1
|
Fu W, Liu Z, Li D, Pan B. Chemistry for water treatment under nanoconfinement. WATER RESEARCH 2025; 275:123173. [PMID: 39864357 DOI: 10.1016/j.watres.2025.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment. This Review focuses on recent advancements and employment of nanoconfinement effects in various water treatment processes, emphasizing the fundamental chemistry underlying nanoconfinement effects. Also, the existing knowledge gaps related to nanoconfinement effects and future prospects for expanding their applications in diverse water treatment scenarios are discussed.
Collapse
Affiliation(s)
- Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ziyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Advincula XR, Fong KD, Michaelides A, Schran C. Protons Accumulate at the Graphene-Water Interface. ACS NANO 2025. [PMID: 40294165 DOI: 10.1021/acsnano.5c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Water's ability to autoionize into hydroxide and hydronium ions profoundly influences surface properties, rendering interfaces either basic or acidic. While it is well-established that protons show an affinity to the air-water interface, a critical knowledge gap exists in technologically relevant surfaces like the graphene-water interface. Here we use machine learning-based simulations with first-principles accuracy to unravel the behavior of hydroxide and hydronium ions at the graphene-water interface. Our findings reveal that protons accumulate at the graphene-water interface, with the hydronium ion predominantly residing in the first contact layer of water. In contrast, the hydroxide ion exhibits a bimodal distribution, found both near the surface and further away from it. Analysis of the underlying electronic structure reveals local polarization effects, resulting in counterintuitive charge rearrangement. Proton propensity to the graphene-water interface challenges the interpretation of surface experiments and is expected to have far-reaching consequences for ion conductivity, interfacial reactivity, and proton-mediated processes.
Collapse
Affiliation(s)
- Xavier R Advincula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K
| | - Kara D Fong
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, U.K
| |
Collapse
|
3
|
Bie C, Yang J, Zeng X, Wang Z, Sun X, Yang Z, Yu J, Zhang X. Nanoconfinement Effects in Electrocatalysis and Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411184. [PMID: 39989153 PMCID: PMC11962712 DOI: 10.1002/smll.202411184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Recently, the enzyme-inspired nanoconfinement effect has garnered significant attention for enhancing the efficiency of electrocatalysts and photocatalysts. Despite substantial progress in these fields, there remains a notable absence of comprehensive and insightful articles providing a clear understanding of nanoconfined catalysts. This review addresses this gap by delving into nanoconfined catalysts for electrocatalytic and photocatalytic energy conversion. Initially, the effect of nanoconfinement on the thermodynamics and kinetics of reactions is explored. Subsequently, the primary and secondary structures of nanoconfined catalysts are categorized, their properties are outlined, and typical methods for their construction are summarized. Furthermore, an overview of the state-of-the-art applications of nanoconfined catalysts is provided, focusing on reactions of hydrogen and oxygen evolution, oxygen reduction, carbon dioxide reduction, hydrogen peroxide production, and nitrogen reduction. Finally, the current challenges and future prospects in nanoconfined catalysts are discussed. This review aims to provide in-depth insights and guidelines to advance the development of electrocatalytic and photocatalytic energy conversion technology by nanoconfined catalysts.
Collapse
Affiliation(s)
- Chuanbiao Bie
- Laboratory of Solar FuelFaculty of Materials Science and ChemistryChina University of Geosciences68 Jincheng StreetWuhan430078P. R. China
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Jindi Yang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Xiangkang Zeng
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Xin Sun
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Zhe Yang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
| | - Jiaguo Yu
- Laboratory of Solar FuelFaculty of Materials Science and ChemistryChina University of Geosciences68 Jincheng StreetWuhan430078P. R. China
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering InnovationSchool of Chemical EngineeringThe University of QueenslandSt LuciaQLD4072Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide (GETCO2)The University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
4
|
de la Puente M, Gomez A, Laage D. Why Proton Grotthuss Diffusion Slows down at the Air-Water Interface while Water Diffusion Accelerates. J Phys Chem Lett 2025; 16:2645-2653. [PMID: 40043095 DOI: 10.1021/acs.jpclett.5c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Excess proton diffusion at aqueous interfaces is crucial for applications including electrocatalysis, aerosol chemistry, and biological energy conversion. While interfaces have been proposed as pathways for channeling protons, proton diffusion at interfaces remains far less understood than in the bulk. Here we focus on the air-water interface and use density functional theory-based deep potential molecular dynamics simulations to reveal the contrasting interface's impacts: excess proton diffusion slows down compared to the bulk, while water diffusion accelerates. This contrast stems from reduced hydrogen-bond coordination at the interface, which facilitates water diffusion and transient unstable proton rattling but impedes the stable proton hops central to Grotthuss diffusion. As a result, at the interface, excess protons and water molecules diffuse at comparable rates, in stark departure from bulk behavior. This mechanistic insight delineates distinct limiting regimes for bulk-enhanced interfacial proton diffusion, with important implications for interfacial chemistry.
Collapse
Affiliation(s)
- Miguel de la Puente
- Laboratory CPCV, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Axel Gomez
- Laboratory CPCV, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Laage
- Laboratory CPCV, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
5
|
Liang H, Otsubo K, Kitagawa H. Dimensionally Extending from 1D MX-Chain to Ladder and Nanotube Systems: Structural and Electronic Properties. Chemistry 2024; 30:e202402583. [PMID: 39276344 DOI: 10.1002/chem.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
Molecular one-dimensional (1D) electron systems have attracted much attention due to their unique electronic state, physical and chemical properties derived from high-aspect-ratio structures. Among 1D materials, mixed-valence halogen-bridged transition-metal chain complexes (MX-chains) based on coordination assemblies are currently of particular interest because their electronic properties, such as mixed-valence state and band gap, can be controlled by substituting components and varying configurations. In particular, chemistry has recently noted that dimensionally extending MX-chains through organic rung ligands can introduce and modulate electronic coupling of metal atoms between chains, i. e., interchain interactions. In this review, for the first time, we highlight the recent progress on MX systems from the viewpoint of dimensionally extending from 1D chain to ladder and nanotube, mainly involving structural design and electronic properties. Overall, dimensional extension can not only tune the electronic properties of MX-chain, but also build the unique platform for studying transport dynamics in confined space, such as proton conduction. Based on these features, we envision that the MX-chain systems provide valuable insights into deep understanding of 1D electron systems, as well as the potential applications such as nanoelectronics.
Collapse
Affiliation(s)
- Hao Liang
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kazuya Otsubo
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, 162-0826, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Dutta A, Lazaridis T. Classical Models of Hydroxide for Proton Hopping Simulations. J Phys Chem B 2024; 128:12161-12170. [PMID: 39625299 DOI: 10.1021/acs.jpcb.4c05499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Hydronium (H3O+) and hydroxide (OH-) ions perform structural diffusion in water via sequential proton transfers ("Grotthuss hopping"). This phenomenon can be accounted for by interspersing stochastic proton transfer events in classical molecular dynamics simulations. The implementation of OH--mediated proton hopping is particularly challenging because classical force fields are known to produce overcoordinated solvation structures around the OH- ion. Here, we first explore the ability of two-particle point-charge models to reproduce both the solvation free energy and coordination number in TIP3P water. We find that this is possible only with unphysical changes in the nonbonded parameters which create problems in proton hopping simulations. We then construct a classical OH- model with the charge of oxygen distributed among three auxiliary particles. This model favors a lower coordination number by accepting three hydrogen bonds and weakly donating one. The model was implemented in the MOBHY module of the CHARMM program and was fit to reproduce the experimental aqueous diffusion coefficient of OH-. This parameterization gave reasonable electrophoretic mobilities and the expected accelerated transport under nanoconfinement.
Collapse
Affiliation(s)
- Ankita Dutta
- Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Program in Biochemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Themis Lazaridis
- Department of Chemistry and Biochemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Program in Biochemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Graduate Programs in Chemistry and Physics, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Das B, Ruiz-Barragan S, Bagchi B, Marx D. Topological Frustration Triggers Ultrafast Dynamics of Monolayer Water Confined in Graphene Slit Pores. NANO LETTERS 2024; 24:15623-15628. [PMID: 39592143 PMCID: PMC11638954 DOI: 10.1021/acs.nanolett.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Nanoconfined water exhibits astonishing properties that offer new opportunities in physics, biology and technology like energy-storage applications. Here we study such nanoconfined water using ab initio molecular dynamics simulations to elucidate the structure and dynamics of water monolayers in graphene-based slit pores. The significant population of dangling (or free) O-H bonds pointing toward the two confining walls, leads to topological frustration in the hydrogen bond network. This provides a novel channel for ultrafast diffusion distinct from what has been observed in bulk or interfacial water.
Collapse
Affiliation(s)
- Banshi Das
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Sergi Ruiz-Barragan
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
- Departament
de Fisica, Universitat Politecnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain
| | - Biman Bagchi
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
- Solid
State and Structural Chemistry Unit, Indian
Institute of Science, Bangalore 560012, Karnataka India
| | - Dominik Marx
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| |
Collapse
|
8
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
9
|
Li Y, Li Z, Misra RP, Liang C, Gillen AJ, Zhao S, Abdullah J, Laurence T, Fagan JA, Aluru N, Blankschtein D, Noy A. Molecular transport enhancement in pure metallic carbon nanotube porins. NATURE MATERIALS 2024; 23:1123-1130. [PMID: 38937586 DOI: 10.1038/s41563-024-01925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Nanofluidic channels impose extreme confinement on water and ions, giving rise to unusual transport phenomena strongly dependent on the interactions at the channel-wall interface. Yet how the electronic properties of the nanofluidic channels influence transport efficiency remains largely unexplored. Here we measure transport through the inner pores of sub-1 nm metallic and semiconducting carbon nanotube porins. We find that water and proton transport are enhanced in metallic nanotubes over semiconducting nanotubes, whereas ion transport is largely insensitive to the nanotube bandgap value. Molecular simulations using polarizable force fields highlight the contributions of the anisotropic polarizability tensor of the carbon nanotubes to the ion-nanotube interactions and the water friction coefficient. We also describe the origin of the proton transport enhancement in metallic nanotubes using deep neural network molecular dynamics simulations. These results emphasize the complex role of the electronic properties of nanofluidic channels in modulating transport under extreme nanoscale confinement.
Collapse
Affiliation(s)
- Yuhao Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Zhongwu Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenxing Liang
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Alice J Gillen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Vivani Medical Inc., Emeryville, CA, USA
| | - Sidi Zhao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Engineering, University of California Merced, Merced, CA, USA
| | - Jobaer Abdullah
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Narayana Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- School of Natural Sciences, University of California Merced, Merced, CA, USA.
| |
Collapse
|
10
|
Kwon H, Calegari Andrade MF, Ardo S, Esposito DV, Pham TA, Ogitsu T. Confinement Effects on Proton Transfer in TiO 2 Nanopores from Machine Learning Potential Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31687-31695. [PMID: 38840582 DOI: 10.1021/acsami.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Improved understanding of proton transfer in nanopores is critical for a wide range of emerging applications, yet experimentally probing mechanisms and energetics of this process remains a significant challenge. To help reveal details of this process, we developed and applied a machine learning potential derived from first-principles calculations to examine water reactivity and proton transfer in TiO2 slit-pores. We find that confinement of water within pores smaller than 0.5 nm imposes strong and complex effects on water reactivity and proton transfer. Although the proton transfer mechanism is similar to that at a TiO2 interface with bulk water, confinement reduces the activation energy of this process, leading to more frequent proton transfer events. This enhanced proton transfer stems from the contraction of oxygen-oxygen distances dictated by the interplay between confinement and hydrophilic interactions. Our simulations also highlight the importance of the surface topology, where faster proton transport is found in the direction where a unique arrangement of surface oxygens enables the formation of an ordered water chain. In a broader context, our study demonstrates that proton transfer in hydrophilic nanopores can be enhanced by controlling pore size, surface chemistry, and topology.
Collapse
Affiliation(s)
- Hyuna Kwon
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Marcos F Calegari Andrade
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Shane Ardo
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Daniel V Esposito
- Chemical Engineering Department, Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, United States
| | - Tuan Anh Pham
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550-5507, United States
| |
Collapse
|
11
|
Lau AWC, Sokoloff JB. Simple Mechanism for the Observed Breakdown of the Nernst-Einstein Relation for Ions in Carbon Nanotubes. PHYSICAL REVIEW LETTERS 2024; 132:194001. [PMID: 38804917 DOI: 10.1103/physrevlett.132.194001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
In this Letter, we present a simple mechanism that explains the recent experimental observation of the breakdown of the Nernst-Einstein (NE) relation for an ion moving in a carbon nanotube of subnanometer diameter. We argue that the friction acting on the ion is largely independent of the ion velocity, i.e., dry friction, and demonstrate, based on the Langevin equation for a particle subject to both dry and viscous friction, that the NE relation is violated when dry friction dominates. We predict that the ratio of the diffusion constant to the mobility of the ion is a few orders of magnitude smaller than the value predicted by the NE relation, in quantitative agreement with experiment.
Collapse
Affiliation(s)
- A W C Lau
- Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
| | - J B Sokoloff
- Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
- Physics Department, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Mehlhose S, Sakamoto T, Eickhoff M, Kato T, Tanaka M. Electrochemical Detection of Selective Anion Transport through Subnanopores in Liquid-Crystalline Water Treatment Membranes. J Phys Chem B 2024; 128:4537-4543. [PMID: 38683761 PMCID: PMC11089498 DOI: 10.1021/acs.jpcb.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
The anion-selective transport through subnanoporous liquid-crystalline (LC) water treatment membranes was quantitatively detected by the deposition and electrochemical analysis of the LC membrane on the GaN electrode. The time course of the capacitance and Warburg resistance of the LC membrane suggest that the interaction of the LC membrane with monovalent Cl- ions is distinctly different from that with SO42- ions. A continuous decay in capacitance suggests the condensation of Cl- ions in subnanopores, whereas the interaction between SO42- ions and the inner wall of subnanopores is much weaker. The chronoamperometry data further suggest that SO42- ions are transported through subnanoporous channels 10 times faster than Cl- ions. These results, together with the previous X-ray emission spectroscopy, suggest that SO42- ions, which possess similar hydrogen-bonded structures to the hydrogen-bonded networks inside the subnanopores, can exchange the associated water molecules and hop along the network of water molecules, but Cl- ions bind and accumulate inside subnanopores. The well-controlled supramolecular self-assembly of LC building blocks opens a large potential toward the fine adjustment of hydrogen-bonding networks in nanospace providing materials new functions, which cannot be realized by bulk water.
Collapse
Affiliation(s)
- Sven Mehlhose
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
| | - Takeshi Sakamoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Martin Eickhoff
- Institut
für Festkörperphysik, Universität Bremen, Otto-Hahn-Allee NW1, D28359 Bremen, Germany
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, Wakasato, Nagano 380-8553, Japan
| | - Motomu Tanaka
- Physical
Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
- Center
for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Cao Y, Zhou W, Shen C, Qiu H, Guo W. Proton Coulomb Blockade Effect Involving Covalent Oxygen-Hydrogen Bond Switching. PHYSICAL REVIEW LETTERS 2024; 132:188401. [PMID: 38759163 DOI: 10.1103/physrevlett.132.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/13/2024] [Indexed: 05/19/2024]
Abstract
Instead of the canonical Grotthuss mechanism, we show that a knock-on proton transport process is preferred between organic functional groups (e.g., -COOH and -OH) and adjacent water molecules in biological proton channel and synthetic nanopores through comprehensive quantum and classical molecular dynamics simulations. The knock-on process is accomplished by the switching of covalent O─H bonds of the functional group under externally applied electric fields. The proton transport through the synthetic nanopore exhibits nonlinear current-voltage characteristics, suggesting an unprecedented proton Coulomb blockade effect. These findings not only enhance the understanding of proton transport in nanoconfined systems but also pave the way for the design of a variety of proton-based nanofluidic devices.
Collapse
Affiliation(s)
- Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Wanqi Zhou
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chun Shen
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
14
|
Savin AV, Kivshar YS. Stabilization of hydrogen-bonded molecular chains by carbon nanotubes. CHAOS (WOODBURY, N.Y.) 2024; 34:043111. [PMID: 38572948 DOI: 10.1063/5.0197401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
We study numerically nonlinear dynamics of several types of molecular systems composed of hydrogen-bonded chains placed inside carbon nanotubes with open edges. We demonstrate that carbon nanotubes provide a stabilization mechanism for quasi-one-dimensional molecular chains via the formation of their secondary structures. In particular, a polypeptide chain (Gly)N placed inside a carbon nanotube can form a stable helical chain (310-, α-, π-, and β-helix) with parallel chains of hydrogen-bonded peptide groups. A chain of hydrogen fluoride molecules ⋯FH⋯FH⋯FH can form a hydrogen-bonded zigzag chain. Remarkably, we demonstrate that for molecular complexes (Gly)N∈CNT and (FH)N∈CNT, the hydrogen-bonded chains will remain stable even at T=500 K. Thus, our results suggest that the use of carbon nanotubes with encapsulated hydrogen fluoride molecules may be important for the realization of high proton conductivity at high temperatures.
Collapse
Affiliation(s)
- Alexander V Savin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Moscow 117997, Russia
| | - Yuri S Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Kim S, Choi H, Kim B, Lim G, Kim T, Lee M, Ra H, Yeom J, Kim M, Kim E, Hwang J, Lee JS, Shim W. Extreme Ion-Transport Inorganic 2D Membranes for Nanofluidic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206354. [PMID: 36112951 DOI: 10.1002/adma.202206354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Inorganic 2D materials offer a new approach to controlling mass diffusion at the nanoscale. Controlling ion transport in nanofluidics is key to energy conversion, energy storage, water purification, and numerous other applications wherein persistent challenges for efficient separation must be addressed. The recent development of 2D membranes in the emerging field of energy harvesting, water desalination, and proton/Li-ion production in the context of green energy and environmental technology is herein discussed. The fundamental mechanisms, 2D membrane fabrication, and challenges toward practical applications are highlighted. Finally, the fundamental issues of thermodynamics and kinetics are outlined along with potential membrane designs that must be resolved to bridge the gap between lab-scale experiments and production levels.
Collapse
Affiliation(s)
- Sungsoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geonwoo Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taehoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minwoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hansol Ra
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihun Yeom
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minjun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eohjin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiyoung Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- IT Materials Division, Advanced Materials Company, LG Chem R&D Campus, Daejeon, 34122, Republic of Korea
| | - Joo Sung Lee
- Separator Division, Advanced Materials Company, LG Chem R&D Campus, Daejeon, 34122, Republic of Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
16
|
Sokoloff JB, Lau AWC. Theory of the force of friction acting on water chains flowing through carbon nanotubes. Phys Rev E 2023; 107:055101. [PMID: 37329021 DOI: 10.1103/physreve.107.055101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/10/2023] [Indexed: 06/18/2023]
Abstract
A simple model for the friction experienced by the one-dimensional water chains that flow through subnanometer diameter carbon nanotubes is studied. The model is based on a lowest order perturbation theory treatment of the friction experienced by the water chains due to the excitation of phonon and electron excitations in both the nanotube and the water chain, as a result of the motion of the chain. On the basis of this model, we are able to demonstrate how the observed flow velocities of water chains through carbon nanotubes of the order of several centimeters per second can be accounted for. If the hydrogen bonds between the water molecules are broken (as would occur if there were an electric field oscillating with a frequency equal to the resonant frequency of the hydrogen bonds present), it is shown that the friction experienced by the water flowing in the tube can be much smaller.
Collapse
Affiliation(s)
- J B Sokoloff
- Northeastern University, Boston, Massachusetts 02115, USA
- Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
| | - A W C Lau
- Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
| |
Collapse
|
17
|
Popov I, Zhu Z, Young-Gonzales AR, Sacci RL, Mamontov E, Gainaru C, Paddison SJ, Sokolov AP. Search for a Grotthuss mechanism through the observation of proton transfer. Commun Chem 2023; 6:77. [PMID: 37087505 PMCID: PMC10122652 DOI: 10.1038/s42004-023-00878-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023] Open
Abstract
The transport of protons is critical in a variety of bio- and electro-chemical processes and technologies. The Grotthuss mechanism is considered to be the most efficient proton transport mechanism, generally implying a transfer of protons between 'chains' of host molecules via elementary reactions within the hydrogen bonds. Although Grotthuss proposed this concept more than 200 years ago, only indirect experimental evidence of the mechanism has been observed. Here we report the first experimental observation of proton transfer between the molecules in pure and 85% aqueous phosphoric acid. Employing dielectric spectroscopy, quasielastic neutron, and light scattering, and ab initio molecular dynamic simulations we determined that protons move by surprisingly short jumps of only ~0.5-0.7 Å, much smaller than the typical ion jump length in ionic liquids. Our analysis confirms the existence of correlations in these proton jumps. However, these correlations actually reduce the conductivity, in contrast to a desirable enhancement, as is usually assumed by a Grotthuss mechanism. Furthermore, our analysis suggests that the expected Grotthuss-like enhancement of conductivity cannot be realized in bulk liquids where ionic correlations always decrease conductivity.
Collapse
Affiliation(s)
- Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | | | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
18
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
19
|
Cai L, Yang J, Lai Y, Liang Y, Zhang R, Gu C, Kitagawa S, Yin P. Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers. Angew Chem Int Ed Engl 2023; 62:e202211741. [PMID: 36583606 DOI: 10.1002/anie.202211741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The nanoconfinement of proton carrier molecules may contribute to the lowing of their proton dissociation energy. However, the free proton transportation does not occur as easily as in liquid due to the restricted molecular motion from surface attraction. To resolve the puzzle, herein, imidazole is confined in the channels of porous coordination polymers with tunable geometries, and their electric/structural relaxations are quantified. Imidazole confined in a square-shape channels exhibits dynamics heterogeneity of core-shell-cylinder model. The core and shell layer possess faster and slower structural dynamics, respectively, when compared to the bulk imidazole. The dimensions and geometry of the nanochannels play an important role in both the shielding of the blocking effect from attractive surfaces and the frustration filling of the internal proton carrier molecules, ultimately contributing to the fast dynamics and enhanced proton conductivity.
Collapse
Affiliation(s)
- Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuling Liang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Rongchun Zhang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
20
|
Long Z, Tuckerman ME. Hydroxide Diffusion in Functionalized Cylindrical Nanopores as Idealized Models of Anion Exchange Membrane Environments: An Ab Initio Molecular Dynamics Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:2792-2804. [PMID: 36968146 PMCID: PMC10034739 DOI: 10.1021/acs.jpcc.2c05747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Anion exchange membranes (AEMs) have attracted significant interest for their applications in fuel cells and other electrochemical devices in recent years. Understanding water distributions and hydroxide transport mechanisms within AEMs is critical to improving their performance as concerns hydroxide conductivity. Recently, nanoconfined environments have been used to mimic AEM environments. Following this approach, we construct nanoconfined cylindrical pore structures using graphane nanotubes (GNs) functionalized with trimethylammonium cations as models of local AEM morphology. These structures were then used to investigate hydroxide transport using ab initio molecular dynamics (AIMD). The simulations showed that hydroxide transport is suppressed in these confined environments relative to the bulk solution although the mechanism is dominated by structural diffusion. One factor causing the suppressed hydroxide transport is the reduced proton transfer (PT) rates due to changes in hydroxide and water solvation patterns under confinement compared to bulk solution as well as strong interactions between hydroxide ions and the tethered cation groups.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry, New York University, New York, New York10003, United States
| | - Mark E. Tuckerman
- Department
of Chemistry, New York University, New York, New York10003, United States
- Courant
Institute of Mathematical Science, New York
University, New York, New York10012, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai200062, China
| |
Collapse
|
21
|
V PN. Influence of sulfonated SBA - 15 on fuel cell performance of sulfonated polysulfone electrolyte membranes. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prepared mesoporous SBA-15 (Santa Barbara Amorphous-15) was sulfonated and used as filler for the preparation of sulfonated polysulfone based composite electrolyte membranes. The SBA-15 and polysulfone were sulfonated using 3-mercaptopropyl trimethoxysilane and trimethylsilyl chlorosulfonate, respectively. The different weight percentages (1, 3, and 5 wt%) of sulfonated SBA-15 (SSBA-15) were used to prepare composite electrolyte membranes. Water uptake, ion exchange capacity, swelling ratio and proton conductivity of the composite membranes were studied for assessing the suitability of the electrolyte membranes for use in fuel cells. Characterization techniques such as FT-IR, XRD, SEM, TEM and Brunauer–Emmett– Teller were used to study the physico-chemical properties of the electrolyte membranes. TEM and BET analysis showed that SBA -15 retained its mesoporous structure even after sulfonation process. The prepared membranes were then tested in an in-house built single-cell fuel cell using hydrogen as fuel and oxygen as the oxidant. The fuel cell study showed that the presence of Sulfonated SBA-15 in the polymer matrix provided additional ion exchange sites and retained water for proton transfer which resulted in higher power density of 815 mW/cm2 with SPSU + 3% SSBA-15 membrane as compared with Nafion 117®.
Collapse
Affiliation(s)
- Prabhu N V
- Department of Chemistry, Easwari Engineering College, Chennai, India
| |
Collapse
|
22
|
Andrei IM, Barboiu M. Biomimetic Artificial Proton Channels. Biomolecules 2022; 12:biom12101473. [PMID: 36291682 PMCID: PMC9599858 DOI: 10.3390/biom12101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common biochemical processes is the proton transfer through the cell membranes, having significant physiological functions in living organisms. The proton translocation mechanism has been extensively studied; however, mechanistic details of this transport are still needed. During the last decades, the field of artificial proton channels has been in continuous growth, and understanding the phenomena of how confined water and channel components mediate proton dynamics is very important. Thus, proton transfer continues to be an active area of experimental and theoretical investigations, and acquiring insights into the proton transfer mechanism is important as this enlightenment will provide direct applications in several fields. In this review, we present an overview of the development of various artificial proton channels, focusing mostly on their design, self-assembly behavior, proton transport activity performed on bilayer membranes, and comparison with protein proton channels. In the end, we discuss their potential applications as well as future development and perspectives.
Collapse
|
23
|
Shen Y, Willard AP. Directed walk in probability space that locates mean field solutions to spin models. Phys Rev E 2022; 106:044132. [PMID: 36397492 DOI: 10.1103/physreve.106.044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Despite their formal simplicity, most lattice spin models cannot be easily solved, even under the simplifying assumptions of mean field theory. In this paper, we present a method for generating mean field solutions to classical continuous spins. We focus our attention on systems with nonlocal interactions and nonperiodic boundaries, which require careful handling with existing approaches, such as Monte Carlo sampling. Our approach utilizes functional optimization to derive a closed-form optimality condition and arrive at self-consistent mean field equations. We show that this approach significantly outperforms conventional Monte Carlo sampling in convergence speed and accuracy. To convey the general concept behind the approach, we first demonstrate its application to a simple system: a finite one-dimensional dipolar chain in an external electric field. We then describe how the approach naturally extends to more complicated spin systems and to continuum field theories. Furthermore, we numerically illustrate the efficacy of our approach by highlighting its utility on nonperiodic spin models of various dimensionality.
Collapse
Affiliation(s)
- Yizhi Shen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Neklyudov V, Freger V. Putting together the puzzle of ion transfer in single-digit carbon nanotubes: mean-field meets ab initio. NANOSCALE 2022; 14:8677-8690. [PMID: 35671158 DOI: 10.1039/d1nr08073c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature employs channel proteins to selectively pass water across cell membranes, which inspires the search for bio-mimetic analogues. Carbon nanotube porins (CNTPs) are intriguing mimics of water channels, yet ion transport in CNTPs still poses questions. As an alternative to continuum models, here we present a molecular mean-field model that transparently describes ion coupling, yet unlike continuum models, computes ab initio all required thermodynamic quantities for the KCl salt and H+ and OH- ions present in water. Starting from water transfer, the model considers the transfer of free ions, along with ion-pair formation as a proxy of non-mean-field ion-ion interactions. High affinity to hydroxide, suggested by experiments, making it a dominant charge carrier in CNTPs, is revealed as an exceptionally favorable transfer of KOH pairs. Nevertheless, free ions, coexisting with less mobile ion-pairs, apparently control ion transport. The model well explains the observed effects of salt concentration and pH on conductivity, transport numbers, anion permeation and its activation energies, and current rectification. The proposed approach is extendable to other sub-nanochannels and helps design novel osmotic materials and devices.
Collapse
Affiliation(s)
- Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel.
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa 32000, Israel.
- Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa 32000, Israel
- Grand Technion Energy Program, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
25
|
Proton Generation Using Chitin–Chitinase and Collagen–Collagenase Composites. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogen energy is focused on as next-generation energy without environmental load. Therefore, hydrogen production without using fossil fuels is a key factor in the progress of hydrogen energy. In the present work, it was found that chitin–chitinase and collagen–collagenase composites can generate protons by the hydrolysis of the enzyme. The concentration of the generated proton in the chitin–chitinase and collagen–collagenase composites are 1.68 × 1017 cm−3 and 1.02 × 1017 cm−3, respectively. Accompanying these results, proton diffusion constants in the chitin and collagen membranes are also estimated to be 8.59 × 10−8 cm2/s and 8.69 × 10−8 cm2/s, respectively. Furthermore, we have fabricated the bio-fuel cell using these composites as hydrogen fuel and demonstrated that these composites become a fuel of the fuel cell.
Collapse
|
26
|
Ravat P, Uchida H, Sekine R, Kamei K, Yamamoto A, Konovalov O, Tanaka M, Yamada T, Harano K, Nakamura E. De Novo Synthesis of Free-Standing Flexible 2D Intercalated Nanofilm Uniform over Tens of cm 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106465. [PMID: 34651356 DOI: 10.1002/adma.202106465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Of a variety of intercalated materials, 2D intercalated systems have attracted much attention both as materials per se, and as a platform to study atoms and molecules confined among nanometric layers. High-precision fabrication of such structures has, however, been a difficult task using the conventional top-down and bottom-up approaches. The de novo synthesis of a 3-nm-thick nanofilm intercalating a hydrogen-bonded network between two layers of fullerene molecules is reported here. The two-layered film can be further laminated into a multiply film either in situ or by sequential lamination. The 3 nm film forms uniformly over an area of several tens of cm2 at an air/water interface and can be transferred to either flat or perforated substrates. A free-standing film in air prepared by transfer to a gold comb electrode shows proton conductivity up to 1.4 × 10-4 S cm-1 . Electron-dose-dependent reversible bending of a free-standing 6-nm-thick nanofilm hung in a vacuum is observed under electron beam irradiation.
Collapse
Affiliation(s)
- Prince Ravat
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hikaru Uchida
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Sekine
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Kamei
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Teppei Yamada
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
27
|
Chen W, Gu J, Liu Q, Yang M, Zhan C, Zang X, Pham TA, Liu G, Zhang W, Zhang D, Dunn B, Morris Wang Y. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. NATURE NANOTECHNOLOGY 2022; 17:153-158. [PMID: 34795438 DOI: 10.1038/s41565-021-01020-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Dense, thick, but fast-ion-conductive electrodes are critical yet challenging components of ultrafast electrochemical capacitors with high volumetric power/energy densities1-4. Here we report an exfoliation-fragmentation-restacking strategy towards thickness-adjustable (1.5‒24.0 μm) dense electrode films of restacked two-dimensional 1T-MoS2 quantum sheets. These films bear the unique architecture of an exceptionally high density of narrow (sub-1.2 nm) and ultrashort (~6.1 nm) hydrophobic nanochannels for confinement ion transport. Among them, 14-μm-thick films tested at 2,000 mV s-1 can deliver not only a high areal capacitance of 0.63 F cm-2 but also a volumetric capacitance of 437 F cm-3 that is one order of magnitude higher than that of other electrodes. Density functional theory and ab initio molecular dynamics simulations suggest that both hydration and nanoscale channels play crucial roles in enabling ultrafast ion transport and enhanced charge storage. This work provides a versatile strategy for generating rapid ion transport channels in thick but dense films for energy storage and filtration applications.
Collapse
Affiliation(s)
- Wenshu Chen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
- School of Environmental Science and Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.
| | - Mengzhao Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhan
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Xining Zang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tuan Anh Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Guangxiang Liu
- School of Environmental Science and Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.
| | - Bruce Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Y Morris Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Nanochannels and nanodroplets in polymer membranes controlling ionic transport. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Ohmine I, Saito S. Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ohmine
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
30
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
31
|
Sarango-Ramírez MK, Park J, Kim J, Yoshida Y, Lim DW, Kitagawa H. Void Space versus Surface Functionalization for Proton Conduction in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:20173-20177. [PMID: 34009706 DOI: 10.1002/anie.202106181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 11/10/2022]
Abstract
Void space and functionality of the pore surface are important structural factors for proton-conductive metal-organic frameworks (MOFs) impregnated with conducting media. However, no clear study has compared their priority factors, which need to be considered when designing proton-conductive MOFs. Herein, we demonstrate the effects of void space and pore-surface modification on proton conduction in MOFs through the surface-modified isoreticular MOF-74(Ni) series [Ni2 (dobdc or dobpdc), dobdc=2,5-dihydroxy-1,4-benzenedicarboxylate and dobpdc=4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylate]. The MOF with lower porosity with the same surface functionality showed higher proton conductivity than that with higher porosity despite including a smaller amount of conducting medium. Density functional theory calculations suggest that strong hydrogen bonding between molecules of the conducting medium at high porosity is inefficient in inducing high proton conductivity.
Collapse
Affiliation(s)
- Marvin K Sarango-Ramírez
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junkil Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yukihiro Yoshida
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
32
|
Sarango‐Ramírez MK, Park J, Kim J, Yoshida Y, Lim D, Kitagawa H. Void Space versus Surface Functionalization for Proton Conduction in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marvin K. Sarango‐Ramírez
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Junkil Park
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea
| | - Yukihiro Yoshida
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Dae‐Woon Lim
- Department of Chemistry and Medical Chemistry College of Science and Technology Yonsei University 1 Yonseidae-gil Wonju Gangwon-do 26493 Republic of Korea
| | - Hiroshi Kitagawa
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
33
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Gong T, Fan J. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes. J Chem Inf Model 2021; 61:2754-2765. [PMID: 34128668 DOI: 10.1021/acs.jcim.1c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, two end-charged cyclic peptide nanotubes (CPNTs) embedded in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) were designed to simulate transmembrane ion channels. Density functional theory (DFT) computations at the level of M06-2X/6-31G give different assembling modes of the negatively charged ELWL-CPNT and positively charged RLWL-CPNT as (L-L)(D-L)(D-D)(L-L)(D-D)(L-L)(D-D) and (D-D)(L-L)(D-D)(L-L)(D-D)(L-L)(D-D), respectively. Molecular dynamics (MD) simulations indicate that a charge at a CPNT end obviously affects the structure of the channel water chain and the diffusion behavior of K+. The regions with the highest probability of H-bond defects in the channel water chains are gap5 and gap2 in ELWL/POPE-CPNT and RLWL/POPE-CPNT, respectively. K+ can easily enter either CPNT by desolvation, and behaves more actively in RLWL/POPE-CPNT, shuttling rapidly and frequently between an α-plane zone and an adjacent midplane region. Results of this work reveal that a charge at the end of an ionic channel may significantly alter the transport characteristics of the channel.
Collapse
Affiliation(s)
- Ting Gong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
35
|
Otake KI, Kitagawa H. Control of Proton-Conductive Behavior with Nanoenvironment within Metal-Organic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006189. [PMID: 33733595 DOI: 10.1002/smll.202006189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Solid-state proton-conductive materials have been of great interest for several decades due to their promising application as electrolytes in fuel cells and electrochemical devices. Metal-organic materials (MOMs) have recently been intensively investigated as a new type of proton-conductive materials. The highly crystalline nature and structural designability of MOMs make them advantageous over conventional noncrystalline proton-conductive materials-the detailed investigation of the structure-property relationship is feasible on MOM-based proton conductors. This review aims to summarize and examine the fundamental principles and various design strategies on proton-conductive MOMs, and shed light on the nanoconfinement effects as well as the importance of hydrophobicity on specific occasions, which have been often disregarded. Besides, challenges and future prospects on this field are presented.
Collapse
Affiliation(s)
- Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
36
|
Both AK, Gao Y, Zeng XC, Cheung CL. Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. NANOSCALE 2021; 13:7447-7470. [PMID: 33876814 DOI: 10.1039/d1nr00751c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gas hydrates (clathrate hydrates, clathrates, or hydrates) are crystalline inclusion compounds composed of water and gas molecules. Methane hydrates, the most well-known gas hydrates, are considered a menace in flow assurance. However, they have also been hailed as an alternative energy resource because of their high methane storage capacity. Since the formation of gas hydrates generally requires extreme conditions, developing porous material hosts to synthesize gas hydrates with less-demanding constraints is a topic of great interest to the materials and energy science communities. Though reports of modeling and experimental analysis of bulk gas hydrates are plentiful in the literature, reliable phase data for gas hydrates within confined spaces of nanoporous media have been sporadic. This review examines recent studies of both experiments and theoretical modeling of gas hydrates within four categories of nanoporous material hosts that include porous carbons, metal-organic frameworks, graphene nanoslits, and carbon nanotubes. We identify challenges associated with these porous systems and discuss the prospects of gas hydrates in confined space for potential applications.
Collapse
Affiliation(s)
- Avinash Kumar Both
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Yurui Gao
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| | - Chin Li Cheung
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
| |
Collapse
|
37
|
Zou Y, Xiao K, Qin Q, Shi JW, Heil T, Markushyna Y, Jiang L, Antonietti M, Savateev A. Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. ACS NANO 2021; 15:6551-6561. [PMID: 33822587 PMCID: PMC8155341 DOI: 10.1021/acsnano.0c09661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s-1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.
Collapse
Affiliation(s)
- Yajun Zou
- State
Key Laboratory of Electrical Insulation and Power Equipment, Center
of Nanomaterials for Renewable Energy, School
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kai Xiao
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Qing Qin
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jian-Wen Shi
- State
Key Laboratory of Electrical Insulation and Power Equipment, Center
of Nanomaterials for Renewable Energy, School
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Tobias Heil
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Yevheniia Markushyna
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lei Jiang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
38
|
Gelenter MD, Mandala VS, Niesen MJM, Sharon DA, Dregni AJ, Willard AP, Hong M. Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Commun Biol 2021; 4:338. [PMID: 33712696 PMCID: PMC7955094 DOI: 10.1038/s42003-021-01847-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michiel J M Niesen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Yao S, Zhou S, Zhang J, Yang Z, Zhang X. Improved wettability and enhanced ionic transport in highly porous CNT sponge. NANOTECHNOLOGY 2021; 32:105709. [PMID: 33260168 DOI: 10.1088/1361-6528/abcf6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the effect of an electric treatment on the wettability of aqueous solution on carbon nanotubes (CNT) and ion transport behaviors in superhydrophobic porous carbon nanotube sponges (CNTS). This electric activation treatment where an electric voltage was applied across highly porous CNT sponge induced an electrowetting effect. This effect significantly reduced interfacial tensions between CNT sidewalls and aqueous liquids. Meanwhile, polar functional groups were also introduced on CNTs. Both electrowetting effect and polar functional groups greatly improved the wettability of aqueous solutions on CNT sidewalls. After the electric treatment, we observed a dramatic increase in the overall rate of ion flow across porous CNT sponges. The formation of solution channels during the electric treatment is responsible for the enhanced ionic transport in porous CNT sponges. The overall rate of ion flow increased with the increases in electric treatment time and voltage. The crucial role of electric treatment parameters in the ion transport provides a new strategy for precisely controlling the ion transport across CNT sponges by tuning electric treatment time or voltage. Importantly, the good wettability of aqueous solution on CNT sidewalls greatly increased the effective surface area of CNT sponges and thus significantly improved the performance of CNTS-based supercapacitors after the electric treatment.
Collapse
Affiliation(s)
- Sicheng Yao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
| | - Shenglin Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
| | - Jiapeng Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, People's Republic of China
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, People's Republic of China
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, People's Republic of China
| |
Collapse
|
40
|
Jin L, Zhang D, Zhu Y, Yang X, Gao Y, Wang Z. A Step-by-Step Process-Induced Unidirectional Oriented Water Wire in the Nanotube. J Phys Chem Lett 2021; 12:350-354. [PMID: 33355464 DOI: 10.1021/acs.jpclett.0c03340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The orientation of water molecules is a key requirement for the fast transport of water in nanotubes. It has been accepted that the flip of the water chain follows a concerted mechanism, which has led to the view that bidirectional water flux in nanotubes can be transformed into unidirectional transport when the orientation of water molecules is maintained in long nanotubes under the external field. In this Letter, on the basis of molecular dynamics simulations and first-principles calculations, we confirmed that the flip of the water chain is a step-by-step process, which is different from the perceived concerted mechanism. Further analysis indicated that without an external field, it needed more than 20 water molecules to maintain the unidirectional single-file water flow in a carbon nanotube at a duration time of seconds. Considering that the thickness of the cell membrane (normally 5-10 nm) is larger than the length threshold of the unidirectional water wire, this study suggested that it may not require the external field to maintain the unidirectional flow in the water channel at the macroscopic time scale.
Collapse
Affiliation(s)
- Le Jin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Depeng Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xinrui Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Yi Gao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
41
|
Lynch C, Rao S, Sansom MSP. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Chem Rev 2020; 120:10298-10335. [PMID: 32841020 PMCID: PMC7517714 DOI: 10.1021/acs.chemrev.9b00830] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/18/2022]
Abstract
This Review explores the dynamic behavior of water within nanopores and biological channels in lipid bilayer membranes. We focus on molecular simulation studies, alongside selected structural and other experimental investigations. Structures of biological nanopores and channels are reviewed, emphasizing those high-resolution crystal structures, which reveal water molecules within the transmembrane pores, which can be used to aid the interpretation of simulation studies. Different levels of molecular simulations of water within nanopores are described, with a focus on molecular dynamics (MD). In particular, models of water for MD simulations are discussed in detail to provide an evaluation of their use in simulations of water in nanopores. Simulation studies of the behavior of water in idealized models of nanopores have revealed aspects of the organization and dynamics of nanoconfined water, including wetting/dewetting in narrow hydrophobic nanopores. A survey of simulation studies in a range of nonbiological nanopores is presented, including carbon nanotubes, synthetic nanopores, model peptide nanopores, track-etched nanopores in polymer membranes, and hydroxylated and functionalized nanoporous silica. These reveal a complex relationship between pore size/geometry, the nature of the pore lining, and rates of water transport. Wider nanopores with hydrophobic linings favor water flow whereas narrower hydrophobic pores may show dewetting. Simulation studies over the past decade of the behavior of water in a range of biological nanopores are described, including porins and β-barrel protein nanopores, aquaporins and related polar solute pores, and a number of different classes of ion channels. Water is shown to play a key role in proton transport in biological channels and in hydrophobic gating of ion channels. An overall picture emerges, whereby the behavior of water in a nanopore may be predicted as a function of its hydrophobicity and radius. This informs our understanding of the functions of diverse channel structures and will aid the design of novel nanopores. Thus, our current level of understanding allows for the design of a nanopore which promotes wetting over dewetting or vice versa. However, to design a novel nanopore, which enables fast, selective, and gated flow of water de novo would remain challenging, suggesting a need for further detailed simulations alongside experimental evaluation of more complex nanopore systems.
Collapse
Affiliation(s)
- Charlotte
I. Lynch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
42
|
Kolokolov DI, Lim D, Kitagawa H. Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal‐Organic Frameworks. CHEM REC 2020; 20:1297-1313. [DOI: 10.1002/tcr.202000072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/24/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Daniil I. Kolokolov
- Siberian Branch of Russian Academy of Sciences Boreskov Institute of Catalysis Prospekt Akademika Lavrentieva 5 Novosibirsk 630090 Russia
- Department of Physics Novosibirsk State University Pirogova Street 2 Novosibirsk 630090 Russia
| | - Dae‐Woon Lim
- Department of Chemistry and Medical Chemistry Yonsei University 1 Yonseidae-gil Wonju, Gangwon-do 26493 Korea
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
43
|
Cobeña-Reyes J, Sahimi M. Rheology of water in small nanotubes. Phys Rev E 2020; 102:023106. [PMID: 32942370 DOI: 10.1103/physreve.102.023106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/20/2020] [Indexed: 11/07/2022]
Abstract
The properties of water in confinement are very different from those under bulk conditions. In some cases the melting point of ice may be shifted and one may find either ice, icelike water, or a state in which freezing is completely inhibited. Understanding the dynamics and rheology of water in confined media, such as small nanotubes, is of fundamental importance to the biological properties of micro-organisms at low temperatures, to the development of new devices for preserving DNA samples, and for other biological materials and fluids, lubrication, and development of nanostructured materials. We study rheology and dynamics of water in small nanotubes using extensive equilibrium and nonequilibrium molecular dynamics simulations. The results demonstrate that in strong confinement in nanotubes at temperatures significantly below and above bulk freezing temperature water behaves as a shear-thinning fluid at shear rates smaller than the inverse of the relaxation time in the confined medium. In addition, our results indicate the presence of regions in which the local density of water varies significantly over the same range of temperature in the nanotube. These findings may also have important implications for the design of nanofluidic systems.
Collapse
Affiliation(s)
- Jose Cobeña-Reyes
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - M Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
44
|
Imoto S, Marx D. How Can Protons Migrate in Extremely Compressed Liquid Water? PHYSICAL REVIEW LETTERS 2020; 125:086001. [PMID: 32909792 DOI: 10.1103/physrevlett.125.086001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Compression of liquid water up to multi-kbar pressures is known to perturb dramatically its local structure required for charge defects to migrate as topological defects in the hydrogen-bonded network. Our ab initio simulations show that the migration of excess protons is not much affected at 10 kbar, whereas that of proton holes is significantly reduced. Non-Markovian analyses show that this is not due to modifying the free energy barriers of both charge transfer and migration. It is rather pressure-induced modifications of the population of activated states, depending on interstitial water, which rules charge migration at extreme compression.
Collapse
Affiliation(s)
- Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
45
|
Sofronov O, Bakker HJ. Slow Proton Transfer in Nanoconfined Water. ACS CENTRAL SCIENCE 2020; 6:1150-1158. [PMID: 32724849 PMCID: PMC7379388 DOI: 10.1021/acscentsci.0c00340] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The transport of protons in nanoconfined environments, such as in nanochannels of biological or artificial proton conductive membranes, is essential to chemistry, biology, and nanotechnology. In water, proton diffusion occurs by hopping of protons between water molecules. This process involves the rearrangement of many hydrogen bonds and as such can be strongly affected by nanoconfinement. We study the vibrational and structural dynamics of hydrated protons in water nanodroplets stabilized by a cationic surfactant using polarization-resolved femtosecond infrared transient absorption spectroscopy. We determine the time scale of proton hopping in the center of the water nanodroplets from the dynamics of the anisotropy of the transient absorption signals. We find that in small nanodroplets with a diameter <4 nm, proton hopping is more than 10 times slower than in bulk water. Even in relatively large nanodroplets with a diameter of ∼7 nm, we find that the rate of proton hopping is slowed by ∼4 times compared with bulk water.
Collapse
|
46
|
Stoppelman JP, McDaniel JG. Proton Transport in [BMIM+][BF4–]/Water Mixtures Near the Percolation Threshold. J Phys Chem B 2020; 124:5957-5970. [DOI: 10.1021/acs.jpcb.0c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- John P. Stoppelman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| | - Jesse G. McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| |
Collapse
|
47
|
Maiyelvaganan KR, Ravva MK, Prakash M. Twisted Eigen Can Induce Proton Transfer at a Hydrophobic-Hydrophilic Interface. J Phys Chem A 2020; 124:3364-3373. [PMID: 32255630 DOI: 10.1021/acs.jpca.9b10149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The investigation of proton localization at a hydrophobic-hydrophilic interface is an important problem in chemical and materials sciences. In this study, protonated benzene (i.e., benzenium ion) and water clusters [BZH+Wn (where n = 1-6)] are selected as prototype models to understand the interfacial interactions and proton transfer mechanism between a carbonaceous surface and water molecules. The excess protons can localize in the vicinity of the hydrophobic-hydrophilic interface, and these clusters are stabilized by various kinds of noncovalent interactions. Calculations are carried out using ab initio (MP2) and density functional theory B3LYP methods to shed more light on geometries, energetics, and spectral signatures of the protonated species [H+(H2O)n] at the interfaces. These calculations revealed few low-lying isomers, which have not been reported earlier. Scrutiny of the results reveals that proton localization in the hydrophilic environment is more stable than the hydrophobic benzene π-cloud. Furthermore, the occurrence of an O-H+···π hydrogen bond significantly influences the O-H+···O interactions in the water clusters and also intensively affects the vibrational modes of the Eigen cation. Thus, the aromatic π-clouds can stabilize the Eigen cation and at the same time, a twisted form of Eigen (one O-H+···π → two O-H+···π) can enhance the proton transfer through the water chain via a Grotthuss-type mechanism. The vibrational spectra of these clusters reveal that there is a large red-shifted frequency for the O-H+···O, O-H+···π, and O-H···π modes of interaction. The energetic values and vibrational frequencies obtained from the B3LYP method are in close agreement with the MP2 level and experimental values, respectively.
Collapse
Affiliation(s)
| | | | - Muthuramalingam Prakash
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
48
|
Rai S, Sharma N, Rai D. Structured water chains in external electric fields. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1662957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Smita Rai
- Department of Physics, Sikkim University, Samdur, India
| | - Nayan Sharma
- Department of Physics, Sikkim University, Samdur, India
| | - Dhurba Rai
- Department of Physics, Sikkim University, Samdur, India
| |
Collapse
|
49
|
Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed. ENERGIES 2020. [DOI: 10.3390/en13061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents a study of the effect of metal particle and carbon nanotube additives on the thermal diffusivity of a silica-gel-based adsorption bed of an adsorption chiller. The structural properties of silica gel and carbon nanotubes were investigated using the volumetric method of low-pressure nitrogen adsorption. Thermal characteristic tests of the prepared mixtures based on a silica gel with 5 wt% and 15 wt% of aluminum, copper, or carbon nanotubes were carried out. The obtained results show that all the materials used as additives in blends in this study achieved higher thermal diffusivities in comparison with the thermal diffusivity of the parent silica gel. However, the best effect was observed for the mixture with 15 wt% aluminum.
Collapse
|
50
|
Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nat Commun 2020; 11:843. [PMID: 32071299 PMCID: PMC7029035 DOI: 10.1038/s41467-020-14627-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022] Open
Abstract
Water confined within one-dimensional (1D) hydrophobic nanochannels has attracted significant interest due to its unusual structure and dynamic properties. As a representative system, water-filled carbon nanotubes (CNTs) are generally studied, but direct observation of the crystal structure and proton transport is difficult for CNTs due to their poor crystallinity and high electron conduction. Here, we report the direct observation of a unique water-cluster structure and high proton conduction realized in a metal-organic nanotube, [Pt(dach)(bpy)Br]4(SO4)4·32H2O (dach: (1R, 2R)-(–)-1,2-diaminocyclohexane; bpy: 4,4’-bipyridine). In the crystalline state, a hydrogen-bonded ice nanotube composed of water tetramers and octamers is found within the hydrophobic nanochannel. Single-crystal impedance measurements along the channel direction reveal a high proton conduction of 10−2 Scm−1. Moreover, fast proton diffusion and continuous liquid-to-solid transition are confirmed using solid-state 1H-NMR measurements. Our study provides valuable insight into the structural and dynamical properties of confined water within 1D hydrophobic nanochannels. Water confined in natural or synthetic hydrophobic nano-spaces behaves differently than in the bulk. Here the authors investigate water in hydrophobic synthetic 1D nanochannels revealing water clustering in tetramers and octamers and high proton conductivity, along with a continuous liquid to solid transition.
Collapse
|