1
|
Huang SR, Ma CE, Qiu X, Du JB, Yu L, Liu CY, Yang WY, Sun X. Role of leaf nitrogen allocation under heterogeneous light in supporting photosynthetic compensation via optimizing carbon assimilation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 226:110053. [PMID: 40412230 DOI: 10.1016/j.plaphy.2025.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Photosynthetic compensation enables plants to adapt to heterogeneous light, but its mechanisms remain unclear. This study investigates two maize (Zea mays L.) cultivars, 'Rongyu 1210' (RY) and 'Zhongdan 808' (ZD), under horizontal heterogeneous light (HL). Results showed that nitrogen (N) and photosynthetic N (NP) concentrations increased in unshaded leaves (US-L) but decreased in shaded leaves (S-L) for both cultivars. However, significant differences were observed in N allocation among photosynthetic components between the two cultivars. These differences were particularly evident in N components involved in CO2 assimilation (NC) of US-L. In HL-treated RY, NC increased in US-L. As a result, the production and export of photosynthates, mainly sucrose, are enhanced to compensate for the reduction in S-L. In contrast, NC decreased in US-L of HL-treated ZD, which performs an impaired photosynthetic compensation. Our study suggests that coordinated regulation between systemic N redistribution and local N allocation, rather than a single trait adjustment, is critical for maintaining high photosynthetic compensation under HL. This provides a physiological basis for improving light use efficiency and yield potential under HL.
Collapse
Affiliation(s)
- Si-Rong Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Cui-E Ma
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Qiu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun-Bo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China
| | - Liang Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, China
| | - Chun-Yan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, China
| | - Wen-Yu Yang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu, 611130, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, China.
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Fañanás‐Pueyo I, Carrera‐Castaño G, Pernas M, Oñate‐Sánchez L. Signalling and regulation of plant development by carbon/nitrogen balance. PHYSIOLOGIA PLANTARUM 2025; 177:e70228. [PMID: 40269445 PMCID: PMC12018728 DOI: 10.1111/ppl.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The two most abundant macronutrients in plant cells are carbon (C) and nitrogen (N). Coordination of their cellular metabolism is a fundamental factor in guaranteeing the optimal growth and development of plants. N availability and assimilation profoundly affect plant gene expression and modulate root and stem architecture, thus affecting whole plant growth and crop yield. N status also affects C fixation, as it is an important component of the photosynthetic machinery in leaves. Reciprocally, increasing C supply promotes N uptake and assimilation. There is extensive knowledge of the different mechanisms that plants use for sensing and signalling their nutritional status to regulate the assimilation, metabolism and transport of C and N. However, the crosstalk between C and N pathways has received much less attention. Plant growth and development are greatly affected by suboptimal C/N balance, which can arise from nutrient deficiencies or/and environmental cues. Mechanisms that integrate and respond to changes in this specific nutritional balance have started to arise. This review will examine the specific responses to C/N imbalance in plants by focusing on the main inorganic and organic metabolites involved, how they are sensed and transported, and the interconnection between the early signalling components and hormonal networks that underlies plants' adaptive responses.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPMMadridSpain
| |
Collapse
|
3
|
Schenk ST, Brehaut V, Chardin C, Boudsocq M, Marmagne A, Colcombet J, Krapp A. Nitrate activates an MKK3-dependent MAPK module via NLP transcription factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70010. [PMID: 39962336 PMCID: PMC11832804 DOI: 10.1111/tpj.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 02/20/2025]
Abstract
Plant responses to nutrient availability are critical for plant development and yield. Nitrate, the major form of nitrogen in most soils, serves as both a nutrient and signaling molecule. Nitrate itself triggers rapid, major changes in gene expression, especially via nodule inception (NIN)-like protein (NLP) transcription factors, and stimulates protein phosphorylation. Mitogen-activated protein kinase (MAPK)-related genes are among the early nitrate-responsive genes; however, little is known about their roles in nitrate signaling pathways. Here, we show that nitrate resupply to nitrogen-depleted Arabidopsis (Arabidopsis thaliana) plants triggers, within minutes, an MAPK cascade that requires NLP-dependent transcriptional induction of mitogen-activated protein kinase kinase kinase 13 (MAP3K13) and MAP3K14 and that the MAPK cascade is composed of MKK3 and likely C-clade MAPKs (MPK1/2/7/14). Importantly, nitrate reductase-deficient mutants exhibited nitrate-induced MPK7 activities comparable to those observed in wild-type plants, indicating that nitrate itself is the signal that stimulates the cascade. We show that the modified expression of MAP3K13 and MAP3K14 affects nitrate-stimulated BT2 expression and modulates plant responses to nitrogen availability, such as nitrate uptake and senescence. Our finding that an MAPK cascade involving MAP3K13 and MAP3K14 functions in the complex regulatory network governing responses to nitrate availability will guide future strategies to optimize plant responses to nitrogen fertilization and nitrogen use efficiency.
Collapse
Affiliation(s)
- Sebastian T. Schenk
- Université Paris‐Saclay, CNRS, INRAE, Institute of Plant Sciences Paris‐Saclay (IPS2)91190Gif sur YvetteFrance
- Present address:
Rubin Mühle GmbH, Unit for Research and Development, Quality AssuranceHugsweierer Hauptstr. 32D‐77933Lahr‐HugsweierGermany
| | - Virginie Brehaut
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Camille Chardin
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
- Present address:
Labcorp B.V, 2800MechelenBelgium
| | - Marie Boudsocq
- Université Paris‐Saclay, CNRS, INRAE, Institute of Plant Sciences Paris‐Saclay (IPS2)91190Gif sur YvetteFrance
| | - Anne Marmagne
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| | - Jean Colcombet
- Université Paris‐Saclay, CNRS, INRAE, Institute of Plant Sciences Paris‐Saclay (IPS2)91190Gif sur YvetteFrance
| | - Anne Krapp
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin for Plant Sciences (IJPB)78000VersaillesFrance
| |
Collapse
|
4
|
Yao G, Mu C, Yan Z, Ma S, Liu X, Sun Y, Hou J, Liu Q, Cao B, Shan J, Leng B. The AP2/ERF Transcription Factor ERF56 Negatively Regulating Nitrate-Dependent Plant Growth in Arabidopsis. Int J Mol Sci 2025; 26:613. [PMID: 39859331 PMCID: PMC11765960 DOI: 10.3390/ijms26020613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in Arabidopsis. But the function of ERF56 in nitrate signaling remains not entirely clear. This study aimed to investigate the role of ERF56 in nitrate-dependent plant growth and nitrate signaling. We confirmed with reverse transcription quantitative PCR (RT-qPCR) that the transcription of ERF56 is quickly induced by nitrate. ERF56 overexpressors displayed decreased nitrate-dependent plant growth, while erf56 mutants exhibited increased plant growth. Confocal imaging demonstrated that ERF56 is localized into nuclei. Assays with the glucuronidase (GUS) reporter showed that ERF56 is mainly expressed at the region of maturation of roots and in anthers. The dual-luciferase assay manifested that the transcription of ERF56 is not directly regulated by NIN-LIKE PROTEIN 7 (NLP7). The transcriptome analysis identified 1038 candidate genes regulated by ERF56 directly. A gene ontology (GO) over-representation analysis showed that ERF56 is involved in the processes of water transport, inorganic molecule transmembrane transport, secondary metabolite biosynthesis, and cell wall organization. We revealed that ERF56 represses nitrate-dependent growth through regulating the processes of inorganic molecule transmembrane transport, the secondary metabolite biosynthesis, and cell wall organization.
Collapse
Affiliation(s)
- Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Shijun Ma
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.S.); (Q.L.)
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Qiantong Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.S.); (Q.L.)
| | - Bing Cao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Juan Shan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.Y.); (C.M.); (Z.Y.); (S.M.); (X.L.); (B.C.); (J.S.)
| |
Collapse
|
5
|
Rosas MA, Alvarez JM, Sanguinet KA. The root hairless mutant buzz in Brachypodium distachyon shows increased nitrate uptake and signaling but does not affect overall nitrogen use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2738-2751. [PMID: 39570729 DOI: 10.1111/tpj.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Root systems are uniquely adapted to fluctuations in external nutrient availability. In response to suboptimal nitrogen conditions, plants adopt a root foraging strategy that favors a deeper and more branched root architecture, enabling them to explore and acquire soil resources. This response is gradually suppressed as nitrogen conditions improve. However, the root hairless mutant buzz in Brachypodium distachyon shows a constitutive nitrogen-foraging phenotype with increased root growth and root branching under nitrate-rich conditions. To investigate how this unique root structure and root hair morphology in the buzz mutant affects nitrate metabolism, we measured the expression of nitrate-responsive genes, nitrate uptake and accumulation, nitrate reductase activity, and nitrogen use efficiency. We found that nitrate responses were upregulated by low nitrate conditions in buzz relative to wild type and correlated with increased expression of nitrate transport genes. In addition, buzz mutants showed increased nitrate uptake and a higher accumulation of nitrate in shoots. The buzz mutant also showed increased nitrate reductase activity in the shoots under low nitrate conditions. However, developmentally mature wild-type and buzz plants grown under low nitrate had similar nitrogen use efficiencies. These findings suggest that BUZZ influences nitrate signaling and that enhanced responsiveness to nitrate is required in buzz seedlings to compensate for the lack of root hairs. These data question the importance of root hairs in enhancing nitrate uptake and expand our understanding of how root hairs in grasses affect physiological responses to low nitrate availability.
Collapse
Affiliation(s)
- Miguel A Rosas
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, Washington, 99164, USA
| | - José M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370035, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), 7500565, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Nucleus in Data Science for Plant Resilience (Phytolearning), 8370186, Santiago, Chile
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, Washington, 99164, USA
| |
Collapse
|
6
|
Porco S, Yu S, Liang T, Snoeck C, Hermans C, Kay SA. The clock-associated LUX ARRHYTHMO regulates high-affinity nitrate transport in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1786-1797. [PMID: 39413246 PMCID: PMC11629737 DOI: 10.1111/tpj.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
The circadian clock organizes physiological processes in plants to occur at specific times of the day, optimizing efficient use of resources. Nitrate is a crucial inorganic nitrogen source for agricultural systems to sustain crop productivity. However, because nitrate fertilization has a negative impact on the environment, it is important to carefully manage nitrate levels. Understanding crop biological rhythms can lead to more ecologically friendly agricultural practices. Gating responses through the circadian clock could be a strategy to enhance root nitrate uptake and to limit nitrate runoff. In Arabidopsis, the NITRATE TRANSPORTER 2.1 (NRT2.1) gene encodes a key component of the high-affinity nitrate transporter system. Our study reveals that NRT2.1 exhibits a rhythmic expression pattern, with daytime increases and nighttime decreases. The NRT2.1 promoter activity remains rhythmic under constant light, indicating a circadian regulation. The clock-associated transcription factor LUX ARRHYTHMO (LUX) binds to the NRT2.1 promoter in vivo. Loss-of-function of LUX leads to increased NRT2.1 transcript levels and root nitrate uptake at dusk. This supports LUX acting as a transcriptional repressor and modulating NRT2.1 expression in a time-dependent manner. Furthermore, applying nitrate at different times of the day results in varying magnitudes of the transcriptional response in nitrate-regulated genes. We also demonstrate that a defect in the high-affinity nitrate transport system feeds back to the central oscillator by modifying the LUX promoter activity. In conclusion, this study uncovers a molecular pathway connecting the root nitrate uptake and circadian clock, with potential agro-chronobiological applications.
Collapse
Affiliation(s)
- Silvana Porco
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
- Crop Production and Biostimulation Laboratory, Brussels Bioengineering SchoolUniversité libre de BruxellesBrussels1050Belgium
| | - Shi Yu
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
| | - Tong Liang
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
| | - Christophe Snoeck
- Archaeology, Environmental Changes and Geo‐Chemistry, Department of ChemistryVrije Universiteit Brussel1050BrusselsBelgium
| | - Christian Hermans
- Crop Production and Biostimulation Laboratory, Brussels Bioengineering SchoolUniversité libre de BruxellesBrussels1050Belgium
| | - Steve A. Kay
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos Angeles90089CaliforniaUSA
| |
Collapse
|
7
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Wang M, Wang J, Wang Z, Teng Y. Nitrate Signaling and Its Role in Regulating Flowering Time in Arabidopsis thaliana. Int J Mol Sci 2024; 25:5310. [PMID: 38791350 PMCID: PMC11120727 DOI: 10.3390/ijms25105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Plant growth is coordinated with the availability of nutrients that ensure its development. Nitrate is a major source of nitrogen (N), an essential macronutrient for plant growth. It also acts as a signaling molecule to modulate gene expression, metabolism, and a variety of physiological processes. Recently, it has become evident that the calcium signal appears to be part of the nitrate signaling pathway. New key players have been discovered and described in Arabidopsis thaliana (Arabidopsis). In addition, knowledge of the molecular mechanisms of how N signaling affects growth and development, such as the nitrate control of the flowering process, is increasing rapidly. Here, we review recent advances in the identification of new components involved in nitrate signal transduction, summarize newly identified mechanisms of nitrate signaling-modulated flowering time in Arabidopsis, and suggest emerging concepts and existing open questions that will hopefully be informative for further discoveries.
Collapse
Affiliation(s)
- Mengyun Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
| | - Zeneng Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
- Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Yibo Teng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.W.)
| |
Collapse
|
9
|
Kong J, Zhao Y, Fan P, Wang Y, Xu X, Wang L, Li S, Duan W, Liang Z, Dai Z. Far-red light modulates grapevine growth by increasing leaf photosynthesis efficiency and triggering organ-specific transcriptome remodelling : Author. BMC PLANT BIOLOGY 2024; 24:189. [PMID: 38486149 PMCID: PMC10941557 DOI: 10.1186/s12870-024-04870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).
Collapse
Affiliation(s)
- Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yan Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaobo Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Shaohua Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Duan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Adavi SB, Sathee L. Calcium regulates primary nitrate response associated gene transcription in a time- and dose-dependent manner. PROTOPLASMA 2024; 261:257-269. [PMID: 37770644 DOI: 10.1007/s00709-023-01893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Nitrate (NO3-) is the primary source of nitrogen preferred by most arable crops, including wheat. The pioneering experiment on primary nitrate response (PNR) was carried out three decades ago. Since then, much research has been carried out to understand the NO3- signaling. Nitrate is sensed by the dual affinity NO3- transceptor NPF6.3, which further relays the information to a master regulator NIN-like protein 7 (NLP7) through calcium-dependent protein kinases (CPK10, CPK30, CPK32), highlighting the importance of calcium ion (Ca2+) as one of the important secondary messengers in relaying the NO3- signaling in Arabidopsis. In a previous study, we found that Ca2+ regulates nitrogen starvation response in wheat. In this study, 10 days old NO3--starved wheat seedlings were exposed to various treatments. Our study on time course changes in expression of PNR sentinel genes; NPF6.1, NPF6.2, NRT2.1, NRT2.3, NR, and NIR in wheat manifest the highest level of expression at 30 min after NO3- exposure. The use of Ca2+ chelator EGTA confirmed the involvement of Ca2+ in the regulation of transcription of NPFs and NRTs as well the NO3- uptake. We also observed the NO3- dose-dependent and tissue-specific regulation of nitrate reductase activity involving Ca2+ as a mediator. The participation of Ca2+ in the PNR and NO3- signaling in wheat is confirmed by pharmacological analysis, physiological evidences, and protoplast-based Ca2+ localization.
Collapse
Affiliation(s)
- Sandeep B Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India, 110012.
| |
Collapse
|
11
|
Li S, Ji M, Liu F, Zhu M, Yang Y, Zhang W, Liu S, Wang Y, Lv W, Qi S. NRG2 family members of Arabidopsis and maize regulate nitrate signalling and promote nitrogen use efficiency. PHYSIOLOGIA PLANTARUM 2024; 176:e14251. [PMID: 38472740 DOI: 10.1111/ppl.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Nitrogen (N) is an essential nutrient for plant growth, and most plants absorb it as nitrate. AtNRG2 has been reported to play an important role in nitrate regulation. In this study, we investigated the functions of AtNRG2 family members of Arabidopsis thaliana and maize in nitrate signalling and metabolism. Our results showed that both AtNRG2.10 and AtNRG2.15 regulated nitrate signalling and metabolism. Overexpression of AtNRG2.11 (AtNRG2) could promote plant growth and improve nitrogen use efficiency (NUE). In addition, the maize genome harbors 23 ZmNRG2 members. We detected the expression of these genes treated with nitrate and the expression of four genes was strongly induced with ZmNRG2.7 having the highest levels. Overexpression of ZmNRG2.7 in the atnrg2 mutant could restore the defects of atnrg2, suggesting that ZmNRG2.7 is involved in nitrate signalling and metabolism. Moreover, the overexpression lines of ZmNRG2.7 showed increased biomass and NUE. These findings demonstrate that at least a part of NRG2 family genes in Arabidopsis and maize regulate nitrate signalling and provide a molecular basis for improving the NUE of crops.
Collapse
Affiliation(s)
- Shuna Li
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
- College of Agronomy, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Meiling Ji
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Fei Liu
- College of Life Sciences, Jining Medical University
| | - Mingyue Zhu
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Yi Yang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Wenjing Zhang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Shubing Liu
- College of Agronomy, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Yong Wang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Wei Lv
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Shengdong Qi
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| |
Collapse
|
12
|
Julian R, Patrick RM, Li Y. Organ-specific characteristics govern the relationship between histone code dynamics and transcriptional reprogramming during nitrogen response in tomato. Commun Biol 2023; 6:1225. [PMID: 38044380 PMCID: PMC10694154 DOI: 10.1038/s42003-023-05601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental stimuli trigger rapid transcriptional reprogramming of gene networks. These responses occur in the context of the local chromatin landscape, but the contribution of organ-specific dynamic chromatin modifications in responses to external signals remains largely unexplored. We treated tomato seedlings with a supply of nitrate and measured the genome-wide changes of four histone marks, the permissive marks H3K27ac, H3K4me3, and H3K36me3 and repressive mark H3K27me3, in shoots and roots separately, as well as H3K9me2 in shoots. Dynamic and organ-specific histone acetylation and methylation were observed at functionally relevant gene loci. Integration of transcriptomic and epigenomic datasets generated from the same organ revealed largely syngenetic relations between changes in transcript levels and histone modifications, with the exception of H3K27me3 in shoots, where an increased level of this repressive mark is observed at genes activated by nitrate. Application of a machine learning approach revealed organ-specific rules regarding the importance of individual histone marks, as H3K36me3 is the most successful mark in predicting gene regulation events in shoots, while H3K4me3 is the strongest individual predictor in roots. Our integrated study substantiates a view that during plant environmental responses, the relationships between histone code dynamics and gene regulation are highly dependent on organ-specific contexts.
Collapse
Affiliation(s)
- Russell Julian
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan M Patrick
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Li
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Kerbler SML, Armijos-Jaramillo V, Lunn JE, Vicente R. The trehalose 6-phosphate phosphatase family in plants. PHYSIOLOGIA PLANTARUM 2023; 175:e14096. [PMID: 38148193 DOI: 10.1111/ppl.14096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023]
Abstract
Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signalling metabolite linking plant growth and development to carbon metabolism. While recent work has focused predominantly on the enzymes that produce Tre6P, little is known about the proteins that catalyse its degradation, the trehalose 6-phosphate phosphatases (TPPs). Often occurring in large protein families, TPPs exhibit cell-, tissue- and developmental stage-specific expression patterns, suggesting important regulatory functions in controlling local levels of Tre6P and trehalose as well as Tre6P signalling. Furthermore, growing evidence through gene expression studies and transgenic approaches shows that TPPs play an important role in integrating environmental signals with plant metabolism. This review highlights the large diversity of TPP isoforms in model and crop plants and identifies how modulating Tre6P metabolism in certain cell types, tissues, and at different developmental stages may promote stress tolerance, resilience and increased crop yield.
Collapse
Affiliation(s)
- Sandra Mae-Lin Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Groβbeeren, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vinicio Armijos-Jaramillo
- Grupo de Bio-Quimioinformática, Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
14
|
Pereyra ME, Costigliolo Rojas C, Jarrell AF, Hovland AS, Snipes SA, Nagpal P, Alabadí D, Blázquez MA, Gutiérrez RA, Reed JW, Gray WM, Casal JJ. PIF4 enhances the expression of SAUR genes to promote growth in response to nitrate. Proc Natl Acad Sci U S A 2023; 120:e2304513120. [PMID: 37725643 PMCID: PMC10523462 DOI: 10.1073/pnas.2304513120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.
Collapse
Affiliation(s)
- Matías Ezequiel Pereyra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1417, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| | - Cecilia Costigliolo Rojas
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| | - Anne F. Jarrell
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - Austin S. Hovland
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Stephen A. Snipes
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Jason W. Reed
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Jorge José Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1417, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| |
Collapse
|
15
|
Ma X, Nian J, Yu H, Zhang F, Feng T, Kou L, Zhang J, Wang D, Li H, Chen L, Dong G, Xie X, Wang G, Qian Q, Li J, Zuo J. Linking glucose signaling to nitrogen utilization by the OsHXK7-ARE4 complex in rice. Dev Cell 2023; 58:1489-1501.e5. [PMID: 37413992 DOI: 10.1016/j.devcel.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023]
Abstract
How reciprocal regulation of carbon and nitrogen metabolism works is a long-standing question. In plants, glucose and nitrate are proposed to act as signaling molecules, regulating carbon and nitrogen metabolism via largely unknown mechanisms. Here, we show that the MYB-related transcription factor ARE4 coordinates glucose signaling and nitrogen utilization in rice. ARE4 is retained in the cytosol in complexing with the glucose sensor OsHXK7. Upon sensing a glucose signal, ARE4 is released, is translocated into the nucleus, and activates the expression of a subset of high-affinity nitrate transporter genes, thereby boosting nitrate uptake and accumulation. This regulatory scheme displays a diurnal pattern in response to circadian changes of soluble sugars. The are4 mutations compromise in nitrate utilization and plant growth, whereas overexpression of ARE4 increases grain size. We propose that the OsHXK7-ARE4 complex links glucose to the transcriptional regulation of nitrogen utilization, thereby coordinating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Xiaohui Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianpeng Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danfeng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichao Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; C.A.S. Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; Hainan Seed Laboratory, Sanya 572025, Hainan, China.
| |
Collapse
|
16
|
Abualia R, Riegler S, Benkova E. Nitrate, Auxin and Cytokinin-A Trio to Tango. Cells 2023; 12:1613. [PMID: 37371083 DOI: 10.3390/cells12121613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.
Collapse
Affiliation(s)
- Rashed Abualia
- School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Stefan Riegler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Durand M, Brehaut V, Clement G, Kelemen Z, Macé J, Feil R, Duville G, Launay-Avon A, Roux CPL, Lunn JE, Roudier F, Krapp A. The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. THE PLANT CELL 2023; 35:1429-1454. [PMID: 36752317 PMCID: PMC10118280 DOI: 10.1093/plcell/koad025] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.
Collapse
Affiliation(s)
- Mickaël Durand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
- UMR CNRS 7267, EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Virginie Brehaut
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Gilles Clement
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Julien Macé
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Garry Duville
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| |
Collapse
|
18
|
Zhang Q, Li J, Wen X, Deng C, Yang X, Dai S. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium. BMC PLANT BIOLOGY 2023; 23:197. [PMID: 37061708 PMCID: PMC10105424 DOI: 10.1186/s12870-023-04201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RWP-RKs are plant specific transcription factors, which are widely distributed in plants in the form of polygenic families and play key role in nitrogen absorption and utilization, and are crucial to plant growth and development. However, the genome-wide identification and function of RWP-RK in Compositae plants are widely unknown. RESULTS In this study, 101 RWP-RKs in Chrysanthemum lavandulifolium were identified and tandem repeat was an important way for the expansion of RWP-RKs in Compositae species. 101 RWP-RKs contain 38 NIN-like proteins (NLPs) and 31 RWP- RK domain proteins (RKDs), as well as 32 specific expansion members. qRT-PCR results showed that 7 ClNLPs in leaves were up-regulated at the floral transition stage, 10 ClNLPs were negatively regulated by low nitrate conditions, and 3 of them were up-regulated by optimal nitrate conditions. In addition, the flowering time of Chrysanthemum lavandulifolium was advanced under optimal nitrate conditions, the expression level of Cryptochromes (ClCRYs), phytochrome C (ClPHYC) and the floral integration genes GIGANTEA (ClGI), CONSTANS-LIKE (ClCOL1, ClCOL4, ClCOL5), FLOWERING LOCUS T (ClFT), FLOWERING LOCUS C (ClFLC), SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS 1 (ClSOC1) also were up-regulated. The expression level of ClCRY1a, ClCRY1c, ClCRY2a and ClCRY2c in the vegetative growth stage induced by optimal nitrate reached the expression level induced by short-day in the reproductive growth stage, which supplemented the induction effect of short-day on the transcription level of floral-related genes in advance. CONCLUSIONS It was speculated that ClNLPs may act on the photoperiodic pathway under optimal nitrate environment, and ultimately regulate the flowering time by up-regulating the transcription level of ClCRYs. These results provide new perspective for exploring the mechanism of nitrate/nitrogen affecting flowering in higher plants.
Collapse
Affiliation(s)
- Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohui Wen
- Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | - Xiuzhen Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
19
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
20
|
Wellpott K, Jozefowicz AM, Meise P, Schum A, Seddig S, Mock HP, Winkelmann T, Bündig C. Combined nitrogen and drought stress leads to overlapping and unique proteomic responses in potato. PLANTA 2023; 257:58. [PMID: 36795167 PMCID: PMC9935667 DOI: 10.1007/s00425-023-04085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen deficient and drought-tolerant or sensitive potatoes differ in proteomic responses under combined (NWD) and individual stresses. The sensitive genotype 'Kiebitz' exhibits a higher abundance of proteases under NWD. Abiotic stresses such as N deficiency and drought affect the yield of Solanum tuberosum L. tremendously. Therefore, it is of importance to improve potato genotypes in terms of stress tolerance. In this study, we identified differentially abundant proteins (DAPs) in four starch potato genotypes under N deficiency (ND), drought stress (WD), or combined stress (NWD) in two rain-out shelter experiments. The gel-free LC-MS analysis generated a set of 1177 identified and quantified proteins. The incidence of common DAPs in tolerant and sensitive genotypes under NWD indicates general responses to this stress combination. Most of these proteins were part of the amino acid metabolism (13.9%). Three isoforms of S-adenosyl methionine synthase (SAMS) were found to be lower abundant in all genotypes. As SAMS were found upon application of single stresses as well, these proteins appear to be part of the general stress response in potato. Interestingly, the sensitive genotype 'Kiebitz' showed a higher abundance of three proteases (subtilase, carboxypeptidase, subtilase family protein) and a lower abundance of a protease inhibitor (stigma expressed protein) under NWD stress compared to control plants. The comparably tolerant genotype 'Tomba', however, displayed lower abundances of proteases. This indicates a better coping strategy for the tolerant genotype and a quicker reaction to WD when previously stressed with ND.
Collapse
Affiliation(s)
- Katharina Wellpott
- Department of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Anna M Jozefowicz
- Applied Biochemistry, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, 06466, Seeland, Germany
| | - Philipp Meise
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn-Institute (JKI), Bundesforschungsinstitut Für Kulturpflanzen, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Annegret Schum
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn-Institute (JKI), Bundesforschungsinstitut Für Kulturpflanzen, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn-Institute (JKI), Bundesforschungsinstitut Für Kulturpflanzen, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Hans-Peter Mock
- Applied Biochemistry, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, 06466, Seeland, Germany
- Universidad de Costa Rica, CIGRAS, 11501-2060, San Pedro, Costa Rica
| | - Traud Winkelmann
- Department of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Christin Bündig
- Department of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
21
|
Unkefer PJ, Knight TJ, Martinez RA. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status. PLANT PHYSIOLOGY 2023; 191:715-728. [PMID: 36303326 PMCID: PMC9806585 DOI: 10.1093/plphys/kiac501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A metabolite of ammonium assimilation was previously theorized to be involved in the coordination of the overall nitrate response in plants. Here we show that 2-hydroxy-5-oxoproline, made by transamination of glutamine, the first product of ammonium assimilation, may be involved in signaling a plant's ammonium assimilation status. In leaves, 2-hydroxy-5-oxoproline met four foundational requirements to be such a signal. First, when it was applied to foliage, enzyme activities of nitrate reduction and ammonium assimilation increased; the activities of key tricarboxylic acid cycle-associated enzymes that help to supply carbon skeletons for amino acid synthesis also increased. Second, its leaf pools increased as nitrate availability increased. Third, the pool size of its precursor, Gln, reflected ammonium assimilation rather than photorespiration. Fourth, it was widely conserved among monocots, dicots, legumes, and nonlegumes and in plants with C3 or C4 metabolism. Made directly from the first product of ammonium assimilation, 2-hydroxy-5-oxoproline acted as a nitrate uptake stimulant. When 2-hydroxy-5-oxoproline was provided to roots, the plant's nitrate uptake rate approximately doubled. Plants exogenously provided with 2-hydroxy-5-oxoproline to either roots or leaves accumulated greater biomass. A model was constructed that included the proposed roles of 2-hydroxy-5-oxoproline as a signal molecule of ammonium assimilation status in leaves, as a stimulator of nitrate uptake by roots and nitrate downloading from the xylem. In summary, a glutamine metabolite made in the ω-amidase pathway stimulated nitrate uptake by roots and was likely to be a signal of ammonium assimilation status in leaves. A chemical synthesis method for 2-hydroxy-5-oxoproline was also developed.
Collapse
|
22
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|
23
|
Jiang Z, Wang M, Nicolas M, Ogé L, Pérez-Garcia MD, Crespel L, Li G, Ding Y, Le Gourrierec J, Grappin P, Sakr S. Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology. Int J Mol Sci 2022; 23:16128. [PMID: 36555768 PMCID: PMC9785579 DOI: 10.3390/ijms232416128] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes a metabolic hub between glycolysis and the pentose phosphate pathway (PPP), which is the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone concomitantly with the production of nicotinamide adenine dinucleotide phosphate (NADPH), a reducing power. It is considered to be the rate-limiting step that governs carbon flow through the oxidative pentose phosphate pathway (OPPP). The OPPP is the main supplier of reductant (NADPH) for several "reducing" biosynthetic reactions. Although it is involved in multiple physiological processes, current knowledge on its exact role and regulation is still piecemeal. The present review provides a concise and comprehensive picture of the diversity of plant G6PDHs and their role in seed germination, nitrogen assimilation, plant branching, and plant response to abiotic stress. This work will help define future research directions to improve our knowledge of G6PDHs in plant physiology and to integrate this hidden player in plant performance.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laurent Ogé
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | | | - Laurent Crespel
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - José Le Gourrierec
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Philippe Grappin
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
| |
Collapse
|
24
|
Mohammed U, Davis J, Rossall S, Swarup K, Czyzewicz N, Bhosale R, Foulkes J, Murchie EH, Swarup R. Phosphite treatment can improve root biomass and nutrition use efficiency in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1017048. [PMID: 36388577 PMCID: PMC9662169 DOI: 10.3389/fpls.2022.1017048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially during environmental stresses, remains elusive. To uncover this, we undertook a series of morphological and physiological analyses under nutrient, water and heat stresses following a foliar application in wheat. Non-invasive 3D imaging of root system architecture directly in soil using X-ray Computed Tomography revealed that phosphite treatment improves root architectural traits and increased root biomass. Biochemical and physiological assays identified that phosphite treatment significantly increases Nitrate Reductase (NR) activity, leaf photosynthesis and stomatal conductance, suggesting improved Nitrogen and Carbon assimilation, respectively. These differences were more pronounced under heat or drought treatment (photosynthesis and photosystem II stability) and nutrient deficiency (root traits and NR). Overall our results suggest that phosphite treatment improves the ability of plants to tolerate abiotic stresses through improved Nitrogen and Carbon assimilation, combined with improved root growth which may improve biomass and yield.
Collapse
Affiliation(s)
- Umar Mohammed
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Jayne Davis
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Steve Rossall
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Kamal Swarup
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Nathan Czyzewicz
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Mars Petcare, Melton Mowbray, United Kingdom
| | - Rahul Bhosale
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, United Kingdom
| | - John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Erik H. Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ranjan Swarup
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
25
|
Ou S, Xu Z, Mai C, Li B, Wang J. Ectopic expression of GmNF-YA8 in Arabidopsis delays flowering via modulating the expression of gibberellic acid biosynthesis- and flowering-related genes and promotes lateral root emergence in low phosphorus conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1033938. [PMID: 36340418 PMCID: PMC9630906 DOI: 10.3389/fpls.2022.1033938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
NUCLEAR FACTOR Y subunit alpha (NF-YA), together with NF-YB and NF-YC, regulates plant growth and development, as well as plant responses to biotic and abiotic stresses. Although extensive studies have examined the functions of NF-YAs in Arabidopsis thaliana, the roles of NF- YAs in Glycinme max are poorly understood. In this study, we identified a phosphorus (P) starvation-responsive NF-YA8 in soybean. The expression of GmNF-YA8 is induced by low P or low nitrogen in leaves, but not by potassium or iron starvation, respectively. GmNF-YA8 is localized in the nucleus and plasma membrane. Ectopic expression of GmNF-YA8 inhibits plant growth and delayed flowering in Arabidopsis. Exogenous application of gibberellic acid (GA) rescues the delayed flowering phenotype in Arabidopsis overexpressing GmNF-YA8 lines GmNF-YA8OE-05 and GmNF-YA8OE-20. Moreover, quantitative real time PCR (qRT-PCR) verified that overexpression of GmNF-YA8 downregulates GA20ox2 and GA3ox2 expression, but upregulates GA2ox2 and GA2ox3 that encode enzymes, which inactive bioactive GAs. Consistent with the late flowering phenotype of Arabidopsis trangenic lines that overexpress GmNF-YA8, the transcript levels of flowering-promoting genes AP1, CO, LFY, and SOC1 are reduced. In addition, overexpression of GmNF-YA8 promotes the emergence of lateral root (LR) primordium from epidermis rather than the initiation of LR in low P, and increases the LR density in low nitrogen. Our results provide insights into the roles of GmNF-YA8.
Collapse
Affiliation(s)
- Siyan Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Zhihao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Cuishan Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Bodi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|
26
|
Chen LH, Cheng ZX, Xu M, Yang ZJ, Yang LT. Effects of Nitrogen Deficiency on the Metabolism of Organic Acids and Amino Acids in Oryza sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:2576. [PMID: 36235442 PMCID: PMC9572205 DOI: 10.3390/plants11192576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Organic acids metabolism and nitrogen (N) metabolism in rice seedlings and the relationship between them are not fully understood. In this study, rice (Oryza sativa L. ssp. Indica) variety "Huanghuazhan" was used as the experimental material, and three N levels (5 mM, 1 mM, and 0 mM NH4NO3) were set by the hydroponic method for different levels of N treatment. Our results showed that the increased content of malate in rice leaves caused by reducing N level was related to the increased synthesis of malate (the activity of leaf PEPC increased)and the decreased degradation of malate (the activity of leaf NADP-ME decreased), while the increased contents of citrate and isocitrate in rice leaves caused by reducing N level might not be caused by the increased biosynthesis, but due to the decrease in degradation of citrate and isocitrate (the activities of leaf CS, ACO, and NADP-IDH decreased). The increased content of malate in rice roots caused by reducing N level might be related to the increased biosynthesis and the decreased degradation of root malate (the activities of root NAD-MDH and PEPC increased, while the activity of NADP-ME decreased). Compared to the control (5 mM NH4NO3), the increased content of citrate in rice roots caused by reducing N level might be related to the increased biosynthesis rather than the decreased degradation of citrate, due to the higher activities of CS and ACO in rice roots under 0 mM N and 1mM N treatment when compared to that of the control ones. At the same time, the increased content of isocitrate in roots was related to the increased isomerization of isocitrate (the activity of root ACO increased) and the decreased degradation of isocitrate (the activity of root NADP-IDH decreased). With the reducing N level, the activities of N metabolism-related enzymes, such as nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT), decreased in rice leaves and roots, resulting in the decreased contents of total free amino acids (TFAAs) and soluble proteins in rice seedlings, and finally led to the growth inhibition. Our results showed that the dynamics of organic acids metabolism caused by reducing N level were different in rice leaves and roots. In conclusion, there was a close correlation between organic acids metabolism and N metabolism in rice leaves and roots under N-limited conditions; furthermore, such a correlation was more obvious in rice leaves than that of roots.
Collapse
Affiliation(s)
- Ling-Hua Chen
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zu-Xin Cheng
- Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming Xu
- Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Jian Yang
- Fujian Engineering Technology Research Center of Breeding and Utilization for Special Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Han M, Xu M, Su T, Wang S, Wu L, Feng J, Ding C. Transcriptome Analysis Reveals Critical Genes and Pathways in Carbon Metabolism and Ribosome Biogenesis in Poplar Fertilized with Glutamine. Int J Mol Sci 2022; 23:9998. [PMID: 36077396 PMCID: PMC9456319 DOI: 10.3390/ijms23179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exogenous Gln as a single N source has been shown to exert similar roles to the inorganic N in poplar 'Nanlin895' in terms of growth performance, yet the underlying molecular mechanism remains unclear. Herein, transcriptome analyses of both shoots (L) and roots (R) of poplar 'Nanlin895' fertilized with Gln (G) or the inorganic N (control, C) were performed. Compared with the control, 3109 differentially expressed genes (DEGs) and 5071 DEGs were detected in the GL and GR libraries, respectively. In the shoots, Gln treatment resulted in downregulation of a large number of ribosomal genes but significant induction of many starch and sucrose metabolism genes, demonstrating that poplars tend to distribute more energy to sugar metabolism rather than ribosome biosynthesis when fertilized with Gln-N. By contrast, in the roots, most of the DEGs were annotated to carbon metabolism, glycolysis/gluconeogenesis and phenylpropanoid biosynthesis, suggesting that apart from N metabolism, exogenous Gln has an important role in regulating the redistribution of carbon resources and secondary metabolites. Therefore, it can be proposed that the promotion impact of Gln on poplar growth and photosynthesis may result from the improvement of both carbon and N allocation, accompanied by an efficient energy switch for growth and stress responses.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Shizhen Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liangdan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Changjun Ding
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
28
|
Arabidopsis nitrate-induced aspartate oxidase gene expression is necessary to maintain metabolic balance under nitrogen nutrient fluctuation. Commun Biol 2022; 5:432. [PMID: 35534536 PMCID: PMC9085827 DOI: 10.1038/s42003-022-03399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrate is a nutrient signal that regulates growth and development through NLP transcription factors in plants. Here we identify the L-aspartate oxidase gene (AO) necessary for de novo NAD+ biosynthesis as an NLP target in Arabidopsis. We investigated the physiological significance of nitrate-induced AO expression by expressing AO under the control of the mutant AO promoter lacking the NLP-binding site in the ao mutant. Despite morphological changes and severe reductions in fresh weight, the loss of nitrate-induced AO expression resulted in minimum effects on NAD(H) and NADP(H) contents, suggesting compensation of decreased de novo NAD+ biosynthesis by reducing the growth rate. Furthermore, metabolite profiling and transcriptome analysis revealed that the loss of nitrate-induced AO expression causes pronounced impacts on contents of TCA cycle- and urea cycle-related metabolites, gene expression profile, and their modifications in response to changes in the nitrogen nutrient condition. These results suggest that proper maintenance of metabolic balance requires the coordinated regulation of multiple metabolic pathways by NLP-mediated nitrate signaling in plants. NLP transcription factors directly regulate aspartate oxidase gene expression connected to multiple metabolic pathways in Arabidopsis in response to changes in the nitrogen nutrient condition.
Collapse
|
29
|
Liang Q, Dong M, Gu M, Zhang P, Ma Q, He B. MeNPF4.5 Improves Cassava Nitrogen Use Efficiency and Yield by Regulating Nitrogen Uptake and Allocation. FRONTIERS IN PLANT SCIENCE 2022; 13:866855. [PMID: 35548292 PMCID: PMC9083203 DOI: 10.3389/fpls.2022.866855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
Improving nitrogen use efficiency (NUE) is a very important goal of crop breeding throughout the world. Cassava is an important food and energy crop in tropical and subtropical regions, and it mainly use nitrate as an N source. To evaluate the effect of the nitrate transporter gene MeNPF4.5 on the uptake and utilization of N in cassava, two MeNPF4.5 overexpression lines (MeNPF4.5 OE-22 and MeNPF4.5 OE-34) and one MeNPF4.5 RNA interference (RNAi) line (MeNPF4.5 Ri-1) were used for a tissue culture experiment, combining with a field trial. The results indicated that MeNPF4.5 is a plasma membrane transporter mainly expressed in roots. The gene is induced by NO3 -. Compared with the wild type, MeNPF4.5 OE-22 exhibited improved growth, yield, and NUE under both low N and normal N levels, especially in the normal N treatment. However, the growth and N uptake of RNAi plants were significantly reduced, indicating poor N uptake and utilization capacity. In addition, photosynthesis and the activities of N metabolism-related enzymes (glutamine synthetase, glutamine oxoglutarate aminotransferase, and glutamate dehydrogenase) of leaves in overexpression lines were significantly higher than those in wild type. Interestingly, the RNAi line increased enzymatic activity but decreased photosynthesis. IAA content of roots in overexpressed lines were lower than that in wild type under low N level, but higher than that of wild type under normal N level. The RNAi line increased IAA content of roots under both N levels. The IAA content of leaves in the overexpression lines was significantly higher than that of the wild type, but showed negative effects on that of the RNAi lines. Thus, our results demonstrated that the MeNPF4.5 nitrate transporter is involved in regulating the uptake and utilization of N in cassava, which leads to the increase of N metabolizing enzyme activity and photosynthesis, along with the change of endogenous hormones, thereby improving the NUE and yield of cassava. These findings shed light that MeNPF4.5 is involved in N use efficiency use in cassava.
Collapse
Affiliation(s)
- Qiongyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Mengmeng Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Minghua Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Zang L, Tarkowski ŁP, Morère-Le Paven MC, Zivy M, Balliau T, Clochard T, Bahut M, Balzergue S, Pelletier S, Landès C, Limami AM, Montrichard F. The Nitrate Transporter MtNPF6.8 Is a Master Sensor of Nitrate Signal in the Primary Root Tip of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:832246. [PMID: 35371178 PMCID: PMC8971838 DOI: 10.3389/fpls.2022.832246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/12/2023]
Abstract
Nitrate is not only an essential nutrient for plants, but also a signal involved in plant development. We have previously shown in the model legume Medicago truncatula, that the nitrate signal, which restricts primary root growth, is mediated by MtNPF6.8, a nitrate transporter. Nitrate signal also induces changes in reactive oxygen species accumulation in the root tip due to changes in cell wall peroxidase (PODs) activity. Thus, it was interesting to determine the importance of the role of MtNPF6.8 in the regulation of the root growth by nitrate and identify the POD isoforms responsible for the changes in POD activity. For this purpose, we compared in M. truncatula a npf6.8 mutant and nitrate insensitive line deficient in MtNPF6.8 and the corresponding wild and sensitive genotype for their transcriptomic and proteomic responses to nitrate. Interestingly, only 13 transcripts and no protein were differently accumulated in the primary root tip of the npf6.8-3 mutant line in response to nitrate. The sensitivity of the primary root tip to nitrate appeared therefore to be strongly linked to the integrity of MtNPF6.8 which acts as a master mediator of the nitrate signal involved in the control of the root system architecture. In parallel, 7,259 and 493 genes responded, respectively, at the level of transcripts or proteins in the wild type, 196 genes being identified by both their transcript and protein. By focusing on these 196 genes, a concordance of expression was observed for most of them with 143 genes being up-regulated and 51 being down-regulated at the two gene expression levels. Their ontology analysis uncovered a high enrichment in POD genes, allowing the identification of POD candidates involved in the changes in POD activity previously observed in response to nitrate.
Collapse
Affiliation(s)
- Lili Zang
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | | | | - Michel Zivy
- PAPPSO, GQE – Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Balliau
- PAPPSO, GQE – Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Clochard
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | | - Sandrine Balzergue
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Sandra Pelletier
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Claudine Landès
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Anis M. Limami
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | |
Collapse
|
31
|
Nitrogen Absorption Pattern Detection and Expression Analysis of Nitrate Transporters in Flowering Chinese Cabbage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nitrate transporters (NRTs) play an important role in nitrate absorption and internal distribution in plant roots and other parts. Experiments were carried out to explore the sequences and expression characteristics of NRT genes, and their correlation with the N uptake in flowering Chinese cabbage. We have isolated three important BcNRTs (BcNRT1.1, BcNRT1.2, and BcNRT2.1) from flowering Chinese cabbage. Spatio-temporal expression analysis found that BcNRT1.1 and BcNRT2.1 were mainly expressed in roots, while BcNRT1.2 was more expressed in roots than in leaves during vegetative growth and was mainly expressed in leaves during reproductive growth. The NO3− uptake rate of the entire growth period was significantly correlated with BcNRT1.1 and BcNRT1.2 expression in roots. In addition, the total N content was increased with the increase in NO3− concentration in flowering Chinese cabbage. The NH4+ uptake was slightly induced by NH4+, but the total N content had no significant difference under the NH4+ concentration of 1–8 mmol/L. We also found that lower concentrations of NH4+ promoted the expression of BcNRT1.1 and BcNRT1.2 while inhibiting the expression of BcNRT2.1 in the roots of flowering Chinese cabbage. The amount of total N uptake in the treatment with 25/75 of NH4+/NO3− was significantly higher than that of the other two treatments (0/100 and 50/50). In the mixture of NH4+ and NO3−, total N uptake was significantly correlated with the BcNRT1.2 expression. We concluded that mixed nutrition with an NH4+/NO3− of 25/75 could significantly increase total nitrogen uptake in flowering Chinese cabbage, in which two members of the NRT1 subfamily (BcNRT1.1 and BcNRT1.2) might play a major regulatory role in it. This study is a beneficial attempt to dig deeper into the NRT genes resources and lays the foundation for the ultimate use of genetic improvement methods to increase the NUE with less nitrogen fertilizer in flowering Chinese cabbage.
Collapse
|
32
|
Wang H, Yuan L, Song J, Wang Q, Zhang Y. Distribution of extracellular matrix related proteins in normal and cryptorchid ziwuling black goat testes. Anim Reprod 2022; 19:e20220005. [PMID: 35712443 PMCID: PMC9170007 DOI: 10.1590/1984-3143-ar2022-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The Ziwuling black goat is an indigenously in China, their offspring are frequently affected by congenital cryptorchidism. The extracellular matrix (ECM) contains cytokines and growth factors that regulate the development of the testis, and component changes often result in pathological changes. Cryptorchidism is closely related to structural changes in ECM. In this study, the histochemical staining, immunohistochemical, immunofluorescence and Western blot combined with semi-quantitative analysis was used to describe the distribution of the important ECM components Collagen type IV (Col IV), laminin (LN)and heparan sulfate proteoglycans (HSPG) in the normal and cryptorchid testes of Ziwuling black goats. Results showed that: The histochemical staining showed that the dysplasia of seminiferous tubules and decreased number of Sertoli cells in cryptorchidism, as well as sparse collagen fiber. Meanwhile, the distribution of reticular fibers is relatively rich. Furthermore, the PAS and AB staining in the interstitial vessels and lamina propria of seminiferous tubules is weak. The immunohistochemical and immunofluorescence revealed that Col IV, LN was strongly expressed in Leydig, Sertoli cells of normal testes and moderately positive in the spermatogonia and spermatids, but HSPG was not expressed in the spermatogonia. However, cryptorchidism, the expression of Col IV, LN and HPSG in Leydig, Sertoli cells significantly decreased, as well as the expression of Col IV and LN in capillary endothelial cells, but HSPG was moderately expressed in spermatogonia. Based on these data, the underdevelopment of spermatogenic epithelium, decreased synthesis function of collagen fibers and Leydig cells develop usually in the cryptorchidism were shown to be closely related to the abnormal metabolism of Col IV and LN. The positive expressed of HSPG in the spermatogonia of cryptorchid testes is related to the compensatory development of spermatogonia.
Collapse
Affiliation(s)
- Hua Wang
- Gansu Agricultural University, China
| | | | | | | | | |
Collapse
|
33
|
Comparing the Effects of N and P Deficiency on Physiology and Growth for Fast- and Slow-Growing Provenances of Fraxinus mandshurica. FORESTS 2021. [DOI: 10.3390/f12121760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the continuous increase in atmospheric carbon dioxide emissions, nitrogen (N) and phosphorus (P) as mineral elements increasingly restrict plant growth. To explore the effect of deficiency of P and N on growth and physiology, Fraxinus mandshurica (hereafter “F. mandshurica”) Rupr. annual seedlings of Wuchang (WC) provenance with fast growth and Dailing (DL) provenance with slow growth were treated with complete nutrition or starvation of N (N-), P (P-) or both elements (NP-). Although P- and N- increased the use efficiency of P (PUE) and N (NUE), respectively, they reduced the leaf area, chlorophyll content and activities of N assimilation enzymes (NR, GS, GOGAT), which decreased the dry weight and P or N amount. The free amino acid content and activities of Phosphoenolpyruvate carboxylase (PEPC) and acid phosphatase enzymes were reduced by N-. The transcript levels of NRT2.1, NRT2.4, NRT2.5, NRT2.7, AVT1, AAP3, NIA2, PHT1-3, PHT1-4 and PHT2-1 in roots were increased, but those of NRT2.1, NRT2.4, NRT2.5, PHT1-3, PHT1-4, PHT2-1 and AAP3 in leaves were reduced by P-. WC was significantly greater than DL under P- in dry weight, C amount, N amount, leaf area, PUE, NUE, which related to greater chlorophyll content, PEPC enzyme activity, N assimilation enzyme activities, and transcript levels of N and P transporter genes in roots and foliage, indicating a greater ability of WC to absorb, transport and utilize N and P under P-. WC was also greater than DL under N- in terms of the above indicators except the transcript levels of N and P assimilation genes, but most of the indicators did not reach a significant level, indicating that WC might be more tolerant to N- than DL, which requires further verification. In summary, WC was identified as a P-efficient provenance, as the growth rate was greater for the genetic type with high than low tolerance to P-.
Collapse
|
34
|
Wani SH, Vijayan R, Choudhary M, Kumar A, Zaid A, Singh V, Kumar P, Yasin JK. Nitrogen use efficiency (NUE): elucidated mechanisms, mapped genes and gene networks in maize ( Zea mays L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2875-2891. [PMID: 35035142 PMCID: PMC8720126 DOI: 10.1007/s12298-021-01113-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
UNLABELLED Nitrogen, the vital primary plant growth nutrient at deficit soil conditions, drastically affects the growth and yield of a crop. Over the years, excess use of inorganic nitrogenous fertilizers resulted in pollution, eutrophication and thereby demanding the reduction in the use of chemical fertilizers. Being a C4 plant with fibrous root system and high NUE, maize can be deployed to be the best candidate for better N uptake and utilization in nitrogen deficient soils. The maize germplasm sources has enormous genetic variation for better nitrogen uptake contributing traits. Adoption of single cross maize hybrids as well as inherent property of high NUE has helped maize cultivars to achieve the highest growth rate among the cereals during last decade. Further, considering the high cost of nitrogenous fertilizers, adverse effects on soil health and environmental impact, maize improvement demands better utilization of existing genetic variation for NUE via introgression of novel allelic combinations in existing cultivars. Marker assisted breeding efforts need to be supplemented with introgression of genes/QTLs related to NUE in ruling varieties and thereby enhancing the overall productivity of maize in a sustainable manner. To achieve this, we need mapped genes and network of interacting genes and proteins to be elucidated. Identified genes may be used in screening ideal maize genotypes in terms of better physiological functionality exhibiting high NUE. Future genome editing may help in developing lines with increased productivity under low N conditions in an environment of optimum agronomic practices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01113-z.
Collapse
Affiliation(s)
- Shabir H. Wani
- Genetics and Plant Breeding, Mountain Research Centre For Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani Anantnag, J&K 192101 India
| | - Roshni Vijayan
- Regional Agricultural Research Station-Central Zone, Kerala Agricultural University, MelePattambi, Palakkad, Kerala 679306 India
| | | | - Anuj Kumar
- Centre for Agricultural Bioinformatics (CABin), ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Vishal Singh
- Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 USA
| | - Pardeep Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001 India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012 India
| |
Collapse
|
35
|
Zhao C, Ma G, Zhou L, Zhang S, Su L, Sun X, Borrás-Hidalgo O, Li K, Yue Q, Zhao L. Effects of nitrogen levels on gene expression and amino acid metabolism in Welsh onion. BMC Genomics 2021; 22:803. [PMID: 34743697 PMCID: PMC8573885 DOI: 10.1186/s12864-021-08130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Background Welsh onion constitutes an important crop due to its benefits in traditional medicine. Nitrogen is an important nutrient for plant growth and yield; however, little is known about its influence on the mechanisms of Welsh onion regulation genes. In this study, we introduced a gene expression and amino acid analysis of Welsh onion treated with different concentrations of nitrogen (N0, N1, and N2 at 0 kg/ha, 130 kg/ha, and 260 kg/ha, respectively). Results Approximately 1,665 genes were differentially regulated with different concentrations of nitrogen. Gene ontology enrichment analysis revealed that the genes involved in metabolic processes, protein biosynthesis, and transportation of amino acids were highly represented. KEGG analysis indicated that the pathways were related to amino acid metabolism, cysteine, beta-alanine, arginine, proline, and glutathione. Differential gene expression in response to varying nitrogen concentrations resulted in different amino acid content. A close relationship between gene expression and the content of amino acids was observed. Conclusions This work examined the effects of nitrogen on gene expression and amino acid synthesis and provides important evidence on the efficient use of nitrogen in Welsh onion.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guanchu Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lin Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Orlando Borrás-Hidalgo
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
36
|
Song X, Li J, Lyu M, Kong X, Hu S, Song Q, Zuo K. CALMODULIN-LIKE-38 and PEP1 RECEPTOR 2 integrate nitrate and brassinosteroid signals to regulate root growth. PLANT PHYSIOLOGY 2021; 187:1779-1794. [PMID: 34618046 PMCID: PMC8566301 DOI: 10.1093/plphys/kiab323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/22/2021] [Indexed: 05/23/2023]
Abstract
Plants exhibit remarkable developmental plasticity, enabling them to adapt to adverse environmental conditions such as low nitrogen (N) in the soil. Brassinosteroids (BRs) promote root foraging for nutrients under mild N deficiency, but the crosstalk between the BR- and N-signaling pathways in the regulation of root growth remains largely unknown. Here, we show that CALMODULIN-LIKE-38 (CML38), a calmodulin-like protein, specifically interacts with the PEP1 RECEPTOR 2 (PEPR2), and negatively regulates root elongation in Arabidopsis (Arabidopsis thaliana) in response to low nitrate (LN). CML38 and PEPR2 are transcriptionally induced by treatments of exogenous nitrate and BR. Compared with Col-0, the single mutants cml38 and pepr2 and the double mutant cml38 pepr2 displayed enhanced primary root growth and produced more lateral roots under LN. This is consistent with their higher nitrate absorption abilities, and their stronger expression of nitrate assimilation genes. Furthermore, CML38 and PEPR2 regulate common downstream genes related to BR signaling, and they have positive roles in BR signaling. Low N facilitated BR signal transmission in Col-0 and CML38- or PEPR2-overexpressing plants, but not in the cml38 and pepr2 mutants. Taken together, our results illustrate a mechanism by which CML38 interacts with PEPR2 to integrate LN and BR signals for coordinating root development to prevent quick depletion of N resources in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyun Song
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfu Li
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengli Lyu
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuzhen Kong
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi Hu
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingwei Song
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Plant Biotech Center: Center of Single Cell Research, School of Agriculture and Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
37
|
Kambhampati S, Pajak A, Marsolais F. Evidence that class I glutamine amidotransferase, GAT1_2.1, acts as a glutaminase in roots of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111033. [PMID: 34620437 DOI: 10.1016/j.plantsci.2021.111033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The glutamine amidotransferase gene GAT1_2.1 is a marker of N status in Arabidopsis root, linked to a shoot branching phenotype. The protein has an N-terminal glutamine amidotransferase domain and a C-terminal extension with no recognizable protein domain. A purified, recombinant version of the glutamine amidotransferase domain was catalytically active as a glutaminase, with apparent Km value of 0.66 mM and Vmax value of 2.6 μkatal per mg. This form complemented an E. coli glutaminase mutant, ΔYneH. Spiking of root metabolite extracts with either the N-terminal or full length form purified from transformed tobacco leaves led to reciprocal changes in glutamine and ammonia concentration. No product derived from amido-15N-labeled glutamine was identified. Visualization of GAT1_2.1-YPF transiently expressed in tobacco leaves confirmed its mitochondrial localization. gat1_2.1 exhibited reduced growth as compared with wild-type seedlings on media with glutamine as sole nitrogen source. Results of targeted metabolite profiling pointed to a possible activation of the GABA shunt in the mutant following glutamine treatments, with reduced levels of glutamic acid, 2-oxoglutarate and γ-aminobutyric acid and increased levels of succinic acid. GAT1_2.1 may act as a glutaminase, in concert with Glutamate Dehydrogenase 2, to hydrolyze glutamine and channel 2-oxoglutarate to the TCA cycle under high nitrogen conditions.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada; Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada; Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
38
|
Wang M, Hasegawa T, Beier M, Hayashi M, Ohmori Y, Yano K, Teramoto S, Kamiya T, Fujiwara T. Growth and Nitrate Reductase Activity Are Impaired in Rice Osnlp4 Mutants Supplied with Nitrate. PLANT & CELL PHYSIOLOGY 2021; 62:1156-1167. [PMID: 33693871 DOI: 10.1093/pcp/pcab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/27/2021] [Indexed: 05/24/2023]
Abstract
Nitrate is an important nutrient and signaling molecule in plants, which modulates the expression of many genes and regulates plant growth. In paddy-grown rice (Oryza sativa), nitrogen is mostly supplied in the form of ammonium but can also be supplied in the form of nitrate. Several nitrogen transporters and nitrate assimilation enzymes have been identified and functionally characterized in rice. However, little is known regarding the nitrate sensing system in rice, and the regulatory mechanisms of nitrate-related genes remain to be elucidated. In recent years, NIN-like proteins (NLPs) have been described as key transcription factors of nitrogen responses in Arabidopsis thaliana, which implies that OsNLP4 is involved in the regulation of nitrate assimilation and nitrogen use efficiency in rice. Here, we show that OsNLP4 can influence plant growth by affecting nitrate reductase (NR) activity. The growth of OsNLP4 knockdown mutants was reduced when nitrate was supplied, but not when ammonium was supplied. The nitrate concentration was significantly reduced in osnlp4 mutants. Furthermore, the concentrations of iron and molybdenum, essential elements for NR activity, were reduced in OsNLP4 knockdown mutants. We propose that, in addition to the regulation of gene expression within the nitrate signaling pathway, OsNLP4 can affect the NR activity and nitrate-dependent growth of rice. Our results support a working model for the role of OsNLP4 in the nitrate signaling pathway.
Collapse
Affiliation(s)
- Mengyao Wang
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Takahiro Hasegawa
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Marcel Beier
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Kanagawa, 2300045 Japan
| | - Yoshihiro Ohmori
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Kenji Yano
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Shota Teramoto
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Takehiro Kamiya
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| | - Toru Fujiwara
- The Laboratory of Plant Nutrition and Fertilizers, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657 Japan
| |
Collapse
|
39
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis. BIOINFORMATICS (OXFORD, ENGLAND) 2021; 37:2450-2460. [PMID: 33693548 DOI: 10.1101/2020.06.15.152819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 05/27/2023]
Abstract
MOTIVATION Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. RESULTS This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model's dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. AVAILABILITY AND IMPLEMENTATION The method was developed with the R statistical software and is made available through the R package 'irg' hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva 1205, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Vega A, Fredes I, O'Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs SP, Gutiérrez RA. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep 2021; 22:e51813. [PMID: 34357701 PMCID: PMC8447600 DOI: 10.15252/embr.202051813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Nitrate commands genome‐wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild‐type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post‐translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.
Collapse
Affiliation(s)
- Andrea Vega
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Isabel Fredes
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - José O'Brien
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhouxin Shen
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Krisztina Ötvös
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Rashed Abualia
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Steven P Briggs
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
41
|
Konishi M, Okitsu T, Yanagisawa S. Nitrate-responsive NIN-like protein transcription factors perform unique and redundant roles in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5735-5750. [PMID: 34050740 DOI: 10.1093/jxb/erab246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Upon sensing nitrate, NODULE INCEPTION (NIN)-like protein (NLP) transcription factors alter gene expression to promote nitrate uptake and utilization. Of the nine NLPs in Arabidopsis, the physiological roles of only three NLPs (NLP6-NLP8) have been characterized to date. To evaluate the unique and redundant roles of Arabidopsis NLPs, we assessed the phenotypes of single and higher order nlp mutants. Unlike other nlp single mutants, nlp2 and nlp7 single mutants showed a reduction in shoot fresh weight when grown in the presence of nitrate as the sole nitrogen source, indicating that NLP2, like NLP7, plays a major role in vegetative growth. Interestingly, the growth defect of nlp7 recovered upon the supply of ammonium or glutamine, whereas that of nlp2 did not. Furthermore, complementation assays using chimeric constructs revealed that the coding sequence, but not the promoter region, of NLP genes was responsible for the differences between nlp2 and nlp7 single mutant phenotypes, suggesting differences in protein function. Importantly, nitrate utilization was almost completely abolished in the nlp septuple mutant (nlp2 nlp4 nlp5 nlp6 nlp7 nlp8 nlp9), suggesting that NLPs other than NLP2 and NLP7 also assist in the regulation of nitrate-inducible gene expression and nitrate-dependent promotion of vegetative growth in Arabidopsis.
Collapse
Affiliation(s)
- Mineko Konishi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Tokyo, Japan
| | - Takayuki Okitsu
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Tokyo, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Tokyo, Japan
| |
Collapse
|
42
|
Zhang Y, Zhao Y, Sun L, Han P, Bai X, Lin R, Xiao K. The N uptake-associated physiological processes at late growth stage in wheat (Triticum aestivum) under N deprivation combined with deficit irrigation condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:160-172. [PMID: 33991861 DOI: 10.1016/j.plaphy.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Elucidating physiological mechanisms underlying the plant N uptake benefits breeding of high N use efficiency (NUE) crop cultivars. In this study, we investigated the growth and N uptake-associated processes in wheat under N deprivation and deficit irrigation, using two contrasting NUE cultivars. Compared with sufficient-N (SN), deficient-N (DN) treatment reduced plant biomass, N accumulation, and yields in two cultivars (high NUE Shinong 086 and N deprivation-sensitive Jimai 585), suggesting that N deprivation negatively regulates plant growth and N uptake. Shinong 086 was better on growth and N uptake-associated traits than Jimai 585 due to the improved root biomass across soil profile, which was consistent with the decrease of available N contents in soil layers. These results suggested that the improved root system architecture (RAS) enhances plant acquirement for soil N under N- and water-deprivation condition, contributing to the plant N uptake and yield formation capacities. Transcriptome investigation revealed that numerous genes were differentially expressed (DE) in the N-deprived Shinong 086 plants, which involve the regulation of complicate biochemical pathways. These results suggested that the modified RAS and N uptake in high NUE plants are accomplished underlying the regulation of numerous DE genes. TaWRKY20, a gene in ZFP transcription factor family, was functionally characterized for the role in mediating plant N uptake. Overexpression of it conferred plants improved growth and N uptake under DN due to its regulation on TaNRT2.1 and TaNRT2.2, two nitrate transporter genes. Our investigation provides insights in high NUE mechanisms in wheat under N deprivation.
Collapse
Affiliation(s)
- Yanyang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yingjia Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liyong Sun
- Collaboration and Innovation Center of Hebei, Shijiazhuang, 050000, China
| | - Peng Han
- Agricultural Technology Extension Station of Hebei, Shijiazhuang, 050000, China
| | - Xinyang Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Ruize Lin
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
43
|
Del Castello F, Foresi N, Nejamkin A, Lindermayr C, Buegger F, Lamattina L, Correa-Aragunde N. Cyanobacterial NOS expression improves nitrogen use efficiency, nitrogen-deficiency tolerance and yield in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110860. [PMID: 33902845 DOI: 10.1016/j.plantsci.2021.110860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Developing strategies to improve nitrogen (N) use efficiency (NUE) in plants is a challenge to reduce environmental problems linked to over-fertilization. The nitric oxide synthase (NOS) enzyme from the cyanobacteria Synechococcus PCC 7335 (SyNOS) has been recently identified and characterized. SyNOS catalyzes the conversion of arginine to citrulline and nitric oxide (NO), and then approximately 75 % of the produced NO is rapidly oxidized to nitrate by an unusual globin domain in the N-terminus of the enzyme. In this study, we assessed whether SyNOS expression in plants affects N metabolism, NUE and yield. Our results showed that SyNOS-expressing transgenic Arabidopsis plants have greater primary shoot length and shoot branching when grown under N-deficient conditions and higher seed production both under N-sufficient and N-deficient conditions. Moreover, transgenic plants showed significantly increased NUE in both N conditions. Although the uptake of N was not modified in the SyNOS lines, they showed an increase in the assimilation/remobilization of N under conditions of low N availability. In addition, SyNOS lines have greater N-deficiency tolerance compared to control plants. Our results support that SyNOS expression generates a positive effect on N metabolism and seed production in Arabidopsis, and it might be envisaged as a strategy to improve productivity in crops under adverse N environments.
Collapse
Affiliation(s)
- Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany.
| | - Franz Buegger
- Institute of Soil Ecology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg/Munich, Germany.
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes 3350, CC 1245, 7600 Mar del Plata, Argentina.
| |
Collapse
|
44
|
Ruffel S, Chaput V, Przybyla-Toscano J, Fayos I, Ibarra C, Moyano T, Fizames C, Tillard P, O’Brien JA, Gutiérrez RA, Gojon A, Lejay L. Genome-wide analysis in response to nitrogen and carbon identifies regulators for root AtNRT2 transporters. PLANT PHYSIOLOGY 2021; 186:696-714. [PMID: 33582801 PMCID: PMC8154064 DOI: 10.1093/plphys/kiab047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.
Collapse
Affiliation(s)
- Sandrine Ruffel
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Valentin Chaput
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Ian Fayos
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Catalina Ibarra
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tomas Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cécile Fizames
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Pascal Tillard
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Jose Antonio O’Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal. Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alain Gojon
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Laurence Lejay
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
- Author for communication:
| |
Collapse
|
45
|
Ruffel S, Chaput V, Przybyla-Toscano J, Fayos I, Ibarra C, Moyano T, Fizames C, Tillard P, O'Brien JA, Gutiérrez RA, Gojon A, Lejay L. Genome-wide analysis in response to nitrogen and carbon identifies regulators for root AtNRT2 transporters. PLANT PHYSIOLOGY 2021; 186:696-714. [PMID: 33582801 DOI: 10.1101/822197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.
Collapse
Affiliation(s)
- Sandrine Ruffel
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Valentin Chaput
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Ian Fayos
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Catalina Ibarra
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Tomas Moyano
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cécile Fizames
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Pascal Tillard
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Jose Antonio O'Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal. Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute for Integrative Biology, FONDAP Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alain Gojon
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Laurence Lejay
- BPMP, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
46
|
Lin Z, Guo C, Lou S, Jin S, Zeng W, Guo Y, Fang J, Xu Z, Zuo Z, Ma L. Functional analyses unveil the involvement of moso bamboo (Phyllostachys edulis) group I and II NIN-LIKE PROTEINS in nitrate signaling regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110862. [PMID: 33775367 DOI: 10.1016/j.plantsci.2021.110862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
For rapid growth, moso bamboo (Phyllostachys edulis) requires large amounts of nutrients. Nitrate is an indispensable molecular signal to regulate nitrogen absorption and assimilation, which are regulated by group III NIN-LIKE PROTEINs (NLPs). However, no Phyllostachys edulis NLP (PeNLP) has been characterized. Here, eight PeNLPs were identified, which showed dynamic expression patterns in bamboo tissues. Nitrate did not affect PeNLP mRNA levels, and PeNLP1, -2, -5, -6, -7, and -8 successfully restored nitrate signaling in Arabidopsis atnlp7-1 protoplasts through recovering AtNiR and AtNRT2.1 expression. Four group I and II PeNLPs (PeNLP1, -2, -5, and -8) interacted with the nitrate-responsive cis-element of PeNiR. Moreover, nitrate triggered the nuclear retention of PeNLP8. PeNLP8 overexpression in Arabidopsis significantly increased the primary root length, lateral root number, leaf area, and dry and wet weight of the transgenic plants, and PeNLP8 expression rescued the root architectural defect phenotype of atnlp7-1 mutants. Interestingly, PeNLP8 overexpression dramatically reduced nitrate content but elevated total amino acid content in Arabidopsis. Overall, the present study unveiled the potential involvement of group I and II NLPs in nitrate signaling regulation and provided genetic resources for engineering plants with high nitrogen use efficiency.
Collapse
Affiliation(s)
- Zezhong Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cuiting Guo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuaitong Lou
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Songsong Jin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weike Zeng
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanan Guo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Fang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - Zhenguo Xu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning, 530002, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
47
|
Prinsi B, Muratore C, Espen L. Biochemical and Proteomic Changes in the Roots of M4 Grapevine Rootstock in Response to Nitrate Availability. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040792. [PMID: 33920578 PMCID: PMC8073184 DOI: 10.3390/plants10040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
In agricultural soils, nitrate (NO3-) is the major nitrogen (N) nutrient for plants, but few studies have analyzed molecular and biochemical responses involved in its acquisition by grapevine roots. In viticulture, considering grafting, NO3- acquisition is strictly dependent on rootstock. To improve the knowledge about N nutrition in grapevine, this study analyzed biochemical and proteomic changes induced by, NO3- availability, in a hydroponic system, in the roots of M4, a recently selected grapevine rootstock. The evaluation of biochemical parameters, such as NO3-, sugar and amino acid contents in roots, and the abundance of nitrate reductase, allowed us to define the time course of the metabolic adaptations to NO3- supply. On the basis of these results, the proteomic analysis was conducted by comparing the root profiles in N-starved plants and after 30 h of NO3- resupply. The analysis quantified 461 proteins, 26% of which differed in abundance between conditions. Overall, this approach highlighted, together with an increased N assimilatory metabolism, a concomitant rise in the oxidative pentose phosphate pathway and glycolysis, needed to fulfill the redox power and carbon skeleton demands, respectively. Moreover, a wide modulation of protein and amino acid metabolisms and changes of proteins involved in root development were observed. Finally, some results open new questions about the importance of redox-related post-translational modifications and of NO3- availability in modulating the dialog between root and rhizosphere.
Collapse
Affiliation(s)
| | | | - Luca Espen
- Correspondence: ; Tel.: +39-02-503-16610
| |
Collapse
|
48
|
Barzana G, Rios JJ, Lopez-Zaplana A, Nicolas-Espinosa J, Yepes-Molina L, Garcia-Ibañez P, Carvajal M. Interrelations of nutrient and water transporters in plants under abiotic stress. PHYSIOLOGIA PLANTARUM 2021; 171:595-619. [PMID: 32909634 DOI: 10.1111/ppl.13206] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/12/2023]
Abstract
Environmental changes cause abiotic stress in plants, primarily through alterations in the uptake of the nutrients and water they require for their metabolism and growth and to maintain their cellular homeostasis. The plasma membranes of cells contain transporter proteins, encoded by their specific genes, responsible for the uptake of nutrients and water (aquaporins). However, their interregulation has rarely been taken into account. Therefore, in this review we identify how the plant genome responds to abiotic stresses such as nutrient deficiency, drought, salinity and low temperature, in relation to both nutrient transporters and aquaporins. Some general responses or regulation mechanisms can be observed under each abiotic stress such as the induction of plasma membrane transporter expression during macronutrient deficiency, the induction of tonoplast transporters and reduction of aquaporins during micronutrients deficiency. However, drought, salinity and low temperatures generally cause an increase in expression of nutrient transporters and aquaporins in tolerant plants. We propose that both types of transporters (nutrients and water) should be considered jointly in order to better understand plant tolerance of stresses.
Collapse
Affiliation(s)
- Gloria Barzana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan J Rios
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Alvaro Lopez-Zaplana
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Lucía Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, Murcia, E-30100, Spain
| |
Collapse
|
49
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling in Arabidopsis. Bioinformatics 2021; 37:2450-2460. [PMID: 33693548 PMCID: PMC8388030 DOI: 10.1093/bioinformatics/btab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/05/2022] Open
Abstract
Motivation Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. Results This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. Availability and implementation The method was developed with the R statistical software and is made available through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
50
|
Akhatar J, Goyal A, Kaur N, Atri C, Mittal M, Singh MP, Kaur R, Rialch I, Banga SS. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss. Sci Rep 2021; 11:4278. [PMID: 33608616 PMCID: PMC7896068 DOI: 10.1038/s41598-021-83689-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Timely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Mohini Prabha Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Indu Rialch
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|