1
|
Fang YB, Sun DY, Gong XG. Temperature and pressure effects on the surface structure of liquid gallium. J Chem Phys 2025; 162:074504. [PMID: 39976210 DOI: 10.1063/5.0243949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Liquid gallium exhibits a unique metallic-covalent coexistence. Leveraging the volume constant pressure molecular dynamics method and a well-trained neural network potential, we study the evolution of liquid Ga surface structures under varying temperatures and pressures. Our study presents a schematic P-T phase diagram of the liquid surface. We observe symmetric static structure factor main peaks in the outermost layers of the liquid Ga surface compared with asymmetric ones for inner layers, indicating a simple liquid behavior and a lack of Ga2 dimers at the surface. We calculate the surface energy and the surface tension, which reveal non-monotonic changes. All these results provide a further insight into understanding the physics of the strange metal gallium.
Collapse
Affiliation(s)
- Yi-Bin Fang
- Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| | - De-Yan Sun
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xin-Gao Gong
- Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Steenbergen KG, Lambie S, Gaston N. Discerning order from chaos: characterising the surface structure of liquid gallium. MATERIALS HORIZONS 2025; 12:1314-1322. [PMID: 39620231 DOI: 10.1039/d4mh01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Liquid metal (LM) technologies are rapidly advancing in modern materials science, with low melting point metals playing a pivotal role in emerging applications. Recent studies reveal that doped liquid gallium systems form spectacular and diverse surface structures during cooling, [Tang et al., Nat. Nanotechnol., 2021, 16, 431-439] sparking renewed interest in the possible geometric structuring at the surface of pure liquid gallium. Distinct from the known increase in surface density, this lateral surface order has long been hinted at experimentally and theoretically but has remained enigmatic. Here, we quantitatively characterise the depth and nature of this surface ordering for the first time, using highly accurate and large scale molecular dynamics simulations coupled with machine learning analysis techniques. We also quantify the enhanced structural order introduced by the addition of a gallium oxide film as well as the disruption due to a dopant (bismuth).
Collapse
Affiliation(s)
- Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Stephanie Lambie
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
3
|
Pontoni D, DiMichiel M, Murphy BM, Honkimäki V, Deutsch M. Ordering of ionic liquids at a charged sapphire interface: Evolution with cationic chain length. J Colloid Interface Sci 2024; 661:33-45. [PMID: 38295701 DOI: 10.1016/j.jcis.2024.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
HYPOTHESIS Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways. EXPERIMENTS X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL. FINDINGS RTIL layers against the sapphire, exhibit two spacings: da and db. da is n-varying, follows the behavior of the bulk spacing but exhibits a downshift, thus showing significant layer compression, and over twofold polar slab thinning. The latter suggests exclusion of anions from the interfacial region due to the negative sapphire charging by x-ray-released electrons. The layering range is larger than the bulk's. db is short and near n-independent, suggesting polar moieties' layering, the coexistence mode of which with the da-spaced layering is unclear. Comparing the present layering with the bulk's and the RTIL/air interface's provides insight into the Coulomb and dispersion interaction balance dominating the RTIL's structure and the impact thereon of the presence of a charged solid interface.
Collapse
Affiliation(s)
- Diego Pontoni
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marco DiMichiel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany; Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Veijo Honkimäki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Moshe Deutsch
- Physics Dept. & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
4
|
Wang M, Lin Y. Gallium-based liquid metals as reaction media for nanomaterials synthesis. NANOSCALE 2024; 16:6915-6933. [PMID: 38501969 DOI: 10.1039/d3nr06566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Gallium-based liquid metals (LMs) and their alloys have gained prominence in the realm of flexible and stretchable electronics. Recent advances have expanded the interest to explore the electron-rich core and interface of LMs to synthesize various nanomaterials, where Ga-based LMs serve as versatile reaction media. In this paper, we delve into the latest developments within this burgeoning field. Our discussion begins by elucidating the unique attributes of LMs that render them suitable as reaction media, including their high metal solubility, low standard reduction potential, self-limiting oxidation and ultra-smooth and "layer" surface. We then provide a comprehensive categorized summary of utilizing these features to fabricate a variety of nanomaterials, including pure metallic materials (metal alloys, metal crystals, porous metals, high-entropy alloys and metallic single atoms), metal-inorganic compounds (2D metal oxides, 2D metallic inorganic compounds and 2D graphitic materials), as well as metal-organic composites (metal-organic frameworks). This paper concludes by discussing the current challenges in this field and exploring potential future directions. The versatility and unique properties of Ga-based LMs are poised to play a pivotal role in the future of nanomaterial science, paving the way for more efficient, sustainable, and innovative technological solutions.
Collapse
Affiliation(s)
- Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
5
|
Konovalov O, Rein V, Saedi M, Groot IMN, Renaud G, Jankowski M. Tripling of the scattering vector range of X-ray reflectivity on liquid surfaces using a double-crystal deflector. J Appl Crystallogr 2024; 57:258-265. [PMID: 38596733 PMCID: PMC11001415 DOI: 10.1107/s1600576724000657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
The maximum range of perpendicular momentum transfer (q z) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the q z direction on liquid surfaces up to q z = 7 Å-1 is presented, with liquid copper serving as a reference system for benchmarking purposes.
Collapse
Affiliation(s)
- Oleg Konovalov
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Valentina Rein
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Mehdi Saedi
- Physics Department, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gilles Renaud
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Maciej Jankowski
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
6
|
Men H. A molecular dynamics study on the boundary between homogeneous and heterogeneous nucleation. J Chem Phys 2024; 160:094702. [PMID: 38426521 DOI: 10.1063/5.0192069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
The large discrepancy among the nucleation kinetics extracted from experimental measurements and computer simulations and the prediction of the classical nucleation theory (CNT) has stimulated intense arguments about its origin in the past decades, which is crucially relevant to the validity of the CNT. In this paper, we investigate the atomistic mechanism of the nucleation in liquid Al in contact with amorphous substrates with atomic-level smooth/rough surfaces, using molecular dynamics (MD) simulations. This study reveals that the slightly distorted local fcc/hcp structures in amorphous substrates with smooth surfaces can promote heterogeneous nucleation through a structural templating mechanism, and on the other hand, homogeneous nucleation will occur at a larger undercooling through a fluctuation mechanism if the surface is rough. Thus, some impurities, previously thought to be impotent, could be activated in the homogeneous nucleation experiments. We further find that the initial growth of the nucleus on smooth surfaces of amorphous substrates is one order of magnitude faster than that in homogeneous nucleation. Both these factors could significantly contribute to the discrepancy in the nucleation kinetics. This study is also supported by a recent study of the synthesis of high-entropy alloy nanoparticles assisted with the liquid metal Ga [Cao et al., Nature 619, 73 (2023)]. In this study, we established that the boundary existed between homogeneous and heterogeneous nucleation, i.e., the structural templating is a general mechanism for heterogeneous nucleation, and in its absence, homogeneous nucleation will occur through the fluctuation mechanism. This study provides an in-depth understanding of the nucleation theory and experiments.
Collapse
Affiliation(s)
- Hua Men
- BCAST, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
7
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Hazelnis JP, Maldonado S. Electrosynthesis of Quasi-Epitaxial Crystals on Liquid Metals. J Am Chem Soc 2023; 145:27616-27625. [PMID: 38051913 DOI: 10.1021/jacs.3c09455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electrosynthesis of single-crystalline metallic and intermetallic particles with a preferred orientation onto liquid metal electrodes has been performed. Liquid gallium electrodes immersed in aqueous alkaline electrolytes without any molecular additive or external solid seeding substrates were used to electroreduce separately Pb2+, Bi3+, Pd2+, and Mn2+. The crystallinity, composition, and orientation of the electrodeposition products were characterized by using scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Electrodeposition of Pb and Bi results in the incipient formation of two-dimensional (2D) nuclei that subsequently direct the growth of Pb and Bi single crystals along the most close-packed [111] and [0001] directions, respectively. The absence of any intervening surface oxides and a low electroreduction flux are necessary to avoid polycrystalline dendrite formation. Under comparable conditions, the electrodeposition of Pd and Mn results in single-crystalline intermetallic particles at the interface. Each crystal exhibits a preferred orientation consistent with the unique atomic packing of the near-surface region of the liquid Ga. The presented study suggests a new concept in electrodeposition processes where the liquid metal structure imparts quasi-epitaxial growth in a system in which the electrode material specifically has no crystallinity or long-range order. This study is thus the first demonstration of highly oriented electrodeposition at a liquid/liquid interface under ambient conditions, highlighting the unique solvation environment of liquid metal interfaces for forming thin metallic and intermetallic films.
Collapse
Affiliation(s)
- Joshua P Hazelnis
- Department of Chemistry University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, United States
| | - Stephen Maldonado
- Department of Chemistry University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, United States
- Program in Applied Physics, University of Michigan, 2477 Randall Laboratory, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
9
|
Ruffman C, Lambie S, Steenbergen KG, Gaston N. Structural and electronic changes in Ga-In and Ga-Sn alloys on melting. Phys Chem Chem Phys 2023; 25:1236-1247. [PMID: 36525244 DOI: 10.1039/d2cp04431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The melting behaviour of surface slabs of Ga-In and Ga-Sn is studied using periodic density functional theory and ab initio molecular dynamics. Analysis of the structure and electronics of the solid and liquid phases gives insight into the properties of these alloys, and why they may act as promising CO2 reduction catalysts. We report melting points for slabs of hexa-layer Ga-In (386 K) and Ga-Sn (349 K) that are substantially lower than the pure hexa-layer Ga system (433 K), and attribute the difference to the degree to which the dopant (In or Sn) disrupts the layered Ga network. In molecular dynamics trajectories of the liquid structures, we find that dopant tends to migrate from the centre of the slab towards the surface and accumulate there. Bader charge calculations reveal that the surface dopant atoms have increased positive charge, and density of states analyses suggest the liquid alloys maintain metallic electronic behaviour. Thus, surface In and Sn may provide good binding sites for intermediates in CO2 reduction. This work contributes to our understanding of the properties of liquid metal systems, and provides a foundation for modelling catalysis on these materials.
Collapse
Affiliation(s)
- Charlie Ruffman
- MacDiarmid Institute for Advanced Materials and Nanotechnology and Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Stephanie Lambie
- MacDiarmid Institute for Advanced Materials and Nanotechnology and Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology and Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
10
|
Yamagishi Y, Kominami H, Kobayashi K, Nomura Y, Igaki E, Yamada H. Molecular-Resolution Imaging of Interfacial Solvation of Electrolytes for Lithium-Ion Batteries by Frequency Modulation Atomic Force Microscopy. NANO LETTERS 2022; 22:9907-9913. [PMID: 36473195 DOI: 10.1021/acs.nanolett.2c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solvation structures formed by ions and solvent molecules at solid/electrolyte interfaces affect the energy storage performance of electrochemical devices, such as lithium-ion batteries. In this study, the molecular-scale solvation structures of an electrolyte, a solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in propylene carbonate (PC) at the electrolyte-mica interface, were measured using frequency-modulation atomic force microscopy (FM-AFM). The spacing of the characteristic force oscillation in the force versus distance curves increased with increasing ion concentration, suggesting an increase in the effective size of molecules at the interface. Molecular dynamics simulations showed that the effective size of molecular assemblies, namely, solvated ions formed at the interface, increased with increasing ion concentrations, which was consistent with the experimental results. Knowledge of molecular-scale structures of solid/electrolyte interfaces obtained by a combination of FM-AFM and molecular dynamics simulations is important in the design of electrolytes for future energy devices and in improving their properties.
Collapse
Affiliation(s)
- Yuji Yamagishi
- Applied Materials Technology Center, Panasonic Holdings Corporation, 3-1-1 Yagumo-nakamachi, Moriguchi, Osaka 570-8501, Japan
| | - Hiroaki Kominami
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yuki Nomura
- Applied Materials Technology Center, Panasonic Holdings Corporation, 3-1-1 Yagumo-nakamachi, Moriguchi, Osaka 570-8501, Japan
| | - Emiko Igaki
- Applied Materials Technology Center, Panasonic Holdings Corporation, 3-1-1 Yagumo-nakamachi, Moriguchi, Osaka 570-8501, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Sartori A, Giri RP, Fujii H, Hövelmann SC, Warias JE, Jordt P, Shen C, Murphy BM, Magnussen OM. Role of chemisorbing species in growth at liquid metal-electrolyte interfaces revealed by in situ X-ray scattering. Nat Commun 2022; 13:5421. [PMID: 36109498 PMCID: PMC9477831 DOI: 10.1038/s41467-022-32932-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Liquid-liquid interfaces offer intriguing possibilities for nanomaterials growth. Here, fundamental interface-related mechanisms that control the growth behavior in these systems are studied for Pb halide formation at the interface between NaX + PbX2 (X = F, Cl, Br) and liquid Hg electrodes using in situ X-ray scattering and complementary electrochemical and microscopy measurements. These studies reveal a decisive role of the halide species in nucleation and growth of these compounds. In Cl- and Br-containing solution, deposition starts by rapid formation of well-defined ultrathin (∼7 Å) precursor adlayers, which provide a structural template for the subsequent quasi-epitaxial growth of c-axis oriented Pb(OH)X bulk crystals. In contrast, growth in F-containing solution proceeds by slow formation of a more disordered deposit, resulting in random bulk crystal orientations on the Hg surface. These differences can be assigned to the interface chemistry, specifically halide chemisorption, which steers the formation of these highly textured deposits at the liquid-liquid interface. Growth at liquid-liquid interfaces differ inherently from that on solids, making it attractive for nanomaterial formation. Here, the authors use X-ray scattering to derive a detailed microscopic picture of lead-halide growth on liquid mercury that reveals the key importance of anion adsorption.
Collapse
|
12
|
Yao X, Liu Q, Wang B, Yu J, Aristov MM, Shi C, Zhang GGZ, Yu L. Anisotropic Molecular Organization at a Liquid/Vapor Interface Promotes Crystal Nucleation with Polymorph Selection. J Am Chem Soc 2022; 144:11638-11645. [PMID: 35735940 DOI: 10.1021/jacs.2c02623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecules at the surface of a liquid have different organization and dynamics from those in the bulk, potentially altering the rate of crystal nucleation and polymorphic selection, but this effect remains poorly understood. Here we demonstrate that nucleation at the surface of a pure liquid, d-arabitol, is vastly enhanced, by 12 orders of magnitude, and selects a different polymorph. The surface effect intensifies with cooling and can be inhibited by a dilute, surface-active second component. This phenomenon arises from the anisotropic molecular packing at the interface and its similarity to the surface-nucleating polymorph. Our finding is relevant for controlling the crystallization and polymorphism in any system with a significant interface such as nanodroplets and atmospheric water.
Collapse
Affiliation(s)
- Xin Yao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Qitong Liu
- Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Bu Wang
- Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michael M Aristov
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Chenyang Shi
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
13
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Castilla-Amorós L, Chien TCC, Pankhurst JR, Buonsanti R. Modulating the Reactivity of Liquid Ga Nanoparticle Inks by Modifying Their Surface Chemistry. J Am Chem Soc 2022; 144:1993-2001. [DOI: 10.1021/jacs.1c12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Tzu-Chin Chang Chien
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James R. Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
15
|
Deutsch M, Magnussen OM, Haddad J, Pontoni D, Murphy BM, Ocko BM. Comment on "Bi-layering at ionic liquid surfaces: a sum - frequency generation vibrational spectroscopy - and molecular dynamics simulation-based study" by T. Iwahashi, T. Ishiyama, Y. Sakai, A. Morita, D. Kim and Y. Ouchi, Phys. Chem. Chem. Phys., 2020, 22, 12565. Phys Chem Chem Phys 2021; 23:5020-5027. [PMID: 33595568 DOI: 10.1039/d0cp04882h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Comment raises several questions concerning the surface structure concluded in the paper referenced in the title. Specifically, that paper ignores previous experiments and simulations which demonstrate for the same ionic liquids depth-decaying, multilayered surface-normal density profiles rather than the claimed molecular mono- or bi-layers. We demonstrate that the claimed structure does not reproduce the measured X-ray reflectivity, which probes directly the surface-normal density profile. The measured reflectivities are found, however, to be well-reproduced by a multilayered density model. These results, and previous experimental and simulation results, cast severe doubt on the validity of the surface structure claimed in the paper referenced in the title.
Collapse
Affiliation(s)
- Moshe Deutsch
- Physics Department and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics and Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| | - Julia Haddad
- Physics Department and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Diego Pontoni
- Partnership for Soft Condensed Matter (PSCM), ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Bridget M Murphy
- Institute for Experimental and Applied Physics and Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| | - Benjamin M Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
16
|
Lambie S, Steenbergen KG, Gaston N. Modulating the thermal and structural stability of gallenene via variation of atomistic thickness. NANOSCALE ADVANCES 2021; 3:499-507. [PMID: 36131742 PMCID: PMC9418766 DOI: 10.1039/d0na00737d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/05/2020] [Indexed: 06/15/2023]
Abstract
Using ab initio molecular dynamics, we show that a recently discovered form of 2D Ga-gallenene-exhibits highly variable thickness dependent properties. Here, 2D Ga of four, five and six atomic layers thick are found to be thermally stable to 457 K, 350 K and 433 K, respectively; all well above that of bulk Ga. Analysis of the liquid structure of 2D Ga shows a thickness dependent ordering both parallel and perpendicular to the Ga/vacuum interface. Furthermore, ground state optimisations of 2D Ga to 12 atomic layers thick shows a return to a bulk-like bonding structure at 10 atoms thick, therefore we anticipate that up to this thickness 2D Ga structures will each exhibit novel properties as discrete 2D materials. Gallenene has exciting potential applications in plasmonics, sensors and electrical contacts however, for the potential of 2D Ga to be fully realised an in depth understanding of its thickness dependent properties is required.
Collapse
Affiliation(s)
- Stephanie Lambie
- Department of Physics, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland Private Bag 92019 Auckland New Zealand
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington 6140 New Zealand
| | - Nicola Gaston
- Department of Physics, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland Private Bag 92019 Auckland New Zealand
| |
Collapse
|
17
|
Wittkämper H, Maisel S, Moritz M, Grabau M, Görling A, Steinrück HP, Papp C. Surface oxidation-induced restructuring of liquid Pd-Ga SCALMS model catalysts. Phys Chem Chem Phys 2021; 23:16324-16333. [PMID: 34313278 DOI: 10.1039/d1cp02458b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have examined model systems for the recently reported Pd-Ga Supported Catalytically Active Liquid Metal Solutions (SCALMS) catalysts using near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) under oxidizing conditions. Gallium is known to be highly prone to oxidation and in practical applications, handling of the catalyst material in air or the presence of traces of oxygen in the reactor are unavoidable. Therefore, we expect our results to be of high relevance for the application of Ga-based SCALMS catalysts. Pd-Ga alloy samples of 1.3 and 1.8 at% Pd content were exposed to molecular oxygen at different pressures between 3 × 10-7 and 1 mbar and a temperature of 550 K. We observe the formation of wetting Ga2O3 films upon exposure to molecular oxygen. The absolute thicknesses of the oxide films depend on oxygen pressure, with values ranging from ∼12 Å at 10-7 to 10-5 mbar to ∼50 Å at 1 mbar. The formed metal-oxide interface leads to a redistribution of Pd, which accumulates at the boundary between the wetting oxide film and the metal substrate as a response to the oxide film growth. A maximum Pd 3d intensity is observed at an oxide thickness of 5 Å. For thicker films, the Pd 3d signal and the Ga 3d signal ascribed to the metallic substrate decrease in parallel, which is attributed to the oxide layer growing on top of the liquid metal alloy. From this observation, we conclude that no significant amount of Pd is bound in the newly formed oxide film. Density-functional theory (DFT) calculations support the experimental observations.
Collapse
Affiliation(s)
- Haiko Wittkämper
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Physikalische Chemie II, Egerlandstr. 3, 91058 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lambie S, Steenbergen KG, Gaston N. A mechanistic understanding of surface Bi enrichment in dilute GaBi systems. Phys Chem Chem Phys 2021; 23:14383-14390. [PMID: 34180476 DOI: 10.1039/d1cp01540k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiment has shown that dilute GaBi systems produce a range of self-organised nanostructured patterns at the surface [Tang et al., Nat. Nanotechnol., 2021, 16, 431-439]. Using extensive ab initio molecular dynamics simulations, we elucidate the mechanisms underlying the formation of the Bi surface islands in Bi-doped Ga liquid metals. Here, we show that in order for internal Bi atoms to diffuse to the surface a lateral extension of the Ga surface network is required. Furthermore, the absence of surface Bi patterning perturbs the Ga surface network providing a preferred path for an internal Bi to diffuse. By understanding how and why Bi nucleates at a surface, we increase the ability to control, manipulate and design such systems for use in future electronic devices.
Collapse
Affiliation(s)
- Stephanie Lambie
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
19
|
Prihoda A, Will J, Duchstein P, Becit B, Lossin F, Schindler T, Berlinghof M, Steinrück HG, Bertram F, Zahn D, Unruh T. Interface between Water-Solvent Mixtures and a Hydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12077-12086. [PMID: 32960065 DOI: 10.1021/acs.langmuir.0c02745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanism behind the stability of organic nanoparticles prepared by liquid antisolvent (LAS) precipitation without a specific stabilizing agent is poorly understood. In this work, we propose that the organic solvent used in the LAS process rapidly forms a molecular stabilizing layer at the interface of the nanoparticles with the aqueous dispersion medium. To confirm this hypothesis, n-octadecyltrichlorosilane (OTS)-functionalized silicon wafers in contact with water-solvent mixtures were used as a flat model system mimicking the solid-liquid interface of the organic nanoparticles. We studied the equilibrium structure of the interface by X-ray reflectometry (XRR) for water-solvent mixtures (methanol, ethanol, 1-propanol, 2-propanol, acetone, and tetrahydrofuran). The formation of an organic solvent-rich layer at the solid-liquid interface was observed. The layer thickness increases with the organic solvent concentration and correlates with the polar and hydrogen bond fraction of Hansen solubility parameters. We developed a self-consistent adsorption model via complementing adsorption isotherms obtained from XRR data with molecular dynamics simulations.
Collapse
Affiliation(s)
- Annemarie Prihoda
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Johannes Will
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
- Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Patrick Duchstein
- Computer Chemistry Centre (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Bahanur Becit
- Computer Chemistry Centre (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Felix Lossin
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Torben Schindler
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Marvin Berlinghof
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Hans-Georg Steinrück
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Dirk Zahn
- Computer Chemistry Centre (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
20
|
Festersen S, Runge B, Koops C, Bertram F, Ocko B, Deutsch M, Murphy BM, Magnussen OM. Nucleation and Growth of PbBrF Crystals at the Liquid Mercury-Electrolyte Interface Studied by Operando X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10905-10915. [PMID: 32905700 DOI: 10.1021/acs.langmuir.0c01199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Detailed in operando studies of electrochemically induced PbBrF deposition at the liquid mercury/liquid electrolyte interface are presented. The nucleation and growth were monitored using time-resolved X-ray diffraction and reflectivity combined with electrochemical measurements, revealing a complex potential-dependent behavior. PbBrF deposition commences at potentials above -0.7 V with the rapid formation of an ultrathin adlayer of one unit cell thickness, on top of which (001)-oriented three-dimensional crystallites are formed. Two potential regimes are identified. At low overpotentials, slow growth of a low surface density film of large crystals is observed. At high overpotentials, crossover to a potential-independent morphology occurs, consisting of a compact PbBrF deposit with a saturation thickness of 25 nm, which forms within a few minutes. This potential behavior can be rationalized by the increasing supersaturation near the interface, caused by the potential-dependent Pb2+ deamalgamation, which changes from a slow reaction-controlled process to a fast transport-controlled process in this range of overpotentials. In addition, growth on the liquid substrate is found to involve complex micromechanical effects, such as crystal reorientation and film breakup during dissolution.
Collapse
Affiliation(s)
- Sven Festersen
- Institute for Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Christian Koops
- Institute for Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Florian Bertram
- Deutsches Elektronensynchrotron DESY, 22607 Hamburg, Germany
| | - Ben Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Moshe Deutsch
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Bridget M Murphy
- Institute for Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
21
|
Wittkämper H, Maisel S, Wu M, Frisch J, Wilks RG, Grabau M, Spiecker E, Bär M, Görling A, Steinrück HP, Papp C. Oxidation induced restructuring of Rh–Ga SCALMS model catalyst systems. J Chem Phys 2020; 153:104702. [DOI: 10.1063/5.0021647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Haiko Wittkämper
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Physikalische Chemie II, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Sven Maisel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Theoretische Chemie, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Mingjian Wu
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Mikro- und Nanostrukturforschung, Department Werkstoffwissenschaften, Cauerstr. 3, 91058 Erlangen, Germany
| | - Johannes Frisch
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Regan G. Wilks
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Mathias Grabau
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Physikalische Chemie II, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Mikro- und Nanostrukturforschung, Department Werkstoffwissenschaften, Cauerstr. 3, 91058 Erlangen, Germany
| | - Marcus Bär
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Physikalische Chemie II, Egerlandstr. 3, 91058 Erlangen, Germany
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Helmholtz Institute Erlangen-Nürnberg für Renewable Energy (HI ERN), Albert-Einstein-Str. 15, Berlin 12489, Germany
| | - Andreas Görling
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Theoretische Chemie, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Physikalische Chemie II, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christian Papp
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Physikalische Chemie II, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
22
|
Katakura S, Amano KI, Sakka T, Bu W, Lin B, Schlossman ML, Nishi N. Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface. J Phys Chem B 2020; 124:6412-6419. [PMID: 32600035 DOI: 10.1021/acs.jpcb.0c03711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly correlated positioning of ions underlies Coulomb interactions between ions and electrified interfaces within dense ionic fluids such as biological cells and ionic liquids. Recent work has shown that highly correlated ionic systems behave differently than dilute electrolyte solutions, and interest is focused upon characterizing the electrical and structural properties of the dense electrical double layers (EDLs) formed at internal interfaces. It has been a challenge for experiments to characterize the progressive development of the EDL on the nanoscale as the interfacial electric potential is varied over a range of positive and negative values. Here we address this challenge by measuring X-ray reflectivity from the interface between an ionic liquid (IL) and a dilute aqueous electrolyte solution over a range of interfacial potentials from -450 to 350 mV. The growth of alternately charged cation-rich and anion-rich layers was observed along with a polarity reversal of the layers as the potential changed sign. These data show that the structural development of an ionic multilayer-like EDL with increasing potential is similar to that suggested by phenomenological theories and MD simulations, although our data also reveal that the excess charge beyond the first ionic layer decays more rapidly than predicted.
Collapse
Affiliation(s)
- Seiji Katakura
- Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Ken-Ichi Amano
- Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510, Japan.,Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Wei Bu
- ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Binhua Lin
- ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, United States
| | - Mark L Schlossman
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Yunusa M, Lahlou A, Sitti M. Thermal Effects on the Crystallization Kinetics, and Interfacial Adhesion of Single-Crystal Phase-Change Gallium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907453. [PMID: 32009261 DOI: 10.1002/adma.201907453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Although substrates play an important role upon crystallization of supercooled liquids, the influences of surface temperature and thermal property have remained elusive. Here, the crystallization of supercooled phase-change gallium (Ga) on substrates with different thermal conductivity is studied. The effect of interfacial temperature on the crystallization kinetics, which dictates thermo-mechanical stresses between the substrate and the crystallized Ga, is investigated. At an elevated surface temperature, close to the melting point of Ga, an extended single-crystal growth of Ga on dielectric substrates due to layering effect and annealing is realized without the application of external fields. Adhesive strength at the interfaces depends on the thermal conductivity and initial surface temperature of the substrates. This insight can be applicable to other liquid metals for industrial applications, and sheds more light on phase-change memory crystallization.
Collapse
Affiliation(s)
- Muhammad Yunusa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Aliénor Lahlou
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
- School of Medicine and School of Engineering, Koç University, 34450, Istanbul, Turkey
| |
Collapse
|
24
|
Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903391. [PMID: 31583849 DOI: 10.1002/smll.201903391] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/21/2019] [Indexed: 05/20/2023]
Abstract
Liquid metals are emerging as fluidic inorganic materials in various research fields. Micro- and nanoparticles of Ga and its alloys have received particular attention in the last decade due to their non toxicity and accessibility in ambient conditions as well as their interesting chemical, physical, mechanical, and electrical properties. Unique features such as a fluidic nature and self-passivating oxide skin make Ga-based liquid metal particles (LMPs) distinguishable from conventional inorganic particles in the context of synthesis and applications. Here, recent advances in the bottom-up and top-down synthetic methods of Ga-based LMPs, their physicochemical properties, and their applications are summarized. Finally, the current status of the LMPs is highlighted and perspectives on future directions are also provided.
Collapse
Affiliation(s)
- Hyunsun Song
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Taekyung Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Seohyun Kang
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Haneul Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
25
|
de Jong AEF, Vonk V, Boćkowski M, Grzegory I, Honkimäki V, Vlieg E. Complex Geometric Structure of a Simple Solid-Liquid Interface: GaN(0001)-Ga. PHYSICAL REVIEW LETTERS 2020; 124:086101. [PMID: 32167331 DOI: 10.1103/physrevlett.124.086101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The equilibrium atomic interface structure between Ga and GaN(0001) is shown to contain substrate surface vacancies followed by substrate-induced layering and preferential lateral ordering in the liquid. The uncovered presence of point defects, in the form of vacancies at both sides of the solid-liquid interface, is an important structural feature which governs the local physical properties. Our x-ray diffraction study reveals that the layering is very stable and persists up to a temperature of 1123 K and a nitrogen pressure of 32 bar. The Ga layer spacing agrees remarkably well with the Friedel oscillation period for this system.
Collapse
Affiliation(s)
- A E F de Jong
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, Netherlands
- European Synchrotron Radiation Facility, CS 40220, F-38043, Grenoble Cedex 9, France
| | - V Vonk
- DESY NanoLaboratory, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
| | - M Boćkowski
- Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - I Grzegory
- Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - V Honkimäki
- European Synchrotron Radiation Facility, CS 40220, F-38043, Grenoble Cedex 9, France
| | - E Vlieg
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525AJ Nijmegen, Netherlands
| |
Collapse
|
26
|
Steenbergen KG, Gaston N. Ultra stable superatomic structure of doubly magic Ga 13 and Ga 13Li electrolyte. NANOSCALE 2020; 12:289-295. [PMID: 31825042 DOI: 10.1039/c9nr06959c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the extreme thermal stability of the superatomic electronic structure for 13-atom gallium clusters and the Ga13Li electrolyte. Using previously-validated first-principles simulations, [K. G. Steenbergen and N. Gaston, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 88, 161402-161405] we show that the superatomic shell progression of doubly-magic Ga13- remains stable up to 1000 K, making this cluster an ideal candidate for high-temperature applications requiring an exceptionally stable electronic structure. Using the neutral and cationic clusters for comparison, we quantify the extent to which cluster stability (geometric and electronic) is modified through addition or subtraction of a single electron. Finally, combining 13-atom gallium with lithium, we illustrate that superatomic closed-shell Ga13Li exhibits the same exceptionally high thermal stability as naked Ga13-. For technological use as a superatomic electrolyte, we demonstrate that Ga13Li has a low affinity to water as well as a low Li+ binding energy.
Collapse
Affiliation(s)
- Krista G Steenbergen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
27
|
Sakaushi K, Kumeda T, Hammes-Schiffer S, Melander MM, Sugino O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys Chem Chem Phys 2020; 22:19401-19442. [DOI: 10.1039/d0cp02741c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding microscopic mechanism of multi-electron multi-proton transfer reactions at complexed systems is important for advancing electrochemistry-oriented science in the 21st century.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Tomoaki Kumeda
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | | - Marko M. Melander
- Nanoscience Center
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Osamu Sugino
- The Institute of Solid State Physics
- the University of Tokyo
- Chiba 277-8581
- Japan
| |
Collapse
|
28
|
Li Y, Zhang J, Yin F, Wang Y, Feng H, Zhou S, Du Y. Ultra-thin Ga nanosheets: analogues of high pressure Ga(iii). NANOSCALE 2019; 11:17201-17205. [PMID: 31528941 DOI: 10.1039/c9nr05597e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultra-thin Ga islands of β-Ga(110), high-pressure phase Ga(iii) and a new phase of stripe superstructure are obtained on Si(111). STM combined with theoretical calculations suggests that the stripe superstructure originates from Ga(iii) (001) with stacking rearrangement. This work provides a new strategy for synthesizing low-dimensional nanomaterials and accessing high pressure phases.
Collapse
Affiliation(s)
- Yaqi Li
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Jingwei Zhang
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Fanxing Yin
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Yuqing Wang
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Haifeng Feng
- School of Physics, Beihang University, Beijing 100191, P. R. China and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, P. R. China. and Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2500, Australia
| | - Si Zhou
- Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2500, Australia
| | - Yi Du
- School of Physics, Beihang University, Beijing 100191, P. R. China and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, P. R. China. and Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2500, Australia
| |
Collapse
|
29
|
Vapor deposition of a nonmesogen prepares highly structured organic glasses. Proc Natl Acad Sci U S A 2019; 116:21421-21426. [PMID: 31527259 DOI: 10.1073/pnas.1908445116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.
Collapse
|
30
|
Kalantar-Zadeh K, Tang J, Daeneke T, O'Mullane AP, Stewart LA, Liu J, Majidi C, Ruoff RS, Weiss PS, Dickey MD. Emergence of Liquid Metals in Nanotechnology. ACS NANO 2019; 13:7388-7395. [PMID: 31245995 DOI: 10.1021/acsnano.9b04843] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bulk liquid metals have prospective applications as soft and fluid electrical and thermal conductors in electronic and optical devices, composites, microfluidics, robotics, and metallurgy with unique opportunities for processing, chemistry, and function. Yet liquid metals' great potential in nanotechnology remains in its infancy. Although work to date focuses primarily on Ga, Hg, and their alloys, to expand the field, we define "liquid metals" as metals and alloys with melting points (mp) up to 330 °C, readily accessible and processable even using household kitchen appliances. Such a definition encompasses a family of metals-including the majority of post-transition metals and Zn group elements (excluding Zn itself)-with remarkable versatility in chemistry, physics, and engineering. These liquid alloys can create metallic compounds of different morphologies, compositions, and properties, thereby enabling control over nanoscale phenomena. In addition, the presence of electronic and ionic "pools" within the bulk of liquid metals, as well as deviation from classical metallurgy on the surfaces of liquid metals, provides opportunities for gaining new capabilities in nanotechnology. For example, the bulk and surfaces of liquid metals can be used as reaction media for creating and manipulating nanomaterials, promoting reactions, or controlling crystallization of dissolved species. Interestingly, liquid metals have enormous surface tensions, yet the tension can be tuned electrically over a wide range or modified via surface species, such as the native oxides. The ability to control the interfacial tension allows these liquids to be readily reduced in size to the nanoscale. The liquid nature of such nanoparticles enables shape-reconfigurable structures, the creation of soft metallic nanocomposites, and the dissolution or dispersion of other materials within (or on) the metal to produce multiphasic or heterostructure particles. This Perspective highlights the salient features of these materials and seeks to raise awareness of future opportunities to understand and to utilize liquid metals for nanotechnology.
Collapse
Affiliation(s)
- Kourosh Kalantar-Zadeh
- School of Chemical Engineering , University of New South Wales (UNSW) , Kensington , New South Wales 2052 , Australia
| | - Jianbo Tang
- School of Chemical Engineering , University of New South Wales (UNSW) , Kensington , New South Wales 2052 , Australia
| | - Torben Daeneke
- School of Engineering , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology (QUT) , Brisbane , Queensland 4001 , Australia
| | | | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- School of Future Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Carmel Majidi
- Department of Mechanical Engineering, Soft Machines Lab , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Rodney S Ruoff
- Department of Chemistry and School of Materials Science and Engineering , Ulsan National Institute of Science and Technology , Ulsan 44919 , Republic of Korea
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
31
|
Delcea M, Helm CA. X-ray and Neutron Reflectometry of Thin Films at Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8519-8530. [PMID: 30901219 DOI: 10.1021/acs.langmuir.8b04315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the 1980s, Helmuth Möhwald studied lipid monolayers at the air/water interface to understand the thermodynamically characterized phases at the molecular level. In collaboration with Jens Als-Nielsen, X-ray reflectometry was used and further developed to determine the electron density profile perpendicular to the water surface. Using a slab model, parameters such as thickness and density of the individual molecular regions, as well as the roughness of the individual interfaces, were determined. Later, X-ray and neutron reflectometry helped to understand the coverage and conformation of anchored and adsorbed polymers. Nowadays, they resolve molecular properties in emerging topics such as liquid metals and ionic liquids. Much is still to be learned about buried interfaces (e.g., liquid/liquid interfaces). In this Article, a historical and theoretical background of X-ray reflectivity is given, recent developments of X-ray and neutron reflectometry for polymers at interfaces and thin layers are highlighted, and emerging research topics involving these techniques are emphasized.
Collapse
Affiliation(s)
- Mihaela Delcea
- Institute of Biochemistry , University of Greifswald , Felix-Hausdorff-Straße 4 , 17489 Greifswald , Germany
- ZIK HIKE- Zentrum für Innovationskompetenz , Humorale Immunreaktionen bei kardiovaskulären Erkrankungen , Fleischmannstraße 42 , 17489 Greifswald , Germany
| | - Christiane A Helm
- Institute of Physics , University of Greifswald , Felix-Hausdorff-Straße 4 , 17489 Greifswald , Germany
| |
Collapse
|
32
|
Panciera F, Tersoff J, Gamalski AD, Reuter MC, Zakharov D, Stach EA, Hofmann S, Ross FM. Surface Crystallization of Liquid Au-Si and Its Impact on Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806544. [PMID: 30516864 DOI: 10.1002/adma.201806544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
In situ transmission electron microscopy reveals that an atomically thin crystalline phase at the surface of liquid Au-Si is stable over an unexpectedly wide range of conditions. By measuring the surface structure as a function of liquid temperature and composition, a simple thermodynamic model is developed to explain the stability of the ordered phase. The presence of surface ordering plays a key role in the pathway by which the Au-Si eutectic solidifies and also dramatically affects the catalytic properties of the liquid, explaining the anomalously slow growth kinetics of Si nanowires at low temperature. A strategy to control the presence of the surface phase is discussed, using it as a tool in designing strategies for nanostructure growth.
Collapse
Affiliation(s)
- Federico Panciera
- Department of Engineering, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, UK
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Jerry Tersoff
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Andrew D Gamalski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Mark C Reuter
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Dmitri Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Eric A Stach
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Frances M Ross
- IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| |
Collapse
|
33
|
Bagchi K, Jackson NE, Gujral A, Huang C, Toney MF, Yu L, de Pablo JJ, Ediger MD. Origin of Anisotropic Molecular Packing in Vapor-Deposited Alq3 Glasses. J Phys Chem Lett 2019; 10:164-170. [PMID: 30582803 DOI: 10.1021/acs.jpclett.8b03582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anisotropic molecular packing is a key feature that makes glasses prepared by physical vapor deposition (PVD) unique materials, warranting a mechanistic understanding of how a PVD glass attains its structure. To this end, we use X-ray scattering and ellipsometry to characterize the structure of PVD glasses of tris(8-hydroxyquinoline) aluminum (Alq3), a molecule used in organic electronics, and compare our results to simulations of its supercooled liquid. X-ray scattering reveals a tendency for molecular layering in Alq3 glasses that depends upon the substrate temperature during deposition and the deposition rate. Simulations reveal that the Alq3 supercooled liquid, like liquid metals, exhibits surface layering. We propose that the layering in Alq3 glasses observed here as well as the previously reported bulk dipole orientation are inherited from the surface structure of the supercooled liquid. This work significantly advances our understanding of the mechanism governing the formation of anisotropic structure in PVD glasses.
Collapse
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Nicholas E Jackson
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Institute for Molecular Engineering , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Ankit Gujral
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Chengbin Huang
- School of Pharmacy , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705-2222 , United States
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Lian Yu
- School of Pharmacy , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705-2222 , United States
| | - Juan J de Pablo
- Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
- Institute for Molecular Engineering , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - M D Ediger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
34
|
Steenbergen KG, Gaston N. Thickness dependent thermal stability of 2D gallenene. Chem Commun (Camb) 2019; 55:8872-8875. [DOI: 10.1039/c9cc03238j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Freestanding 2D metallic gallenene exhibits remarkable stability when the thickness is three atomic layers.
Collapse
Affiliation(s)
- Krista G. Steenbergen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- Department of Physics
- The University of Auckland
- Auckland
- New Zealand
| |
Collapse
|
35
|
Daeneke T, Khoshmanesh K, Mahmood N, de Castro IA, Esrafilzadeh D, Barrow SJ, Dickey MD, Kalantar-Zadeh K. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018; 47:4073-4111. [PMID: 29611563 DOI: 10.1039/c7cs00043j] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.
Collapse
Affiliation(s)
- T Daeneke
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - K Khoshmanesh
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - N Mahmood
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - I A de Castro
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - D Esrafilzadeh
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - S J Barrow
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| | - M D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, USA
| | - K Kalantar-Zadeh
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Australia.
| |
Collapse
|
36
|
Horowitz Y, Steinrück HG, Han HL, Cao C, Abate II, Tsao Y, Toney MF, Somorjai GA. Fluoroethylene Carbonate Induces Ordered Electrolyte Interface on Silicon and Sapphire Surfaces as Revealed by Sum Frequency Generation Vibrational Spectroscopy and X-ray Reflectivity. NANO LETTERS 2018; 18:2105-2111. [PMID: 29451803 DOI: 10.1021/acs.nanolett.8b00298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cyclability of silicon anodes in lithium ion batteries (LIBs) is affected by the reduction of the electrolyte on the anode surface to produce a coating layer termed the solid electrolyte interphase (SEI). One of the key steps for a major improvement of LIBs is unraveling the SEI's structure-related diffusion properties as charge and discharge rates of LIBs are diffusion-limited. To this end, we have combined two surface sensitive techniques, sum frequency generation (SFG) vibrational spectroscopy, and X-ray reflectivity (XRR), to explore the first monolayer and to probe the first several layers of electrolyte, respectively, for solutions consisting of 1 M lithium perchlorate (LiClO4) salt dissolved in ethylene carbonate (EC) or fluoroethylene carbonate (FEC) and their mixtures (EC/FEC 7:3 and 1:1 wt %) on silicon and sapphire surfaces. Our results suggest that the addition of FEC to EC solution causes the first monolayer to rearrange itself more perpendicular to the anode surface, while subsequent layers are less affected and tend to maintain their, on average, surface-parallel arrangements. This fundamental understanding of the near-surface orientation of the electrolyte molecules can aid operational strategies for designing high-performance LIBs.
Collapse
Affiliation(s)
- Yonatan Horowitz
- Department of Chemistry, Kavli Energy NanoScience Institute , University of California, Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Hans-Georg Steinrück
- SSRL Materials Science Division , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Hui-Ling Han
- Department of Chemistry, Kavli Energy NanoScience Institute , University of California, Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Chuntian Cao
- SSRL Materials Science Division , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
- Department of Materials Science and Engineering , Stanford University , Stanford , California 94305 , United States
| | - Iwnetim Iwnetu Abate
- SSRL Materials Science Division , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
- Department of Materials Science and Engineering , Stanford University , Stanford , California 94305 , United States
| | - Yuchi Tsao
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Michael F Toney
- SSRL Materials Science Division , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Gabor A Somorjai
- Department of Chemistry, Kavli Energy NanoScience Institute , University of California, Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| |
Collapse
|
37
|
Sega M. The role of a small-scale cutoff in determining molecular layers at fluid interfaces. Phys Chem Chem Phys 2018; 18:23354-7. [PMID: 27499039 DOI: 10.1039/c6cp04788b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The existence of molecular layers at liquid/vapour interfaces has been a long debated issue. More than ten years ago it was shown, using computer simulations, that correlations at the liquid/vapour interface resemble those of bulk liquids, even though they can be detected in experiments only in a few cases, where they are so strong that they cannot be concealed by the geometrical smearing of capillary fluctuations. The results of the intrinsic analysis techniques used in computer experiments, however, are still often questioned because of their dependence on a free parameter that usually represents a small-scale cutoff used to determine the interface. In this work I show that there is only one value of the cutoff that can ensure a quantitative explanation of the intrinsic density correlation peaks in terms of successive layer contributions. The value of the cutoff coincides, with a high accuracy, with the molecular diameter.
Collapse
Affiliation(s)
- Marcello Sega
- University of Vienna, Computational Physics Group, Sensengasse 8/9, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Reichert P, Kjær KS, Brandt van Driel T, Mars J, Ochsmann JW, Pontoni D, Deutsch M, Nielsen MM, Mezger M. Molecular scale structure and dynamics at an ionic liquid/electrode interface. Faraday Discuss 2018; 206:141-157. [DOI: 10.1039/c7fd00171a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural arrangement and dynamics of ions near the IL/electrode interface during charging and discharging was studied by a combination of time resolved X-ray reflectivity and impedance spectroscopy.
Collapse
Affiliation(s)
- Peter Reichert
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Institute of Physics and MAINZ Graduate School
- Johannes Gutenberg University Mainz
| | - Kasper Skov Kjær
- Centre for Molecular Movies
- Department of Physics
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - Tim Brandt van Driel
- Centre for Molecular Movies
- Department of Physics
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - Julian Mars
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Institute of Physics and MAINZ Graduate School
- Johannes Gutenberg University Mainz
| | | | - Diego Pontoni
- ESRF – The European Synchrotron and Partnership for Soft Condensed Matter (PSCM)
- 38043 Grenoble
- France
| | - Moshe Deutsch
- Department of Physics
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Martin Meedom Nielsen
- Centre for Molecular Movies
- Department of Physics
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - Markus Mezger
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Institute of Physics and MAINZ Graduate School
- Johannes Gutenberg University Mainz
| |
Collapse
|
39
|
Grabau M, Erhard J, Taccardi N, Calderon SK, Wasserscheid P, Görling A, Steinrück HP, Papp C. Spectroscopic Observation and Molecular Dynamics Simulation of Ga Surface Segregation in Liquid Pd-Ga Alloys. Chemistry 2017; 23:17701-17706. [DOI: 10.1002/chem.201703627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mathias Grabau
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Jannis Erhard
- Lehrstuhl für Theoretische Chemie; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Nicola Taccardi
- Lehrstuhl für Chemische Reaktionstechnik; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Sandra Krick Calderon
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Peter Wasserscheid
- Lehrstuhl für Chemische Reaktionstechnik; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Christian Papp
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| |
Collapse
|
40
|
Wang XD, Jiang JZ. Perspective on Structural Evolution and Relations with Thermophysical Properties of Metallic Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703136. [PMID: 28940751 DOI: 10.1002/adma.201703136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/09/2017] [Indexed: 06/07/2023]
Abstract
The relationship between the structural evolution and properties of metallic liquids is a long-standing hot issue in condensed-matter physics and materials science. Here, recent progress is reviewed in several fundamental aspects of metallic liquids, including the methods to study their atomic structures, liquid-liquid transition, physical properties, fragility, and their correlations with local structures, together with potential applications of liquid metals at room temperature. Involved with more experimentally and theoretically advanced techniques, these studies provide more in-depth understanding of the structure-property relationship of metallic liquids and promote the design of new metallic materials with superior properties.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- International Center for New-Structured Materials, School of Materials and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian-Zhong Jiang
- International Center for New-Structured Materials, School of Materials and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
41
|
Sitaputra W, Stacchiola D, Wishart JF, Wang F, Sadowski JT. In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606357. [PMID: 28498642 DOI: 10.1002/adma.201606357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/27/2017] [Indexed: 06/07/2023]
Abstract
Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. A room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness, which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.
Collapse
Affiliation(s)
- Wattaka Sitaputra
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Dario Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - James F Wishart
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Feng Wang
- Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jerzy T Sadowski
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
42
|
Abstract
A liquid metal based microfluidic system was proposed and demonstrated for the generation and sorting of liquid metal droplets. This micro system utilized silicon oil as the continuous phase and Ga66In20.5Sn13.5 (66.0 wt % Ga, 20.5 wt % In, 13.5 wt % Sn, melting point: 10.6 °C) as the dispersed phase to generate liquid metal droplets on a three-channel F-junction generator. The F-junction is an updated design similar to the classical T-junction, which has a special branch channel added to a T-junction for the supplement of 30 wt % aqueous NaOH solution. To perform active sorting of liquid metal droplets by dielectrophoresis (DEP), the micro system utilized liquid-metal-filled microchannels as noncontact electrodes to induce electrical fields through the droplet channel. The electrode channels were symmetrically located on both sides of the droplet channel in the same horizontal level. According to the results, the micro system can generate uniformly spherical liquid metal droplets, and control the flow direction of the liquid metal droplets. To better understand the control mechanism, a numerical simulation of the electrical field was performed in detail in this work.
Collapse
|
43
|
Sun J, Wang HS. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances. Sci Rep 2016; 6:35003. [PMID: 27721397 PMCID: PMC5056363 DOI: 10.1038/srep35003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022] Open
Abstract
We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.
Collapse
Affiliation(s)
- Jie Sun
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua Sheng Wang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
44
|
Murphy BM, Festersen S, Magnussen OM. The Atomic scale structure of liquid metal-electrolyte interfaces. NANOSCALE 2016; 8:13859-13866. [PMID: 27301317 DOI: 10.1039/c6nr01571a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical interfaces between immiscible liquids have lately received renewed interest, both for gaining fundamental insight as well as for applications in nanomaterial synthesis. In this feature article we demonstrate that the atomic scale structure of these previously inaccessible interfaces nowadays can be explored by in situ synchrotron based X-ray scattering techniques. Exemplary studies of a prototypical electrochemical system - a liquid mercury electrode in pure NaCl solution - reveal that the liquid metal is terminated by a well-defined atomic layer. This layering decays on length scales of 0.5 nm into the Hg bulk and displays a potential and temperature dependent behaviour that can be explained by electrocapillary effects and contributions of the electronic charge distribution on the electrode. In similar studies of nanomaterial growth, performed for the electrochemical deposition of PbFBr, a complex nucleation and growth behaviour is found, involving a crystalline precursor layer prior to the 3D crystal growth. Operando X-ray scattering measurements provide detailed data on the processes of nanoscale film formation.
Collapse
Affiliation(s)
- B M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, D-24098 Kiel, Germany.
| | | | | |
Collapse
|
45
|
Steenbergen KG, Gaston N. A Two-Dimensional Liquid Structure Explains the Elevated Melting Temperatures of Gallium Nanoclusters. NANO LETTERS 2016; 16:21-6. [PMID: 26624938 DOI: 10.1021/acs.nanolett.5b02158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.
Collapse
Affiliation(s)
- Krista G Steenbergen
- Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study, Massey University , Auckland Campus, Private Bag 102904, North Shore City, 0745 Auckland New Zealand
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington , P.O. Box 600, 6140 Wellington, New Zealand
| |
Collapse
|
46
|
Mayo M, Yahel E, Greenberg Y, Makov G. Short range order in liquid pnictides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:505102. [PMID: 24219904 DOI: 10.1088/0953-8984/25/50/505102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion.
Collapse
Affiliation(s)
- M Mayo
- Materials Engineering Department, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | | | | | | |
Collapse
|
47
|
|
48
|
Lü Y, Zhang X, Chen M. Size Effect on Nucleation Rate for Homogeneous Crystallization of Nanoscale Water Film. J Phys Chem B 2013; 117:10241-9. [DOI: 10.1021/jp404403k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongjun Lü
- School
of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiangxiong Zhang
- Department
of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Min Chen
- Department
of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
49
|
Schwalbach EJ, Warren JA, Wu KA, Voorhees PW. Phase-field crystal model with a vapor phase. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:023306. [PMID: 24032965 DOI: 10.1103/physreve.88.023306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.
Collapse
Affiliation(s)
- Edwin J Schwalbach
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | |
Collapse
|
50
|
Leslie KL, Shinholt D, Jarrold MF. Reactions of CO2 on solid and liquid Al100+. J Phys Chem A 2013; 117:1053-8. [PMID: 22680973 DOI: 10.1021/jp303263h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of CO(2) on the Al(100)(+) cluster have been investigated as a function of cluster temperature (300-1100 K) and relative kinetic energy (0.2-10 eV). Two main products are observed at low cluster temperature: Al(100)O(+) (which is believed to result from a stripping reaction) and Al(100)CO(2)(+) from complex formation. As the cluster temperature is raised, both products dissociate by loss of Al(2)O. Al(100)O(+) forms Al(98)(+), while Al(100)CO(2)(+) forms Al(98)CO(+) and Al(96)C(+). In both cases, loss of Al(2)O turns-on above the melting temperature of Al(100)(+). This presumably occurs because the overall reaction leading to the loss of Al(2)O is significantly less endothermic for the liquid cluster than for the solid.
Collapse
Affiliation(s)
- Katheryne L Leslie
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|