1
|
Shu P, Sheng J, Qing Y, Shen L. Resveratrol and nitric oxide synergistically enhance resistance against B. cinerea in tomato fruit by regulating phytohormones. Food Res Int 2024; 197:115262. [PMID: 39593342 DOI: 10.1016/j.foodres.2024.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Resveratrol (RVT), a plant antitoxin, plays an important role in plant resistance against pathogens. While nitric oxide (NO) as an essential signaling factor in disease resistance enhancement is well documented, the potential molecular interplay RVT and NO in postharvest tomato fruit defense against Botrytis cinerea (B.cinerea) still needs exploration. In this study, exogenous RVT reduced gray mold caused by B.cinerea in tomato fruit, with 20 μM being the most effective. Tomato fruit were treated with 20 μM RVT enhanced resistance against B.cinerea, as indicated by reduced symptoms of disease and improved activity of disease resistance related enzymes (PAL, PPO and CHI). In addition, RVT treatment improved the expression of SlPR1, SlLoxd and SlMYC2, and promoted the accumulation of plant hormone IAA and ABA, but reduced the expression of SlNPR1 and the level of GA3. More importantly, the combined treatment of NO donor (SNP) and RVT notably enhanced disease resistance compared to RVT or SNP single treatment. However, the combination of NO inhibitor (L-NNA) and RVT treatment even reduced the positive effect of RVT. Meanwhile, the expression of SlPR1, SlLoxd and SlMYC2 and the accumulation of IAA and ABA in RVT + SNP treated fruit were higher than those in the RVT or SNP single treatment. Thus, our data demonstrate that RVT and NO synergistically enhance resistance against B. cinerea in tomato fruit by regulating phytohormones.
Collapse
Affiliation(s)
- Pan Shu
- College of Agricultural Science, Sichuan Technological Innovation Laboratory for South Subtropical Fruits, Xichang University, Xichang 615013, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Yuan Qing
- College of Agricultural Science, Sichuan Technological Innovation Laboratory for South Subtropical Fruits, Xichang University, Xichang 615013, China.
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Xiao J, Lin X, Yang Y, Yu Y, Li Y, Xu M, Liu Y. Metabolomic Profiling and Biological Investigation of the Marine Sponge-Derived Fungus Aspergillus sp. SYPUF29 in Response to NO Condition. J Fungi (Basel) 2024; 10:636. [PMID: 39330395 PMCID: PMC11433098 DOI: 10.3390/jof10090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Marine-derived fungi are assuming an increasingly central role in the search for natural leading compounds with unique chemical structures and diverse pharmacological properties. However, some gene clusters are not expressed under laboratory conditions. In this study, we have found that a marine-derived fungus Aspergillus sp. SYPUF29 would survive well by adding an exogenous nitric oxide donor (sodium nitroprusside, SNP) and nitric oxide synthetase inhibitor (L-NG-nitroarginine methyl ester, L-NAME) in culture conditions. Moreover, using the LC-MS/MS, we initially assessed and characterized the difference in metabolites of Aspergillus sp. SYPUF29 with or without an additional source of nitrogen. We have found that the metabolic pathway of Arginine and proline metabolism pathways was highly enriched, which was conducive to the accumulation of alkaloids and nitrogen-containing compounds after adding an additional source of nitrogen in the cultivated condition. Additionally, the in vitro anti-neuroinflammatory study showed that the extracts after SNP and L-NAME were administrated can potently inhibit LPS-induced NO-releasing of BV2 cells with lower IC50 value than without nitric oxide. Further Western blotting assays have demonstrated that the mechanism of these extracts was associated with the TLR4 signaling pathway. Additionally, the chemical investigation was conducted and led to nine compounds (SF1-SF9) from AS1; and six of them belonged to alkaloids and nitrogen-containing compounds (SF1-SF6), of which SF1, SF2, and SF8 exhibited stronger activities than the positive control, and showed potential to develop the inhibitors of neuroinflammation.
Collapse
Affiliation(s)
- Jiao Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuping Lin
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanqiu Yang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yingshu Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinyin Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengjie Xu
- Department of Biological Sciences, Xinzhou Normal University, Xinzhou 034000, China
| | - Yonghong Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Mena E, Reboledo G, Stewart S, Montesano M, Ponce de León I. Comparative analysis of soybean transcriptional profiles reveals defense mechanisms involved in resistance against Diaporthe caulivora. Sci Rep 2023; 13:13061. [PMID: 37567886 PMCID: PMC10421924 DOI: 10.1038/s41598-023-39695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Silvina Stewart
- Programa Nacional de Cultivos de Secano, Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
4
|
Petrović K, Šućur Elez J, Crnković M, Krsmanović S, Rajković M, Kuzmanović B, Malenčić Đ. The Biochemical Response of Soybean Cultivars Infected by Diaporthe Species Complex. PLANTS (BASEL, SWITZERLAND) 2023; 12:2896. [PMID: 37631108 PMCID: PMC10457839 DOI: 10.3390/plants12162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Oxidative stress in soybean plants infected with Diaporthe isolates was evaluated in order to select (1) the least aggressive inoculation method, (2) to determine the most aggressive Diaporthe isolate, and (3) to determine the most tolerant soybean cultivar to this isolate. Based on the present malondialdehyde (MDA) content, the main end product of the lipid peroxidation process, and the biomarker for oxidative stress, the mycelium contact method was chosen as the least aggressive inoculation method, compared to the toothpick method and plug method. The activity of the antioxidant enzymes (superoxide-dismutase (SOD), catalase (CAT), and peroxidase (PX)), the reduced glutathione (GSH) content, and the level of lipid peroxidation (LP) were measured in soybean cv. Sava infected by five different Diaporthe species (DPM1F-D. aspalathi, DPC/KR19-D. caulivora, DPC004NY15-D. eres, 18-DIA-SOY-14-D. gulyae, and PL157A-D. longicolla). The most pathogenic Diaporthe species to cv. Sava was D. eres. The screening of the antioxidant enzymes activity in the leaves of 12 different soybean cultivars (Altona, Atlas, Capital, Chico, CX134, Favorit, Lakota, McCall, Morsoy, Strain, Rubin, and Victoria) infected with D. eres by the mycelium contact inoculation method showed that Capital, McCall, and Morsoy were the cultivars with the highest tolerance to D. eres, followed by Chico, Favorit, Lakota, and Rubin. The most sensitive cultivars were Atlas, CX134, Victoria, and Strain.
Collapse
Affiliation(s)
- Kristina Petrović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Breeding Department, Maize Research Institute, 11185 Belgrade, Serbia
- BioSense Institute, University of Novi Sad, 21101 Novi Sad, Serbia
| | - Jovana Šućur Elez
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Marina Crnković
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Slobodan Krsmanović
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Sector for Plant Nutrition, Agromarket BiH, 76300 Bijeljina, Bosnia and Herzegovina
| | - Miloš Rajković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (K.P.); (S.K.); (M.R.)
- Department for Research and Development in Agriculture, Institute of Medicinal Plant Research “Dr. Josif Pančić”, 11000 Belgrade, Serbia
| | - Boris Kuzmanović
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| | - Đorđe Malenčić
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (M.C.); (B.K.); (Đ.M.)
| |
Collapse
|
5
|
Chao LFI, Liu D, Siewers V. A highly selective cell-based fluorescent biosensor for genistein detection. ENGINEERING MICROBIOLOGY 2023; 3:100078. [PMID: 39629249 PMCID: PMC11611022 DOI: 10.1016/j.engmic.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 12/07/2024]
Abstract
Genistein, an isoflavone found mainly in legumes, has been shown to have numerous health benefits for humans. Therefore, there is substantial interest in producing it using microbial cell factories. To aid in screening for high genistein producing microbial strains, a cell-based biosensor for genistein was developed by repurposing the Gal4DBD-ERα-VP16 (GEV) transcriptional activator in Saccharomyces cerevisiae. In the presence of genistein, the GEV sensor protein binds to the GAL1 promoter and activates transcription of a downstream GFP reporter. The performance of the biosensor, as measured by fold difference in GFP signal intensity after external genistein induction, was improved by engineering the sensor protein, its promoter and the reporter promoter. Biosensor performance increased when the weak promoter REV1p was used to drive GEV sensor gene expression and the VP16 transactivating domain on GEV was replaced with the tripartite VPR transactivator that had its NLS removed. The biosensor performance further improved when the binding sites for the inhibitor Mig1 were removed from and two additional Gal4p binding sites were added to the reporter promoter. After genistein induction, our improved biosensor output a GFP signal that was 20 times higher compared to the uninduced state. Out of the 8 flavonoids tested, the improved biosensor responded only to genistein and in a somewhat linear manner. The improved biosensor also responded to genistein produced in vivo, with the GFP reporter intensity directly proportional to intracellular genistein concentration. When combined with fluorescence-based cell sorting technology, this biosensor could facilitate high-throughput screening of a genistein-producing yeast cell factory.
Collapse
Affiliation(s)
| | | | - Verena Siewers
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
6
|
Signal Molecules Regulate the Synthesis of Secondary Metabolites in the Interaction between Endophytes and Medicinal Plants. Processes (Basel) 2023. [DOI: 10.3390/pr11030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Signaling molecules act as the links and bridges between endophytes and host plants. The recognition of endophytes and host plants, the regulation of host plant growth and development, and the synthesis of secondary metabolites are not separated by the participation of signaling molecules. In this review, we summarized the types and characteristics of signaling molecules in medicinal plants and the recent processes in intracellular conduction and multi-molecular crosstalk of signaling molecules during interactions between endophytic bacteria and medicinal plants. In addition, we overviewed the molecular mechanism of signals in medical metabolite accumulation and regulation. This work provides a reference for using endophytic bacteria and medicinal plants to synthesize pharmaceutical active ingredients in a bioreactor.
Collapse
|
7
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
8
|
Mena E, Garaycochea S, Stewart S, Montesano M, Ponce De León I. Comparative genomics of plant pathogenic Diaporthe species and transcriptomics of Diaporthe caulivora during host infection reveal insights into pathogenic strategies of the genus. BMC Genomics 2022; 23:175. [PMID: 35240994 PMCID: PMC8896106 DOI: 10.1186/s12864-022-08413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background Diaporthe caulivora is a fungal pathogen causing stem canker in soybean worldwide. The generation of genomic and transcriptomic information of this ascomycete, together with a comparative genomic approach with other pathogens of this genus, will contribute to get insights into the molecular basis of pathogenicity strategies used by D. caulivora and other Diaporthe species. Results In the present work, the nuclear genome of D. caulivora isolate (D57) was resolved, and a comprehensive annotation based on gene expression and genomic analysis is provided. Diaporthe caulivora D57 has an estimated size of 57,86 Mb and contains 18,385 predicted protein-coding genes, from which 1501 encode predicted secreted proteins. A large array of D. caulivora genes encoding secreted pathogenicity-related proteins was identified, including carbohydrate-active enzymes (CAZymes), necrosis-inducing proteins, oxidoreductases, proteases and effector candidates. Comparative genomics with other plant pathogenic Diaporthe species revealed a core secretome present in all Diaporthe species as well as Diaporthe-specific and D. caulivora-specific secreted proteins. Transcriptional profiling during early soybean infection stages showed differential expression of 2659 D. caulivora genes. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that host infection strategies depends on plant cell wall degradation and modification, detoxification of compounds, transporter activities and toxin production. Increased expression of effectors candidates suggests that D. caulivora pathogenicity also rely on plant defense evasion. A high proportion of the upregulated genes correspond to the core secretome and are represented in the pathogen-host interaction (PHI) database, which is consistent with their potential roles in pathogenic strategies of the genus Diaporthe. Conclusions Our findings give novel and relevant insights into the molecular traits involved in pathogenicity of D. caulivora towards soybean plants. Some of these traits are in common with other Diaporthe pathogens with different host specificity, while others are species-specific. Our analyses also highlight the importance to have a deeper understanding of pathogenicity functions among Diaporthe pathogens and their interference with plant defense activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08413-y.
Collapse
Affiliation(s)
- Eilyn Mena
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Silvia Garaycochea
- Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Las Brujas, Ruta 48 Km 10, Canelones, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano, Estación Experimental La Estanzuela, Ruta 50 km 11, 70000, Colonia, Uruguay
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.,Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, CP 11400, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
9
|
Growth modulation by nitric oxide donor sodium nitroprusside in in vitro plant tissue cultures – A review. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. HORTICULTURE RESEARCH 2021; 8:71. [PMID: 33790257 PMCID: PMC8012625 DOI: 10.1038/s41438-021-00500-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) regulates plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants, making NO a potential tool for use in improving the yield and quality of horticultural crop species. Although the use of NO in horticulture is still in its infancy, research on NO in model plant species has provided an abundance of valuable information on horticultural crop species. Emerging evidence implies that the bioactivity of NO can occur through many potential mechanisms but occurs mainly through S-nitrosation, the covalent and reversible attachment of NO to cysteine thiol. In this context, NO signaling specifically affects crop development, immunity, and environmental interactions. Moreover, NO can act as a fumigant against a wide range of postharvest diseases and pests. However, for effective use of NO in horticulture, both understanding and exploring the biological significance and potential mechanisms of NO in horticultural crop species are critical. This review provides a picture of our current understanding of how NO is synthesized and transduced in plants, and particular attention is given to the significance of NO in breaking seed dormancy, balancing root growth and development, enhancing nutrient acquisition, mediating stress responses, and guaranteeing food safety for horticultural production.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijuan Liu
- Interdisciplinary Research Academy, Zhejiang Shuren University, 310015, Hangzhou, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, China
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
11
|
Almeida T, Pinto G, Correia B, Gonçalves S, Meijón M, Escandón M. In-depth analysis of the Quercus suber metabolome under drought stress and recovery reveals potential key metabolic players. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110606. [PMID: 32900444 DOI: 10.1016/j.plantsci.2020.110606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 05/08/2023]
Abstract
Cork oak (Quercus suber L.) is a species of ecological, social and economic importance in the Mediterranean region. Given its xerophytic adaptability, the study of cork oak's response to drought stress conditions may provide important data in the global scenario of climate change. The mechanisms behind cork oak's adaptation to drought conditions can inform the design and development of tools to better manage this species under the changing climate patterns. Metabolomics is one of the most promising omics layers to capture a snapshot of a particular physiological state and to identify putative biomarkers of stress tolerance. Drastic changes were observed in the leaf metabolome of Q. suber between the different experimental conditions, namely at the beginning of the drought stress treatment, after one month under drought and post rehydration. All experimental treatments were analyzed through sPLS to inspect for global changes and stress and rehydration responses were analyzed independently for specific alterations. This allowed a more in-depth study and a search for biomarkers specific to a given hydric treatment. The metabolome analyses showed changes in both primary and secondary metabolism, but highlighted the role of secondary metabolism. In addition, a compound-specific response was observed in stress and rehydration. Key compounds such as L-phenylalanine and epigallocatechin 3-gallate were identified in relation to early drought response, terpenoid leonuridine and the flavonoid glycoside (-)-epicatechin-3'-O-glucuronide in long-term drought response, and flavone isoscoparine was identified in relation to the recovery process. The results here obtained provide novel insights into the biology of cork oak, highlighting pathways and metabolites potentially involved in the response of this species during drought and recovery that may be essential for its adaptation to long periods of drought. It is expected that this knowledge can encourage further functional studies in order to validate potential biomarkers of drought and recovery that maybe used to support decision-making in cork oak breeding programs.
Collapse
Affiliation(s)
- Tânia Almeida
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal; Centre for Research in Ceramics & Composite Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| | - Barbara Correia
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Beja, Portugal
| | - Mónica Meijón
- Plant Physiology, Department B.O.S., Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal..
| |
Collapse
|
12
|
Foliar application of specific yeast derivative enhances anthocyanins accumulation and gene expression in Sangiovese cv (Vitis vinifera L.). Sci Rep 2020; 10:11627. [PMID: 32669579 PMCID: PMC7363895 DOI: 10.1038/s41598-020-68479-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/29/2020] [Indexed: 11/08/2022] Open
Abstract
The effect of elicitors on secondary metabolism in vines is receiving much interest, since it has been shown that they are able to increase the accumulation of phenolics, especially anthocyanins. This research aims to investigate the biochemical and molecular effects of the application of a commercial yeast derivative (Saccharomyces cerevisiae) on the accumulation of anthocyanins in potted Sangiovese vines. Experiments were performed on three consecutive years and the yeast derivative was applied at the beginning and at the end of veraison. Technological ripening, accumulation of anthocyanins and expression of the main genes involved in their biosynthesis were assessed. Technological ripening proceeded in a similar way in both treated and untreated berries in the three years. A significant increase in the concentration of anthocyanins was instead detected, following the induction by the yeast derivative of the expression of the genes involved in their biosynthesis. The research highlights the possibility of applying a specific inactivated yeast to increase the anthocyanin concentration even under the current climate change conditions, in Sangiovese, a cultivar extremely sensitive to high temperatures.
Collapse
|
13
|
Devi MKA, Kumar G, Giridhar P. Effect of biotic and abiotic elicitors on isoflavone biosynthesis during seed development and in suspension cultures of soybean ( Glycine max L.). 3 Biotech 2020; 10:98. [PMID: 32099739 DOI: 10.1007/s13205-020-2065-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022] Open
Abstract
The present investigation aimed to look at the effects of biotic and abiotic elicitors during Soybean seed development and cell suspension culture in isoflavones accumulation. The expression levels of four major genes viz., CHS7, CHS8, IFS2, and IFS1 involved on isoflavones biosynthesis during seed developmental stages from R5L-R7 was seen in both MAUS-2 and JS-335 Soybean varieties. The R7 stage showed 1.24-fold upregulation of IFS1transcript level and considered as the control for Soybean seed development. Both varieties during R6-R8 stages responded differently to the foliar application of 10 µM SA, 10 µM MJ and 0.1% Aspergillus niger. The IFS2 transcripts were upregulated by SA at the R7 stage with 5.21- and 4.68-fold in JS-335 and MAUS-2, respectively. IFS1 expression was significantly increased by A. niger treatment at R7 stage with 3.98- and 3.21-fold in MAUS-2 and JS-335, respectively. The expression of CHS7 and CHS8 by 10 μM SA at R7 level revealed maximum up-regulation of 0.51- and 1.01-fold in MAUS-2; 0.37- and 0.82-fold in JS-335, respectively. In the soybean callus suspension culture, biosynthetic genes were used to validate the effects of elicitor on isoflavones. Both biotic and abiotic treatments contribute to the upregulation of IFS1 and IFS2 expression, that in turn, leads to the accumulation of isoflavone in seed development as well as in suspension cultures. These data further suggested that the IFS2 is the key gene responsible for the isoflavone accumulation during elicitor treatment.
Collapse
|
14
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
15
|
Lee A, Beaubernard L, Lamothe V, Bennetau-Pelissero C. New Evaluation of Isoflavone Exposure in the French Population. Nutrients 2019; 11:nu11102308. [PMID: 31569435 PMCID: PMC6835759 DOI: 10.3390/nu11102308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
The study relates the present evaluation of exposure to estrogenic isoflavones of French consumers through two approaches: (1) identification of the isoflavone sources in the French food offering, (2) a consumption-survey on premenopausal women. For the foodstuff approach 150 food-items were analysed for genistein and daidzein. Additionally, 12,707 labels of processed-foods from French supermarket websites and a restaurant-supplier website were screened, and 1616 foodstuffs of interest were retained. The sources of phytoestrogens considered were soy, pea, broad bean and lupine. A price analysis was performed. A total of 270 premenopausal women from the French metropolitan territory were interviewed for their global diet habits and soy consumption and perception. In supermarkets, there were significantly less selected foodstuffs containing soy than in restaurant (11.76% vs. 25.71%, p < 0.01). There was significantly more soy in low price-foodstuff in supermarket (p < 0.01). Isoflavone levels ranged from 81 to 123,871 µg per portion of the analyzed soy containing foodstuff. Among the women inquired 46.3% claimed to have soy regularly. Isoflavone intake >45 mg/day is associated to vegan-diet (p < 0.01). In total, 11.9% of soy-consumers had a calculated isoflavone intake >50 mg/day. This dose can lengthen the menstrual cycles. The actual exposure to phytoestrogen is likely to have an effect in a part of the French population.
Collapse
Affiliation(s)
| | | | | | - Catherine Bennetau-Pelissero
- Bordeaux Sciences Agro, F-33175 Gradignan, France.
- Pharmacy Faculty, University of Bordeaux, F-33077 Bordeaux, France.
| |
Collapse
|
16
|
Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon 2019; 5:e01495. [PMID: 31011650 PMCID: PMC6462543 DOI: 10.1016/j.heliyon.2019.e01495] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Soybean (Glycine max (L.) Merrill) is a globally important crop, providing oil and protein. Diaporthe/Phomopsis complex includes seed-borne pathogens that affect this legume. Non-thermal plasma treatment is a fast, cost-effective and environmental-friendly technology. Soybean seeds were exposed to a quasi-stationary (50 Hz) dielectric barrier discharge plasma operating at atmospheric pressure air. Different carrying gases (O2 and N2) and barrier insulating materials were used. This work was performed to test if the effects of non-thermal plasma treatment applied to healthy and infected seeds persist throughout the entire cycle of plants. To this aim, lipid peroxidation, activity of catalase, superoxide dismutase and guaiacol peroxidase, vegetative growth and agronomic traits were analysed. The results here reported showed that plants grown from infected seeds did not trigger oxidative stress due to the reduction of pathogen incidence in seeds treated with cold plasma. Vegetative growth revealed a similar pattern for plants grown from treated seeds than that found for the healthy control. Infected control, by contrast, showed clear signs of damage. Moreover, plasma treatment itself increased plant growth, promoted a normal and healthy physiological performance and incremented the yield of plants. The implementation of this technology for seeds treatment before sowing could help reducing the use of agrochemicals during the crop cycle.
Collapse
|
17
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
18
|
Peng Y, Zhou Z, Zhang Z, Yu X, Zhang X, Du K. Molecular and physiological responses in roots of two full-sib poplars uncover mechanisms that contribute to differences in partial submergence tolerance. Sci Rep 2018; 8:12829. [PMID: 30150759 PMCID: PMC6110812 DOI: 10.1038/s41598-018-30821-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
Poplar is a major afforestation tree species in flood-prone areas. Here, we compared molecular and physiological responses in the roots of two full-sib poplar clones, LS1 (flood-tolerant) and LS2 (flood-susceptive), subjected to stagnant flooding using transcript and metabolite profiling. LS1 displayed less phenotypic damage and superior leaf gas exchange and plant growth compared with those of LS2. We concluded that three characteristics might contribute to the differences in flood tolerance between LS1 and LS2. First, fermentation was initiated through lactic dehydrogenation in LS1 roots under flooding and subsequently dominated by alcohol fermentation. However, lactic dehydrogenase was persistently active in flooded LS2. Second, 13 differentially expressed genes associated with energy and O2 consumption processes under soil flooding had lower transcript levels in LS1 than those in LS2, which might contribute to better energy-/O2-saving abilities and behaviours in flood-tolerant LS1 than those in flood-susceptible LS2 under hypoxic stress. Third, LS1 possessed increased reactive oxygen species scavenging abilities compared with those of LS2 under edaphic flooding. Our data are a valuable contribution to understanding the mechanisms involved in the flood tolerance of poplar.
Collapse
Affiliation(s)
- YanJie Peng
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - ZhiXiang Zhou
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhe Zhang
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XiaoLi Yu
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XinYe Zhang
- Hubei Academy of Forestry, Wuhan, 430075, P. R. China
| | - KeBing Du
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
19
|
Astier J, Gross I, Durner J. Nitric oxide production in plants: an update. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3401-3411. [PMID: 29240949 DOI: 10.1093/jxb/erx420] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in plant physiology. However, its production in photosynthetic organisms remains partially unresolved. The best characterized NO production route involves the reduction of nitrite to NO via different non-enzymatic or enzymatic mechanisms. Nitrate reductases (NRs), the mitochondrial electron transport chain, and the new complex between NR and NOFNiR (nitric oxide-forming nitrite reductase) described in Chlamydomonas reinhardtii are the main enzymatic systems that perform this reductive NO production in plants. Apart from this reductive route, several reports acknowledge the possible existence of an oxidative NO production in an arginine-dependent pathway, similar to the nitric oxide synthase (NOS) activity present in animals. However, no NOS homologs have been found in the genome of embryophytes and, despite an increasing amount of evidence attesting to the existence of NOS-like activity in plants, the involved proteins remain to be identified. Here we review NO production in plants with emphasis on the presentation and discussion of recent data obtained in this field.
Collapse
Affiliation(s)
| | - Inonge Gross
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology Neuherberg, Germany
| | - Jörg Durner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology Neuherberg, Germany
| |
Collapse
|
20
|
Zhang ZW, Luo S, Zhang GC, Feng LY, Zheng C, Zhou YH, Du JB, Yuan M, Chen YE, Wang CQ, Liu WJ, Xu XC, Hu Y, Bai SL, Kong DD, Yuan S, He YK. Nitric oxide induces monosaccharide accumulation through enzyme S-nitrosylation. PLANT, CELL & ENVIRONMENT 2017; 40:1834-1848. [PMID: 28556250 DOI: 10.1111/pce.12989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is extensively involved in various growth processes and stress responses in plants; however, the regulatory mechanism of NO-modulated cellular sugar metabolism is still largely unknown. Here, we report that NO significantly inhibited monosaccharide catabolism by modulating sugar metabolic enzymes through S-nitrosylation (mainly by oxidizing dihydrolipoamide, a cofactor of pyruvate dehydrogenase). These S-nitrosylation modifications led to a decrease in cellular glycolysis enzymes and ATP synthase activities as well as declines in the content of acetyl coenzyme A, ATP, ADP-glucose and UDP-glucose, which eventually caused polysaccharide-biosynthesis inhibition and monosaccharide accumulation. Plant developmental defects that were caused by high levels of NO included delayed flowering time, retarded root growth and reduced starch granule formation. These phenotypic defects could be mediated by sucrose supplementation, suggesting an essential role of NO-sugar cross-talks in plant growth and development. Our findings suggest that molecular manipulations could be used to improve fruit and vegetable sweetness.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sha Luo
- The High School Attached to Tsinghua University, Beijing, 100084, China
| | - Gong-Chang Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling-Yang Feng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chong Zheng
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yang-Hong Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun-Bo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Juan Liu
- Center of Analysis and Testing, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xiao-Chao Xu
- College of Bioindustry, Chengdu University, Chengdu, 610106, China
| | - Yong Hu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Su-Lan Bai
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Dong-Dong Kong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi-Kun He
- College of Life Science, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
21
|
Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qin LP. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 2016; 43:238-261. [PMID: 27936989 DOI: 10.1080/1040841x.2016.1201041] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.
Collapse
Affiliation(s)
- Xin Zhai
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Min Jia
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Ling Chen
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Cheng-Jian Zheng
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- b Department of Physiological Biochemistry, Faculty of Science, School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Ting Han
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Lu-Ping Qin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
22
|
Pretali L, Bernardo L, Butterfield TS, Trevisan M, Lucini L. Botanical and biological pesticides elicit a similar Induced Systemic Response in tomato (Solanum lycopersicum) secondary metabolism. PHYTOCHEMISTRY 2016; 130:56-63. [PMID: 27251587 DOI: 10.1016/j.phytochem.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 05/18/2023]
Abstract
Natural pesticides have attracted substantial interest due to the increase in organic agriculture and enhanced attention to environmental pollution. Plant Growth Promoting Bacteria (PGPB) are applied for both disease control and growth enhancement; PGPBs are known to elicit Induced Systemic Response (ISR) in plants. However, less is known about the effect of botanical pesticides, such as the azadirachtin-containing neem extracts, on plant metabolism. This study aimed to investigate the effects of foliar application of the above-mentioned natural pesticides on the metabolic profiling of tomato. Leaf application of Bacillus subtilis fostered Induced Systemic Resistance (ISR) in treated plants via the Jasmonic acid pathway, and enhanced production of secondary metabolites such as flavonoids, phytoalexins and auxins. Changes in sterols and terpenes, as well as an increase in glucosinolates were also observed. Interestingly, azadirachtin-treated tomatoes also showed an increase in ISR and our results revealed that most of the enriched metabolites are shared with a B. subtilis treatment, suggesting conserved biochemical responses. These (un)expected findings indicate that plants are not insensitive to application of natural pesticide and while Azadirachtin is applied as a direct pesticide, it also stimulates a defense response in tomatoes very similar to B. subtilis induced ISR.
Collapse
Affiliation(s)
- Luca Pretali
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Letizia Bernardo
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | | | - Marco Trevisan
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy.
| |
Collapse
|
23
|
Nitric oxide synthase in plants: Where do we stand? Nitric Oxide 2016; 63:30-38. [PMID: 27658319 DOI: 10.1016/j.niox.2016.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Over the past twenty years, nitric oxide (NO) has emerged as an important player in various plant physiological processes. Although many advances in the understanding of NO functions have been made, the question of how NO is produced in plants is still challenging. It is now generally accepted that the endogenous production of NO is mainly accomplished through the reduction of nitrite via both enzymatic and non-enzymatic mechanisms which remain to be fully characterized. Furthermore, experimental arguments in favour of the existence of plant nitric oxide synthase (NOS)-like enzymes have been reported. However, recent investigations revealed that land plants do not possess animal NOS-like enzymes while few algal species do. Phylogenetic and structural analyses reveals interesting features specific to algal NOS-like proteins.
Collapse
|
24
|
Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 2014; 43:89-96. [DOI: 10.1016/j.niox.2014.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/20/2022]
|
25
|
Suthaparan A, Stensvand A, Solhaug KA, Torre S, Telfer KH, Ruud AK, Mortensen LM, Gadoury DM, Seem RC, Gislerød HR. Suppression of Cucumber Powdery Mildew by Supplemental UV-B Radiation in Greenhouses Can be Augmented or Reduced by Background Radiation Quality. PLANT DISEASE 2014; 98:1349-1357. [PMID: 30703932 DOI: 10.1094/pdis-03-13-0222-re] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study demonstrates that the spectral quality of radiation sources applied with ultraviolet-B (UV-B; background radiation) affects the suppression of cucumber powdery mildew (Podosphaera xanthii) by UV-B. Suppression provided by daily UV-B exposure of 1 W/m2 for 10 min was greatest in the presence of red light or by a complete lack of background light, and powdery mildew suppression was least in the presence of ultraviolet-A (UV-A) or blue radiation compared with plants exposed only to 16 h of daily natural light supplemented with high-pressure sodium lamps that supply broad-spectrum radiation with peaks in the yellow-orange region. Exposure of powdery mildew-inoculated plants to supplemental red light without UV-B, beginning at the end of the daylight period, also reduced disease severity; however, supplemental blue light applied in the same fashion had no effect. Daily application of UV-B at 1 W/m2 beginning on the day of inoculation significantly reduced the severity of powdery mildew to 15% compared with 100% severity on control plants. Maximum suppression of powdery mildew was observed following 15 min of exposure to UV-B (1.1% severity compared with 100% severity on control plants) but exposure time had to be limited to 5 to 10 min to reduce phytotoxicity. There was no additional disease suppression when plants were exposed to UV-B beginning 2 days prior to inoculation compared with plants exposed to UV-B beginning on the day of inoculation. UV-B inhibited germination, infection, colony expansion, and sporulation of P. xanthii. The results suggest that efficacy of UV-B treatments, alone or in combination with red light, against P. xanthii can be enhanced by exposure of inoculated plants to these wavelengths of radiation during the night, thereby circumventing the counteracting effects of blue light and UV-A radiation. The effect of UV-B on powdery mildew seemed to be directly upon the pathogen, rather than induced resistance of the host. Night exposure of plants to 5 to 10 min of UV-B at 1 W/m2 and inexpensive, spectral-specific, light-emitting diodes may provide additional tools to suppress powdery mildews of diverse greenhouse crops.
Collapse
Affiliation(s)
- A Suthaparan
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - A Stensvand
- Norwegian Institute for Agricultural and Environmental Research, Høgskoleveien 7, 1432 Ås, Norway
| | - K A Solhaug
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - S Torre
- Department of Plant Sciences, Norwegian University of Life Sciences
| | - K H Telfer
- Department of Plant Sciences, Norwegian University of Life Sciences
| | - A K Ruud
- Department of Plant Sciences, Norwegian University of Life Sciences
| | - L M Mortensen
- Department of Plant Sciences, Norwegian University of Life Sciences
| | - D M Gadoury
- Department of Plant Sciences, Norwegian University of Life Sciences
| | - R C Seem
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - H R Gislerød
- Department of Plant Sciences, Norwegian University of Life Sciences
| |
Collapse
|
26
|
Morkunas I, Formela M, Floryszak-Wieczorek J, Marczak Ł, Narożna D, Nowak W, Bednarski W. Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:102-121. [PMID: 23987816 DOI: 10.1016/j.plantsci.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
The aim of the study was to examine cross-talk of exogenous nitric oxide (NO) and sucrose in the mechanisms of synthesis and accumulation of isoflavonoids in embryo axes of Lupinus luteus L. cv. Juno. It was verified whether the interaction of these molecules can modulate the defense response of axes to infection and development of the pathogenic fungus Fusarium oxysporum f. sp. lupini. Sucrose alone strongly stimulated a high level of genistein glucoside in axes pretreated with exogenous nitric oxide (SNP or GSNO) and non-pretreated axes. As a result of amplification of the signal coming from sucrose and GSNO, high isoflavonoids accumulation was observed (+Sn+GSNO). It needs to be stressed that infection in tissues pretreated with SNP/GSNO and cultured on the medium with sucrose (+Si+SNP/+Si+GSNO) very strongly enhances the accumulation of free isoflavone aglycones. In +Si+SNP axes phenylalanine ammonia-lyase activity was high up to 72h. As early as at 12h in +Si+SNP axes an increase was recorded in gene expression level of the specific isoflavonoid synthesis pathway. At 24h in +Si+SNP axes a very high total antioxidant capacity dependent on the pool of fast antioxidants was noted. Post-infection generation of semiquinone radicals was lower in axes with a high level of sucrose than with a deficit.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, Poznań, Poland.
| | | | | | | | | | | | | |
Collapse
|
27
|
Changes in L-phenylalanine ammonia-lyase activity and isoflavone phytoalexins accumulation in soybean seedlings infected with Sclerotinia sclerotiorum. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSoybean [Glycine max (L.) Merr.] cultivars (Meli, Alisa, Sava and 1511/99) were grown up to V1 phase (first trifoliate and one node above unifoliate) and then inoculated with Sclerotinia sclerotiorum (Lib.) de Bary under controlled conditions. Changes in L-phenylalanine ammonia-lyase (PAL) activity and isoflavone phytoalexins were recorded 12, 24, 48 and 72 h after the inoculation. Results showed an increase in PAL activity in all four examined soybean cultivars 48 h after the inoculation, being the highest in Alisa (2-fold higher). Different contents of total daidzein, genistein, glycitein and coumestrol were detected in all samples. Alisa and Sava increased their total isoflavone content (33.9% and 6.2% higher than control, respectively) as well as 1511/99, although 48 h after the inoculation its content decreased significantly. Meli exhibited the highest rate of coumestrol biosynthesis (72 h after the inoculation) and PAL activity (48 h after the inoculation). All investigated cultivars are invariably susceptible to this pathogen. Recorded changes could point to possible differences in mechanisms of tolerance among them.
Collapse
|
28
|
Kato H, Takemoto D, Kawakita K. Proteomic analysis of S-nitrosylated proteins in potato plant. PHYSIOLOGIA PLANTARUM 2013; 148:371-86. [PMID: 22924747 DOI: 10.1111/j.1399-3054.2012.01684.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) has various functions in physiological responses in plants, such as development, hormone signaling and defense. The mechanism of how NO regulates physiological responses has not been well understood. Protein S-nitrosylation, a redox-related modification of cysteine thiol by NO, is known to be one of the important post-translational modifications to regulate activity and interactions of proteins. To elucidate NO function in plants, proteomic analysis of S-nitrosylated proteins in potato (Solanum tuberosum) was performed. Detection and functional analysis of internal S-nitrosylated proteins is technically demanding because of the instability and reversibility of the protein S-nitrosylation. By using a modified biotin switch assay optimized for potato tissues, and nano liquid chromatography combined with mass spectrometry, approximately 80 S-nitrosylated candidate proteins were identified in S-nitrosoglutathione-treated potato leaves and tuber extracts. Identified proteins included redox-related enzymes, defense-related proteins and metabolic enzymes. Some of identified proteins were synthesized in Escherichia coli, and S-nitrosylation of recombinant proteins was confirmed in vitro. Dehydroascorbate reductase 1 (DHAR1, EC 1.8.5.1), one of the identified S-nitrosylated target proteins, showed glutathione-dependent dehydroascorbate-reducing activity. Either point mutation in a target cysteine of S-nitrosylation or treatment with an NO donor, S-nitroso-L-cysteine, significantly reduced the activity of DHAR1, indicating that DHAR1 is negatively regulated by S-nitrosylation of the cysteine residue essential for the enzymatic activity. These results show that the modified method developed in this study can be used to identify proteins regulated by S-nitrosylation in potato tissues.
Collapse
Affiliation(s)
- Hiroaki Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
29
|
Monjil MS, Shibata Y, Takemoto D, Kawakita K. Bis-aryl methanone compound is a candidate of nitric oxide producing elicitor and induces resistance in Nicotiana benthamiana against Phytophthora infestans. Nitric Oxide 2013; 29:34-45. [PMID: 23291305 DOI: 10.1016/j.niox.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is important in some physiological responses of plants and plays a crucial role in the regulation of both defense responses and inducing resistance to fungal pathogens. NUBS-4190, a new bis-aryl-methanone compound elicited NO production and defense responses in Nicotiana benthamiana against Phytophthora infestans. NUBS-4190 induced resistance in N. benthamiana to P. infestans, without association of reactive oxygen generation and hypersensitive cell death. Callose induction was reduced in NUBS-4190-treated N. benthamiana leaves after challenge inoculation of P. infestans indicating the penetration resistance. Involvement of pathogenesis-related 1a (NbPR1a) and nitric oxide associated 1 (NbNOA1) genes in the induced resistance to N. benthamiana against P. infestans was found to be associated with resistance. Increased susceptibility in NbPR1a- and NbNOA1-silenced plants correlated with the constitutive accumulation of PR1a transcripts and NO associated salicylic acid. Moreover, reduced NO generation in NOA1 silenced N. benthamiana plants treated with NUBS-4190 indicated that NbNOA1 is involved in NUBS-4190-mediated NO production and is required for defense responses.
Collapse
|
30
|
Wang H, Niu Y, Chai R, Liu M, Zhang Y. Cross-talk between nitric oxide and Ca (2+) in elevated CO 2-induced lateral root formation. PLANT SIGNALING & BEHAVIOR 2013; 8:e23106. [PMID: 23299426 PMCID: PMC3657006 DOI: 10.4161/psb.23106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This study demonstrates a potential signaling pathway of CO 2-dependent stimulation in lateral root (LR) formation. Elevated CO 2 increases production of nitric oxide (NO), which subsequently stimulates the generation of cytosolic Ca (2+) concentration by activating plasma membrane and/or intracellular Ca (2+)-permeable channels. Meanwhile, nitric oxide synthase (NOS), as one of the main NO source, requires Ca (2+) and CaM as cofactors. This complex interaction involves transduction cascades of multiple signals that lead to the LR formation and development. Finally, this review highlights the the role of Ca (2+) in the process that elevated CO 2 enhances the development of LRs through increased NO level.
Collapse
Affiliation(s)
- Huan Wang
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Yaofang Niu
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Rushan Chai
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Miao Liu
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
| | - Yongsong Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecosystem Health; College of Environmental and Resource Science; Zhejiang University; Hangzhou, China
- Correspondence to: Yongsong Zhang,
| |
Collapse
|
31
|
Suthaparan A, Stensvand A, Solhaug KA, Torre S, Mortensen LM, Gadoury DM, Seem RC, Gislerød HR. Suppression of Powdery Mildew (Podosphaera pannosa) in Greenhouse Roses by Brief Exposure to Supplemental UV-B radiation. PLANT DISEASE 2012; 96:1653-1660. [PMID: 30727454 DOI: 10.1094/pdis-01-12-0094-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultraviolet (UV)-B (280 to 315 nm) irradiance from 0.1 to 1.2 W m-2 and exposure times from 2 min to 2 h significantly suppressed powdery mildew (Podosphaera pannosa) in pot rose (Rosa × hybrida 'Toril') via reduced spore germination, infection efficiency, disease severity, and sporulation of surviving colonies. Brief daily exposure to UV-B suppressed disease severity by more than 90% compared with unexposed controls, and severity was held at low levels as long as daily brief exposures continued. Selective removal of wavelengths below 290 nm from the UV lamp sources by cellulose diacetate filters resulted in significant reduction of treatment efficacy. Exposure of plants to 2 h of UV-B during night for 1 week followed by inoculation with P. pannosa did not affect subsequent pathogen development, indicating that the treatment effect was directly upon the exposed pathogen and not operated through the host. Following 20 to 30 days of exposure, chlorophyll and flavonoid content was slightly higher in plants exposed to the highest UV-B levels. Brief daily exposure to UV-B for 5 min at 1.2 W m-2 or 1 h at 0.1 W m-2 substantially reduced mildew severity without significant phytotoxicity, and may represent a useful nonchemical option for suppression of powdery mildew in greenhouse roses and, possibly, other crops.
Collapse
Affiliation(s)
- A Suthaparan
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - A Stensvand
- Norwegian Institute for Agricultural and Environmental Research (Bioforsk), Høgskoleveien 7, 1432 Ås, Norway
| | - K A Solhaug
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences
| | - S Torre
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences
| | - L M Mortensen
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences
| | - D M Gadoury
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 USA
| | - R C Seem
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 USA
| | - H R Gislerød
- Department of Plant & Environmental Sciences, Norwegian University of Life Sciences
| |
Collapse
|
32
|
Talwar PS, Gupta R, Maurya AK, Deswal R. Brassica juncea nitric oxide synthase like activity is stimulated by PKC activators and calcium suggesting modulation by PKC-like kinase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:157-164. [PMID: 22947512 DOI: 10.1016/j.plaphy.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule having varied physiological and regulatory roles in biological systems. The fact that nitric oxide synthase (NOS) is responsible for NO generation in animals, prompted major search for a similar enzyme in plants. Arginine dependent NOS like activity (BjNOSla) was detected in Brassica juncea seedlings using oxyhemoglobin and citrulline assays. BjNOSla showed 25% activation by NADPH (0.4 mM) and 40% by calcium (0.4 mM) but the activity was flavin mononucleotide (FMN), flavin dinucleotide (FAD) and calmodulin (CaM) independent. Pharmacological approach using mammalian NOS inhibitors, NBT (300 μM) and l-NAME (5 mM), showed significant inhibition (100% and 67% respectively) supporting that the BjNOSla operates via the oxidative pathway. Most of the BjNOSla activity (80%) was confined to shoot while root showed only 20% activity. Localization studies by NADPH-diaphorase and DAF-2DA staining showed the presence of BjNOSla in guard cells. Kinetic analysis showed positive cooperativity with calcium as reflected by a decreased K(m) (∼13%) and almost two fold increase in V(max). PMA (438 nM), a kinase activator, activated BjNOSla ∼1.9 fold while its inactive analog 4αPDD was ineffective. Calcium and PMA activated the enzyme to ∼3 folds. Interestingly, 1,2-DG6 (2.5 μM) and PS (1 μM) with calcium activated the enzyme activity to ∼7 fold. A significant inhibition of BjNOSla by PKC inhibitors-staurosporine (∼90%) and calphostin-C (∼40%), further supports involvement of PKC-like kinase. The activity was also enhanced by abiotic stress conditions (7-46%). All these findings suggest that BjNOSla generates NO via oxidative pathway and is probably regulated by phosphorylation.
Collapse
Affiliation(s)
- Pooja Saigal Talwar
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India
| | | | | | | |
Collapse
|
33
|
Young HM, George S, Narváez DF, Srivastava P, Schuerger AC, Wright DL, Marois JJ. Effect of solar radiation on severity of soybean rust. PHYTOPATHOLOGY 2012; 102:794-803. [PMID: 22551225 DOI: 10.1094/phyto-10-11-0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence disease development of SBR. These results provide an understanding of the effect solar radiation has on the progression of SBR within the soybean canopy.
Collapse
|
34
|
Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:1483-99. [PMID: 22394204 DOI: 10.1111/j.1365-3040.2012.02505.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. In this study, we investigated the production and/or function of NO in Arabidopsis thaliana leaf discs and plants elicited by oligogalacturonides (OGs) and challenged with Botrytis cinerea. We provided evidence that OGs triggered a fast and long lasting NO production which was Ca(2+) dependent and involved nitrate reductase (NR). Accordingly, OGs triggered an increase of both NR activity and transcript accumulation. NO production was also sensitive to the mammalian NO synthase inhibitor L-NAME. Intriguingly, we showed that L-NAME affected NO production by interfering with NR activity, thus questioning the mechanisms of how this compound impairs NO synthesis in plants. We further demonstrated that NO modulates RBOHD-mediated reactive oxygen species (ROS) production and participates in the regulation of OG-responsive genes such as anionic peroxidase (PER4) and a β-1,3-glucanase. Mutant plants impaired in PER4 and β-1,3-glucanase, as well as Col-0 plants treated with the NO scavenger cPTIO, were more susceptible to B. cinerea. Taken together, our investigation deciphers part of the mechanisms linking NO production, NO-induced effects and basal resistance to B. cinerea.
Collapse
Affiliation(s)
- S Rasul
- AgroSup, UMR 1347 Agroécologie, BP 86510, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Santos-Filho PR, Vitor SC, Frungillo L, Saviani EE, Oliveira HC, Salgado I. Nitrate Reductase- and Nitric Oxide-Dependent Activation of Sinapoylglucose:malate sinapoyltransferase in Leaves of Arabidopsis thaliana. ACTA ACUST UNITED AC 2012; 53:1607-16. [DOI: 10.1093/pcp/pcs104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Determination of polyphenol levels variation in Capsicum annuum L. cv. Chelsea (yellow bell pepper) infected by anthracnose (Colletotrichum gloeosporioides) using liquid chromatography–tandem mass spectrometry. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Ferreira PG, Lima MASS, Bernedo-Navarro RA, Conceição RA, Linhares E, Sawaya ACHF, Yano T, Salgado I. Stimulation of acidic reduction of nitrite to nitric oxide by soybean phenolics: possible relevance to gastrointestinal host defense. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5609-16. [PMID: 21510708 DOI: 10.1021/jf201229x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased •NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of •NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.
Collapse
Affiliation(s)
- Pablo Gomes Ferreira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , P.O. Box 6109, Campinas, SP, Brazil, CEP 13083-970
| | | | | | | | | | | | | | | |
Collapse
|
38
|
del Río LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 2011; 506:1-11. [DOI: 10.1016/j.abb.2010.10.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/13/2022]
|
39
|
Du Y, Chu H, Wang M, Chu IK, Lo C. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:983-94. [PMID: 20007684 PMCID: PMC2826645 DOI: 10.1093/jxb/erp364] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/12/2009] [Accepted: 11/18/2009] [Indexed: 05/02/2023]
Abstract
Following inoculation with the anthracnose pathogen Colletotrichum sublineolum, seedlings of the sorghum resistant cultivar SC748-5 showed more rapid and elevated accumulation of luteolin than the susceptible cultivar BTx623. On the other hand, apigenin was the major flavone detected in infected BTx623 seedlings. Luteolin was demonstrated to show stronger inhibition of spore germination of C. sublineolum than apigenin. Because of their pathogen-inducible and antifungal nature, both flavone aglycones are considered sorghum phytoalexins. The key enzyme responsible for flavone biosynthesis has not been characterized in monocots. A sorghum pathogen-inducible gene encoding a cytochrome P450 protein (CYP93G3) in the uncharacterized CYP93G subfamily was identified. Transgenic expression of the P450 gene in Arabidopsis demonstrated that the encoded protein is a functional flavone synthase (FNS) II in planta. The sorghum gene was then termed SbFNSII. It is a single-copy gene located on chromosome 2 and the first FNSII gene characterized in a monocot. Metabolite analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in precursor ion scan mode revealed the accumulation of 2-hydroxynaringenin and 2-hydroxyeriodictyol hexosides in the transgenic Arabidopsis plants. Hence, SbFNSII appears to share a similar catalytic mechanism with the licorice and Medicago truncatula FNSIIs (CYP93B subfamily) by converting flavanones to flavone through the formation of 2-hydroxyflavanones.
Collapse
Affiliation(s)
- Yegang Du
- School of Biological Sciences The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hung Chu
- School of Biological Sciences The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ivan K. Chu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
40
|
Zheng W, Miao K, Zhang Y, Pan S, Zhang M, Jiang H. Nitric oxide mediates the fungal-elicitor-enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus. Microbiology (Reading) 2009; 155:3440-3448. [DOI: 10.1099/mic.0.030650-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A fungal elicitor prepared from the cell debris of the plant-pathogenic ascomycete Alternaria alternata induces multiple responses by Inonotus obliquus cells, including an increase in generation of nitric oxide (NO), activity of phenylalanine ammonia lyase (PAL) and accumulation of total mycelial phenolic compounds (TMP), but does not trigger production of oxylipins or jasmonic acid (JA). The role of NO in TMP production was investigated via the effects of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) and the nitric oxide synthase (NOS) inhibitor aminoguanidine (AG). TMP profiles were assayed using 1H NMR spectroscopy combining multivariate pattern recognition strategies. Pretreatment of I. obliquus mycelia with cPITO or AG suppressed not only elicitor-enhanced NO generation and PAL activity, but also the elicitor-induced increase in TMP production. This TMP reduction by either a NO scavenger or a NOS inhibitor was reversed by exogenous addition of either a NO donor, sodium nitroprusside, or JA separately. NMR-based metabonomic analysis of TMP profiles showed that the induced TMP were hispidin analogues including inoscavins, phelligridins, davallialactone and methyldavallialactone, which possess high antioxidant activities. Thus, NO mediates an elicitor-induced increase in production of antioxidant polyphenols in I. obliquus via a signalling pathway independent of oxylipins or JA, a mechanism which differs from those in some higher plants.
Collapse
Affiliation(s)
- Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, PR China
| | - Kangjie Miao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, PR China
| | - Yanxia Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, PR China
| | - Shenyuan Pan
- School of Life Sciences, Xuzhou Normal University, Xuzhou 221116, PR China
| | - Meimei Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, PR China
| | - Hong Jiang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou 221116, PR China
| |
Collapse
|
41
|
Manjunatha G, Niranjan-Raj S, Prashanth GN, Deepak S, Amruthesh KN, Shetty HS. Nitric oxide is involved in chitosan-induced systemic resistance in pearl millet against downy mildew disease. PEST MANAGEMENT SCIENCE 2009; 65:737-43. [PMID: 19222022 DOI: 10.1002/ps.1710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND The nature and durability of resistance offered by chitosan and the involvement of nitric oxide (NO) in chitosan-induced defence reactions in pearl millet against downy mildew disease were investigated. RESULTS It had previously been reported that chitosan seed priming protected pearl millet plants against downy mildew disease. Further elucidation of the mechanism of resistance showed that chitosan seed priming protects the plants systemically. A minimum 4 day time gap is required between the chitosan treatment and pathogen inoculation for maximum resistance development, and it was found to be durable. Chitosan seed priming elevated NO accumulation in pearl millet seedlings, beginning from 2 h post-inoculation, and it was found to be involved in the activation of early defence reactions such as hypersensitive reaction, callose deposition and PR-1 protein expression. Pretreatment with NO scavenger C-PTIO and nitric oxide synthase (NOS) inhibitor L-NAME before pathogen inoculation reduced the disease-protecting ability of chitosan, and defence reactions were also downregulated, which indicated a possible role for NO in chitosan-induced resistance. CONCLUSION Protection offered by chitosan against pearl millet downy mildew disease is systemic in nature and durable. Chitosan-induced resistance is activated via NO signalling, as defence reactions induced by chitosan were downregulated under NO deficient conditions.
Collapse
Affiliation(s)
- Girigowda Manjunatha
- Downy Mildew Research Laboratory, Department of Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore-570006, Karnataka, India
| | | | | | | | | | | |
Collapse
|
42
|
Piterková J, Petrivalský M, Luhová L, Mieslerová B, Sedlárová M, Lebeda A. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. MOLECULAR PLANT PATHOLOGY 2009; 10:501-13. [PMID: 19523103 PMCID: PMC6640527 DOI: 10.1111/j.1364-3703.2009.00551.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant-pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant-pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms.
Collapse
Affiliation(s)
- Jana Piterková
- Department of Biochemistry, Palacký University in Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
43
|
Yemets AI, Krasylenko YA, Sheremet YA, Blume YB. Microtubule reorganization as a response to implementation of NO signals in plant cells. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709020017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Chaki M, Fernandez-Ocana AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gomez-Rodriguez MV, Begara-Morales JC, Corpas FJ, Barroso JB. Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 50(2): 265-79 (2009). PLANT & CELL PHYSIOLOGY 2009; 50:665-79. [PMID: 19297722 DOI: 10.1093/pcp/pcp039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
45
|
Seong ES, Kwon SS, Ghimire BK, Yu CY, Cho DH, Lim JD, Kim KS, Heo K, Lim ES, Chung IM, Kim MJ, Lee YS. LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium. BMB Rep 2009; 41:693-8. [PMID: 18959814 DOI: 10.5483/bmbrep.2008.41.10.693] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The full-length cDNA of LebZIP2 (Lycopersicon esculentum bZIP2) encodes a protein of 164 amino acids and contains a N-terminal basic-region leucine zipper domain. Analysis of the deduced tomato LebZIP2 amino acid sequence revealed that it shares 85% sequence identity with both tobacco bZIP and pepper CcbZIP. LebZIP2 mRNA is expressed at a high level exclusively in flowers. Presently, LebZIP2 was strongly increased also following NaCl and mannitol treatments. No significant LebZIP2 expression was evident following cold treatment. Transient LebZIP2 overexpression resulted in increased NbNOA1 and NbNR transcript levels in Nicotiana benthamiana leaves. Our results indicate that LebZIP2 might play roles as an abiotic stress-signaling pathway and as a transcriptional regulator of the NbNOA1 or NbNR genes.
Collapse
Affiliation(s)
- Eun Soo Seong
- Bioherb Research Institute, College of Agriculture and life Science, Kangwon National University, Chuncheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu SJ, Qi JL, Zhang WJ, Liu SH, Xiao FH, Zhang MS, Xu GH, Zhao WG, Shi MW, Pang YJ, Shen HG, Yang YH. Nitric oxide regulates shikonin formation in suspension-cultured Onosma paniculatum cells. PLANT & CELL PHYSIOLOGY 2009; 50:118-28. [PMID: 19022805 DOI: 10.1093/pcp/pcn178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Endogenously occurring nitric oxide (NO) is involved in the regulation of shikonin formation in Onosma paniculatum cells. NO generated after cells were inoculated into shikonin production medium reached the highest level after 2 d of culture, which was 16 times that at the beginning of the experiment, and maintained a high level for 6 d. A nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-L-arginine (L-NNA), and a nitrate reductase (NR) inhibitor, sodium azide (SoA), consistent with their inhibition of NO biosynthesis, decreased shikonin formation significantly. This reduction could be alleviated or even abolished by exogenous NO supplied by sodium nitroprusside (SNP), suggesting that the inhibition of NO biosynthesis resulted in decreased shikonin formation. However, when endogenous NO biosynthesis was up-regulated by the elicitor from Rhizoctonia cerealis, shikonin production was enhanced further, showing a dependence on the elicitor-induced NO burst. Real-time PCR analysis showed that NO could significantly up-regulate the expression of PAL, PGT and HMGR, which encode key enzymes involved in shikonin biosynthesis. These results demonstrated that NO plays a critical role in shikonin formation in O. paniculatum cells.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Corpas FJ, Palma JM, Del Río LA, Barroso JB. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. THE NEW PHYTOLOGIST 2009; 184:9-14. [PMID: 19659743 DOI: 10.1111/j.1469-8137.2009.02989.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - Luis A Del Río
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain
| | - Juan B Barroso
- Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC (EEZ), Área de Bioquímica y Biología Molecular, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|
48
|
Suita K, Kiryu T, Sawada M, Mitsui M, Nakagawa M, Kanamaru K, Yamagata H. Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. PLANTA 2009; 229:403-13. [PMID: 18987879 DOI: 10.1007/s00425-008-0839-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/06/2008] [Indexed: 05/07/2023]
Abstract
Cyclic GMP (cGMP) is an important signaling molecule that controls a range of cellular functions. So far, however, only a few genes have been found to be regulated by cGMP in higher plants. We investigated the cGMP-responsiveness of several genes encoding flavonoid-biosynthetic enzymes in soybean (Glycine max L.) involved in legume-specific isoflavone, phytoalexin and anthocyanin biosynthesis, such as phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate:CoA ligase, chalcone synthase, chalcone reductase, chalcone isomerase, 2-hydroxyisoflavanone synthase, 2-hydroxyisoflavanone dehydratase, anthocyanidin synthase, UDP-glucose:isoflavone 7-O-glucosyltransferase, and isoflavone reductase, and found that the majority of these genes were induced by cGMP but not by cAMP. All cGMP-induced genes were also stimulated by sodium nitroprusside (SNP), a nitric oxide (NO) donor, and illumination of cultured cells with white light. The NO-dependent induction of these genes was blocked by 6-anilino-5,8-quinolinedione, an inhibitor of guanylyl cyclase. Moreover, cGMP levels in cultured cells were transiently increased by SNP. Consistent with the increases of these transcripts, the accumulation of anthocyanin in response to cGMP, NO, and white light was observed. The treatment of soybean cotyledons with SNP resulted in a high accumulation of isoflavones such as daidzein and genistein. Loss- and gain-of-function experiments with the promoter of chalcone reductase gene indicated the Unit I-independent activation of gene expression by cGMP. Together, these results suggest that cGMP acts as a second messenger to activate the expression of genes for enzymes involved in the flavonoid biosynthetic pathway in soybean.
Collapse
Affiliation(s)
- Kenji Suita
- Laboratory of Biochemistry, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe, 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Park JY, Jin J, Lee YW, Kang S, Lee YH. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. PLANT PHYSIOLOGY 2009; 149:474-86. [PMID: 18987215 PMCID: PMC2613700 DOI: 10.1104/pp.108.129536] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 11/03/2008] [Indexed: 05/21/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants.
Collapse
Affiliation(s)
- Ju-Young Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | |
Collapse
|
50
|
Chaki M, Fernández-Ocaña AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gómez-Rodríguez MV, Begara-Morales JC, Corpas FJ, Barroso JB. Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower–Mildew Interaction. ACTA ACUST UNITED AC 2008; 50:265-79. [DOI: 10.1093/pcp/pcn196] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|