1
|
Lau D, Donnellan L, Harris JC, Hayes JE, Croser J, Hoffmann P. Proteomic and lipidomic analyses reveal novel molecular insights into oat (Avena sativa L.) lipid regulation and crosstalk with starch synthesis during grain development. Int J Biol Macromol 2025; 306:141305. [PMID: 39984082 DOI: 10.1016/j.ijbiomac.2025.141305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Grain development influences the composition of oat (Avena sativa L.), which impacts the nutritional and processing value of the grains. This study explored the molecular mechanisms underlying oat grain development in two oat varieties - Bannister (10.0 % oil) and Bilby (7.5 % oil), with a focus on lipid biosynthesis, which has not been previously studied at protein level. Matrix-assisted laser desorption and ionisation mass spectrometry imaging (MALDI-MSI) of developing grains revealed oil distribution within the developing endosperm, where starch is also expected to accumulate. Shotgun lipidomics and proteomics were performed throughout development (from 4 to 20 days after pollination (DAP) and at maturity) to examine the temporal dynamics of lipid biosynthesis. More than 4500 protein groups were identified. Clustering of proteins based on their temporal expression patterns revealed the upregulation of major synthesis pathways from 8 DAP onwards, marking a critical stage in oat grain development. Triacylglycerol (TG) abundances strongly correlated with the expressions of enzymes involved in fatty acid synthesis (FAS), highlighting a bottleneck pathway in oat oil synthesis. Bannister displayed higher glycerolipid accumulation than Bilby, which was linked to the upregulation of enzymes in FAS and TG assembly pathways. Differences in the levels of lipid and starch synthesis enzymes between the two varieties exemplified a possible divergence in metabolic priorities during seed development. These findings provide insights into the regulation of lipid synthesis pathways in oats and lay a foundation for future studies investigating factors influencing grain composition to meet the future needs of an expanding industry.
Collapse
Affiliation(s)
- Darren Lau
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, South Australia, Australia.
| | - Leigh Donnellan
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, South Australia, Australia.
| | - John C Harris
- South Australian Research and Development Institute, Department of Primary Industries and Regions, Adelaide 5000, South Australia, Australia.
| | - Julie E Hayes
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia 5064, Australia.
| | - Janine Croser
- South Australian Research and Development Institute, Department of Primary Industries and Regions, Adelaide 5000, South Australia, Australia; Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, South Australia 5064, Australia.
| | - Peter Hoffmann
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, South Australia, Australia.
| |
Collapse
|
2
|
Al-Obaidi JR, Lau SE, Liew YJM, Tan BC, Rahmad N. Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications. Protein J 2024; 43:1083-1103. [PMID: 39487361 DOI: 10.1007/s10930-024-10240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Seeds are essential for plant reproduction, ensuring species survival and dispersal while adapting to diverse environments throughout a plant's life. Proteomics has emerged as a powerful tool for deciphering the complexities of seed growth, germination, and stress responses. Advanced proteomic technologies enable the analysis of protein changes during germination, dormancy, and ageing, enhancing our understanding of seed lifespan and vitality. Recent studies have revealed detailed insights into metabolic processes and storage protein profiles across various plant species. This knowledge is crucial for improving seed storage, conserving quality, and maintaining viability. Additionally, it contributes to sustainable agriculture by identifying stress-responsive proteins and signalling pathways that can mitigate stress and enhance farming practices. This review highlights significant advancements in seed proteomics over the past decade, discussing critical discoveries related to storage proteins, protein interactions, and proteome modifications due to stress. It illustrates how these insights transform seed biology, boosting productivity, food security, and environmentally friendly practices. The review also identifies existing knowledge gaps and provides direction for future research, underscoring the need for continued interdisciplinary collaboration in this dynamic field.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, 35900, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yvonne Jing Mei Liew
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- University of Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology, Serdang, Selangor, 43400, Malaysia
| |
Collapse
|
3
|
Ramanan M, Bettenhausen H, Grigorean G, Diepenbrock C, Fox GP. Barley Grain Proteome Assessment Using Multi-Environment Trial Data and Machine Learning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26416-26430. [PMID: 39536264 DOI: 10.1021/acs.jafc.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteomics can be used to assess individual protein abundances, which could reflect genotypic and environmental effects and potentially predict grain/malt quality. In this study, 79 barley grain samples (genotype-location-year combinations) from Californian multi-environment trials (2017-2022) were assessed using liquid chromatography-mass spectrometry. In total, 3104 proteins were identified across all of the samples. Location, genotype, and year explained 26.7, 17.1, and 14.3% of the variance in the relative abundance of individual proteins, respectively. Sixteen proteins with storage, DNA/RNA binding, or enzymatic functions were significantly higher/lower in abundance (compared to the overall mean) in the Yolo 3 and Imperial Valley locations, Butta 12 and LCS Odyssey genotypes, and the 2017-18 and 2021-22 years. Individual protein abundances were reasonably predictive (RMSECV = 1.25-2.04%) for total, alcohol-soluble, and malt protein content and malt fine extract. This study illustrates the role of the environment in the barley proteome and the utility of proteomics and machine learning to predict grain/malt quality.
Collapse
Affiliation(s)
- Maany Ramanan
- Department of Food Science & Technology, University of California, Davis, California 95616-5270, United States
| | - Harmonie Bettenhausen
- Hartwick College Center for Craft Food & Beverage, Hartwick College, Oneonta, New York 13820, United States
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, Davis, California 95616, United States
| | - Christine Diepenbrock
- Department of Plant Sciences, University of California, Davis, California 95616-5270, United States
| | - Glen Patrick Fox
- Department of Food Science & Technology, University of California, Davis, California 95616-5270, United States
| |
Collapse
|
4
|
Müller I, Schmid B, Bosa L, Morlock GE. Screening of α-amylase/trypsin inhibitor activity in wheat, spelt and einkorn by high-performance thin-layer chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38687148 DOI: 10.1039/d4ay00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
α-Amylase/trypsin inhibitor proteins (ATI) are discussed as possible triggers for non-celiac gluten sensitivity. The potential of high-performance thin-layer chromatography (HPTLC) was studied for the first time to analyse the inhibitory properties of ATIs from flour of wheat, spelt, and einkorn. Inhibition by each flour of the digestive enzymes trypsin or α-amylase was determined by the reduction of released metabolisation products in comparison to non-digested flour, and positive (acarbose) and negative (water) controls. Firstly, amylolysis was carried out in miniaturized form on the HPTLC surface (HPTLC-nanoGIT) after in-vial pre-incubation of the amylase with the inhibitors from flour. α-Amylase inhibition was evident via the reduction of released saccharides, as analysed by normal phase HPTLC. A strong influence of the flour matrix on the assay results (individual saccharides) was evident, caused by an increased amylolysis of further polysaccharides present, making HPTLC analysis more reliable than currently used spectrophotometric sum value assays. The detection and visualization of such matrix influence helps to understand the problems associated with spectrophotometric assays. Only maltotriose was identified as a reliable marker of the amylolysis. The highest α-amylase inhibition and thus the lowest saccharide response was detected for maltotriose in refined spelt, whereas the lowest α-amylase inhibition and thus the highest saccharide response was detected for maltotriose in refined wheat. A comparison of refined and whole grain flours showed no clear trend in the responses. Secondly, trypsin inhibition and proteolysis were performed in-vial, and any inhibition was evident via the reduction of released peptides, analysed by reversed-phase HPTLC. Based on the product pattern of the proteolysis, einkorn and whole wheat showed the highest trypsin inhibition, whereas refined wheat and refined spelt showed the lowest inhibition. Advantageously, HPTLC analysis provided important information on changes in individual saccharides or peptides, which was more reliable and sustainable than spectrophotometric in-vial assays (only sum value) or liquid column chromatography analysis (targeting only the ATI proteins).
Collapse
Affiliation(s)
- Isabel Müller
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Bianca Schmid
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Loredana Bosa
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Gertrud Elisabeth Morlock
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
5
|
Zhu J, Guo W, Lan Y. Global Analysis of Lysine Lactylation of Germinated Seeds in Wheat. Int J Mol Sci 2023; 24:16195. [PMID: 38003390 PMCID: PMC10671351 DOI: 10.3390/ijms242216195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein lactylation is a newly discovered posttranslational modification (PTM) and is involved in multiple biological processes, both in mammalian cells and rice grains. However, the function of lysine lactylation remains unexplored in wheat. In this study, we performed the first comparative proteomes and lysine lactylomes during seed germination of wheat. In total, 8000 proteins and 927 lactylated sites in 394 proteins were identified at 0 and 12 h after imbibition (HAI). Functional enrichment analysis showed that glycolysis- and TCA-cycle-related proteins were significantly enriched, and more differentially lactylated proteins were enriched in up-regulated lactylated proteins at 12 HAI vs. 0 HAI through the KEGG pathway and protein domain enrichment analysis compared to down-regulated lactylated proteins. Meanwhile, ten particularly preferred amino acids near lactylation sites were found in the embryos of germinated seeds: AA*KlaT, A***KlaD********A, KlaA**T****K, K******A*Kla, K*Kla********K, KlaA******A, Kla*A, KD****Kla, K********Kla and KlaG. These results supplied a comprehensive profile of lysine lactylation of wheat and indicated that protein lysine lactylation played important functions in several biological processes.
Collapse
Affiliation(s)
- Junke Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Weiwei Guo
- College of Agronomy, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology/Shandong Engineering Research Center of Germplasm, Innovation and Utilization of Salt-Tolerant Crops, Qingdao 266109, China
| | - Yubin Lan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
- National Sub-Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Shandong University of Technology, Zibo 255000, China
- Academy of Ecological Unmanned Farm, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
6
|
Zhang G, Liu D, Wang H. Quantitative proteomics analysis reveals the anthocyanin biosynthetic mechanism in barley. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Lee JS, Ko CS, Seo YW. Oat AsDA1-2D enhances heat stress tolerance and negatively regulates seed-storage globulin. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153981. [PMID: 37054580 DOI: 10.1016/j.jplph.2023.153981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The importance of oats has increased because of their high nutritional value and health benefits in the human diet. High-temperature stress during the reproductive growth period has a detrimental effect on grain morphology by changing the structure and concentration of several seed-storage proteins. DA1, a conserved ubiquitin-proteasome pathway component, plays an important role in regulating grain size by controlling cell proliferation in maternal integuments during the grain-filling stage. However, there have been no reports or studies on oat DA1 genes. In this study, we identified three DA1-like genes (AsDA1-2D, AsDA1-5A, and AsDA1-1D) using genome-wide analysis. Among these, AsDA1-2D was found to be responsible for high-temperature stress tolerance via a yeast thermotolerance assay. The physical interaction of AsDA1-2D with oat-storage-globulin (AsGL-4D) and a protease inhibitor (AsPI-4D) was observed using yeast two-hybrid screening. A subcellular localization assay revealed that AsDA1-2D and its interacting proteins are localized in the cytosol and plasma membrane. An in vitro pull-down assay showed that AsDA1-2D forms a complex with both AsPI-4D and AsGL-4D. An in vitro cell-free degradation assay showed that AsGL-4D was degraded by AsDA1-2D under high-temperature conditions and that AsPI-4D inhibited the function of AsDA1-2D. These results suggest that AsDA1-2D acts as a cysteine protease and negatively regulates oat-grain-storage-globulin under heat stress.
Collapse
Affiliation(s)
- Joo Sun Lee
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan Seop Ko
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Malik A, Mor VS, Punia H, Duhan DS, Tokas J, Bhuker A, Alyemeni MN, Shakoor A. Development and Optimization of Label-Free Quantitative Proteomics under Different Crossing Periods of Bottle Gourd. Curr Issues Mol Biol 2023; 45:1349-1372. [PMID: 36826033 PMCID: PMC9955185 DOI: 10.3390/cimb45020088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Bottle gourd, a common vegetable in the human diet, has been valued for its medicinal and energetic properties. In this experiment, the time-resolved analysis of the changes in the proteins' electrophoretic patterning of the seed development at different crossing periods was studied in bottle gourd using label-free quantitative proteomics. Hybrid HBGH-35 had the highest observed protein levels at the 4th week of the crossing period (F4) compared to the parental lines, viz. G-2 (M) and Pusa Naveen (F). The crossing period is significantly correlated with grain filling and reserve accumulation. The observed protein expression profile after storage was related to seed maturation and grain filling in bottle gourds. A total of 2517 proteins were identified in differentially treated bottle gourd fruits, and 372 proteins were differentially expressed between different crossing periods. Proteins related to carbohydrate and energy metabolism, anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Some proteins were involved in the development, while others were engaged in desiccation and the early grain-filling stage. F4 was distinguished by an increase in the accumulation of low molecular weight proteins and enzymes such as amylase, a serine protease, and trypsin inhibitors. The seed vigor also followed similar patterns of differential expression of seed storage proteins. Our findings defined a new window during seed production, which showed that at F4, maximum photosynthetic assimilates accumulated, resulting in an enhanced source-sink relationship and improved seed production. Our study attempts to observe the protein expression profiling pattern under different crossing periods using label-free quantitative proteomics in bottle gourd. It will facilitate future detailed investigation of the protein associated with quality traits and the agronomic importance of bottle gourd through selective breeding programs.
Collapse
Affiliation(s)
- Anurag Malik
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Virender Singh Mor
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, India
- Correspondence: (V.S.M.); (H.P.)
| | - Himani Punia
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, India
- Correspondence: (V.S.M.); (H.P.)
| | - D. S. Duhan
- Department of Vegetable Science, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Jayanti Tokas
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Axay Bhuker
- Department of Seed Science & Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar 125 004, India
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
9
|
Bahmani M, O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Edwards IB, Colgrave ML. Application of Mass Spectrometry-Based Proteomics to Barley Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8591-8609. [PMID: 34319719 PMCID: PMC8389776 DOI: 10.1021/acs.jafc.1c01871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most cultivated crop in the world in terms of production volume, and it is also the most important raw material of the malting and brewing industries. Barley belongs to the grass (Poaceae) family and plays an important role in food security and food safety for both humans and livestock. With the global population set to reach 9.7 billion by 2050, but with less available and/or suitable land for agriculture, the use of biotechnology tools in breeding programs are of considerable importance in the quest to meet the growing food gap. Proteomics as a member of the "omics" technologies has become popular for the investigation of proteins in cereal crops and particularly barley and its related products such as malt and beer. This technology has been applied to study how proteins in barley respond to adverse environmental conditions including abiotic and/or biotic stresses, how they are impacted during food processing including malting and brewing, and the presence of proteins implicated in celiac disease. Moreover, proteomics can be used in the future to inform breeding programs that aim to enhance the nutritional value and broaden the application of this crop in new food and beverage products. Mass spectrometry analysis is a valuable tool that, along with genomics and transcriptomics, can inform plant breeding strategies that aim to produce superior barley varieties. In this review, recent studies employing both qualitative and quantitative mass spectrometry approaches are explored with a focus on their application in cultivation, manufacturing, processing, quality, and the safety of barley and its related products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Clare E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Hugh Dunn
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd, SABC - Loneragan Building, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- Phone: +61-7-3214-2697. . Fax: +61-7-3214-2900
| |
Collapse
|
10
|
Call L, Haider E, D'Amico S, Reiter E, Grausgruber H. Synthesis and accumulation of amylase-trypsin inhibitors and changes in carbohydrate profile during grain development of bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:113. [PMID: 33627080 PMCID: PMC7905651 DOI: 10.1186/s12870-021-02886-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Recent studies indicate that amylase-trypsin inhibitors (ATIs) and certain carbohydrates referred to as FODMAPs (fermentable oligo-, di-, monosaccharides and polyols) play an important role in promoting wheat sensitivity. Hitherto, no study has investigated the accumulation of ATIs during the development of the wheat caryopsis. We collected caryopses of common wheat cv. 'Arnold' at eight different grain developmental stages to study compositional changes in ATI and FODMAP content. RESULTS The harvested caryopses were analysed for their size, protein and carbohydrate concentrations. ATIs were further characterized by MALDI-TOF MS, and their trypsin inhibition was evaluated by an enzymatic assay. The results showed that ATI accumulation started about 1 week after anthesis and subsequently increased steadily until physiological maturity. However, the biological activity of ATIs in terms of enzyme inhibition was not detectable before about 4 weeks after anthesis. Carbohydrate analysis revealed the abundance of short-chain fructans in early stages of grain development, whereas non-water-soluble carbohydrates increased during later developmental stages. CONCLUSIONS The results provide new insights into the complex metabolisms during grain filling and maturation, with particular emphasis on the ATI content as well as the inhibitory potential towards trypsin. The time lag between ATI accumulation and development of their biological activity is possibly attributed to the assembling of ATIs to dimers and tetramers, which seems to be crucial for their inhibitory potential.
Collapse
Affiliation(s)
- Lisa Call
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
- Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Elisabeth Haider
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Stefano D'Amico
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Elisabeth Reiter
- Institute of Animal Nutrition and Feeding, AGES - Austrian Agency for Health and Food Safety, Spargelfeldstr. 191, 1220, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU - University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Str. 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
11
|
Mumolo MG, Rettura F, Melissari S, Costa F, Ricchiuti A, Ceccarelli L, de Bortoli N, Marchi S, Bellini M. Is Gluten the Only Culprit for Non-Celiac Gluten/Wheat Sensitivity? Nutrients 2020; 12:E3785. [PMID: 33321805 PMCID: PMC7762999 DOI: 10.3390/nu12123785] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gluten-free diet (GFD) has gained increasing popularity in recent years, supported by marketing campaigns, media messages and social networks. Nevertheless, real knowledge of gluten and GF-related implications for health is still poor among the general population. The GFD has also been suggested for non-celiac gluten/wheat sensitivity (NCG/WS), a clinical entity characterized by intestinal and extraintestinal symptoms induced by gluten ingestion in the absence of celiac disease (CD) or wheat allergy (WA). NCG/WS should be regarded as an "umbrella term" including a variety of different conditions where gluten is likely not the only factor responsible for triggering symptoms. Other compounds aside from gluten may be involved in the pathogenesis of NCG/WS. These include fructans, which are part of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), amylase trypsin inhibitors (ATIs), wheat germ agglutinin (WGA) and glyphosate. The GFD might be an appropriate dietary approach for patients with self-reported gluten/wheat-dependent symptoms. A low-FODMAP diet (LFD) should be the first dietary option for patients referring symptoms more related to FODMAPs than gluten/wheat and the second-line treatment for those with self-reported gluten/wheat-related symptoms not responding to the GFD. A personalized approach, regular follow-up and the help of a skilled dietician are mandatory.
Collapse
Affiliation(s)
| | - Francesco Rettura
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.G.M.); (S.M.); (F.C.); (A.R.); (L.C.); (N.d.B.); (S.M.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Leišová-Svobodová L, Psota V, Stočes Š, Vácha P, Kučera L. Comparative de novo transcriptome analysis of barley varieties with different malting qualities. Funct Integr Genomics 2020; 20:801-812. [PMID: 32948934 PMCID: PMC7585565 DOI: 10.1007/s10142-020-00750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/01/2022]
Abstract
Barley is one of the most important crops in the world. Barley is used as both food and feed and is important for malt production. Demands for malting quality differ among countries and customs. Malting quality is a complex characteristic involving barley genetics, the environmental conditions during barley growth, and the technological parameters of the malting process. In this study, the hypothesis was that there were no differences between two groups of barley varieties with different but defined malting qualities, which was tested using RNA sequencing during selected stages of malting. In total, 919 differentially transcribed genes between the two barley groups were identified and annotated. Differentially expressed genes (DEGs) were primarily assigned to gene ontology (GO) terms of oxidation-reduction process - oxidoreductase activity, response to stress, carbohydrate metabolic process, and proteolysis - hydrolase activity, and metal ion binding. Genes connected with the plasma membrane and its integral components also play important roles in malting quality. DEG profiles of selected genes in the three malting stages indicate a complex character of malting quality. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were identified. SNPs and indels with the best quality were used for primer design. After optimization and validation, five molecular markers were developed for use in barley breeding.
Collapse
Affiliation(s)
| | - Vratislav Psota
- Research Institute of Brewing and Malting, Analytical Testing Laboratory - Malting Institute Brno, Mostecká 971/7, 614 00, Brno, Czech Republic
| | - Štěpán Stočes
- SEQme s.r.o., Dlouhá 176 26301, Dobříš, Czech Republic
| | - Petr Vácha
- SEQme s.r.o., Dlouhá 176 26301, Dobříš, Czech Republic
| | - Ladislav Kučera
- Crop Research Institute, Drnovská, 507 161 06, Prague 6, Czech Republic
| |
Collapse
|
13
|
Guo W, Han L, Li X, Wang H, Mu P, Lin Q, Liu Q, Zhang Y. Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci Rep 2020; 10:13454. [PMID: 32778714 PMCID: PMC7418024 DOI: 10.1038/s41598-020-70230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Seed germination is the first stage in wheat growth and development, directly affecting grain yield and quality. As an important post-translation modification, lysine acetylation participates in diverse biological functions. However, little is known regarding the quantitative acetylproteome characterization during wheat seed germination. In this study, we generated the first comparative proteomes and lysine acetylomes during wheat seed germination. In total, 5,639 proteins and 1,301 acetylated sites on 722 proteins were identified at 0, 12 and 24 h after imbibitions. Several particularly preferred amino acids were found near acetylation sites, including KacS, KacT, KacK, KacR, KacH, KacF, KacN, Kac*E, FKac and Kac*D, in the embryos during seed germination. Among them, KacH, KacF, FKac and KacK were conserved in wheat. Biosynthetic process, transcriptional regulation, ribosome and proteasome pathway related proteins were significantly enriched in both differentially expressed proteins and differentially acetylated proteins through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We also revealed that histone acetylation was differentially involved in epigenetic regulation during seed germination. Meanwhile, abscisic acid and stress related proteins were found with acetylation changes. In addition, we focused on 8 enzymes involved in carbohydrate metabolism, and found they were differentially acetylated during seed germination. Finally, a putative metabolic pathway was proposed to dissect the roles of protein acetylation during wheat seed germination. These results not only demonstrate that lysine acetylation may play key roles in seed germination of wheat but also reveal insights into the molecular mechanism of seed germination in this crop.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Liping Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ping Mu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qi Lin
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qingchang Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.,Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
14
|
Bose U, Broadbent JA, Byrne K, Blundell MJ, Howitt CA, Colgrave ML. Proteome Analysis of Hordein-Null Barley Lines Reveals Storage Protein Synthesis and Compensation Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5763-5775. [PMID: 32374605 DOI: 10.1021/acs.jafc.0c01410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hordeins are the major barley seed storage proteins and are elicitors of celiac disease. Attempts to reduce the hordein level in barley have been made; however, the resultant pleiotropic effects are less understood. Here, data-independent acquisition mass spectrometry was used to measure proteome-wide abundance differences between wild-type and single hordein-null barley lines. Using comparative quantitative proteomics, we detected proteome-wide changes (∼59%) as a result of the specific reduction in hordein proteins. The comparative analysis and functional annotation revealed an increase in non-gluten storage proteins, such as globulins and lipid transfer proteins, and proteins rich in essential amino acids in the null lines. This study yields an informative molecular portrait of the hordein-null lines and the underlying mechanisms of storage protein biosynthesis. This study indicates the extent to which protein content can be manipulated without biological consequence, and we envision its wide-scale application for studying modified crops.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - James A Broadbent
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Malcolm J Blundell
- CSIRO Agriculture and Food, General Post Office Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Crispin A Howitt
- CSIRO Agriculture and Food, General Post Office Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| |
Collapse
|
15
|
Roustan V, Hilscher J, Weidinger M, Reipert S, Shabrangy A, Gebert C, Dietrich B, Dermendjiev G, Schnurer M, Roustan PJ, Stoger E, Ibl V. Protein sorting into protein bodies during barley endosperm development is putatively regulated by cytoskeleton members, MVBs and the HvSNF7s. Sci Rep 2020; 10:1864. [PMID: 32024857 PMCID: PMC7002727 DOI: 10.1038/s41598-020-58740-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Cereal endosperm is a short-lived tissue adapted for nutrient storage, containing specialized organelles, such as protein bodies (PBs) and protein storage vacuoles (PSVs), for the accumulation of storage proteins. During development, protein trafficking and storage require an extensive reorganization of the endomembrane system. Consequently, endomembrane-modifying proteins will influence the final grain quality and yield. However, little is known about the molecular mechanism underlying endomembrane system remodeling during barley grain development. By using label-free quantitative proteomics profiling, we quantified 1,822 proteins across developing barley grains. Based on proteome annotation and a homology search, 94 proteins associated with the endomembrane system were identified that exhibited significant changes in abundance during grain development. Clustering analysis allowed characterization of three different development phases; notably, integration of proteomics data with in situ subcellular microscopic analyses showed a high abundance of cytoskeleton proteins associated with acidified PBs at the early development stages. Moreover, endosomal sorting complex required for transport (ESCRT)-related proteins and their transcripts are most abundant at early and mid-development. Specifically, multivesicular bodies (MVBs), and the ESCRT-III HvSNF7 proteins are associated with PBs during barley endosperm development. Together our data identified promising targets to be genetically engineered to modulate seed storage protein accumulation that have a growing role in health and nutritional issues.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Julia Hilscher
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Azita Shabrangy
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Claudia Gebert
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Bianca Dietrich
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
- Medical University of Vienna, Department of Obstetrics and Gynecology Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, A-1090, Vienna, Austria
| | - Georgi Dermendjiev
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Madeleine Schnurer
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Eva Stoger
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Regulation of nitrogen availability results in changes in grain protein content and grain storage subproteomes in barley (Hordeum vulgare L.). PLoS One 2019; 14:e0223831. [PMID: 31618253 PMCID: PMC6795425 DOI: 10.1371/journal.pone.0223831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/28/2019] [Indexed: 11/19/2022] Open
Abstract
Barley grain protein content (GPC) is an important quality factor that determines grain end-use value. The synthesis and accumulation of grain protein is highly dependent on the availability of nitrogen fertilizer, and it is important to understand the underlying control mechanisms of this. In the current study, the GPC and protein composition of mature grain seeds from Yangsimai 3 and Naso Nijo barley cultivars were analyzed. Grain storage subproteomes (albumin, glubulin, hordein and glutelin) were compared in the cultivars grown in both low and high nitrogen level conditions. The GPC of mature grain was significantly higher in Yangsimai 3 than Naso Nijo following nitrogen treatment. Albumin, hordein and glutelin content were increased in Yangsimai, while only hordein content was increased in Naso Nijo. Large-scale analysis of the grain storage subproteome revealed 152 differentially expressed protein spots on 2-DE gels with a pH range of 3-10. Among these, 42 and 66 protein spots were successfully identified by tandem mass spectrometry in Yangsimai 3 and Naso Nijo grown in low and high nitrogen conditions. The identified proteins were further grouped into thirteen categories according to their biological functions. This detailed analysis of grain subproteomes provides information on how barley GPC may be controlled by nitrogen supply.
Collapse
|
17
|
Riahi J, Amri B, Chibani F, Azri W, Mejri S, Bennani L, Zoghlami N, Matros A, Mock HP, Ghorbel A, Jardak R. Comparative analyses of albumin/globulin grain proteome fraction in differentially salt-tolerant Tunisian barley landraces reveals genotype-specific and defined abundant proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:652-661. [PMID: 30672087 DOI: 10.1111/plb.12965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Salinity is one of the major abiotic stresses threatening crop production and yield worldwide. Breeding programmes are therefore needed to improve yield under cultivation in soil. Traits from locally adopted landraces provide a resource to assist breeding of novel elite genotypes. Here, we examine differentially expressed proteins by performing comparative proteomic profiling of the albumin/globulin grain fraction of Tunisian barley genotype landraces with contrasting salinity tolerance. Tunisian barley Boulifa (B, tolerant) and Testour (T, sensitive) mature grains were assessed in 2-DE profiles. Differentially expressed spots, with an abundance enhanced 1.5-fold in the grain, were subjected to MALDI TOF/TOF MS for identification. Distinctiveness between tolerant and sensitive genotypes was proved in the albumin/globulin fraction using PCA; 64 spots showed significant differential abundance. Increased accumulation of 40 spots was confirmed in Boulifa with, interestingly, four genotype-specific spots. Two of these four spots were sHSP. Proteins with highest abundance were serpin Z7, 16.9 KDa Class I HSP and phosphogluconolactonase 2. Proteins such as expansin, kiwellin, kinesin and succinyl-CoA ligase were identified for the first time in barley grain. Moreover, ß-amylase, LEA family and others were identified as abundant in Boulifa. On the other hand, proteins more accumulated in Testour are implicated mainly in ROS scavenging and protease inhibition. Our results clearly indicate proteomic contrast between the two selected genotypes. With identification of specific HSP, high abundant stress-protective and other defined proteins, we provide biochemical traits that will support breeding programmes to address the threat of salinity in agricultural production.
Collapse
Affiliation(s)
- J Riahi
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - B Amri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - F Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - W Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - S Mejri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - L Bennani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - N Zoghlami
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - A Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - H P Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - A Ghorbel
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - R Jardak
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
18
|
Quantitative proteomics analysis reveals proteins and pathways associated with anthocyanin accumulation in barley. Food Chem 2019; 298:124973. [PMID: 31261005 DOI: 10.1016/j.foodchem.2019.124973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to explore the underlying mechanisms involved in anthocyanin biosynthesis in purple, blue, and white barley using quantitative proteomics analysis. We identified the differences in protein expression and related functions involved in anthocyanin biosynthesis in purple, blue, and white barley (named H, M, and L groups, respectively, based on their anthocyanin content) using TMT-liquid chromatography/mass spectroscopy-based proteomic methods. Totally, 297, 300, 254, and 1421 differentially expressed proteins (DEPs) were found in H vs. L, H vs. M, L vs. M, and H vs. L vs. M groups, respectively. Six clusters of proteins from the 1421 DEPs were mainly involved in carbon metabolism, amino acid and secondary metabolite biosynthesis, and metabolic pathways. Several proteins were validated using parallel reaction monitoring. The proteins involved in amino acid biosynthesis, carbon metabolism, metabolic pathways, and phenylpropanoid biosynthesis were responsible for the color differences in the three barley varieties.
Collapse
|
19
|
Kerr ED, Phung TK, Caboche CH, Fox GP, Platz GJ, Schulz BL. The intrinsic and regulated proteomes of barley seeds in response to fungal infection. Anal Biochem 2019; 580:30-35. [PMID: 31181183 DOI: 10.1016/j.ab.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023]
Abstract
Barley is an important cereal grain used for beer brewing, animal feed, and human food consumption. Fungal disease can impact barley production, as it causes substantial yield loss and lowers seed quality. We used sequential window acquisition of all theoretical ions mass spectrometry (SWATH-MS) to measure and quantify the relative abundance of proteins within seeds of different barley varieties under various fungal pathogen burdens (ProteomeXchange Datasets PXD011303 and PXD014093). Fungal burden in the leaves and stems of barley resulted in changes to the seed proteome. However, these changes were minimal and showed substantial variation among barley samples infected with different pathogens. The limited effect of intrinsic disease resistance on the seed proteome is consistent with the main mediators of disease resistance being present in the leaves and stems of the plant. The seeds of barley varieties accredited for use as malt had higher levels of proteins associated with starch synthesis and beer quality. The proteomic workflows developed and implemented here have potential application in quality control, breeding and processing of barley, and other agricultural products.
Collapse
Affiliation(s)
- Edward D Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia
| | - Christopher H Caboche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia
| | - Glen P Fox
- Centre for Nutrition and Food Sciences, Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Greg J Platz
- Department of Agriculture & Fisheries, Hermitage Research Facility, Warwick, 4370, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, Australia; Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
20
|
Bose U, Byrne K, Howitt CA, Colgrave ML. Targeted proteomics to monitor the extraction efficiency and levels of barley α-amylase trypsin inhibitors that are implicated in non-coeliac gluten sensitivity. J Chromatogr A 2019; 1600:55-64. [PMID: 31036362 DOI: 10.1016/j.chroma.2019.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Abstract
Plant defense protein α-amylase trypsin inhibitors (ATIs) have been proposed as one of the triggers of non-coeliac gluten sensitivity, however there have been no focused studies on their optimal extraction and quantitation from cereal grains. The efficiency of extraction is of utmost interest for the downstream detection and characterisation. In the present study, three extraction buffers and two modified protocols were investigated using LC-MRM-MS in order to examine their ability to efficiently and repeatably extract ATIs from selected barley cultivars. Initially, three extraction buffers IPA/DTT, urea and Tris-HCl were used to extract ATIs from two selected barley cultivars, Commander and Hindmarsh. The results obtained from the preliminary study showed that IPA/DTT and urea-based buffer extraction could yield ∼70% and ∼45% more ATIs, respectively than a buffer based on Tris-HCl extraction, with all methods showing high repeatability (CV < 15%). A multi-step protocol, employing IPA/DTT and urea improved the extraction efficiency in comparison to the single buffer extraction protocols (p<0.0001). When solutions from parallel extractions using IPA/DTT and urea were combined, the results were comparable (p = 0.99) with a sequential multi-step IPA/DTT-urea protocol. However, the repeatability of the combined process was compromised, as discerned by greater variation (CV>30%). The optimised sequential two-step extraction protocol was successfully used to extract and quantify ATIs from 12 barley cultivars. LC-MS analysis revealed that cv Yagan and cv Scope contain the higher levels (∼143% relative to the average barley ATI content), whereas cultivars Fleet (61%), Baudin (77%) and Commander (79%) contained the lowest levels. The libraries of ATIs identified and the quantitative methods described here provide a foundation for the future application of MS-based quantitative methodologies to detect and quantify ATIs in barley varieties and in food products.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia.
| | - Keren Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia.
| | - Crispin A Howitt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia.
| | | |
Collapse
|
21
|
Cohen M, Davydov O, Fluhr R. Plant serpin protease inhibitors: specificity and duality of function. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2077-2085. [PMID: 30721992 DOI: 10.1093/jxb/ery460] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 05/24/2023]
Abstract
The serpins are a family of structurally conserved protease inhibitors found in all animal and plant kingdoms. After interaction with their cognate substrate(s), their native energetically stressed state is relaxed by hydrolysis, resulting in a semi-stable covalent bond that disables the protease. The inherent flexible serpin structure supports additional non-inhibitory functions. This review will focus on several biological functions attributed to plant serpins, ranging from specific cell death protease inhibitors to a stabilizing role for β-amylase in seeds. Functional conservation of a particular serpin type, the LR serpins, is suggested by its compelling ubiquity throughout the plant kingdom. The multiple target specificity of plant serpins including the LR serpins enables them to perform dual functions that are not mutually exclusive both as a regulator of cell death and as a protective anti-pathogenic protein.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Olga Davydov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Ziegler K, Neumann J, Liu F, Fröhlich-Nowoisky J, Cremer C, Saloga J, Reinmuth-Selzle K, Pöschl U, Schuppan D, Bellinghausen I, Lucas K. Nitration of Wheat Amylase Trypsin Inhibitors Increases Their Innate and Adaptive Immunostimulatory Potential in vitro. Front Immunol 2019; 9:3174. [PMID: 30740114 PMCID: PMC6357940 DOI: 10.3389/fimmu.2018.03174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/24/2018] [Indexed: 01/22/2023] Open
Abstract
Amylase trypsin inhibitors (ATI) can be found in all gluten containing cereals and are, therefore, ingredient of basic foods like bread or pasta. In the gut ATI can mediate innate immunity via activation of the Toll-like receptor 4 (TLR4) on immune cells residing in the lamina propria, promoting intestinal, as well as extra-intestinal, inflammation. Inflammatory conditions can induce formation of peroxynitrite (ONOO-) and, thereby, endogenous protein nitration in the body. Moreover, air pollutants like ozone (O3) and nitrogen dioxide (NO2) can cause exogenous protein nitration in the environment. Both reaction pathways may lead to the nitration of ATI. To investigate if and how nitration modulates the immunostimulatory properties of ATI, they were chemically modified by three different methods simulating endogenous and exogenous protein nitration and tested in vitro. Here we show that ATI nitration was achieved by all three methods and lead to increased immune reactions. We found that ATI nitrated by tetranitromethane (TNM) or ONOO- lead to a significantly enhanced TLR4 activation. Furthermore, in human primary immune cells, TNM nitrated ATI induced a significantly higher T cell proliferation and release of Th1 and Th2 cytokines compared to unmodified ATI. Our findings implicate a causative chain between nitration, enhanced TLR4 stimulation, and adaptive immune responses, providing major implications for public health, as nitrated ATI may strongly promote inhalative wheat allergies (baker's asthma), non-celiac wheat sensitivity (NCWS), other allergies, and autoimmune diseases. This underlines the importance of future work analyzing the relationship between endo- and exogenous protein nitration, and the rise in incidence of ATI-related and other food hypersensitivities.
Collapse
Affiliation(s)
- Kira Ziegler
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Jan Neumann
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Christoph Cremer
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
23
|
Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2018; 9:1705. [PMID: 30542357 PMCID: PMC6277783 DOI: 10.3389/fpls.2018.01705] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/02/2018] [Indexed: 05/17/2023]
Abstract
Drought (water deficits) and heat (high temperatures) stress are the prime abiotic constraints, under the current and climate change scenario in future. Any further increase in the occurrence, and extremity of these stresses, either individually or in combination, would severely reduce the crop productivity and food security, globally. Although, they obstruct productivity at all crop growth stages, the extent of damage at reproductive phase of crop growth, mainly the seed filling phase, is critical and causes considerable yield losses. Drought and heat stress substantially affect the seed yields by reducing seed size and number, eventually affecting the commercial trait '100 seed weight' and seed quality. Seed filling is influenced by various metabolic processes occurring in the leaves, especially production and translocation of photoassimilates, importing precursors for biosynthesis of seed reserves, minerals and other functional constituents. These processes are highly sensitive to drought and heat, due to involvement of array of diverse enzymes and transporters, located in the leaves and seeds. We highlight here the findings in various food crops showing how their seed composition is drastically impacted at various cellular levels due to drought and heat stresses, applied separately, or in combination. The combined stresses are extremely detrimental for seed yield and its quality, and thus need more attention. Understanding the precise target sites regulating seed filling events in leaves and seeds, and how they are affected by abiotic stresses, is imperative to enhance the seed quality. It is vital to know the physiological, biochemical and genetic mechanisms, which govern the various seed filling events under stress environments, to devise strategies to improve stress tolerance. Converging modern advances in physiology, biochemistry and biotechnology, especially the "omics" technologies might provide a strong impetus to research on this aspect. Such application, along with effective agronomic management system would pave the way in developing crop genotypes/varieties with improved productivity under drought and/or heat stresses.
Collapse
Affiliation(s)
| | - Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sailaja Bhogireddy
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | | | - P. V. Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
24
|
Protein Disulfide Isomerase (PDI1-1) differential expression and modification in Mexican malting barley cultivars. PLoS One 2018; 13:e0206470. [PMID: 30427898 PMCID: PMC6235301 DOI: 10.1371/journal.pone.0206470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Barley malting quality depends on seed characteristics achieved during grain development and germination. One important parameter is protein accumulation in the mature seed, which may vary between cultivars. Here we conducted a protein pattern analysis in the range of pI 4–7 of mature grains from five Mexican barley cultivars, commonly used for malt and beer production. Reproducibly distinct protein spots, separated by 2D SDS PAGE, were identified by mass spectrometry and considered as potential markers for cultivars with distinct seed protein accumulation. The expression patterns of glutamate decarboxylase (GAD) and protein disulfide isomerase (PDI1-1) were followed at transcript level during grain development for three independent growth cycles to establish whether differences between cultivars were reproducible. Quantitative determination of PDI1-1 protein levels by ELISA confirmed a reproducibly, distinctive accumulation and post-translational modifications between cultivars, which were independent of plant growth regimes. According to its impact on differential storage protein accumulation, we propose the PDI1-1 protein as potential biomarker for Mexican malting barley cultivars.
Collapse
|
25
|
Roustan V, Roustan PJ, Weidinger M, Reipert S, Kapusi E, Shabrangy A, Stoger E, Weckwerth W, Ibl V. Microscopic and Proteomic Analysis of Dissected Developing Barley Endosperm Layers Reveals the Starchy Endosperm as Prominent Storage Tissue for ER-Derived Hordeins Alongside the Accumulation of Barley Protein Disulfide Isomerase (HvPDIL1-1). FRONTIERS IN PLANT SCIENCE 2018; 9:1248. [PMID: 30250475 PMCID: PMC6139375 DOI: 10.3389/fpls.2018.01248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/06/2018] [Indexed: 05/20/2023]
Abstract
Barley (Hordeum vulgare) is one of the major food sources for humans and forage sources for animal livestock. The average grain protein content (GPC) of barley ranges between 8 and 12%. Barley hordeins (i.e., prolamins) account for more than 50% of GPC in mature seeds and are important for both grain and flour quality. Barley endosperm is structured into three distinct cell layers: the starchy endosperm, which acts essentially as storage tissue for starch; the subaleurone, which is characterized by a high accumulation of seed storage proteins (SSPs); and the aleurone, which has a prominent role during seed germination. Prolamins accumulate in distinct, ER-derived protein bodies (PBs) and their trafficking route is spatio-temporally regulated. The protein disulfide isomerase (PDI) has been shown to be involved in PB formation. Here, we unravel the spatio-temporal proteome regulation in barley aleurone, subaleurone, and starchy endosperm for the optimization of end-product quality in barley. We used laser microdissection (LMD) for subsequent nanoLC-MS/MS proteomic analyses in two experiments: in Experiment One, we investigated the proteomes of dissected barley endosperm layers at 12 and at ≥20 days after pollination (DAP). We found a set of 10 proteins that were present in all tissues at both time points. Among these proteins, the relative protein abundance of D-hordein, B3-hordein and HvPDIL1-1 significantly increased in starchy endosperm between 12 and ≥20 DAP, identifying the starchy endosperm as putative major storage tissue. In Experiment Two, we specifically compared the starchy endosperm proteome at 6, 12, and ≥20 DAP. Whereas the relative protein abundance of D-hordein and B3-hordein increased between 6 and ≥20 DAP, HvPDIL1-1 increased between 6 and 12 DAP, but remained constant at ≥20 DAP. Microscopic observations showed that these relative protein abundance alterations were accompanied by additional localization of hordeins at the periphery of starch granules and a partial re-localization of HvPDIL1-1 from PBs to the periphery of starch granules. Our data indicate a spatio-temporal regulation of hordeins and HvPDIL1-1. These results are discussed in relation to the putative role of HvPDIL1-1 in end-product quality in barley.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | | | - Siegfried Reipert
- Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Eszter Kapusi
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Azita Shabrangy
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Stoger
- Department for Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Mahalingam R. Temporal Analyses of Barley Malting Stages Using Shotgun Proteomics. Proteomics 2018; 18:e1800025. [DOI: 10.1002/pmic.201800025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/08/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Ramamurthy Mahalingam
- United States Department of Agriculture; Agricultural Research Service; Cereal Crops Research Unit; 502 Walnut Street 53726 Madison WI USA
| |
Collapse
|
27
|
Eldakak M, Das A, Zhuang Y, Rohila JS, Glover K, Yen Y. A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat. Pathogens 2018; 7:E58. [PMID: 29932155 PMCID: PMC6161305 DOI: 10.3390/pathogens7030058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.
Collapse
Affiliation(s)
- Moustafa Eldakak
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Genetics Department, College of Agriculture, Alexandria University, Alexandria 21526, Egypt.
| | - Aayudh Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Yongbin Zhuang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- College of Agronomy, Shandong Agricultural University, Taian 271018, China.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Karl Glover
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
28
|
Cohen M, Fluhr R. Noncanonical interactions between serpin and β-amylase in barley grain improve β-amylase activity in vitro. PLANT DIRECT 2018; 2:e00054. [PMID: 31245723 PMCID: PMC6508567 DOI: 10.1002/pld3.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 05/31/2023]
Abstract
Serpin protease inhibitors and β-amylase starch hydrolases are very abundant seed proteins in the endosperm of grasses. β-amylase is a crucial enzyme in the beer industry providing maltose for fermenting yeast. In animals and plants, inhibitory serpins form covalent linkages that inactivate their cognate proteases. Additionally, in animals, noninhibitory functions for serpins are observed such as metabolite carriers and chaperones. The function of serpins in seeds has yet to be unveiled. In developing endosperm, serpin Z4 and β-amylase showed similar in vivo spatio-temporal accumulation properties and colocalize in the cytosol of transformed tobacco leaves. A molecular interaction between recombinant proteins of serpin Z4 and β-amylase was revealed by surface plasmon resonance and microscale thermophoresis yielding a dissociation constant of 10-7 M. Importantly, the addition of serpin Z4 significantly changes β-amylase enzymatic properties by increasing its maximal catalytic velocity. The presence of serpin Z4 stabilizes β-amylase activity during heat treatment without affecting its critical denaturing temperature. Oxidative stress, simulated by the addition of CuCl2, leads to the formation of high molecular weight polymers of β-amylase similar to those detected in vivo. The polymers were cross-linked through disulfide bonds, the formation of which was repressed when serpin Z4 was present. The results suggest an unprecedented function for a plant seed serpin as a β-amylase-specific chaperone-like partner that could optimize β-amylase activity upon germination. This report is the first to describe a noninhibitory function for a serpin in plants.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Robert Fluhr
- Department of Plant SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
29
|
Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV, Nayyar H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 0 DOI: 10.2135/cropsci1989.0011183x002900010023x] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought (water deficits) and heat (high temperatures) stress are the prime abiotic constraints, under the current and climate change scenario in future. Any further increase in the occurrence, and extremity of these stresses, either individually or in combination, would severely reduce the crop productivity and food security, globally. Although, they obstruct productivity at all crop growth stages, the extent of damage at reproductive phase of crop growth, mainly the seed filling phase, is critical and causes considerable yield losses. Drought and heat stress substantially affect the seed yields by reducing seed size and number, eventually affecting the commercial trait '100 seed weight' and seed quality. Seed filling is influenced by various metabolic processes occurring in the leaves, especially production and translocation of photoassimilates, importing precursors for biosynthesis of seed reserves, minerals and other functional constituents. These processes are highly sensitive to drought and heat, due to involvement of array of diverse enzymes and transporters, located in the leaves and seeds. We highlight here the findings in various food crops showing how their seed composition is drastically impacted at various cellular levels due to drought and heat stresses, applied separately, or in combination. The combined stresses are extremely detrimental for seed yield and its quality, and thus need more attention. Understanding the precise target sites regulating seed filling events in leaves and seeds, and how they are affected by abiotic stresses, is imperative to enhance the seed quality. It is vital to know the physiological, biochemical and genetic mechanisms, which govern the various seed filling events under stress environments, to devise strategies to improve stress tolerance. Converging modern advances in physiology, biochemistry and biotechnology, especially the "omics" technologies might provide a strong impetus to research on this aspect. Such application, along with effective agronomic management system would pave the way in developing crop genotypes/varieties with improved productivity under drought and/or heat stresses.
Collapse
Affiliation(s)
| | - Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Rakesh Kumar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sailaja Bhogireddy
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | | | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Igbinedion SO, Ansari J, Vasikaran A, Gavins FN, Jordan P, Boktor M, Alexander JS. Non-celiac gluten sensitivity: All wheat attack is not celiac. World J Gastroenterol 2017; 23:7201-7210. [PMID: 29142467 PMCID: PMC5677194 DOI: 10.3748/wjg.v23.i40.7201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Currently, 1% of the United States population holds a diagnosis for celiac disease (CD), however, a more recently recognized and possibly related condition, "non-celiac gluten sensitivity" (NCGS) has been suggested to affect up to 6% of the United States public. While reliable clinical tests for CD exist, diagnosing individuals affected by NCGS is still complicated by the lack of reliable biomarkers and reliance upon a broad set of intestinal and extra intestinal symptoms possibly provoked by gluten. NCGS has been proposed to exhibit an innate immune response activated by gluten and several other wheat proteins. At present, an enormous food industry has developed to supply gluten-free products (GFP) with GFP sales in 2014 approaching $1 billion, with estimations projecting sales to reach $2 billion in the year 2020. The enormous demand for GFP also reflects a popular misconception among consumers that gluten avoidance is part of a healthy lifestyle choice. Features of NCGS and other gluten related disorders (e.g., irritable bowel syndrome) call for a review of current distinctive diagnostic criteria that distinguish each, and identification of biomarkers selective or specific for NCGS. The aim of this paper is to review our current understanding of NCGS, highlighting the remaining challenges and questions which may improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Samuel O Igbinedion
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Junaid Ansari
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| | - Anush Vasikaran
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Felicity N Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| | - Paul Jordan
- Department of Gastroenterology and Hepatology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Moheb Boktor
- Department of Gastroenterology and Hepatology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, United States
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, School of Medicine, Shreveport, LA 71103, United States
| |
Collapse
|
31
|
Cuccioloni M, Mozzicafreddo M, Bonfili L, Cecarini V, Giangrossi M, Falconi M, Saitoh SI, Eleuteri AM, Angeletti M. Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies. Sci Rep 2017; 7:13169. [PMID: 29030601 PMCID: PMC5640651 DOI: 10.1038/s41598-017-13709-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
Wheat amylase/trypsin bi-functional inhibitors (ATIs) are protein stimulators of innate immune response, with a recently established role in promoting both gastrointestinal and extra-gastrointestinal inflammatory syndromes. These proteins have been reported to trigger downstream intestinal inflammation upon activation of TLR4, a member of the Toll-like family of proteins that activates signalling pathways and induces the expression of immune and pro-inflammatory genes. In this study, we demonstrated the ability of ATI to directly interact with TLR4 with nanomolar affinity, and we kinetically and structurally characterized the interaction between these macromolecules by means of a concerted approach based on surface plasmon resonance binding analyses and computational studies. On the strength of these results, we designed an oligopeptide capable of preventing the formation of the complex between ATI and the receptor.
Collapse
Affiliation(s)
| | - Matteo Mozzicafreddo
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Mara Giangrossi
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Maurizio Falconi
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, 108 8639, Japan
| | - Anna Maria Eleuteri
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Biotechnology, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
32
|
New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Sci Rep 2017; 7:6633. [PMID: 28747692 PMCID: PMC5529501 DOI: 10.1038/s41598-017-06390-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/19/2017] [Indexed: 12/03/2022] Open
Abstract
The domestication and transmission of cereals is one of the most fundamental components of early farming, but direct evidence of their use in early culinary practices and economies has remained frustratingly elusive. Using analysis of a well-preserved Early Bronze Age wooden container from Switzerland, we propose novel criteria for the identification of cereal residues. Using gas chromatography mass spectrometry (GC-MS), we identified compounds typically associated with plant products, including a series of phenolic lipids (alkylresorcinols) found only at appreciable concentration in wheat and rye bran. The value of these lipids as cereal grain biomarkers were independently corroborated by the presence of macrobotanical remains embedded in the deposit, and wheat and rye endosperm peptides extracted from residue. These findings demonstrate the utility of a lipid-based biomarker for wheat and rye bran and offer a methodological template for future investigations of wider range of archaeological contexts. Alkylresorcinols provide a new tool for residue analysis which can help explore the spread and exploitation of cereal grains, a fundamental component of the advent and spread of farming.
Collapse
|
33
|
Mazzeo MF, Di Stasio L, D'Ambrosio C, Arena S, Scaloni A, Corneti S, Ceriotti A, Tuberosa R, Siciliano RA, Picariello G, Mamone G. Identification of Early Represented Gluten Proteins during Durum Wheat Grain Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3242-3250. [PMID: 28347138 DOI: 10.1021/acs.jafc.7b00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The time course of biosynthesis and accumulation of storage proteins in developing grains of durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) pasta-quality reference cv. Svevo was investigated at the protein level for the first time. Seeds were harvested at key kernel developmental stages, namely, 3 (seed increase 3-fold in size), 5 (kernel development, water-ripe stage), 11 (kernel development, water-ripe stage), 16 (kernel full development, water-ripe stage), 21 (milk-ripe stage), and 30 (dough stage) days postanthesis (dpa). Gliadins and glutenins were fractionated according to their different solubility and individually analyzed after fractionation by reversed-phase high performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins were identified by liquid chromatography-tandem mass spectrometry of proteolytic peptides. The α- and γ-gliadin were already detected at 3 dpa. The biosynthesis of high molecular mass glutenin Bx7 was slightly delayed (11 dpa). Most of the gluten proteins accumulated rapidly between 11 and 21 dpa, with a minor further increase up to 30 dpa. The expression pattern of gluten proteins in Triticum durum at the early stages of synthesis provides reference data sets for future applications in crop breeding and growth monitoring.
Collapse
Affiliation(s)
| | - Luigia Di Stasio
- Institute of Food Sciences, National Research Council (CNR) , 83100 Avellino, Italy
- Department of Agriculture, University of Naples "Federico II" , 80100 Portici, Italy
| | - Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council (CNR) , 80147 Naples, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council (CNR) , 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council (CNR) , 80147 Naples, Italy
| | - Simona Corneti
- Department of Agricultural Sciences, University of Bologna , 40127 Bologna, Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR) , 20133 Milan, Italy
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna , 40127 Bologna, Italy
| | - Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR) , 83100 Avellino, Italy
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR) , 83100 Avellino, Italy
| | - Gianfranco Mamone
- Institute of Food Sciences, National Research Council (CNR) , 83100 Avellino, Italy
| |
Collapse
|
34
|
Yuan F, Yu X, Dong D, Yang Q, Fu X, Zhu S, Zhu D. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants. BMC PLANT BIOLOGY 2017; 17:16. [PMID: 28100173 PMCID: PMC5242038 DOI: 10.1186/s12870-016-0953-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/16/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . RESULTS Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. CONCLUSIONS Seed germination in the soybean low phytate mutants is a very complex process, which involves a series of physiological, morphological and transcriptional changes. Compared with TW-1, TW-1-M had a very different gene expression profile, which included genes related to plant hormones, antioxidation, anti-stress and energy metabolism processes. Our research provides a molecular basis for understanding germination mechanisms, and is also an important resource for the genetic analysis of germination in low phytate crops. Plant hormone- and antioxidation-related genes might strongly contribute to the high germination rate in the TW-1-M mutant.
Collapse
Affiliation(s)
- Fengjie Yuan
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xiaomin Yu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Dekun Dong
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Qinghua Yang
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xujun Fu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Shenlong Zhu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Danhua Zhu
- Institute of Crop Science and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
35
|
Proteomic Analysis of Tung Tree (Vernicia fordii) Oilseeds during the Developmental Stages. Molecules 2016; 21:molecules21111486. [PMID: 27834836 PMCID: PMC6273751 DOI: 10.3390/molecules21111486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
The tung tree (Vernicia fordii), a non-model woody plant belonging to the Euphorbiaceae family, is a promising economic plant due to the high content of a novel high-value oil in its seeds. Many metabolic pathways are active during seed development. Oil (triacylglycerols (TAGs)) accumulates in oil bodies distributed in the endosperm cells of tung tree seeds. The relationship between oil bodies and oil content during tung tree seed development was analyzed using ultrastructural observations, which confirmed that oil accumulation was correlated with the volumes and numbers of oil bodies in the endosperm cells during three different developmental stages. For a deeper understanding of seed development, we carried out proteomic analyses. At least 144 proteins were differentially expressed during three different developmental stages. A total of 76 proteins were successfully identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry/mass spectrometry (MALDI-TOF/MS/MS). These proteins were grouped into 11 classes according to their functions. The major groups of differentially expressed proteins were associated with energy metabolism (25%), fatty acid metabolism (15.79%) and defense (14.47%). These results strongly suggested that a very high percentage of gene expression in seed development is dedicated to the synthesis and accumulation of TAGs.
Collapse
|
36
|
Yu T, Li G, Dong S, Liu P, Zhang J, Zhao B. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes. BMC PLANT BIOLOGY 2016; 16:241. [PMID: 27809771 PMCID: PMC5095984 DOI: 10.1186/s12870-016-0878-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. RESULTS Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. CONCLUSIONS Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also provide new insights into the potential protein regulatory networks that control grain yield and quality.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| |
Collapse
|
37
|
Persson DP, de Bang TC, Pedas PR, Kutman UB, Cakmak I, Andersen B, Finnie C, Schjoerring JK, Husted S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. THE NEW PHYTOLOGIST 2016; 211:1255-65. [PMID: 27159614 DOI: 10.1111/nph.13989] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/23/2016] [Indexed: 05/11/2023]
Abstract
Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains.
Collapse
Affiliation(s)
- Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Thomas C de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Pai R Pedas
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Umit Baris Kutman
- Faculty of Engineering & Natural Science, Sabanci University, Istanbul, TR-34956, Turkey
| | - Ismail Cakmak
- Faculty of Engineering & Natural Science, Sabanci University, Istanbul, TR-34956, Turkey
| | - Birgit Andersen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Christine Finnie
- Agricultural and Environmental Proteomics, Department of Systems Biology, Technical University of Denmark, Building 301, Søltofts plads, Kongens Lyngby, DK-2800, Denmark
| | - Jan K Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
38
|
Kanjana W, Suzuki T, Ishii K, Kozaki T, Iigo M, Yamane K. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch). BMC Genomics 2016; 17:575. [PMID: 27501791 PMCID: PMC4977653 DOI: 10.1186/s12864-016-2973-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Background Ornamental peaches cv. ‘Yaguchi’ (Prunus persica (L.) Batsch) can be propagated via seeds. The establishment of efficient seed treatments for early germination and seedling growth is required to shorten nursery and breeding periods. It is important, therefore, to identify potential candidate genes responsible for the effects of rinsing and chilling on seed germination. We hypothesized that longer rinsing combined with chilling of seeds can alter the genes expression in related to dormancy and then raise the germination rate in the peach. To date, most molecular studies in peaches have involved structural genomics, and few transcriptome studies of seed germination have been conducted. In this study, we investigated the function of key seed dormancy-related genes using next-generation sequencing to profile the transcriptomes involved in seed dormancy in peaches. De novo assembly and analysis of the transcriptome identified differentially expressed and unique genes present in this fruit. Results De novo RNA-sequencing of peach was performed using the Illumina Miseq 2000 system. Paired-end sequence from mRNAs generated high quality sequence reads (9,049,964, 10,026,362 and 10,101,918 reads) from ‘Yaguchi’ peach seeds before rinsed (BR) and after rinsed for 2 or 7 days with a chilling period of 4 weeks (termed 2D4W and 7D4W), respectively. The germination rate of 7D4W was significantly higher than that of 2D4W. In total, we obtained 51,366 unique sequences. Differential expression analysis identified 7752, 8469 and 506 differentially expressed genes from BR vs 2D4W, BR vs 7D4W and 2D4W vs 7D4W libraries respectively, filtered based on p-value and an adjusted false discovery rate of less than 0.05. This study identified genes associated with the rinsing and chilling process that included those associated with phytohormones, the stress response and transcription factors. 7D4W treatment downregulated genes involved in ABA synthesis, catabolism and signaling pathways, which eventually suppressed abscisic acid activity and consequently promoted germination and seedling growth. Stress response genes were also downregulated by the 7D4W treatment, suggesting that this treatment released seeds from endodormancy. Transcription factors were upregulated by the BR and 2D4W treatment, suggesting that they play important roles in maintaining seed dormancy. Conclusions This work indicated that longer rinsing combined with chilling affects gene expression and germination rate, and identified potential candidate genes responsible for dormancy progression in seeds of ‘Yaguchi’ peach. The results could be used to develop breeding programs and will aid future functional genomic research in peaches and other fruit trees. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2973-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Worarad Kanjana
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kazuo Ishii
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Toshinori Kozaki
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Masayuki Iigo
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kenji Yamane
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan. .,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
39
|
Label-free proteome profiling reveals developmental-dependent patterns in young barley grains. J Proteomics 2016; 143:106-121. [DOI: 10.1016/j.jprot.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
|
40
|
Yu H, Wang T. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms. FRONTIERS IN PLANT SCIENCE 2016; 7:707. [PMID: 27252723 PMCID: PMC4879773 DOI: 10.3389/fpls.2016.00707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/09/2016] [Indexed: 05/07/2023]
Abstract
Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms.
Collapse
Affiliation(s)
- Huatao Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
41
|
Bona E, Scarafoni A, Marsano F, Boatti L, Copetta A, Massa N, Gamalero E, D’Agostino G, Cesaro P, Cavaletto M, Berta G. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Sci Rep 2016; 6:26439. [PMID: 27216714 PMCID: PMC4877657 DOI: 10.1038/srep26439] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses.
Collapse
Affiliation(s)
- Elisa Bona
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Alessio Scarafoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Francesco Marsano
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Lara Boatti
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Andrea Copetta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Elisa Gamalero
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | | | - Patrizia Cesaro
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Graziella Berta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| |
Collapse
|
42
|
Schmidt D, Gaziola SA, Boaretto LF, Azevedo RA. Proteomic analysis of mature barley grains from C-hordein antisense lines. PHYTOCHEMISTRY 2016; 125:14-26. [PMID: 26976333 DOI: 10.1016/j.phytochem.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/19/2016] [Accepted: 03/01/2016] [Indexed: 05/24/2023]
Abstract
Hordeins are the major storage proteins in barley grains and are responsible for their low nutritional quality. Previously, antisense C-hordein barley lines were generated and were shown to contain a more balanced amino acid composition and an altered storage protein profile. In the present study, a proteomic approach that combined two-dimensional gel electrophoresis (2-DE) and mass spectrometry was used to (1) identify the changes in the protein profile of non-storage proteins (salt soluble fraction) in antisense C-hordein barley lines (L1, L2 and L3) and (2) map the differentially expressed proteins compared to the non-transgenic control line (Hordeum vulgare cv. Golden Promise). Moreover, the changes in the proteins were correlated with the more balanced amino acid composition of these lines, with special attention to the lysine content. The results showed that suppression of C-hordein expression does not exclusively affect hordein synthesis and accumulation. The more balanced amino acid composition observed in the transgenic lines L1, L2 and L3 was an indirect result of the profound alterations in the patterns of the non-storage proteins. The observed changes included up-regulated expression of the proteins involved in stress and detoxification (L1), defence (L2 and L3), and storage globulins (L1, L2 and L3). To a lesser extent, the proteins involved in grain metabolism were also changed. Thus, the increased essential amino acids content results from changes in distinct protein sources among the three antisense C-hordein lines analyzed, although the up-regulated expression of lysine-rich proteins was consistently observed in all lines.
Collapse
Affiliation(s)
- Daiana Schmidt
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Salete Aparecida Gaziola
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Luis Felipe Boaretto
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil.
| |
Collapse
|
43
|
Cao H, He M, Zhu C, Yuan L, Dong L, Bian Y, Zhang W, Yan Y. Distinct metabolic changes between wheat embryo and endosperm during grain development revealed by 2D-DIGE-based integrative proteome analysis. Proteomics 2016; 16:1515-36. [PMID: 26968330 DOI: 10.1002/pmic.201500371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
Two Chinese bread wheat cultivars, Jinghua 9 and Zhongmai 175, distinct in grain weight and dough quality, were used to study proteome changes in the embryo and endosperm during grain development using a two-dimensional difference gel electrophoresis (2D-DIGE)-based proteomics approach. In total, 138 and 127 differentially expressed protein (DEP) spots representing 116 and 113 unique DEPs were identified in the embryo and endosperm, respectively. Among them, 54 (31%) DEPs were commonly present in both organs while 62 (35%) and 59 (34%) DEPs occurred only in the embryo and endosperm, respectively. Embryonic DEPs are primarily stress-related proteins and involved in carbohydrate and lipid metabolism, while those from the endosperm are related primarily to carbohydrate metabolism and storage. Principal component analysis (PCA) indicated that the proteome differences in the endosperm caused by different cultivars were greater than those by development stages, while the differences in the embryo showed the opposite pattern. Protein-protein interaction (PPI) analysis revealed a complex network centered primarily on enzymes involved in carbohydrate and protein metabolism. The transcriptional levels of fourteen important DEPs encoding genes showed high similarity between organs and cultivars. In particular, some key DEPs of the endosperm, such as phosphoglucomutase, ADP-glucose pyrophosphorylase (AGPase), and sucrose synthase (SUS), showed significantly upregulated expression, indicating their key roles in starch biosynthesis and grain yield. Moreover, upregulated expression of some storage proteins in the endosperm could improve wheat bread-making quality.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Miao He
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Chong Zhu
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Linlin Yuan
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Liwei Dong
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Yanwei Bian
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, P. R. China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, P. R. China.,Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, P. R. China
| |
Collapse
|
44
|
Guo B, Luan H, Lin S, Lv C, Zhang X, Xu R. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content. FRONTIERS IN PLANT SCIENCE 2016; 7:542. [PMID: 27200019 PMCID: PMC4843811 DOI: 10.3389/fpls.2016.00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/05/2016] [Indexed: 05/24/2023]
Abstract
Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4-7 and 6-11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns.
Collapse
Affiliation(s)
- Baojian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Haiye Luan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
- JiangSu Coastal Area Institute of Agricultural SciencesYancheng, China
| | - Shen Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Xinzhong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Barley Research Institution of Yangzhou University, Yangzhou UniversityYangzhou, China
| |
Collapse
|
45
|
Yu Y, Zhu D, Ma C, Cao H, Wang Y, Xu Y, Zhang W, Yan Y. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Wang L, Fu J, Li M, Fragner L, Weckwerth W, Yang P. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2016; 7:750. [PMID: 27375629 PMCID: PMC4894879 DOI: 10.3389/fpls.2016.00750] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 05/20/2023]
Abstract
Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development.
Collapse
Affiliation(s)
- Lei Wang
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Jinlei Fu
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Pingfang Yang, ; Wolfram Weckwerth,
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-African Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Pingfang Yang, ; Wolfram Weckwerth,
| |
Collapse
|
47
|
Naconsie M, Lertpanyasampatha M, Viboonjun U, Netrphan S, Kuwano M, Ogasawara N, Narangajavana J. Cassava root membrane proteome reveals activities during storage root maturation. JOURNAL OF PLANT RESEARCH 2016; 129:51-65. [PMID: 26547558 DOI: 10.1007/s10265-015-0761-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Collapse
Affiliation(s)
- Maliwan Naconsie
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Manassawe Lertpanyasampatha
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand
| | - Unchera Viboonjun
- Deparment of Plant Science, Faculty of Science, Mahidol University, Phayathai, Bangkok, 10400, Thailand
| | - Supatcharee Netrphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Rangsit, Pathumthani, 10210, Thailand
| | - Masayoshi Kuwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jarunya Narangajavana
- Deparment of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd.,Rajthewee, Phayathai, Bangkok, 10400, Thailand.
| |
Collapse
|
48
|
Hamzelou S, Askari H, Nobari NA. Deceptive responsive genes in gel-based proteomics. Comput Biol Chem 2015; 61:1-7. [PMID: 26706775 DOI: 10.1016/j.compbiolchem.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/10/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
The standard method of the global quantitative analysis of gene expression at the protein level combines high-resolution two-dimensional gel electrophoresis (2DE) with mass spectrometric identification of protein spots. One of the major concerns with the application of gel-based proteomics is the need for the analytical and biological accuracy of the datasets. We mathematically and empirically simulated the possibility of the technical regulations of gene expression using 2DE. Our developed equation predicted a detectable alteration in the quantity of protein spots in response to a new protein added in, with various amounts. Testing the predictability of the developed equation, we observed that a new protein could form deceptive expression profiles, classified using prevalent tools for the analysis of 2DE results. In spite of the theoretically predicted overall reduction of proteins that resulted from adding the new protein, the empirical data revealed differential amount of proteins when various quantities of the new protein were added to the protein sample. The present work emphasize that employment of 2DE would not be a reliable approach for biological samples with extensive proteome alterations such as the developmental and differentiation stages of cells without depletion of high abundant proteins.
Collapse
Affiliation(s)
- Sara Hamzelou
- Biotechnology department, Faculty of New Technologies and Energy Engineering, Shahid Beheshti University, G.C. Evin, Tehran, Iran.
| | - Hossein Askari
- Biotechnology department, Faculty of New Technologies and Energy Engineering, Shahid Beheshti University, G.C. Evin, Tehran, Iran.
| | - Nona Abolfathi Nobari
- Mechanical Engineering Department, McGill University, 845 Sherbrooke, Montreal, Quebec, Canada.
| |
Collapse
|
49
|
Dong K, Zhen S, Cheng Z, Cao H, Ge P, Yan Y. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1017. [PMID: 26635843 PMCID: PMC4649031 DOI: 10.3389/fpls.2015.01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.
Collapse
Affiliation(s)
- Kun Dong
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Shoumin Zhen
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Zhiwei Cheng
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Hui Cao
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Pei Ge
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
| | - Yueming Yan
- Lab of Molecular Genetics and Proteomics, College of Life Science, Capital Normal UniversityBeijing, China
- Hubei Collaborative Innovation Center for Grain IndustryJingzhou, China
| |
Collapse
|
50
|
Fan L, Wu X, Tian Z, Jia K, Pan Y, Li J, Gao H. Comparative proteomic analysis of gamma-aminobutyric acid responses in hypoxia-treated and untreated melon roots. PHYTOCHEMISTRY 2015; 116:28-37. [PMID: 25840728 DOI: 10.1016/j.phytochem.2015.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Hypoxia is one of the main environmental stresses that accounts for decreasing crop yield. To further investigate the mechanisms whereby exogenous GABA alleviates hypoxia injury to melon seedlings, a comparative proteomic analysis was performed using roots subjected to normal aeration and hypoxia conditions with or without GABA (5mM). The results indicated that protein spots on gels after hypoxia and hypoxia+GABA treatment were significantly changed. Three "matched sets" were analyzed from four treatments, and 13 protein spots with large significant differences in expression were identified by MALDI-TOF/TOF mass spectrometry. Exogenous GABA treatment enhanced the expression of protein in cytosolic phosphoglycerate kinase 1, exaA2 gene product, dnaJ and myb-like DNA-binding domain-containing proteins, as well as elongation factor-1 alpha and hypothetical proteins in hypoxia-induced roots. However, the hypoxia+GABA treated roots had a significantly lower expression of proteins including malate dehydrogenase, nucleoside diphosphate kinase, disease resistance-like protein, disulfide isomerase, actin, ferrodoxin NADP oxidoreductase, glutathione transferase, netting associated peroxidase. This paper describes the effect of GABA on melon plants under hypoxia-induced stress using proteomics, and supports the alleviating function of GABA in melon plants grown under hypoxic conditions.
Collapse
Affiliation(s)
- Longquan Fan
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China; The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Xiaolei Wu
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| | - Zhen Tian
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| | - Kaizhi Jia
- Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Yinghong Pan
- The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China.
| | - Jingrui Li
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| | - Hongbo Gao
- College of Horticulture, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|