robust in the redox environment and can survive the cycling experiments with unchanged crystallographic quality. However, as the cycling number goes on, the perovskite Nd0.8Sr0.2NiO3 shows structural degradation, suggesting stability of nickelate superconductivity is not restricted by the ultralow valence of Ni1+, but by the quality of its perovskite precursor. The observed robustness of infinite-layer Nd0.8Sr0.2NiO2 up to ten redox cycles further indicates that if an ideal high-quality perovskite precursor can be obtained, infinite-layer nickelate superconductivity can be very stable and sustainable under environmental conditions. This work provides important implications for potential device applications for nickelate superconductors.
Collapse
Affiliation(s)
- Minghui Xu
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yan Zhao
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yu Chen
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiang Ding
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Huaqian Leng
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Zheng Hu
- Center for Microscopy and AnalysisNanjing University of Aeronautics and AstronauticsNanjing211100China
| | - Xiaoqiang Wu
- Institute for Advanced StudyChengdu UniversityChengdu610106China
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of EngineeringThe University of NewcastleCallaghanNSW2308Australia
| | - Xiaojiang Yu
- Singapore Synchrotron Light SourceNational University of SingaporeSingapore117603Singapore
| | - Mark B.H. Breese
- Singapore Synchrotron Light SourceNational University of SingaporeSingapore117603Singapore
| | - Shibo Xi
- Singapore Synchrotron Light SourceNational University of SingaporeSingapore117603Singapore
| | - Mengsha Li
- Center for Microscopy and AnalysisNanjing University of Aeronautics and AstronauticsNanjing211100China
| | - Liang Qiao
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
5
|
Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z. Visualization of oxygen vacancies and self-doped ligand holes in La 3Ni 2O 7-δ. Nature 2024; 630:847-852. [PMID: 38839959 DOI: 10.1038/s41586-024-07482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
The recent discovery of superconductivity in La3Ni2O7-δ under high pressure with a transition temperature around 80 K (ref. 1) has sparked extensive experimental2-6 and theoretical efforts7-12. Several key questions regarding the pairing mechanism remain to be answered, such as the most relevant atomic orbitals and the role of atomic deficiencies. Here we develop a new, energy-filtered, multislice electron ptychography technique, assisted by electron energy-loss spectroscopy, to address these critical issues. Oxygen vacancies are directly visualized and are found to primarily occupy the inner apical sites, which have been proposed to be crucial to superconductivity13,14. We precisely determine the nanoscale stoichiometry and its correlation to the oxygen K-edge spectra, which reveals a significant inhomogeneity in the oxygen content and electronic structure within the sample. The spectroscopic results also reveal that stoichiometric La3Ni2O7 has strong charge-transfer characteristics, with holes that are self-doped from Ni sites into O sites. The ligand holes mainly reside on the inner apical O and the planar O, whereas the density on the outer apical O is negligible. As the concentration of O vacancies increases, ligand holes on both sites are simultaneously annihilated. These observations will assist in further development and understanding of superconducting nickelate materials. Our imaging technique for quantifying atomic deficiencies can also be widely applied in materials science and condensed-matter physics.
Collapse
Affiliation(s)
- Zehao Dong
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Mengwu Huo
- Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, Guangzhou, China
| | - Jie Li
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - Jingyuan Li
- Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, Guangzhou, China
| | - Pengcheng Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Hualei Sun
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, Guangzhou, China
- School of Science, Sun Yat-Sen University, Shenzhen, China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yi Lu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Meng Wang
- Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-Sen University, Guangzhou, China.
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, China.
- Hefei National Laboratory, Hefei, China.
| | - Zhen Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Puntel D, Kutnyakhov D, Wenthaus L, Scholz M, Wind NO, Heber M, Brenner G, Gu G, Cava RJ, Bronsch W, Cilento F, Parmigiani F, Pressacco F. Out-of-equilibrium charge redistribution in a copper-oxide based superconductor by time-resolved X-ray photoelectron spectroscopy. Sci Rep 2024; 14:8775. [PMID: 38627427 PMCID: PMC11636857 DOI: 10.1038/s41598-024-56440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/06/2024] [Indexed: 12/14/2024] Open
Abstract
Charge-transfer excitations are of paramount importance for understanding the electronic structure of copper-oxide based high-temperature superconductors. In this study, we investigate the response of a Bi2 Sr2 CaCu2 O8 + δ crystal to the charge redistribution induced by an infrared ultrashort pulse. Element-selective time-resolved core-level photoelectron spectroscopy with a high energy resolution allows disentangling the dynamics of oxygen ions with different coordination and bonds thanks to their different chemical shifts. Our experiment shows that the O 1s component arising from the Cu-O planes is significantly perturbed by the infrared light pulse. Conversely, the apical oxygen, also coordinated with Sr ions in the Sr-O planes, remains unaffected. This result highlights the peculiar behavior of the electronic structure of the Cu-O planes. It also unlocks the way to study the out-of-equilibrium electronic structure of copper-oxide-based high-temperature superconductors by identifying the O 1s core-level emission originating from the oxygen ions in the Cu-O planes. This ability could be critical to gain information about the strongly-correlated electron ultrafast dynamical mechanisms in the Cu-O plane in the normal and superconducting phases.
Collapse
Affiliation(s)
- Denny Puntel
- Department of Physics, University of Trieste, 34127, Trieste, Italy
| | | | - Lukas Wenthaus
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Markus Scholz
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Nils O Wind
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
- Institut für Experimentalphysik, University of Hamburg, 22761, Hamburg, Germany
| | - Michael Heber
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Günter Brenner
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Robert J Cava
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Wibke Bronsch
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Trieste, Italy
| | | | - Fulvio Parmigiani
- Department of Physics, University of Trieste, 34127, Trieste, Italy.
- Elettra - Sincrotrone Trieste S.C.p.A., 34149, Trieste, Italy.
- International Faculty, University of Cologne, 50923, Cologne, Germany.
| | | |
Collapse
|
7
|
Wang X, Yin L, Ronne A, Zhang Y, Hu Z, Tan S, Wang Q, Song B, Li M, Rong X, Lapidus S, Yang S, Hu E, Liu J. Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state. Nat Commun 2023; 14:7665. [PMID: 37996427 PMCID: PMC10667238 DOI: 10.1038/s41467-023-43031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Reversible lattice oxygen redox reactions offer the potential to enhance energy density and lower battery cathode costs. However, their widespread adoption faces obstacles like substantial voltage hysteresis and poor stability. The current research addresses these challenges by achieving a non-hysteresis, long-term stable oxygen redox reaction in the P3-type Na2/3Cu1/3Mn2/3O2. Here we show this is accomplished by forming spin singlet states during charge and discharge. Detailed analysis, including in-situ X-ray diffraction, shows highly reversible structural changes during cycling. In addition, local CuO6 Jahn-Teller distortions persist throughout, with dynamic Cu-O bond length variations. In-situ hard X-ray absorption and ex-situ soft X-ray absorption study, along with density function theory calculations, reveal two distinct charge compensation mechanisms at approximately 3.66 V and 3.99 V plateaus. Notably, we observe a Zhang-Rice-like singlet state during 3.99 V charging, offering an alternative charge compensation mechanism to stabilize the active oxygen redox reaction.
Collapse
Affiliation(s)
- Xuelong Wang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Liang Yin
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Arthur Ronne
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yiman Zhang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zilin Hu
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qinchao Wang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Bohang Song
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, USA
| | - Mengya Li
- Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, USA
| | - Xiaohui Rong
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Saul Lapidus
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Shize Yang
- Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT, 06516, USA
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Jue Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37922, USA.
| |
Collapse
|
8
|
da Silva Santos M, Medel R, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. Exposing the Oxygen-Centered Radical Character of the Tetraoxido Ruthenium(VIII) Cation [RuO 4 ] . Chemphyschem 2023; 24:e202300390. [PMID: 37589334 DOI: 10.1002/cphc.202300390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The tetraoxido ruthenium(VIII) radical cation, [RuO4 ]+ , should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4 ]+ , produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4 ]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4 ]+ to the closed-shell [RuO4 H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4 ]+ than for [OsO4 ]+ .
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Robert Medel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Max Flach
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Olesya S Ablyasova
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - J Tobias Lau
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| |
Collapse
|
9
|
Li Q, Huang HY, Ren T, Weschke E, Ju L, Zou C, Zhang S, Qiu Q, Liu J, Ding S, Singh A, Prokhnenko O, Huang DJ, Esterlis I, Wang Y, Xie Y, Peng Y. Prevailing Charge Order in Overdoped La_{2-x}Sr_{x}CuO_{4} beyond the Superconducting Dome. PHYSICAL REVIEW LETTERS 2023; 131:116002. [PMID: 37774302 DOI: 10.1103/physrevlett.131.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 08/24/2023] [Indexed: 10/01/2023]
Abstract
The extremely overdoped cuprates are generally considered to be Fermi liquid metals without exotic orders, whereas the underdoped cuprates harbor intertwined states. Contrary to this conventional wisdom, using Cu L_{3}-edge and O K-edge resonant x-ray scattering, we reveal a charge order (CO) correlation in overdoped La_{2-x}Sr_{x}CuO_{4} (0.35≤x≤0.6) beyond the superconducting dome. This CO has a periodicity of ∼6 lattice units with correlation lengths of ∼20 lattice units. It shows similar in-plane momentum and polarization dependence and dispersive excitations as the CO of underdoped cuprates, but its maximum intensity differs along the c direction and persists up to 300 K. This CO correlation cannot be explained by the Fermi surface instability and its origin remains to be understood. Our results suggest that CO is prevailing in the overdoped metallic regime and requires a reassessment of the picture of overdoped cuprates as weakly correlated Fermi liquids.
Collapse
Affiliation(s)
- Qizhi Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Hsiao-Yu Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Tianshuang Ren
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Eugen Weschke
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Lele Ju
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Changwei Zou
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Shilong Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qingzheng Qiu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jiarui Liu
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Shuhan Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Amol Singh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | | | - Di-Jing Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ilya Esterlis
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yao Wang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Yanwu Xie
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yingying Peng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
10
|
Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y, Zhu J. Correlating the charge-transfer gap to the maximum transition temperature in Bi 2Sr 2Ca n-1Cu nO 2n+4+δ. Science 2023; 381:227-231. [PMID: 37440647 DOI: 10.1126/science.add3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
As the number of CuO2 layers, n, in each unit cell of a cuprate family increases, the maximum transition temperature (Tc,max) exhibits a universal bell-shaped curve with a peak at n = 3. The microscopic mechanism of this trend remains elusive. In this study, we used advanced electron microscopy to image the atomic structure of cuprates in the Bi2Sr2Can-1CunO2n+4+δ family with 1 ≤ n ≤ 9; the evolution of the charge-transfer gap size (Δ) with n can be measured simultaneously. We determined that the n dependence of Δ follows an inverted bell-shaped curve with the minimum Δ value at n = 3. The correlation between Δ, n, and Tc,max may clarify the origin of superconductivity in cuprates.
Collapse
Affiliation(s)
- Zechao Wang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, P.R. China
| | - Changwei Zou
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China
| | - Chengtian Lin
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Xiangyu Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongtao Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Chaohui Yin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China
- New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, P.R. China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yayu Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China
- New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, P.R. China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, P.R. China
- Ji Hua Laboratory, Foshan, Guangdong, P.R. China
| |
Collapse
|
11
|
Wang Z, Pei K, Yang L, Yang C, Chen G, Zhao X, Wang C, Liu Z, Li Y, Che R, Zhu J. Topological spin texture in the pseudogap phase of a high-T c superconductor. Nature 2023; 615:405-410. [PMID: 36813970 DOI: 10.1038/s41586-023-05731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
An outstanding challenge in condensed-matter-physics research over the past three decades has been to understand the pseudogap (PG) phenomenon of the high-transition-temperature (high-Tc) copper oxides. A variety of experiments have indicated a symmetry-broken state below the characteristic temperature T* (refs. 1-8). Among them, although the optical study5 indicated the mesoscopic domains to be small, all these experiments lack nanometre-scale spatial resolution, and the microscopic order parameter has so far remained elusive. Here we report, to our knowledge, the first direct observation of topological spin texture in an underdoped cuprate, YBa2Cu3O6.5, in the PG state, using Lorentz transmission electron microscopy (LTEM). The spin texture features vortex-like magnetization density in the CuO2 sheets, with a relatively large length scale of about 100 nm. We identify the phase-diagram region in which the topological spin texture exists and demonstrate the ortho-II oxygen order and suitable sample thickness to be crucial for its observation by our technique. We also discuss an intriguing interplay observed among the topological spin texture, PG state, charge order and superconductivity.
Collapse
Affiliation(s)
- Zechao Wang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, People's Republic of China
- Ji Hua Laboratory, Foshan, People's Republic of China
| | - Ke Pei
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Liting Yang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Chendi Yang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Chen
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Xuebing Zhao
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
- Zhejiang Laboratory, Hangzhou, People's Republic of China
| | - Chao Wang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
- Zhejiang Laboratory, Hangzhou, People's Republic of China
| | - Zhengwang Liu
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China
| | - Yuan Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, People's Republic of China.
- Collaborative Innovation Center of Quantum Matter, Beijing, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People's Republic of China.
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, People's Republic of China.
- Ji Hua Laboratory, Foshan, People's Republic of China.
| |
Collapse
|
12
|
Peng CK, Lin YC, Chiang C, Qian Z, Huang YC, Dong CL, Li J, Chen CT, Hu Z, Chen SY, Lin YG. Zhang-Rice singlets state formed by two-step oxidation for triggering water oxidation under operando conditions. Nat Commun 2023; 14:529. [PMID: 36725864 PMCID: PMC9892518 DOI: 10.1038/s41467-023-36317-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
The production of ecologically compatible fuels by electrochemical water splitting is highly desirable for modern industry. The Zhang-Rice singlet is well known for the superconductivity of high-temperature superconductors cuprate, but is rarely known for an electrochemical catalyst. Herein, we observe two steps of surface reconstruction from initial catalytic inactive Cu1+ in hydrogen treated Cu2O to Cu2+ state and further to catalytic active Zhang-Rice singlet state during the oxygen evolution reaction for water splitting. The hydrogen treated Cu2O catalyst exhibits a superior catalytic activity and stability for water splitting and is an efficient rival of other 3d-transition-metal catalysts. Multiple operando spectroscopies indicate that Zhang-Rice singlet is real active species, since it appears only under oxygen evolution reaction condition. This work provides an insight in developing an electrochemical catalyst from catalytically inactive materials and improves understanding of the mechanism of a Cu-based catalyst for water oxidation.
Collapse
Affiliation(s)
- Chun-Kuo Peng
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
| | - Yu-Chang Lin
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan ,grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Chao‐Lung Chiang
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Zhengxin Qian
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Yu-Cheng Huang
- grid.264580.d0000 0004 1937 1055Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
| | - Chung-Li Dong
- grid.264580.d0000 0004 1937 1055Department of Physics, Tamkang University, New Taipei City, 25137 Taiwan
| | - Jian‐Feng Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Chien-Te Chen
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Zhiwei Hu
- grid.419507.e0000 0004 0491 351XMax-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden, 01187 Germany
| | - San-Yuan Chen
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
| | - Yan-Gu Lin
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| |
Collapse
|
13
|
Huang YC, Chen W, Xiao Z, Hu Z, Lu YR, Chen JL, Chen CL, Lin HJ, Chen CT, Arul KT, Wang S, Dong CL, Chou WC. In Situ/ Operando Soft X-ray Spectroscopic Identification of a Co 4+ Intermediate in the Oxygen Evolution Reaction of Defective Co 3O 4 Nanosheets. J Phys Chem Lett 2022; 13:8386-8396. [PMID: 36047673 DOI: 10.1021/acs.jpclett.2c01557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Defect engineering is an important means of improving the electrochemical performance of the Co3O4 electrocatalyst in the oxygen evolution reaction (OER). In this study, operando soft X-ray absorption spectroscopy (SXAS) is used to explore the electronic structure of Co3O4 under OER for the first time. The defect-rich Co3O4 (D-Co3O4) has a Co2.45+ state with Co2+ at both octahedral (Oh) and tetrahedral (Td) sites and Co3+ at Oh, whereas Co3O4 has Co2.6+ with Co2+ and Co3+ at Td and Oh sites, respectively. SXAS reveals that upon increasing the voltage, the Co2+ in D-Co3O4 is converted to low-spin Co3+, some of which is further converted to low-spin Co4+; most Co2+ in Co3O4 is converted to Co3+ but rarely to Co4+. When the voltage is switched off, Co4+ intermediates quickly disappear. These findings reveal Co(Oh) in D-Co3O4 can be rapidly converted to active low-spin Co4+ under operando conditions, which cannot be observed by ex situ XAS.
Collapse
Affiliation(s)
- Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhaohui Xiao
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Marin Resource Utilization in South China Sea, School Materials Science and Engineering, Hainan University, Haikou 570228, P.R. China
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, 01187 Dresden, Germany
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - K Thanigai Arul
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Ong BL, Jayaraman K, Diao C, Whitcher TJ, Jain A, Hung H, Breese MBH, Tok ES, Rusydi A. Anomalous Ferromagnetism of quasiparticle doped holes in cuprate heterostructures revealed using resonant soft X-ray magnetic scattering. Nat Commun 2022; 13:4639. [PMID: 35941141 PMCID: PMC9360448 DOI: 10.1038/s41467-022-31885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022] Open
Abstract
We report strong ferromagnetism of quasiparticle doped holes both within the ab-plane and along the c-axis of Cu-O planes in low-dimensional Au/d-La1.8Ba0.2CuO4/LaAlO3(001) heterostructures (d = 4, 8 and 12 unit-cells) using resonant soft X-ray and magnetic scattering together with X-ray magnetic circular dichroism. Interestingly, ferromagnetism is stronger at a hole doped peak and at an upper Hubbard band of O with spin-polarization degree as high as 40%, revealing strong ferromagnetism of Mottness. For in-ab-plane spin-polarizations, the spin of doped holes in O2p-Cu3d-O2p is a triplet state yielding strong ferromagnetism. For out-of-ab-plane spin-polarization, while the spins of doped holes in both O2p-O2p and Cu3d-Cu3d are triplet states, the spin of doped holes in Cu3d-O2p is a singlet state yielding ferrimagnetism. A ferromagnetic-(002) Bragg-peak of the doped holes is observed and enhanced as a function of d revealing strong ferromagnetism coupling between Cu-O layers along the c-axis.
Collapse
Affiliation(s)
- B L Ong
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.,Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - K Jayaraman
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.,Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - C Diao
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - T J Whitcher
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.,Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - A Jain
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.,Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - H Hung
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - M B H Breese
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore.,Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - E S Tok
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - A Rusydi
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore. .,Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore, 117603, Singapore. .,Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, Singapore, 117456, Singapore.
| |
Collapse
|
15
|
Abstract
In traditional metals, the temperature (
T
) dependence of electrical resistivity vanishes at low or high
T
, albeit for different reasons. Here, we review a class of materials, known as “strange” metals, that can violate both of these principles. In strange metals, the change in slope of the resistivity as the mean free path drops below the lattice constant, or as
T
→ 0, can be imperceptible, suggesting continuity between the charge carriers at low and high
T
. We focus on transport and spectroscopic data on candidate strange metals in an effort to isolate and identify a unifying physical principle. Special attention is paid to quantum criticality, Planckian dissipation, Mottness, and whether a new gauge principle is needed to account for the nonlocal transport seen in these materials.
Collapse
Affiliation(s)
- Philip W. Phillips
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois, Urbana, IL 61801, USA
| | - Nigel E. Hussey
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
- High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Peter Abbamonte
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Abstract
The essential physics of the cuprate high-temperature superconductors have been a central focus of condensed-matter physics for more than three decades. Although initially controversial, it is now clear that a ubiquitous tendency toward charge-density-wave (CDW) order is intertwined with the superconductivity. However, this manifests differently in distinct cuprates. On the basis of extensive X-ray and neutron scattering studies of the temperature and doping dependence of the CDW and spin-density-wave (SDW) correlations in one representative cuprate and a comparison with existing studies on other cuprates, we show that there plausibly is a single, preferred CDW order at the microscale, whose manifestation at low temperatures is modified in predictable ways by material-specific details, including its interaction with SDW order. Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau–Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.
Collapse
|
17
|
Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd 0.8Sr 0.2NiO 2 superconductors. Nat Commun 2022; 13:743. [PMID: 35136053 PMCID: PMC8825820 DOI: 10.1038/s41467-022-28390-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Nickel-based complex oxides have served as a playground for decades in the quest for a copper-oxide analog of the high-temperature superconductivity. They may provide clues towards understanding the mechanism and an alternative route for high-temperature superconductors. The recent discovery of superconductivity in the infinite-layer nickelate thin films has fulfilled this pursuit. However, material synthesis remains challenging, direct demonstration of perfect diamagnetism is still missing, and understanding of the role of the interface and bulk to the superconducting properties is still lacking. Here, we show high-quality Nd0.8Sr0.2NiO2 thin films with different thicknesses and demonstrate the interface and strain effects on the electrical, magnetic and optical properties. Perfect diamagnetism is achieved, confirming the occurrence of superconductivity in the films. Unlike the thick films in which the normal-state Hall-coefficient changes signs as the temperature decreases, the Hall-coefficient of films thinner than 5.5 nm remains negative, suggesting a thickness-driven band structure modification. Moreover, X-ray absorption spectroscopy reveals the Ni-O hybridization nature in doped infinite-layer nickelates, and the hybridization is enhanced as the thickness decreases. Consistent with band structure calculations on the nickelate/SrTiO3 heterostructure, the interface and strain effect induce a dominating electron-like band in the ultrathin film, thus causing the sign-change of the Hall-coefficient. Nickelate superconductors attract enormous attention in the field of high-temperature superconductivity. Here the authors report observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors.
Collapse
|
18
|
Kvashnina KO, Butorin SM. High-energy resolution X-ray spectroscopy at actinide M 4,5 and ligand K edges: what we know, what we want to know, and what we can know. Chem Commun (Camb) 2022; 58:327-342. [PMID: 34874022 PMCID: PMC8725612 DOI: 10.1039/d1cc04851a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
In recent years, scientists have progressively recognized the role of electronic structures in the characterization of chemical properties for actinide containing materials. High-energy resolution X-ray spectroscopy at the actinide M4,5 edges emerged as a promising direction because this method can probe actinide properties at the atomic level through the possibility of reducing the experimental spectral width below the natural core-hole lifetime broadening. Parallel to the technical developments of the X-ray method and experimental discoveries, theoretical models, describing the observed electronic structure phenomena, have also advanced. In this feature article, we describe the latest progress in the field of high-energy resolution X-ray spectroscopy at the actinide M4,5 and ligand K edges and we show that the methods are able to (a) provide fingerprint information on the actinide oxidation state and ground state characters (b) probe 5f occupancy, non-stoichiometry, defects, and ligand/metal ratio and (c) investigate the local symmetry and effects of the crystal field. We discuss the chemical aspects of the electronic structure in terms familiar to chemists and materials scientists and conclude with a brief description of new opportunities and approaches to improve the experimental methodology and theoretical analysis for f-electron systems.
Collapse
Affiliation(s)
- Kristina O Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France.
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), PO Box 510119, 01314 Dresden, Germany
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei M Butorin
- Condensed Matter Physics of Energy Materials, X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
19
|
Topological Doping and Superconductivity in Cuprates: An Experimental Perspective. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hole doping into a correlated antiferromagnet leads to topological stripe correlations, involving charge stripes that separate antiferromagnetic spin stripes of opposite phases. The topological spin stripe order causes the spin degrees of freedom within the charge stripes to feel a geometric frustration with their environment. In the case of cuprates, where the charge stripes have the character of a hole-doped two-leg spin ladder, with corresponding pairing correlations, anti-phase Josephson coupling across the spin stripes can lead to a pair-density-wave order in which the broken translation symmetry of the superconducting wave function is accommodated by pairs with finite momentum. This scenario is now experimentally verified by recently reported measurements on La2−xBaxCuO4 with x=1/8. While pair-density-wave order is not common as a cuprate ground state, it provides a basis for understanding the uniform d-wave order that is more typical in superconducting cuprates.
Collapse
|
20
|
Kowalski N, Dash SS, Sémon P, Sénéchal D, Tremblay AM. Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity. Proc Natl Acad Sci U S A 2021; 118:e2106476118. [PMID: 34593641 PMCID: PMC8501840 DOI: 10.1073/pnas.2106476118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 11/18/2022] Open
Abstract
Experiments have shown that the families of cuprate superconductors that have the largest transition temperature at optimal doping also have the largest oxygen hole content at that doping [D. Rybicki et al., Nat. Commun. 7, 1-6 (2016)]. They have also shown that a large charge-transfer gap [W. Ruan et al., Sci. Bull. (Beijing) 61, 1826-1832 (2016)], a quantity accessible in the normal state, is detrimental to superconductivity. We solve the three-band Hubbard model with cellular dynamical mean-field theory and show that both of these observations follow from the model. Cuprates play a special role among doped charge-transfer insulators of transition metal oxides because copper has the largest covalent bonding with oxygen. Experiments [L. Wang et al., arXiv [Preprint] (2020). https://arxiv.org/abs/2011.05029 (Accessed 10 November 2020)] also suggest that superexchange is at the origin of superconductivity in cuprates. Our results reveal the consistency of these experiments with the above two experimental findings. Indeed, we show that covalency and a charge-transfer gap lead to an effective short-range superexchange interaction between copper spins that ultimately explains pairing and superconductivity in the three-band Hubbard model of cuprates.
Collapse
Affiliation(s)
- Nicolas Kowalski
- Département de physique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Institut quantique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sidhartha Shankar Dash
- Département de physique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Institut quantique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Patrick Sémon
- Département de physique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - David Sénéchal
- Département de physique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Institut quantique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André-Marie Tremblay
- Département de physique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Institut quantique, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
21
|
Li J, Chen H, Triana CA, Patzke GR. Hematite Photoanodes for Water Oxidation: Electronic Transitions, Carrier Dynamics, and Surface Energetics. Angew Chem Int Ed Engl 2021; 60:18380-18396. [PMID: 33761172 DOI: 10.1002/anie.202101783] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/08/2022]
Abstract
We review the current understanding of charge carriers in model hematite photoanodes at different stages. The origin of charge carriers is discussed based on the electronic structure and absorption features, highlighting the controversial assignment of the electronic transitions near the absorption edge. Next, the dynamic evolution of charge carriers is analyzed both on the ultrafast and on the surface reaction timescales, with special emphasis on the arguable spectroscopic assignment of electrons/holes and their kinetics. Further, the competitive charge transfer centers at the solid-liquid interface are reviewed, and the chemical nature of relevant surface states is updated. Finally, an overview on the function of widely employed surface cocatalysts is given to illustrate the complex influence of physiochemical modifications on the charge carrier dynamics. The understanding of charge carriers from their origin all the way to their interfacial transfer is vital for the future of photoanode design.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
22
|
Li J, Chen H, Triana CA, Patzke GR. Hematite Photoanodes for Water Oxidation: Electronic Transitions, Carrier Dynamics, and Surface Energetics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jingguo Li
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Hang Chen
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Carlos A. Triana
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Greta R. Patzke
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
23
|
Pęczkowski P, Zachariasz P, Jastrzębski C, Piętosa J, Drzymała E, Gondek Ł. On the Superconductivity Suppression in Eu 1-xPr xBa 2Cu 3O 7-δ. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3503. [PMID: 34201815 PMCID: PMC8269594 DOI: 10.3390/ma14133503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
This article reports on the non-trivial suppression of superconductivity in the Eu1-xPrxBCO cuprates. As non-magnetic Eu3+ ions are replaced by Pr3+ carrying a magnetic moment, spin-related superconductivity loss can be expected. The research shows that the superconductivity disappearance for x > 0.4 results from depletion of the carriers and their localization. The above conclusion was drawn by low-temperature X-ray diffraction analysis showing increased characteristic phonon frequencies with Pr content. This mechanism should promote electron-phonon coupling, at least for acoustic phonons. However, the inverse phenomenon was detected. Namely, there is a gradual deterioration of the optical phonons responsible for vibration of the Cu-O bonds with Pr increasing, as evidenced by Raman spectroscopy. Furthermore, the results of X-ray absorption spectroscopy precisely showed the location of the carriers for Pr-rich specimens. Finally, a schematic diagram for Eu1-xPrxBCO is proposed to consolidate the presented research.
Collapse
Affiliation(s)
- Paweł Pęczkowski
- Institute of Physical Sciences, Faculty of Mathematics and Natural Sciences, School of Exact Sciences, Cardinal Stefan Wyszyński University, K. Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
| | - Piotr Zachariasz
- LTCC Technology and Printed Electronics Research Group, Łukasiewicz Research Network—Institute of Microelectronics and Photonics, Zabłocie 39 Street, 30-701 Kraków, Poland;
| | - Cezariusz Jastrzębski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland;
| | - Jarosław Piętosa
- Group of Phase Transition, Division of Physics of Magnetism, Institute of Physics, Polish Academy of Sciences, Lotników 32/46 Avenue, 02-668 Warsaw, Poland;
| | - Elżbieta Drzymała
- Department for Functional Nanomaterials, The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, W.E. Radzikowskiego 152 Street, 31-342 Kraków, Poland;
| | - Łukasz Gondek
- Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, A. Mickiewicza 30 Avenue, 30-059 Kraków, Poland;
| |
Collapse
|
24
|
Abstract
Copper-based (cuprate) oxides are not only the original but also one of the best-studied families of “high-temperature” superconductors. With nominally identical crystal structure and electron count, nickel-based (nickelate) compounds have been widely pursued for decades as a possible analog to the cuprates. The recent demonstration of superconductivity in nickelate thin films has provided an experimental platform to explore the possible connections between the copper- and nickel-based superconductors. Here, we perform highly localized spectroscopic measurements to reveal a number of key differences between the two systems, particularly with regard to the hybridization between the O and metal (Cu or Ni) orbitals. The recent observation of superconductivity in Nd0.8Sr0.2NiO2 has raised fundamental questions about the hierarchy of the underlying electronic structure. Calculations suggest that this system falls in the Mott–Hubbard regime, rather than the charge-transfer configuration of other nickel oxides and the superconducting cuprates. Here, we use state-of-the-art, locally resolved electron energy-loss spectroscopy to directly probe the Mott–Hubbard character of Nd1−xSrxNiO2. Upon doping, we observe emergent hybridization reminiscent of the Zhang–Rice singlet via the oxygen-projected states, modification of the Nd 5d states, and the systematic evolution of Ni 3d hybridization and filling. These experimental data provide direct evidence for the multiband electronic structure of the superconducting infinite-layer nickelates, particularly via the effects of hole doping on not only the oxygen but also nickel and rare-earth bands.
Collapse
|
25
|
Singh A, Huang HY, Chu YY, Hua CY, Lin SW, Fung HS, Shiu HW, Chang J, Li JH, Okamoto J, Chiu CC, Chang CH, Wu WB, Perng SY, Chung SC, Kao KY, Yeh SC, Chao HY, Chen JH, Huang DJ, Chen CT. Development of the Soft X-ray AGM-AGS RIXS beamline at the Taiwan Photon Source. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:977-986. [PMID: 33950006 PMCID: PMC8127366 DOI: 10.1107/s1600577521002897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/18/2021] [Indexed: 06/01/2023]
Abstract
We report on the development of a high-resolution and highly efficient beamline for soft X-ray resonant inelastic X-ray scattering (RIXS) located at the Taiwan Photon Source. This beamline adopts an optical design that uses an active grating monochromator (AGM) and an active grating spectrometer (AGS) to implement the energy compensation principle of grating dispersion. Active gratings are utilized to diminish defocus, coma and higher-order aberrations, as well as to decrease the slope errors caused by thermal deformation and optical polishing. The AGS is mounted on a rotatable granite platform to enable momentum-resolved RIXS measurements with scattering angles over a wide range. Several high-precision instruments developed in-house for this beamline are described briefly. The best energy resolution obtained from this AGM-AGS beamline was 12.4 meV at 530 eV, achieving a resolving power of 4.2 × 104, while the bandwidth of the incident soft X-rays was kept at 0.5 eV. To demonstrate the scientific impact of high-resolution RIXS, we present an example of momentum-resolved RIXS measurements on a high-temperature superconducting cuprate, i.e. La2-xSrxCuO4. The measurements reveal the A1g buckling phonons in superconducting cuprates, opening a new opportunity to investigate the coupling between these phonons and charge-density waves.
Collapse
Affiliation(s)
- A. Singh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. Y. Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Y. Y. Chu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - C. Y. Hua
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. W. Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. S. Fung
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. W. Shiu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J. Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J. H. Li
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J. Okamoto
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - C. C. Chiu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - C. H. Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - W. B. Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. Y. Perng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. C. Chung
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - K. Y. Kao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - S. C. Yeh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - H. Y. Chao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J. H. Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - D. J. Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - C. T. Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
26
|
Ye X, Zhao J, Das H, Sheptyakov D, Yang J, Sakai Y, Hojo H, Liu Z, Zhou L, Cao L, Nishikubo T, Wakazaki S, Dong C, Wang X, Hu Z, Lin HJ, Chen CT, Sahle C, Efiminko A, Cao H, Calder S, Mibu K, Kenzelmann M, Tjeng LH, Yu R, Azuma M, Jin C, Long Y. Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO 3. Nat Commun 2021; 12:1917. [PMID: 33772004 PMCID: PMC7997894 DOI: 10.1038/s41467-021-22064-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm. The distinctive crystal construction and valence distribution of Pb2+0.5Pb4+0.5FeO3 lead to a long range charge ordering of the -A-B-B- type of the layers with two different oxidation states of Pb (Pb2+ and Pb4+) in them. A weak ferromagnetic transition with canted antiferromagnetic spins along the a-axis is found to occur at 600 K. In addition, decreasing the temperature causes a spin reorientation transition towards a collinear antiferromagnetic structure with spin moments along the b-axis near 418 K. Our theoretical investigations reveal that the peculiar charge ordering of Pb generates two Fe3+ magnetic sublattices with competing anisotropic energies, giving rise to the spin reorientation at such a high critical temperature.
Collapse
Affiliation(s)
- Xubin Ye
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfa Zhao
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hena Das
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan ,grid.32197.3e0000 0001 2179 2105Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Denis Sheptyakov
- grid.5991.40000 0001 1090 7501Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Junye Yang
- grid.5991.40000 0001 1090 7501Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Yuki Sakai
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan ,Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Hajime Hojo
- grid.177174.30000 0001 2242 4849Department of Advanced Materials and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Japan
| | - Zhehong Liu
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Zhou
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Cao
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Takumi Nishikubo
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Shogo Wakazaki
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Cheng Dong
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Wang
- grid.419507.e0000 0004 0491 351XMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Zhiwei Hu
- grid.419507.e0000 0004 0491 351XMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Hong-Ji Lin
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Chien-Te Chen
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, Taiwan, ROC
| | - Christoph Sahle
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | - Anna Efiminko
- grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | - Huibo Cao
- grid.135519.a0000 0004 0446 2659Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Stuart Calder
- grid.135519.a0000 0004 0446 2659Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Ko Mibu
- grid.47716.330000 0001 0656 7591Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Michel Kenzelmann
- grid.5991.40000 0001 1090 7501Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Liu Hao Tjeng
- grid.419507.e0000 0004 0491 351XMax-Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Runze Yu
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China ,grid.32197.3e0000 0001 2179 2105Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| | - Masaki Azuma
- grid.32197.3e0000 0001 2179 2105Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa Japan ,Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Changqing Jin
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China ,Songshan Lake Materials Laboratory, Dongguan, Guangdong China
| | - Youwen Long
- grid.458438.60000 0004 0605 6806Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China ,Songshan Lake Materials Laboratory, Dongguan, Guangdong China
| |
Collapse
|
27
|
Lin JQ, Villar Arribi P, Fabbris G, Botana AS, Meyers D, Miao H, Shen Y, Mazzone DG, Feng J, Chiuzbăian SG, Nag A, Walters AC, García-Fernández M, Zhou KJ, Pelliciari J, Jarrige I, Freeland JW, Zhang J, Mitchell JF, Bisogni V, Liu X, Norman MR, Dean MPM. Strong Superexchange in a d^{9-δ} Nickelate Revealed by Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2021; 126:087001. [PMID: 33709756 DOI: 10.1103/physrevlett.126.087001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.
Collapse
Affiliation(s)
- J Q Lin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - P Villar Arribi
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A S Botana
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D G Mazzone
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - J Feng
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - S G Chiuzbăian
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - A Nag
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - A C Walters
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M García-Fernández
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I Jarrige
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Junjie Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - M R Norman
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
28
|
Nag A, Zhu M, Bejas M, Li J, Robarts HC, Yamase H, Petsch AN, Song D, Eisaki H, Walters AC, García-Fernández M, Greco A, Hayden SM, Zhou KJ. Detection of Acoustic Plasmons in Hole-Doped Lanthanum and Bismuth Cuprate Superconductors Using Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 125:257002. [PMID: 33416344 DOI: 10.1103/physrevlett.125.257002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
High T_{c} superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic x-ray scattering to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors (La_{1.84}Sr_{0.16}CuO_{4} and Bi_{2}Sr_{1.6}La_{0.4}CuO_{6+δ}), crucially completing the picture. Interestingly, in contrast to the quasistatic charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behavior of valence charges in hole-doped cuprates.
Collapse
Affiliation(s)
- Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - M Zhu
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Matías Bejas
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - J Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - H C Robarts
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Hiroyuki Yamase
- International Center of Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0047, Japan
- Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - A N Petsch
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - D Song
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - H Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - A C Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | | | - Andrés Greco
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura and Instituto de Física de Rosario (UNR-CONICET), Avenida Pellegrini 250, 2000 Rosario, Argentina
| | - S M Hayden
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
29
|
Zhang Z, Singh K, Tsur Y, Zhou J, Dynes JJ, Thangadurai V. Studies on effect of Ca-doping on structure and electrochemical properties of garnet-type Y3-xCaxFe5O12-δ. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Multiorbital charge-density wave excitations and concomitant phonon anomalies in Bi 2Sr 2LaCuO 6+δ. Proc Natl Acad Sci U S A 2020; 117:16219-16225. [PMID: 32586955 PMCID: PMC7368327 DOI: 10.1073/pnas.2001755117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Charge-density waves (CDWs) are a ubiquitous form of electron density modulation in cuprate superconductors. Unveiling the nature of quasistatic CDWs and their dynamical excitations is crucial for understanding their origin––similar to the study of antiferromagnetism in cuprates. However, dynamical CDW excitations remain largely unexplored due to the limited availability of suitable experimental probes. Here, using resonant inelastic X-ray scattering, we observe dynamical CDW excitations in Bi2Sr2LaCuO6+δ (Bi2201) superconductors through its interference with the lattice. The distinct anomalies of the bond-buckling and the bond-stretching phonons allow us to draw a clear picture of funnel-shaped dynamical CDW excitations in Bi2201. Our results of the interplay between CDWs and the phonon anomalies shed light on the nature of CDWs in cuprates. Charge-density waves (CDWs) are ubiquitous in underdoped cuprate superconductors. As a modulation of the valence electron density, CDWs in hole-doped cuprates possess both Cu-3d and O-2p orbital character owing to the strong hybridization of these orbitals near the Fermi level. Here, we investigate underdoped Bi2Sr1.4La0.6CuO6+δ using resonant inelastic X-ray scattering (RIXS) and find that a short-range CDW exists at both Cu and O sublattices in the copper-oxide (CuO2) planes with a comparable periodicity and correlation length. Furthermore, we uncover bond-stretching and bond-buckling phonon anomalies concomitant to the CDWs. Comparing to slightly overdoped Bi2Sr1.8La0.2CuO6+δ, where neither CDWs nor phonon anomalies appear, we highlight that a sharp intensity anomaly is induced in the proximity of the CDW wavevector (QCDW) for the bond-buckling phonon, in concert with the diffused intensity enhancement of the bond-stretching phonon at wavevectors much greater than QCDW. Our results provide a comprehensive picture of the quasistatic CDWs, their dispersive excitations, and associated electron-phonon anomalies, which are key for understanding the competing electronic instabilities in cuprates.
Collapse
|
31
|
Abstract
We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.
Collapse
Affiliation(s)
- Federica Frati
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| | | | - Frank M. F. de Groot
- Inorganic
chemistry and catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584CG Utrecht, The Netherlands
| |
Collapse
|
32
|
Hepting M, Li D, Jia CJ, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang YD, Hussain Z, Zhou KJ, Nag A, Garcia-Fernandez M, Rossi M, Huang HY, Huang DJ, Shen ZX, Schmitt T, Hwang HY, Moritz B, Zaanen J, Devereaux TP, Lee WS. Electronic structure of the parent compound of superconducting infinite-layer nickelates. NATURE MATERIALS 2020; 19:381-385. [PMID: 31959951 DOI: 10.1038/s41563-019-0585-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 05/21/2023]
Abstract
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
Collapse
Affiliation(s)
- M Hepting
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - D Li
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - C J Jia
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - H Lu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - E Paris
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Y Tseng
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - X Feng
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M Osada
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - E Been
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Y Hikita
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Y-D Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Z Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - K J Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - A Nag
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - M Rossi
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - H Y Huang
- NSRRC, Hsinchu Science Park, Hsinchu, Taiwan
| | - D J Huang
- NSRRC, Hsinchu Science Park, Hsinchu, Taiwan
| | - Z X Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, USA
| | - T Schmitt
- Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - H Y Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - B Moritz
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J Zaanen
- Instituut-Lorentz for theoretical Physics, Leiden University, Leiden, the Netherlands
| | - T P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - W S Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
33
|
Liu Z, Sakai Y, Yang J, Li W, Liu Y, Ye X, Qin S, Chen J, Agrestini S, Chen K, Liao SC, Haw SC, Baudelet F, Ishii H, Nishikubo T, Ishizaki H, Yamamoto T, Pan Z, Fukuda M, Ohashi K, Matsuno K, Machida A, Watanuki T, Kawaguchi SI, Arevalo-Lopez AM, Jin C, Hu Z, Attfield JP, Azuma M, Long Y. Sequential Spin State Transition and Intermetallic Charge Transfer in PbCoO 3. J Am Chem Soc 2020; 142:5731-5741. [PMID: 32083872 DOI: 10.1021/jacs.9b13508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin state transitions and intermetallic charge transfers can essentially change material structural and physical properties while excluding external chemical doping. However, these two effects have rarely been found to occur sequentially in a specific material. In this article, we show the realization of these two phenomena in a perovskite oxide PbCoO3 with a simple ABO3 composition under high pressure. PbCoO3 possesses a peculiar A- and B-site ordered charge distribution Pb2+Pb4+3Co2+2Co3+2O12 with insulating behavior at ambient conditions. The high spin Co2+ gradually changes to low spin with increasing pressure up to about 15 GPa, leading to an anomalous increase of resistance magnitude. Between 15 and 30 GPa, the intermetallic charge transfer occurs between Pb4+ and Co2+ cations. The accumulated charge-transfer effect triggers a metal-insulator transition as well as a first-order structural phase transition toward a Tetra.-I phase at the onset of ∼20 GPa near room temperature. On further compression over 30 GPa, the charge transfer completes, giving rise to another first-order structural transformation toward a Tetra.-II phase and the reentrant electrical insulating behavior.
Collapse
Affiliation(s)
- Zhehong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuki Sakai
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan.,Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Junye Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenmin Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xubin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Qin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinming Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan, R.O.C
| | - Stefano Agrestini
- Max-Planck Institute for Chemical Physics of Solids, NöthnitzerStraße 40, 01187 Dresden, Germany
| | - Kai Chen
- Max-Planck Institute for Chemical Physics of Solids, NöthnitzerStraße 40, 01187 Dresden, Germany
| | - Sheng-Chieh Liao
- Max-Planck Institute for Chemical Physics of Solids, NöthnitzerStraße 40, 01187 Dresden, Germany
| | - Shu-Chih Haw
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan, R.O.C
| | - Francois Baudelet
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP48, 91192 GIF-sur-Yvette Cedex, France
| | - Hirofumi Ishii
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan, R.O.C
| | - Takumi Nishikubo
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Hayato Ishizaki
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Tatsuru Yamamoto
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Zhao Pan
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Masayuki Fukuda
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Kotaro Ohashi
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Kana Matsuno
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Akihiko Machida
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Sayo, Hyogo 679-5148, Japan
| | - Tetsu Watanuki
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Sayo, Hyogo 679-5148, Japan
| | - Saori I Kawaguchi
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Angel M Arevalo-Lopez
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Changqing Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Hu
- Max-Planck Institute for Chemical Physics of Solids, NöthnitzerStraße 40, 01187 Dresden, Germany
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Masaki Azuma
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan.,Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
| | - Youwen Long
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
34
|
Li WM, Zhao JF, Cao LP, Hu Z, Huang QZ, Wang XC, Liu Y, Zhao GQ, Zhang J, Liu QQ, Yu RZ, Long YW, Wu H, Lin HJ, Chen CT, Li Z, Gong ZZ, Guguchia Z, Kim JS, Stewart GR, Uemura YJ, Uchida S, Jin CQ. Superconductivity in a unique type of copper oxide. Proc Natl Acad Sci U S A 2019; 116:12156-12160. [PMID: 31109998 PMCID: PMC6589659 DOI: 10.1073/pnas.1900908116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics. High-T c cuprates crystallize into a layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high-T c cuprates are elongated along the c axis, leading to a 3dx 2-y 2 orbital at the top of the band structure wherein the doped holes reside. This scenario gives rise to 2D characteristics in high-T c cuprates that favor d-wave pairing symmetry. Here, we report superconductivity in a cuprate Ba2CuO4-y , wherein the local octahedron is in a very exceptional compressed version. The Ba2CuO4-y compound was synthesized at high pressure at high temperatures and shows bulk superconductivity with critical temperature (T c ) above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the T c for the isostructural counterparts based on classical La2CuO4 X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron, the 3d3z 2-r 2 orbital will be lifted above the 3dx 2-y 2 orbital, leading to significant 3D nature in addition to the conventional 3dx 2-y 2 orbital. This work sheds important light on advancing our comprehensive understanding of the superconducting mechanism of high T c in cuprate materials.
Collapse
Affiliation(s)
- W M Li
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - J F Zhao
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - L P Cao
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - Z Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straβe 40, 01187 Dresden, Germany
| | - Q Z Huang
- NIST Center for Neutron Research, Gaithersburg, MD 20899
| | - X C Wang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - Y Liu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - G Q Zhao
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - J Zhang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - Q Q Liu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
| | - R Z Yu
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - Y W Long
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| | - H Wu
- NIST Center for Neutron Research, Gaithersburg, MD 20899
| | - H J Lin
- National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan
| | - C T Chen
- National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan
| | - Z Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Z Z Gong
- Department of Physics, Columbia University, New York, NY 10027
| | - Z Guguchia
- Department of Physics, Columbia University, New York, NY 10027
| | - J S Kim
- Department of Physics, University of Florida, Gainesville, FL 32611
| | - G R Stewart
- Department of Physics, University of Florida, Gainesville, FL 32611
| | - Y J Uemura
- Department of Physics, Columbia University, New York, NY 10027
| | - S Uchida
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- Department of Physics, University of Tokyo, 113-0033 Tokyo, Japan
| | - C Q Jin
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China;
- School of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100190 Beijing, China
- Materials Research Lab at Songshan Lake, 523808 Dongguan, China
| |
Collapse
|
35
|
Terashige T, Ono T, Miyamoto T, Morimoto T, Yamakawa H, Kida N, Ito T, Sasagawa T, Tohyama T, Okamoto H. Doublon-holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators. SCIENCE ADVANCES 2019; 5:eaav2187. [PMID: 31187057 PMCID: PMC6555625 DOI: 10.1126/sciadv.aav2187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Coupling of charge and spin degrees of freedom is a critical feature of correlated electron oxides, as represented by the spin-related mechanism of a Cooper pair under high-T c superconductivity. A doublon-holon pair generated on an antiferromagnetic spin background is also predicted to attract each other via the spin-spin interaction J, similar to a Cooper pair, while its evidence is difficult to obtain experimentally. Here, we investigate such an excitonic effect by electroreflectance spectroscopy using terahertz electric field pulses in undoped cuprates: Nd2CuO4, Sr2CuO2Cl2, and La2CuO4. Analyses of the spectral changes of reflectivity under electric fields reveal that the splitting of odd-parity and even-parity excitons, a measure of doublon-holon binding energy, increases with J. This trend is reproduced by t-J-type model calculations, providing strong evidence of the spin-related doublon-holon pairing. Agreement with the calculations supports the s-wave symmetry of the doublon-holon pair in contrast to the d-wave Cooper pair in doped cuprates.
Collapse
Affiliation(s)
- T. Terashige
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba 277-8568, Japan
| | - T. Ono
- Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - T. Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
| | - T. Morimoto
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
| | - H. Yamakawa
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
| | - N. Kida
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
| | - T. Ito
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - T. Sasagawa
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - T. Tohyama
- Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
| | - H. Okamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba 277-8568, Japan
| |
Collapse
|
36
|
Zhang Z, Sutarto R, He F, Chou FC, Udby L, Holm SL, Zhu ZH, Hines WA, Budnick JI, Wells BO. Nematicity and Charge Order in Superoxygenated La_{2-x}Sr_{x}CuO_{4+y}. PHYSICAL REVIEW LETTERS 2018; 121:067602. [PMID: 30141664 DOI: 10.1103/physrevlett.121.067602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/24/2018] [Indexed: 06/08/2023]
Abstract
In this Letter, we report a resonant x-ray scattering measurement of stripelike charge order in the 1/8th doped component of electronically phase-separated, orthorhombic La_{2}CuO_{4+y}. This observation is coupled to the absence of any resonant (001) peak, which at different resonant energies has been identified with the presence of low-temperature-tetragonal-like structural tilt patterns or nematicity in the CuO planes. Thus, we provide evidence that structural pinning is not necessary for the formation of static charge stripes and that the relationship between charge nematicity and stripes may not be simple.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - R Sutarto
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - F He
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - F C Chou
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10670, Taiwan
| | - L Udby
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - S L Holm
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Z H Zhu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W A Hines
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - J I Budnick
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - B O Wells
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
37
|
Wang X, Huang K, Yuan L, Xi S, Yan W, Geng Z, Cong Y, Sun Y, Tan H, Wu X, Li L, Feng S. Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. J Phys Chem Lett 2018; 9:4146-4154. [PMID: 29966086 DOI: 10.1021/acs.jpclett.8b01623] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anionic redox chemistry is becoming increasingly important in explaining the intristic catalytic behavior in transition-metal oxides and improving catalytic activity. However, it is a great challenge to activate lattice oxygen in noble-metal-free perovskites for obtaining active peroxide species. Here, we take La0.4Sr0.6CoO3-δ as a model catalyst and develop an anionic redox activity regulation method to activate lattice oxygen by tuning charge transfer between Co4+ and O2-. Advanced XAS and XPS demonstrate that our method can effectively decrease electron density of surface oxygen sites (O2-) to form more reactive oxygen species (O2- x), which reduces the activation energy barriers of molecular O2 and leads to a very high CO catalytic activity. The revealing of the activation mechanism for surface oxygen sites in perovskites in this work opens up a new avenue to design efficient solid catalysts. Furthermore, we also establish a correlation between anionic redox chemistry and CO catalytic activity.
Collapse
Affiliation(s)
- Xiyang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Long Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences , A*STAR , 1 Pesek Road, Jurong Island , Singapore 627833 , Singapore
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , People's Republic of China
| | - Zhibin Geng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Yingge Cong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Yu Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Hao Tan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230029 , People's Republic of China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
38
|
Kohno M. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:042501. [PMID: 29300706 DOI: 10.1088/1361-6633/aaa53d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.
Collapse
Affiliation(s)
- Masanori Kohno
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
| |
Collapse
|
39
|
Meyer TL, Jacobs R, Lee D, Jiang L, Freeland JW, Sohn C, Egami T, Morgan D, Lee HN. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4. Nat Commun 2018; 9:92. [PMID: 29311690 PMCID: PMC5758782 DOI: 10.1038/s41467-017-02568-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/06/2017] [Indexed: 11/08/2022] Open
Abstract
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden-Popper phase La2-xSr x CuO4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonly reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.
Collapse
Affiliation(s)
- Tricia L Meyer
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ryan Jacobs
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Dongkyu Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lu Jiang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, 60439, IL, USA
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dane Morgan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
40
|
Wang Y, Huang MR, Salzberger U, Hahn K, Sigle W, van Aken PA. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy. Ultramicroscopy 2018; 184:98-105. [DOI: 10.1016/j.ultramic.2017.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022]
|
41
|
Fabbris G, Meyers D, Xu L, Katukuri VM, Hozoi L, Liu X, Chen ZY, Okamoto J, Schmitt T, Uldry A, Delley B, Gu GD, Prabhakaran D, Boothroyd AT, van den Brink J, Huang DJ, Dean MPM. Doping Dependence of Collective Spin and Orbital Excitations in the Spin-1 Quantum Antiferromagnet La_{2-x}Sr_{x}NiO_{4} Observed by X Rays. PHYSICAL REVIEW LETTERS 2017; 118:156402. [PMID: 28452512 DOI: 10.1103/physrevlett.118.156402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 05/23/2023]
Abstract
We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L_{3} edge of La_{2-x}Sr_{x}NiO_{4} (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.
Collapse
Affiliation(s)
- G Fabbris
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Meyers
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - L Xu
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - V M Katukuri
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - L Hozoi
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - X Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Z-Y Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J Okamoto
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - T Schmitt
- Research Department "Synchotron Radiation and Nanotechnology", Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - A Uldry
- Condensed Matter Theory Group, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - B Delley
- Condensed Matter Theory Group, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - G D Gu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Prabhakaran
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, United Kingdom
| | - A T Boothroyd
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, United Kingdom
| | - J van den Brink
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstraße, 20, 01069 Dresden, Germany
| | - D J Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - M P M Dean
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
42
|
Liang Y, Vinson J, Pemmaraju S, Drisdell WS, Shirley EL, Prendergast D. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory. PHYSICAL REVIEW LETTERS 2017; 118:096402. [PMID: 28306298 PMCID: PMC5532736 DOI: 10.1103/physrevlett.118.096402] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 05/06/2023]
Abstract
Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.
Collapse
Affiliation(s)
- Yufeng Liang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John Vinson
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - Sri Pemmaraju
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Walter S Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric L Shirley
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Greiner MT, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Allan J, Hashagen M, Weinberg G, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R. The electronic structure of iridium oxide electrodes active in water splitting. Phys Chem Chem Phys 2016; 18:2292-6. [PMID: 26700139 DOI: 10.1039/c5cp06997a] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate understanding of the electronic structure of iridium oxide surfaces, we have combined synchrotron-based X-ray photoemission and absorption spectroscopies with ab initio calculations. Our investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that we have identified as O 2p hole states forming in conjunction with Ir(III). These electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphous iridium oxides relative to their crystalline counterparts.
Collapse
Affiliation(s)
- V Pfeifer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - T E Jones
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - J J Velasco Vélez
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - C Massué
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - M T Greiner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - R Arrigo
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX 11 0DE, UK
| | - D Teschner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - F Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - M Scherzer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - J Allan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - M Hashagen
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - G Weinberg
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - S Piccinin
- Instituto Officina dei Materiali (CNR-IOM), c/o SISSA - Scoula Internazionale Superiore di Studi Avanzati, Via Bonomea 267, 34136 Trieste, Italy
| | - M Hävecker
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| | - A Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - R Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany. and Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany
| |
Collapse
|
44
|
Yin X, Zeng S, Das T, Baskaran G, Asmara TC, Santoso I, Yu X, Diao C, Yang P, Breese MBH, Venkatesan T, Lin H, Rusydi A. Coexistence of Midgap Antiferromagnetic and Mott States in Undoped, Hole- and Electron-Doped Ambipolar Cuprates. PHYSICAL REVIEW LETTERS 2016; 116:197002. [PMID: 27232036 DOI: 10.1103/physrevlett.116.197002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 06/05/2023]
Abstract
We report the first observation of the coexistence of a distinct midgap state and a Mott state in undoped and their evolution in electron and hole-doped ambipolar Y_{0.38}La_{0.62}(Ba_{0.82}La_{0.18})_{2}Cu_{3}O_{y} films using spectroscopic ellipsometry and x-ray absorption spectroscopies at the O K and Cu L_{3,2} edges. Supported by theoretical calculations, the midgap state is shown to originate from antiferromagnetic correlation. Surprisingly, while the magnetic state collapses and its correlation strength weakens with dopings, the Mott state in contrast moves toward a higher energy and its correlation strength increases. Our result provides important clues to the mechanism of electronic correlation strengths and superconductivity in cuprates.
Collapse
Affiliation(s)
- Xinmao Yin
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- NUSSNI-NanoCore, National University of Singapore, Singapore 117576, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shengwei Zeng
- NUSSNI-NanoCore, National University of Singapore, Singapore 117576, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Tanmoy Das
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - G Baskaran
- The Institute of Mathematical Sciences, Chennai 600041, India
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Teguh Citra Asmara
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- NUSSNI-NanoCore, National University of Singapore, Singapore 117576, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Iman Santoso
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- NUSSNI-NanoCore, National University of Singapore, Singapore 117576, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Caozheng Diao
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Ping Yang
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Mark B H Breese
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - T Venkatesan
- NUSSNI-NanoCore, National University of Singapore, Singapore 117576, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Hsin Lin
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Andrivo Rusydi
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- NUSSNI-NanoCore, National University of Singapore, Singapore 117576, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
45
|
Kapilashrami M, Wang YJ, Li X, Glans PA, Fang M, Riazanova AV, Belova LM, Rao KV, Luo Y, Barbiellini B, Lin H, Markiewicz R, Bansil A, Hussain Z, Guo J. Understanding the magnetic interaction between intrinsic defects and impurity ions in room-temperature ferromagnetic Mg1-xFexO thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:156002. [PMID: 26987741 DOI: 10.1088/0953-8984/28/15/156002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the nature and characteristics of the intrinsic defects and impurities in the dielectric barrier separating the ferromagnetic electrodes in a magnetic tunneling junction is of great importance for understanding the often observed 'barrier-breakdown' therein. In this connection, we present herein systematic experimental (SQUID and synchrotron-radiation-based x-ray absorption spectroscopy) and computational studies on the electronic and magnetic properties of Mg1-xFexO thin films. Our studies reveal: (i) defect aggregates comprised of basic and trimer units (Fe impurity coupled to 1 or 2 Mg vacancies) and (ii) existence of two competing magnetic orders, defect- and dopant-induced, with spin densities aligning anti-parallel if the trimer is present in the oxide matrix. These findings open up new avenues for designing tunneling barriers with high endurance and tunneling effect upon tuning the concentration/distribution of the two magnetic orders.
Collapse
Affiliation(s)
- Mukes Kapilashrami
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sohn CH, Cho DY, Kuo CT, Sandilands LJ, Qi TF, Cao G, Noh TW. X-ray Absorption Spectroscopy Study of the Effect of Rh doping in Sr2IrO4. Sci Rep 2016; 6:23856. [PMID: 27025538 PMCID: PMC4812298 DOI: 10.1038/srep23856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/16/2016] [Indexed: 11/16/2022] Open
Abstract
We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1-xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in which Rh doping can weaken the (Ir Jeff = 1/2)-(O 2p) orbital hybridisation in the in-planar Rh-O-Ir bond networks.
Collapse
Affiliation(s)
- C. H. Sohn
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Deok-Yong Cho
- IPIT & Department of Physics, Chonbuk National University, Jeonju 54896, Korea
| | - C.-T. Kuo
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - L. J. Sandilands
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - T. F. Qi
- Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - G. Cao
- Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - T. W. Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
47
|
Wang Y, Baiutti F, Gregori G, Cristiani G, Salzberger U, Logvenov G, Maier J, van Aken PA. Atomic-Scale Quantitative Analysis of Lattice Distortions at Interfaces of Two-Dimensionally Sr-Doped La2CuO4 Superlattices. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6763-6769. [PMID: 26909681 PMCID: PMC4796864 DOI: 10.1021/acsami.5b12813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
Using spherical aberration corrected high-resolution and analytical scanning transmission electron microscopy, we have quantitatively studied the lattice distortion and the redistribution of charges in two-dimensionally strontium (Sr)-doped La2CuO4 superlattices, in which single LaO planes are periodically replaced by SrO planes. As shown previously, such structures show Tc up to 35 K as a consequence of local charge accumulation on both sides of the nominal SrO planes position. This is caused by two distinct mechanisms of doping: heterogeneous doping at the downward side of the interface (space-charge effect) and "classical" homogeneous doping at the upward side. The comparative chemical and atomic-structural analyses reveal an interrelation between local CuO6 octahedron distortions, hole spatial distribution, and chemical composition. In particular we observe an anomalous expansion of the apical oxygen-oxygen distance in the heterogeneously doped (space-charge) region, and a substantial shrinkage of the apical oxygen-oxygen distance in the homogeneously doped region. Such findings are interpreted in terms of different Jahn-Teller effects occurring at the two interface sides (downward and upward).
Collapse
|
48
|
Bugnet M, Löffler S, Hawthorn D, Dabkowska HA, Luke GM, Schattschneider P, Sawatzky GA, Radtke G, Botton GA. Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor. SCIENCE ADVANCES 2016; 2:e1501652. [PMID: 27051872 PMCID: PMC4820375 DOI: 10.1126/sciadv.1501652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.
Collapse
Affiliation(s)
- Matthieu Bugnet
- Department of Materials Science and Engineering and the Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Stefan Löffler
- Department of Materials Science and Engineering and the Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
- Institute of Solid State Physics and University Service Centre for Transmission Electron Microscopy, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
| | - David Hawthorn
- Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hanna A. Dabkowska
- Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Graeme M. Luke
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Peter Schattschneider
- Institute of Solid State Physics and University Service Centre for Transmission Electron Microscopy, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
| | - George A. Sawatzky
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Guillaume Radtke
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, CNRS UMR 7590, Muséum National d’Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - Gianluigi A. Botton
- Department of Materials Science and Engineering and the Canadian Centre for Electron Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
49
|
Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Greiner MT, Allan J, Hashagen M, Weinberg G, Piccinin S, Hävecker M, Knop-Gericke A, Schlögl R. The electronic structure of iridium and its oxides. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5895] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Pfeifer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH; Elektronenspeicherring BESSY II; Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Travis E. Jones
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Juan J. Velasco Vélez
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Cyriac Massué
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Rosa Arrigo
- Diamond Light Source Ltd.; Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Detre Teschner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Frank Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Michael Scherzer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Mark T. Greiner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Jasmin Allan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Maike Hashagen
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Gisela Weinberg
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Simone Piccinin
- Istituto Officina dei Materiali (CNR-IOM); c/o SISSA - Scuola Internazionale Superiore di Studi Avanzati; Via Bonomea 267 34136 Trieste Italy
| | - Michael Hävecker
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Axel Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 14195 Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim a. d. Ruhr Germany
| |
Collapse
|
50
|
Wang R, Li X, Liu L, Lee J, Seo DH, Bo SH, Urban A, Ceder G. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li 1.25 Nb 0.25 Mn 0.5 O 2. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.08.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|