1
|
Ma H, Su L, Zhang W, Sun Y, Li D, Li S, Lin YJ, Zhou C, Li W. Epigenetic regulation of lignin biosynthesis in wood formation. THE NEW PHYTOLOGIST 2025; 245:1589-1607. [PMID: 39639540 PMCID: PMC11754936 DOI: 10.1111/nph.20328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Lignin, a major wood component, is the key limiting factor for wood conversion efficiency. Its biosynthesis is controlled by transcriptional regulatory networks involving transcription factor (TF)-DNA interactions. However, the epigenetic mechanisms underlying these interactions in lignin biosynthesis remain largely unknown. Here, using yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays, we identified that PtrbZIP44-A1, a key wood-forming TF, directly interacts with the promoters of PtrCCoAOMT2 and PtrCCR2, genes involved in the monolignol biosynthetic pathway. We used yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa to demonstrate that PtrHDA15, a histone deacetylase, acts as an epigenetic inhibitor and is recruited by PtrbZIP44-A1 for chromatin histone modifications to repress PtrCCoAOMT2 and PtrCCR2, leading to reduced lignin deposition. In transgenic lines overexpressing PtrbZIP44-A1 or PtrHDA15, histone acetylation at the promoters of PtrCCoAOMT2 and PtrCCR2 decreased, reducing their expression and lignin content. Conversely, in loss-of-function ptrbzip44-a1 and ptrhda15 mutants, histone acetylation levels at PtrCCoAOMT2 and PtrCCR2 promoters increased, enhancing target gene expression and lignin content. Our study uncovered an epigenetic mechanism that suppresses lignin biosynthesis. This finding may help fill a knowledge gap between epigenetic regulation and lignin biosynthesis during wood formation in Populus.
Collapse
Affiliation(s)
- Hongyan Ma
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Liwei Su
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Wen Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Danning Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | | | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Wei Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
2
|
Zhang J, Wu A, Wei H, Hao P, Zhang Q, Tian M, Yang X, Cheng S, Fu X, Ma L, Wang H, Yu S. Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton. BMC Genomics 2020; 21:643. [PMID: 32948145 PMCID: PMC7501681 DOI: 10.1186/s12864-020-07069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) catalyze histone deacetylation and suppress gene transcription during various cellular processes. Within the superfamily of HDACs, RPD3/HDA1-type HDACs are the most studied, and it is reported that RPD3 genes play crucial roles in plant growth and physiological processes. However, there is a lack of systematic research on the RPD3/HDA1 gene family in cotton. RESULTS In this study, genome-wide analysis identified 9, 9, 18, and 18 RPD3 genes in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. This gene family was divided into 4 subfamilies through phylogenetic analysis. The exon-intron structure and conserved motif analysis revealed high conservation in each branch of the cotton RPD3 genes. Collinearity analysis indicated that segmental duplication was the primary driving force during the expansion of the RPD3 gene family in cotton. There was at least one presumed cis-element related to plant hormones in the promoter regions of all GhRPD3 genes, especially MeJA- and ABA-responsive elements, which have more members than other hormone-relevant elements. The expression patterns showed that most GhRPD3 genes had relatively high expression levels in floral organs and performed higher expression in early-maturity cotton compared with late-maturity cotton during flower bud differentiation. In addition, the expression of GhRPD3 genes could be significantly induced by one or more abiotic stresses as well as exogenous application of MeJA or ABA. CONCLUSIONS Our findings reveal that GhRPD3 genes may be involved in flower bud differentiation and resistance to abiotic stresses, which provides a basis for further functional verification of GhRPD3 genes in cotton development and a foundation for breeding better early-maturity cotton cultivars in the future.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Miaomiao Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
3
|
Farhi J, Tian G, Fang H, Maxwell D, Xing T, Tian L. Histone deacetylase HD2D is involved in regulating plant development and flowering time in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1300742. [PMID: 28737472 PMCID: PMC5586354 DOI: 10.1080/15592324.2017.1300742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
HD2D is one of the 4 plant specific HD2 family histone deacetylases (HDAC) identified in Arabidopsis and it is distantly related to the other HD2 members. At this time, little is known about the function of HD2D in plants. Here we provide evidence that HD2D is involved in the control of flowering time. Flowering was delayed in transgenic plants overexpressing HD2D and hd2d mutant plants flowered earlier compared with wild-type in both long day and short day conditions. Expression of several floral identity genes was altered in these plants. Taken together, our findings suggest that HD2D is a negative regulator of flowering that modulates the transition of vegetative to reproductive growth in a photoperiod independent manner.
Collapse
Affiliation(s)
- Joshua Farhi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Gang Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Hui Fang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Denis Maxwell
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim Xing
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- CONTACT Lining Tian London Research and Development Center, Agriculture and Agri-Food Canada, 1391 Sanford Street, London, Ontario, Canada, N5V 4T3
| |
Collapse
|
4
|
Zhao J, Li M, Gu D, Liu X, Zhang J, Wu K, Zhang X, Teixeira da Silva JA, Duan J. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses. Biochem Biophys Res Commun 2016; 470:439-444. [PMID: 26772883 DOI: 10.1016/j.bbrc.2016.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Histone acetylation and deacetylation play crucial roles in the modification of chromatin structure and regulation of gene expression in eukaryotes. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) assist to maintain the balance of chromatin acetylation status. Previous studies showed that plant HDACs are key regulators involved in response to development and stresses. In this study, we examined the expression pattern and function of HDA705, a member of the RPD3/HDA1-type HDAC in rice. Overexpression of HDA705 in rice decreased ABA and salt stress resistance during seed germination. Delayed seed germination of HDA705 overexpression lines was associated with down-regulated expression of GA biosynthetic genes and up-regulation of ABA biosynthetic genes. Moreover, overexpression of HDA705 in rice enhanced osmotic stress resistance during the seedling stage. Our findings demonstrate that HDA705 may play a role in regulating seed germination and the response to abiotic stresses in rice.
Collapse
Affiliation(s)
- Jinhui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mingzhi Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jianxia Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Identification of Genetic Differentiation between Waxy and Common Maize by SNP Genotyping. PLoS One 2015; 10:e0142585. [PMID: 26566240 PMCID: PMC4643885 DOI: 10.1371/journal.pone.0142585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Waxy maize (Zea mays L. var. ceratina) is an important vegetable and economic crop that is thought to have originated from cultivated flint maize and most recently underwent divergence from common maize. In this study, a total of 110 waxy and 110 common maize inbred lines were genotyped with 3072 SNPs to evaluate the genetic diversity, population structure, and linkage disequilibrium decay as well as identify putative loci that are under positive selection. The results revealed abundant genetic diversity in the studied panel and that genetic diversity was much higher in common than in waxy maize germplasms. Principal coordinate analysis and neighbor-joining cluster analysis consistently classified the 220 accessions into two major groups and a mixed group with mixed ancestry. Subpopulation structure in both waxy and common maize sets were associated with the germplasm origin and corresponding heterotic groups. The LD decay distance (1500–2000 kb) in waxy maize was lower than that in common maize. Fourteen candidate loci were identified as under positive selection between waxy and common maize at the 99% confidence level. The information from this study can assist waxy maize breeders by enhancing parental line selection and breeding program design.
Collapse
|
6
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol 2015; 16:168. [PMID: 26357925 PMCID: PMC4566308 DOI: 10.1186/s13059-015-0735-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To sustain the global requirements for food and renewable resources, unraveling the molecular networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and networks involved in final organ size have been proven successful, our understanding remains fragmentary. RESULTS Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf size and whole shoot traits at the seedling stage, complemented with measurements capturing growth dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we searched for association between the transcriptional variation in dividing cells of the growing leaf and final leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits. A number of these genes have a known function in leaf development. Additionally, we illustrated that two independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth. CONCLUSIONS Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define the relative contributions of the components and their mutual associations, facilitating dissection of the biological processes and regulatory networks underneath.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
7
|
Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Genet Genomics 2014; 290:471-84. [PMID: 25293935 PMCID: PMC4361721 DOI: 10.1007/s00438-014-0931-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/20/2014] [Indexed: 11/03/2022]
Abstract
The effects of microRNA156 overexpression on general plant architecture, branching, flowering time and nodulation were investigated in the model legume, Lotus japonicus. We cloned an miR156 homolog, LjmiR156a, from L. japonicus, and investigated its SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes and its biological function at enhancing vegetative biomass yield, extending flowering time, and its impact on nodulation. Thirteen potential targets for LjmiR156 were identified in vitro and their expression profiles were determined in aerial and underground parts of mature plants, including genes coding for eight SPLs, one WD-40, one RNA-directed DNA polymerase, two transport proteins, and one histidine-phosphotransfer protein. Two SPL and one WD-40 cleavage targets for LjmiR156-TC70253, AU089191, and TC57859-were identified. Transgenic plants with ectopic expression of LjmiR156a showed enhanced branching, dramatically delayed flowering, underdeveloped roots, and reduced nodulation. We also examined the transcript levels of key genes involved in nodule organogenesis and infection thread formation to determine the role of miR156 in regulating symbiosis. Overexpression of LjmiR156a led to repression of several nodulation genes during the early stages of root development such as three ENOD genes, SymPK, POLLUX, CYCLOPS, Cerberus, and Nsp1, and the stimulation of NFR1. Our results show that miR156 regulates vegetative biomass yield, flowering time and nodulation by silencing downstream target SPLs and other genes, suggesting that the miR156 regulatory network could be modified in forage legumes (such as alfalfa and trefoils) and in leafy vegetables (like lettuce and spinach) to positively impact economically valuable crop species.
Collapse
|
8
|
Eichten SR, Schmitz RJ, Springer NM. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. PLANT PHYSIOLOGY 2014; 165:933-947. [PMID: 24872382 PMCID: PMC4081347 DOI: 10.1104/pp.113.234211] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes.
Collapse
Affiliation(s)
- Steven R Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Robert J Schmitz
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| |
Collapse
|
9
|
Hennig L. Chromatin: domestication of the monsters. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2767-2768. [PMID: 25025124 DOI: 10.1093/jxb/eru214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
10
|
Gagliano M, Renton M, Depczynski M, Mancuso S. Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 2014; 175:63-72. [DOI: 10.1007/s00442-013-2873-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/20/2013] [Indexed: 02/03/2023]
|
11
|
Volkov AG, Reedus J, Mitchell CM, Tuckett C, Volkova MI, Markin VS, Chua L. Memory elements in the electrical network of Mimosa pudica L. PLANT SIGNALING & BEHAVIOR 2014; 9:e982029. [PMID: 25482796 PMCID: PMC4623388 DOI: 10.4161/15592324.2014.982029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 05/18/2023]
Abstract
The fourth basic circuit element, a memristor, is a resistor with memory that was postulated by Chua in 1971. Here we found that memristors exist in vivo. The electrostimulation of the Mimosa pudica by bipolar sinusoidal or triangle periodic waves induce electrical responses with fingerprints of memristors. Uncouplers carbonylcyanide-3-chlorophenylhydrazone and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decrease the amplitude of electrical responses at low and high frequencies of bipolar sinusoidal or triangle periodic electrostimulating waves. Memristive behavior of an electrical network in the Mimosa pudica is linked to the properties of voltage gated ion channels: the channel blocker TEACl reduces the electric response to a conventional resistor. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of plants has properties of a memristor. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
- Correspondence to: Alexander G Volkov;
| | - Jada Reedus
- Department of Neurology; University of Texas; Southwestern Medical Center; Dallas, TX USA
| | - Colee M Mitchell
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Clayton Tuckett
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Maya I Volkova
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, AL USA
| | - Vladislav S Markin
- Department of Neurology; University of Texas; Southwestern Medical Center; Dallas, TX USA
| | - Leon Chua
- Department of Electrical Engineering and Computer Sciences; University of California, Berkeley; Berkeley, CA USA
| |
Collapse
|
12
|
Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. THE PLANT CELL 2013; 25:3743-59. [PMID: 24170127 PMCID: PMC3877814 DOI: 10.1105/tpc.113.113639] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.
Collapse
Affiliation(s)
- Zefu Lu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqing Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
13
|
Liu X, Chen CY, Wang KC, Luo M, Tai R, Yuan L, Zhao M, Yang S, Tian G, Cui Y, Hsieh HL, Wu K. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. THE PLANT CELL 2013; 25:1258-73. [PMID: 23548744 PMCID: PMC3663266 DOI: 10.1105/tpc.113.109710] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 03/15/2013] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II-associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings.
Collapse
Affiliation(s)
- Xuncheng Liu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ko-Ching Wang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ming Luo
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ready Tai
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Lianyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Minglei Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Songguang Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Gang Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Yuhai Cui
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario N5V 4T3, Canada
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
- Address correspondence to
| |
Collapse
|
14
|
Gan ES, Huang J, Ito T. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:115-61. [DOI: 10.1016/b978-0-12-407695-2.00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Stępiński D. Levels of DNA methylation and histone methylation and acetylation change in root tip cells of soybean seedlings grown at different temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:9-17. [PMID: 23023582 DOI: 10.1016/j.plaphy.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/01/2012] [Indexed: 06/01/2023]
Abstract
In order to check whether changes in DNA and histone modifications occur in the nuclei of root tip cells of soybean seedlings grown 1) under control conditions (25 °C), 2) subjected to chilling stress (10 °C) and 3) recovered (25 °C) after chilling, measurements of fluorescence intensity with the use of antibodies to heterochromatin as well as to euchromatin markers were carried out. Moreover, the number and sizes of chromocentres were analyzed. The studies showed that during chilling stress the fluorescence intensity for the markers characteristic of heterochromatin increased while for the markers of euchromatin decreased in comparison to the control. After the recovery the converse situation was observed, i.e. increase in fluorescence intensity for euchromatin markers and decrease in heterochromatin markers. The number of chromocentres remained unchanged in the nuclei of all three studied variants. However, differences in the sizes of chromocentres were observed - the highest number of big chromocentres and simultaneously the lowest number of small chromocentres were in the nuclei of stressed plants. Conversely - in the nuclei of recovered plants there were the lowest number of big chromocentres and the highest number of small ones. The treatment of seedlings with the inhibitors of DNA methylation (5-aza-dC) and histone deacetylation (NaBu) also caused changes in fluorescence intensity and chromocentre sizes in soybean nuclei. These results suggest that DNA and histone modification patterns can be altered in soybean nuclei by different growth temperatures and by appropriate inhibitors influencing epigenetic chromatic modifications.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
16
|
Verdus MC, Ripoll C, Norris V, Thellier M. The role of calcium in the recall of stored morphogenetic information by plants. Acta Biotheor 2012; 60:83-97. [PMID: 22286946 DOI: 10.1007/s10441-012-9145-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/11/2012] [Indexed: 11/24/2022]
Abstract
Flax seedlings grown in the absence of environmental stimuli, stresses and injuries do not form epidermal meristems in their hypocotyls. Such meristems do form when the stimuli are combined with a transient depletion of calcium. These stimuli include the "manipulation stimulus" resulting from transferring the seedlings from germination to growth conditions. If, after a stimulus, calcium depletion is delayed, meristem production is also delayed; in other words, the meristem-production instruction can be memorised. Memorisation includes both storage and recall of information. Here, we focus on information recall. We show that if the first transient calcium depletion is followed by a second transient depletion there is a new round of meristem production. We also show that if an excess of calcium follows calcium depletion, meristem production is blocked; but if the excess of calcium is in turn followed by another calcium depletion, again there is a new round of meristem production. The same stored information can thus be recalled repeatedly (at least twice). We describe a conceptual model that takes into account these findings.
Collapse
Affiliation(s)
- Marie-Claire Verdus
- Laboratoire AMMIS, CNRS, Faculté des Sciences et Techniques, Université de Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
17
|
Huang LC, Hsiao LJ, Pu SY, Kuo CI, Huang BL, Tseng TC, Huang HJ, Chen YT. DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. PHYSIOLOGIA PLANTARUM 2012; 145:360-368. [PMID: 22380594 DOI: 10.1111/j.1399-3054.2012.01606.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Epigenetic machinery regulates the expression of individual genes and plays a crucial role in globally shaping and maintaining developmental patterning. We studied the extent of DNA methylation in the nucleus, mitochondrion and chloroplast in cultured Sequoia sempervirens (coast redwood) adult, juvenile and rejuvenated shoots by measuring the ratio of methylcytosine to total cytosine using high-performance liquid chromatography (HPLC). We also analyzed nuclear DNA (nuDNA) polymorphisms of different shoot types by methylation-sensitive amplified fragment length polymorphism (MSAP) and Southern blot analysis. The extent of nuDNA methylation was greater in the adult vegetative than juvenile and rejuvenated shoots (8% vs 6.5-7.5%). In contrast, the proportion of methylcytosine was higher in mitochondrial DNA (mDNA) of juvenile and rejuvenated shoots than adult shoots (6.6% vs 7.8-8.2%). MSAP and Southern blot analyses identified three MSAP fragments which could be applied as phase-specific molecular markers. We also found nuclear genome and mtDNA rearrangement may be as important as DNA methylation status during the phase change. Our findings strongly suggest that DNA methylation and genome rearrangement may affect the dynamic tissue- and cell type-specific changes that determine the developmental phase of S. sempervirens shoots.
Collapse
Affiliation(s)
- Li-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Thellier M. A Half-Century Adventure in the Dynamics of Living Systems. PROGRESS IN BOTANY 2012. [DOI: 10.1007/978-3-642-22746-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. PLANT, CELL & ENVIRONMENT 2010; 33:604-11. [PMID: 19930132 DOI: 10.1111/j.1365-3040.2009.02076.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants respond and adapt to drought, cold and high-salinity stress in order to survive. Molecular and genomic studies have revealed that many stress-inducible genes with various functions and signalling factors, such as transcription factors, protein kinases and protein phosphatases, are involved in the stress responses. Recent studies have revealed the coordination of the gene expression and chromatin regulation in response to the environmental stresses. Several histone modifications are dramatically altered on the stress-responsive gene regions under drought stress conditions. Several chromatin-related proteins such as histone modification enzymes, linker histone H1 and components of chromatin remodeling complex influence the gene regulation in the stress responses. This review briefly describes chromatin regulation in response to drought, cold and high-salinity stress.
Collapse
Affiliation(s)
- Jong-Myong Kim
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | |
Collapse
|
20
|
Aquea F, Johnston AJ, Cañon P, Grossniklaus U, Arce-Johnson P. TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1215-24. [PMID: 20118203 PMCID: PMC2826662 DOI: 10.1093/jxb/erp396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis.
Collapse
Affiliation(s)
- Felipe Aquea
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Amal J. Johnston
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Department of Molecular Genetics. Corrensstrasse 3, D-06466 Gatersleben, Germany
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Paola Cañon
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Patricio Arce-Johnson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
21
|
Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:764-76. [PMID: 19453457 DOI: 10.1111/j.1365-313x.2009.03908.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously isolated a rice gene encoding a histone deacetylase, OsHDAC1, and observed that its transgenic overexpression increases seedling root growth. To identify the transcriptional repression events that occur as a result of OsHDAC1 overexpression (OsHDAC1(OE)), a global profiling of root-expressed genes was performed on OsHDAC1(OE) or HDAC inhibitor-treated non-transgenic (NT) roots, in comparison with untreated NT roots. We selected 39 genes that are induced and repressed in HDAC inhibitor-treated NT and OsHDAC1(OE) roots, compared with NT roots, respectively. Interestingly, OsNAC6, a member of the NAM-ATAF-CUC (NAC) family, was identified as a key component of the OsHDAC1 regulon, and was found to be epigenetically repressed by OsHDAC1 overexpression. The root phenotype of OsNAC6 knock-out seedlings was observed to be similar to that of the OsHDAC1(OE) seedlings. Conversely, the root phenotype of the OsNAC6 overexpressors was similar to that of the OsHDAC1 knock-out seedlings. These observations indicate that OsHDAC1 negatively regulates the OsNAC6 gene that primarily mediates the alteration in the root growth of the OsHDAC1(OE) seedlings. Chromatin immunoprecipitation assays of the OsNAC6 promoter region using antibodies specific to acetylated histones H3 and H4 revealed that OsHDAC1 epigenetically represses the expression of OsNAC6 by deacetylating K9, K14 and K18 on H3 and K5, K12 and K16 on H4.
Collapse
Affiliation(s)
- Pil Joong Chung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Electrical memory in Venus flytrap. Bioelectrochemistry 2009; 75:142-7. [PMID: 19356999 DOI: 10.1016/j.bioelechem.2009.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 03/05/2009] [Accepted: 03/08/2009] [Indexed: 12/15/2022]
Abstract
Electrical signaling, memory and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since the XIX century. The electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf in 0.3 s without mechanical stimulation of trigger hairs. Here we developed a new method for direct measurements of the exact electrical charge utilized by the D. muscipula Ellis to facilitate the trap closing and investigated electrical short memory in the Venus flytrap. As soon as the 8 microC charge for a small trap or a 9 microC charge for a large trap is transmitted between a lobe and midrib from the external capacitor, the trap starts to close at room temperature. At temperatures 28-36 degrees C a smaller electrical charge of 4.1 microC is required to close the trap of the D. muscipula. The cumulative character of electrical stimuli points to the existence of short-term electrical memory in the Venus flytrap. We also found sensory memory in the Venus flytrap. When one sustained mechanical stimulus was applied to only one trigger hair, the trap closed in a few seconds.
Collapse
|
23
|
Matthes MC, Pickett JA, Napier JA. Natural variation in responsiveness of Arabidopsis thaliana to methyl jasmonate is developmentally regulated. PLANTA 2008; 228:1021-1028. [PMID: 18726615 DOI: 10.1007/s00425-008-0804-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
A number of Arabidopsis thaliana (L.) Heynh ecotypes were assayed for their responses to methyl jasmonate in order to determine any natural variation in response to this volatile signal. We observed that the regulation of methyl jasmonate-induced expression of the vegetative storage proteins VSP1 and VSP2 is linked to the developmental stage of the plants. In two ecotypes investigated further, Gr-3 and Col-0, it was observed that the VSP1/2 genes became non-responsive to methyl jasmonate stimulation as the plants progressed to bolt formation and flowering. However, the onset of when this transcriptional inactivation occurred differed between the two ecotypes, with Col-0 displaying still high levels of transcript at the onset of flowering whereas Gr-3 showed no induction of VSP1/2 transcription at the same developmental stage. To our knowledge, this is the first time that such a pattern of regulation has been described for a methyl jasmonate-regulated gene. Moreover, in an F(2) population of a cross between these two ecotypes, the trait for 'VSP1/2 methyl jasmonate non-responsiveness' segregated among individuals, indicating the feasibility of mapping the genetic components of this response.
Collapse
Affiliation(s)
- Michaela C Matthes
- Biological Chemistry Department, Rothamsted Research, Harpenden, Herts, UK
| | | | | |
Collapse
|
24
|
Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E. Plant electrical memory. PLANT SIGNALING & BEHAVIOR 2008; 3:490-2. [PMID: 19704496 PMCID: PMC2634440 DOI: 10.4161/psb.3.7.5684] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/31/2008] [Indexed: 05/08/2023]
Abstract
Electrical signaling, short-term memory and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since the XIX century. We found that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The closing time of Venus flytrap by electrical stimulation is the same as mechanically induced closing. Transmission of a single electrical charge between a lobe and the midrib causes closure of the trap and induces an electrical signal propagating between both lobes and midrib. The Venus flytrap can accumulate small subthreshold charges, and when the threshold value is reached, the trap closes. Repeated application of smaller charges demonstrates the summation of stimuli. The cumulative character of electrical stimuli points to the existence of short-term electrical memory in the Venus flytrap.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, Alabama USA
| | | | | | | | | |
Collapse
|
25
|
Exner V, Gruissem W, Hennig L. Control of trichome branching by chromatin assembly factor-1. BMC PLANT BIOLOGY 2008; 8:54. [PMID: 18477400 PMCID: PMC2413220 DOI: 10.1186/1471-2229-8-54] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/13/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Chromatin dynamics and stability are both required to control normal development of multicellular organisms. Chromatin assembly factor CAF-1 is a histone chaperone that facilitates chromatin formation and the maintenance of specific chromatin states. In plants and animals CAF-1 is essential for normal development, but it is poorly understood which developmental pathways require CAF-1 function. RESULTS Mutations in all three CAF-1 subunits affect Arabidopsis trichome morphology and lack of CAF-1 function results in formation of trichomes with supernumerary branches. This phenotype can be partially alleviated by external sucrose. In contrast, other aspects of the CAF-1 mutant phenotype, such as defective meristem function and organ formation, are aggravated by external sucrose. Double mutant analyses revealed epistatic interactions between CAF-1 mutants and stichel, but non-epistatic interactions between CAF-1 mutants and glabra3 and kaktus. In addition, mutations in CAF-1 could partly suppress the strong overbranching and polyploidization phenotype of kaktus mutants. CONCLUSION CAF-1 is required for cell differentiation and regulates trichome development together with STICHEL in an endoreduplication-independent pathway. This function of CAF-1 can be partially substituted by application of exogenous sucrose. Finally, CAF-1 is also needed for the high degree of endoreduplication in kaktus mutants and thus for the realization of kaktus' extreme overbranching phenotype.
Collapse
Affiliation(s)
- Vivien Exner
- Institute of Plant Sciences & Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Plant Sciences & Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Lars Hennig
- Institute of Plant Sciences & Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
26
|
Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 2008; 315:355-68. [PMID: 18252252 DOI: 10.1016/j.ydbio.2007.12.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 11/29/2022]
Abstract
Plant SET domain proteins are known to be involved in the epigenetic control of gene expression during plant development. Here, we report that the Arabidopsis SET domain protein, SDG4, contributes to the epigenetic regulation of pollen tube growth, thus affecting fertilization. Using an SDG4-GFP fusion construct, the chromosomal localization of SDG4 was established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyses indicated that SDG4 is the major ASH1-related gene expressed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone H3 in the inflorescence and pollen grains. The significant reduction in the amount of methylated histone H3 K4 and K36 in sdg4 pollen vegetative nuclei resulted in suppression of pollen tube growth. Our results indicate that SDG4 is capable of modulating the expression of genes that function in the growth of pollen tube by methylation of specific lysine residues of the histone H3 in the vegetative nuclei.
Collapse
Affiliation(s)
- Joyce A Cartagena
- Department of Biotechnology, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. PLANT PHYSIOLOGY 2008; 146:149-61. [PMID: 18024558 PMCID: PMC2230551 DOI: 10.1104/pp.107.111674] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/11/2007] [Indexed: 05/19/2023]
Abstract
Histone deacetylase (HDAC) is a chromatin-remodeling factor that contributes to transcriptional repression in eukaryotes. In Arabidopsis (Arabidopsis thaliana), the transcription factors LEAFY COTYLEDON1 (LEC1), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE3 (ABI3) play key roles in embryogenesis. Although the repression of embryogenesis-related genes during germination has been proposed to occur, the role of HDAC in this process has not been elucidated. To address this question, the effects of an HDAC inhibitor and suppression of the Arabidopsis HDAC genes on this process were investigated. Here, we show that treatment of an HDA6 repression line with the HDAC inhibitor trichostatin A resulted in growth arrest and elevated transcription of LEC1, FUS3, and ABI3 during germination. The growth-arrest phenotype of the repression line was suppressed by lec1, fus3, and abi3. An HDA6/HDA19 double-repression line displayed arrested growth after germination and the formation of embryo-like structures on the true leaves of 6-week-old plants even without trichostatin A. The growth-arrest phenotype of this line was rescued by lec1. These results suggest that during germination in Arabidopsis, HDA6 and HDA19 redundantly regulate the repression of embryonic properties directly or indirectly via repression of embryo-specific gene function.
Collapse
Affiliation(s)
- Motoki Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
28
|
Castiglione MR, Venora G, Ravalli C, Stoilov L, Gecheff K, Cremonini R. DNA methylation and chromosomal rearrangements in reconstructed karyotypes of Hordeum vulgare L. PROTOPLASMA 2008; 232:215-222. [PMID: 18274698 DOI: 10.1007/s00709-007-0275-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/23/2007] [Indexed: 05/25/2023]
Abstract
One standard and two reconstructed barley karyotypes were used to study the influence of chromosomal rearrangements on the distribution pattern of DNA methylation detectable at the chromosome level. Data obtained were also compared with Giemsa N-bands and high gene density regions that had been previously described. The effect of chromosomal reconstruction in barley seems to be decidedly prominent in the repositioning of genomic DNA methylation along metaphase chromosomes. In comparison to the standard karyotype, the DNA methylation pattern was found to vary not only in the reconstructed chromosomes but also in the other chromosomes of the complements not subjected to structural alterations. Moreover, differences may occur between corresponding regions of homologues. Some specific chromosomal bands, including the nucleolus-organizing regions, showed a relative constancy in the methylation pattern, but this was not the case when the two satellites were combined by translocation in chromosome 6H(5H) of line T-30. Our results suggest that epigenetic changes like DNA methylation may play an important role in the overall genome reorganization following chromosome reconstruction.
Collapse
|
29
|
Ramirez-Parra E, Gutierrez C. The many faces of chromatin assembly factor 1. TRENDS IN PLANT SCIENCE 2007; 12:570-6. [PMID: 17997123 DOI: 10.1016/j.tplants.2007.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/04/2007] [Accepted: 10/10/2007] [Indexed: 05/06/2023]
Abstract
Chromatin organization requires that histones associate with DNA in the form of nucleosomes the position and composition of which is crucial for chromatin dynamics. Histone chaperones help to deliver specific histone proteins to the sites where chromatin is being newly formed or remodeled. Association of H3-H4 during DNA replication depends on the chromatin assembly factor 1. The study of Arabidopsis plants carrying loss-of-function alleles in each of the three chromatin assembly factor 1 subunits has highlighted the links between chromatin assembly in proliferating cells and other cellular processes. These are the G2 DNA damage checkpoint, homologous recombination, endoreplication control and transcriptional regulation of specific gene sets, all contributing to the plasticity of plants in dealing with alterations in DNA replication-associated chromatin assembly.
Collapse
Affiliation(s)
- Elena Ramirez-Parra
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
30
|
|
31
|
Grasser KD, Launholt D, Grasser M. High mobility group proteins of the plant HMGB family: dynamic chromatin modulators. ACTA ACUST UNITED AC 2007; 1769:346-57. [PMID: 17316841 DOI: 10.1016/j.bbaexp.2006.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/29/2006] [Accepted: 12/31/2006] [Indexed: 12/13/2022]
Abstract
In plants, the chromosomal high mobility group (HMG) proteins of the HMGB family typically contain a central HMG-box DNA-binding domain that is flanked by a basic N-terminal and an acidic C-terminal domain. The HMGB proteins are abundant and highly mobile proteins in the cell nucleus that influence chromatin structure and enhance the accessibility of binding sites to regulatory factors. Due to their remarkable DNA bending activity, HMGB proteins can increase the structural flexibility of DNA, promoting the assembly of nucleoprotein complexes that control DNA-dependent processes including transcription. Therefore, members of the HMGB family act as versatile modulators of chromatin function.
Collapse
Affiliation(s)
- Klaus D Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| | | | | |
Collapse
|
32
|
Breiling A, Sessa L, Orlando V. Biology of Polycomb and Trithorax Group Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
33
|
Filipecki M, Malepszy S. Unintended consequences of plant transformation: A molecular insight. J Appl Genet 2006; 47:277-86. [PMID: 17132892 DOI: 10.1007/bf03194637] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant genomes are dynamic structures having both the system to maintain and accurately reproduce the information encoded therein and the ability to accept more or less random changes, which is one of the foundations of evolution. Crop improvement and various uncontrolled stress factors can induce unintended genetic and epigenetic variations. In this review it is attempted to summarize factors causing such changes and the molecular nature of these variations in transgenic plants. Unintended effects in transgenic plants can be divided into three main groups: first, pleiotropic effects of integrated DNA on the host plant genome; second, the influence of the integration site and transgene architecture on transgene expression level and stability; and third, the effect of various stresses related to tissue handling, regeneration and clonal propagation. Many of these factors are recently being redefined due to new researches, which apply modern highly sensitive analytical techniques and sequenced model organisms. The ability to inspect large portions of genomes clearly shows that tissue culture contributes to a vast majority of observed genetic and epigenetic changes. Nevertheless, monitoring of thousands transcripts, proteins and metabolites reveals that unintended variation most often falls in the range of natural differences between landraces or varieties. We expect that an increasing amount of evidence on many important crop species will support these observations in the nearest future.
Collapse
|
34
|
Fukaki H, Taniguchi N, Tasaka M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:380-9. [PMID: 17010112 DOI: 10.1111/j.1365-313x.2006.02882.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lateral root (LR) formation in Arabidopsis is regulated by auxin signaling through AUXIN RESPONSE FACTOR transcriptional activators, ARF7 and ARF19, and auxin/indole-3-acetic acid (Aux/IAA) repressors, including SOLITARY-ROOT (SLR)/IAA14. Previous studies have strongly suggested that, in the gain-of-function slr-1 mutant, stabilized mutant IAA14 (mIAA14) protein inactivates ARF7/19 functions, thereby completely blocking LR initiation. However, the mechanism of inactivation is still unknown. We have now identified an extragenic suppressor mutation of slr-1, suppressor of slr2 (ssl2), which specifically restores LR formation in the slr-1 mutant, and have found that SSL2 negatively regulates the auxin-induced pericycle cell divisions required for LR initiation. The SSL2 gene encodes PICKLE (PKL), a homologue of the animal chromatin-remodeling factor CHD3/Mi-2, and LR formation restored in pkl/ssl2 slr-1 mutants depends on ARF7/19 functions, suggesting that ARF7/19-dependent transcription takes place if there is a pkl/ssl2 mutation in slr-1. In animals, Mi-2 represses transcription as a subunit of the NuRD/Mi-2 complex containing histone deacetylases (HDACs). Inhibition of HDAC activity by trichostatin A also results in LR formation in the slr-1 mutant, but not in the slr-1 arf7 arf19 triple mutant, suggesting that normal HDAC activity is required for the mIAA14-mediated inactivation of ARF7/19 functions in LR initiation. Taken together, our data suggest that PKL/SSL2-mediated chromatin remodeling negatively regulates auxin-mediated LR formation in Arabidopsis.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, 630-0101 Ikoma, Nara, Japan.
| | | | | |
Collapse
|
35
|
Launholt D, Merkle T, Houben A, Schulz A, Grasser KD. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. THE PLANT CELL 2006; 18:2904-18. [PMID: 17114349 PMCID: PMC1693932 DOI: 10.1105/tpc.106.047274] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/02/2006] [Accepted: 10/30/2006] [Indexed: 05/12/2023]
Abstract
In plants, the chromatin-associated high mobility group (HMG) proteins occur in two subfamilies termed HMGA and HMGB. The HMGA proteins are characterized by the presence of four AT-hook DNA binding motifs, and the HMGB proteins contain an HMG box DNA binding domain. As architectural factors, the HMG proteins appear to be involved in the regulation of transcription and other DNA-dependent processes. We have examined the subcellular localization of Arabidopsis thaliana HMGA, HMGB1, and HMGB5, revealing that they localize to the cell nucleus. They display a speckled distribution pattern throughout the chromatin of interphase nuclei, whereas none of the proteins associate with condensed mitotic chromosomes. HMGA is targeted to the nucleus by a monopartite nuclear localization signal, while efficient nuclear accumulation of HMGB1/5 requires large portions of the basic N-terminal part of the proteins. The acidic C-terminal domain interferes with nucleolar targeting of HMGB1. Fluorescence recovery after photobleaching experiments revealed that HMGA and HMGB proteins are extremely dynamic in the nucleus, indicating that they bind chromatin only transiently before moving on to the next site, thereby continuously scanning the genome for targets. By contrast, the majority of histone H2B is basically immobile within the nucleus, while linker histone H1.2 is relatively mobile.
Collapse
Affiliation(s)
- Dorte Launholt
- Department of Life Sciences, Aalborg University, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|
36
|
Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. PLANT & CELL PHYSIOLOGY 2006; 47:995-1003. [PMID: 16774928 DOI: 10.1093/pcp/pcj072] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Histone modifications such as methylation and acetylation in the chromatin surrounding a gene are thought to regulate transcriptional activity. In this study, to determine whether dynamic changes occur in histone modification on the loci of stress-responsive genes in plants, we chose rice submergence-inducible ADH1 and PDC1 genes. When submerged, the rice ADH1 and PDC1 genes were activated in a biphasic manner: the first and second inductions occurred after approximately 2 and 12 h of submergence, respectively. Their expression was transcriptionally induced as shown by increased binding of RNA polymerase II to the ADH1 and PDC1 loci during submergence. The Lys4 residues of the histone H3 proteins (H3-K4s) at both the 5'- and 3'-coding regions of ADH1 and PDC1 were found to change from a di-methylated state to a tri-methylated state at the first induction period. On the other hand, acetylation of H3 increased throughout ADH1 and PDC1 genes at the later induction period. The methylation and acetylation levels recovered to the initial levels during re-aeration. Treatment of seedlings with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased acetylation of histones H3 and association of RNA polymerase II on the ADH1 and PDC1 loci, thereby increasing transcript levels of ADH1 and PDC1. Together, these results showed dynamic and reversible changes of histone H3-K4 methylation and H3 acetylation in stress-responsive genes in a higher plant in response to the appearance or disappearance of an environmental stress.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | |
Collapse
|
37
|
Su Y, Kwon CS, Bezhani S, Huvermann B, Chen C, Peragine A, Kennedy JF, Wagner D. The N-terminal ATPase AT-hook-containing region of the Arabidopsis chromatin-remodeling protein SPLAYED is sufficient for biological activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:685-99. [PMID: 16640604 DOI: 10.1111/j.1365-313x.2006.02734.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The SNF2-like chromatin-remodeling ATPase SPLAYED (SYD) was identified as a co-activator of floral homeotic gene expression in Arabidopsis. SYD is also required for meristem maintenance and regulates flowering under a non-inductive photoperiod. SNF2 ATPases are structurally and functionally conserved from yeast to humans. In addition to the conserved protein features, SYD has a large unique C-terminal domain. We show here that SYD is present as two forms in the nucleus, full-length and truncated, with the latter apparently lacking the C-terminal domain. The ratio of the two forms of endogenous SYD differs in juvenile and in adult tissues. Furthermore, an SYD variant lacking the C-terminal domain (SYDDeltaC) rescues the syd null mutant, indicating that the N-terminal ATPase AT-hook-containing region of SYD is sufficient for biological activity. Plants expressing SYDDeltaC show molecular and morphological phenotypes opposite to those of the null mutant, suggesting that the construct results in increased activity. This increased activity is at least in part due to elevated SYD protein levels in these lines. We propose that the C-terminal domain may control SYD accumulation and/or specific activity in the context of the full-length protein. The presence of the C-terminal domain in rice SYD suggests that its role is probably conserved in the two classes of flowering plants.
Collapse
Affiliation(s)
- Yanhui Su
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bhalla PL, Singh MB. Molecular control of stem cell maintenance in shoot apical meristem. PLANT CELL REPORTS 2006; 25:249-56. [PMID: 16315035 DOI: 10.1007/s00299-005-0071-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 09/30/2005] [Accepted: 10/02/2005] [Indexed: 05/05/2023]
Abstract
Sustained post-embryonic organ initiation and development in plants depends on coordinating the formation and differentiation of pluripotent stem cells in apical meristems. Transcriptional regulation and intercellular signalling appear to play key roles in this coordination process. Here we discuss the current knowledge about the molecular regulation of stem cell maintenance in the shoot apical meristem and recent attempts to delineate the molecular signatures of "stemness" in flowering plants. We also outline contemporary molecular approaches for deciphering the process of stem cell renewal in the shoot apical meristem.
Collapse
Affiliation(s)
- Prem L Bhalla
- Australian Research Council Centre of Excellence for Integrative Legume Research, Institute of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
39
|
Jiao Y, Ma L, Strickland E, Deng XW. Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. THE PLANT CELL 2005; 17:3239-56. [PMID: 16284311 PMCID: PMC1315367 DOI: 10.1105/tpc.105.035840] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genome-wide 70-mer oligonucleotide microarrays of rice (Oryza sativa) and Arabidopsis thaliana were used to profile genome expression changes during light-regulated seedling development. We estimate that the expression of approximately 20% of the genome in both rice and Arabidopsis seedlings is regulated by white light. Qualitatively similar expression profiles from seedlings grown under different light qualities were observed in both species; however, a quantitatively weaker effect on genome expression was observed in rice. Most metabolic pathways exhibited qualitatively similar light regulation in both species with a few species-specific differences. Global comparison of expression profiles between rice and Arabidopsis reciprocal best-matched gene pairs revealed a higher correlation of genome expression patterns in constant light than in darkness, suggesting that the genome expression profile of photomorphogenesis is more conserved. Transcription factor gene expression under constant light exposure was poorly conserved between the two species, implying a faster-evolving rate of transcription factor gene expression in light-grown plants. Organ-specific expression profiles during seedling photomorphogenesis provide genome-level evidence for divergent light effects in different higher plant organs. Finally, overrepresentation of specific promoter motifs in root- and leaf-specific light-regulated genes in both species suggests that these cis-elements are important for gene expression responses to light.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8014, USA
| | | | | | | |
Collapse
|
40
|
Huanca-Mamani W, Garcia-Aguilar M, León-Martínez G, Grossniklaus U, Vielle-Calzada JP. CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2005; 102:17231-6. [PMID: 16286646 PMCID: PMC1287998 DOI: 10.1073/pnas.0508186102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Indexed: 11/18/2022] Open
Abstract
Chromatin-remodeling factors regulate the establishment of transcriptional programs during plant development. Although 42 genes encoding members of the SWI2/SNF2 family have been identified in Arabidopsis thaliana, <10 have been assigned a precise function on the basis of a mutant phenotype, and none have been shown to play a specific role during the gametophytic phase of the plant life cycle. A. thaliana chromatin-remodeling protein 11 (CHR11) encodes an imitation of switch (ISWI)-like chromatin-remodeling protein abundantly expressed during female gametogenesis and embryogenesis in Arabidopsis. To determine the function of CHR11 in wild-type plants, we introduced a hairpin construct leading to the production of double-stranded RNA, which specifically degraded the endogenous CHR11 mRNA by RNA interference (RNAi). Transcription of the RNAi-inducing hairpin RNA was driven by either a constitutive cauliflower mosaic virus 35S promoter (CaMV35S) acting at most stages of the sporophytic phase or a newly identified specific promoter acting at the onset of the female gametophytic phase (pFM1). All adult transformants that constitutively lacked sporophytic CHR11 activity showed reduced plant height and small cotyledonary embryos with limited cell expansion. In contrast, RNAi lines in which CHR11 was specifically silenced at the onset of female gametogenesis (megagametogenesis) had normal height and embryo size but had defective female gametophytes arrested before the completion of the mitotic haploid nuclear divisions. These results show that CHR11 is essential for haploid nuclear proliferation during megagametogenesis and cell expansion during the sporophytic phase, demonstrating the functional versatility of SWI2/SNF2 chromatin-remodeling factors during both generations of the plant life cycle.
Collapse
Affiliation(s)
- Wilson Huanca-Mamani
- Laboratory of Reproductive Development and Apomixis, Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados-Unidad Irapuato, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
41
|
Ranganath RM. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:425-48. [PMID: 16163608 DOI: 10.1055/s-2005-865899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, India.
| |
Collapse
|
42
|
Sarnowski TJ, Ríos G, Jásik J, Swiezewski S, Kaczanowski S, Li Y, Kwiatkowska A, Pawlikowska K, Koźbiał M, Koźbiał P, Koncz C, Jerzmanowski A. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development. THE PLANT CELL 2005; 17:2454-72. [PMID: 16055636 PMCID: PMC1197427 DOI: 10.1105/tpc.105.031203] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four SWI3-like proteins that show remarkable functional diversification. Whereas ATSWI3A and ATSWI3B form homodimers and heterodimers and interact with BSH/SNF5, ATSWI3C, and the flowering regulator FCA, ATSWI3D can only bind ATSWI3B in yeast two-hybrid assays. Mutations of ATSWI3A and ATSWI3B arrest embryo development at the globular stage. By a possible imprinting effect, the atswi3b mutations result in death for approximately half of both macrospores and microspores. Mutations in ATSWI3C cause semidwarf stature, inhibition of root elongation, leaf curling, aberrant stamen development, and reduced fertility. Plants carrying atswi3d mutations display severe dwarfism, alterations in the number and development of flower organs, and complete male and female sterility. These data indicate that, by possible contribution to the combinatorial assembly of different SWI/SNF complexes, the ATSWI3 proteins perform nonredundant regulatory functions that affect embryogenesis and both the vegetative and reproductive phases of plant development.
Collapse
Affiliation(s)
- Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
van Raemdonck D, Pesquet E, Cloquet S, Beeckman H, Boerjan W, Goffner D, El Jaziri M, Baucher M. Molecular changes associated with the setting up of secondary growth in aspen. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2211-27. [PMID: 15996985 DOI: 10.1093/jxb/eri221] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vascular secondary growth results from the activity of the vascular cambium, which produces secondary phloem and secondary xylem. By means of cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis along aspen stems, several potential regulatory genes involved in the progressive transition from primary to secondary growth were identified. A total of 83 unique transcript-derived fragments (TDFs) was found to be differentiated between the top and the bottom of the stem. An independent RT-PCR expression analysis validated the cDNA-AFLP profiles for 19 of the TDFs. Among these, seven correspond to new genes encoding putative regulatory proteins. Emphasis was laid upon two genes encoding, respectively, an AP2/ERF-like transcription factor (PtaERF1) and a RING finger protein (PtaRHE1); their differential expression was further confirmed by reverse northern analysis. In situ RT-PCR revealed that PtaERF1 was expressed in phloem tissue and that PtaRHE1 had a pronounced expression in ray initials and their derivatives within the cambial zone. These results suggest that these genes have a potential role in vascular tissue development and/or functioning.
Collapse
Affiliation(s)
- Damien van Raemdonck
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, Chaussée de Wavre 1850, B-1160 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Guyomarc'h S, Bertrand C, Delarue M, Zhou DX. Regulation of meristem activity by chromatin remodelling. TRENDS IN PLANT SCIENCE 2005; 10:332-8. [PMID: 15953752 DOI: 10.1016/j.tplants.2005.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/12/2005] [Accepted: 05/26/2005] [Indexed: 05/03/2023]
Abstract
The continuity and plasticity of plant development rely on the regulation of meristem activity in response to endogenous and environmental signals. Many plant development regulators involved in meristem function are transcription factors or signalling molecules. In the past few years, the role of chromatin remodelling in programming, maintaining or resetting specific gene expression profiles in subsequent cell generations has been shown to be crucial in plant development. Here, we summarize plant chromatin-remodelling factors required to regulate shoot apical meristem activity, particularly its maintenance during organogenesis and transitions between distinct developmental phases.
Collapse
Affiliation(s)
- Soazig Guyomarc'h
- Institut de Biotechnologie des Plantes, CNRS UMR 8618, Université Paris XI, F-91 405 Orsay, France
| | | | | | | |
Collapse
|
45
|
Law RD, Suttle JC. Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:527-34. [PMID: 15922608 DOI: 10.1016/j.plaphy.2005.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 03/09/2005] [Indexed: 05/02/2023]
Abstract
Changes in DNA cytosine methylation and core histone multi-acetylation were determined in cell suspension cultures of potato (Solanum tuberosum L. cv. Russet Burbank) during 15 days of in vitro culture. Cell subculture induced a transient 33% decrease in genome-wide 5-methylcytosine (5mC) content and a transient threefold increase in transcription rates that were most evident at 6 and 9 days after subculture, respectively. In contrast to the global reduction in 5mC content, subculture resulted in a transient twofold increase in 5mC levels within 5'-CCGG-3' sequences and no detectable change in 5'-CG-3' methylation. Multi-acetylation of histones H3.1, H3.2 and H4 rose 2-, 1.5- and 3-fold by 9, 9 and 12 days after subculture, respectively. All observed epigenetic changes were reset during aging of cell cultures. Inclusion of the histone deacetylase inhibitor trichostatin A (TSA) and/or the cytosine methylation inhibitor 5-azacytidine (5AC) in culture sequentially decreased genome-wide 5mC levels by approximately 25% at day 9, then decreased 5'-mCmCGG-3' by 30-50% and increased H3 and H4 multi-acetylation by 30-60% at day 15, compared to controls. Treatment with 5AC or TSA alone or in combination had no effect on RNA synthesis at day 9. At day 15, 5AC treatment remained ineffective, while de novo RNA synthesis was approximately twofold higher in cells grown in both inhibitors or in TSA alone. Collectively, these results demonstrate that in potato suspension cultures, rapid, reversible changes in 5mC levels precede regulatory post-translational acetylation of core histones, and suggest that interactions between these epigenetic processes appear to be necessary to power transcription and growth induction in potato cells.
Collapse
Affiliation(s)
- R David Law
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Sugarbeet and Potato Research, Post Office Box 5677, State University Station, Fargo, ND 58105-5677, USA
| | | |
Collapse
|
46
|
Jiao Y, Jia P, Wang X, Su N, Yu S, Zhang D, Ma L, Feng Q, Jin Z, Li L, Xue Y, Cheng Z, Zhao H, Han B, Deng XW. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. THE PLANT CELL 2005; 17:1641-57. [PMID: 15863518 PMCID: PMC1143067 DOI: 10.1105/tpc.105.031575] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The complete genome sequence of cultivated rice (Oryza sativa) provides an unprecedented opportunity to understand the biology of this model cereal. An essential and necessary step in this effort is the determination of the coding information and expression patterns of each sequenced chromosome. Here, we report an analysis of the transcriptional activity of rice chromosome 4 using a tiling path microarray based on PCR-generated genomic DNA fragments. Six representative rice organ types were examined using this microarray to catalog the transcribed regions of rice chromosome 4 and to reveal organ- and developmental stage-specific transcription patterns. This analysis provided expression support for 82% of the gene models in the chromosome. Transcriptional activities in 1643 nonannotated regions were also detected. Comparison with cytologically defined chromatin features indicated that in juvenile-stage rice the euchromatic region is more actively transcribed than is the transposon-rich heterochromatic portion of the chromosome. Interestingly, increased transcription of transposon-related gene models in certain heterochromatic regions was observed in mature-stage rice organs and in suspension-cultured cells. These results suggest a close correlation between transcriptional activity and chromosome organization and the developmental regulation of transcription activity at the chromosome level.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8014, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li L, Wang X, Xia M, Stolc V, Su N, Peng Z, Li S, Wang J, Wang X, Deng XW. Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture. Genome Biol 2005; 6:R52. [PMID: 15960804 PMCID: PMC1175972 DOI: 10.1186/gb-2005-6-6-r52] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/01/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022] Open
Abstract
A transcriptome analysis of chromosome 10 of 2 rice subspecies identifies 549 new gene models and gives experimental evidence for around 75% of the previously unsupported predicted genes.
Background Sequencing and annotation of the genome of rice (Oryza sativa) have generated gene models in numbers that top all other fully sequenced species, with many lacking recognizable sequence homology to known genes. Experimental evaluation of these gene models and identification of new models will facilitate rice genome annotation and the application of this knowledge to other more complex cereal genomes. Results We report here an analysis of the chromosome 10 transcriptome of the two major rice subspecies, japonica and indica, using oligonucleotide tiling microarrays. This analysis detected expression of approximately three-quarters of the gene models without previous experimental evidence in both subspecies. Cloning and sequence analysis of the previously unsupported models suggests that the predicted gene structure of nearly half of those models needs improvement. Coupled with comparative gene model mapping, the tiling microarray analysis identified 549 new models for the japonica chromosome, representing an 18% increase in the annotated protein-coding capacity. Furthermore, an asymmetric distribution of genome elements along the chromosome was found that coincides with the cytological definition of the heterochromatin and euchromatin domains. The heterochromatin domain appears to associate with distinct chromosome level transcriptional activities under normal and stress conditions. Conclusion These results demonstrated the utility of genome tiling microarray in evaluating annotated rice gene models and in identifying novel transcriptional units. The tiling microarray sanalysis further revealed a chromosome-wide transcription pattern that suggests a role for transposable element-enriched heterochromatin in shaping global transcription in response to environmental changes in rice.
Collapse
MESH Headings
- Chromosomes, Plant/chemistry
- Chromosomes, Plant/genetics
- Cloning, Molecular
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Xiangfeng Wang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Mian Xia
- National Center of Crop Design, China Bioway Biotech Group Co., LTD, Beijing 100085, China
| | - Viktor Stolc
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Genome Research Facility, NASA Ames Research Center, MS 239-11, Moffett Field, CA 94035, USA
| | - Ning Su
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zhiyu Peng
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Songgang Li
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Xiping Wang
- National Center of Crop Design, China Bioway Biotech Group Co., LTD, Beijing 100085, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
48
|
Affiliation(s)
- David R Smyth
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
49
|
Abstract
During the development of a multicellular organism, cell differentiation involves activation and repression of transcription programs that must be stably maintained during subsequent cell divisions. Chromatin remodeling plays a crucial role in regulating chromatin states that conserve transcription programs and provide a mechanism for chromatin states to be maintained as cells proliferate, a process referred to as epigenetic inheritance. A large number of factors and protein complexes are now known to be involved in regulating the dynamic states of chromatin structure. Their biological functions and molecular mechanisms are beginning to be revealed.
Collapse
Affiliation(s)
- Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| | | |
Collapse
|
50
|
Duroux M, Houben A, Růzicka K, Friml J, Grasser KD. The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:660-71. [PMID: 15546350 DOI: 10.1111/j.1365-313x.2004.02242.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The packaging of the genomic DNA into chromatin in the cell nucleus requires machineries that facilitate DNA-dependent processes such as transcription in the presence of repressive chromatin structures. Using co-immunoprecipitation we have identified in Arabidopsis thaliana cells the FAcilitates Chromatin Transcription (FACT) complex, consisting of the 120-kDa Spt16 and the 71-kDa SSRP1 proteins. Indirect immunofluorescence analyses revealed that both FACT subunits co-localize to nuclei of the majority of cell types in embryos, shoots and roots, whereas FACT is not present in terminally differentiated cells such as mature trichoblasts or cells of the root cap. In the nucleus, Spt16 and SSRP1 are found in the cytologically defined euchromatin of interphase cells independent of the status of DNA replication, but the proteins are not associated with heterochromatic chromocentres and condensed mitotic chromosomes. FACT can be detected by chromatin immunoprecipitation over the entire transcribed region (5'-UTR, coding sequence, 3'-UTR) of actively transcribed genes, whereas it does not occur at transcriptionally inactive heterochromatic regions and intergenic regions. FACT localizes to inducible genes only after induction of transcription, and the association of the complex with the genes correlates with the level of transcription. Collectively, these results indicate that FACT assists transcription elongation through plant chromatin.
Collapse
Affiliation(s)
- Meg Duroux
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|