1
|
Szeitz A, Sutton AG, Hallam SJ. A matrix-centered view of mass spectrometry platform innovation for volatilome research. Front Mol Biosci 2024; 11:1421330. [PMID: 39539739 PMCID: PMC11557394 DOI: 10.3389/fmolb.2024.1421330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Volatile organic compounds (VOCs) are carbon-containing molecules with high vapor pressure and low water solubility that are released from biotic and abiotic matrices. Because they are in the gaseous phase, these compounds tend to remain undetected when using conventional metabolomic profiling methods. Despite this omission, efforts to profile VOCs can provide useful information related to metabolic status and identify potential signaling pathways or toxicological impacts in natural or engineered environments. Over the past several decades mass spectrometry (MS) platform innovation has instigated new opportunities for VOC detection from previously intractable matrices. In parallel, volatilome research linking VOC profiles to other forms of multi-omic information (DNA, RNA, protein, and other metabolites) has gained prominence in resolving genotype/phenotype relationships at different levels of biological organization. This review explores both on-line and off-line methods used in VOC profiling with MS from different matrices. On-line methods involve direct sample injection into the MS platform without any prior compound separation, while off-line methods involve chromatographic separation prior to sample injection and analyte detection. Attention is given to the technical evolution of platforms needed for increasingly resolved VOC profiles, tracing technical progress over time with particular emphasis on emerging microbiome and diagnostic applications.
Collapse
Affiliation(s)
- Andras Szeitz
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annika G. Sutton
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Steven J. Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Bradshaw Research Institute for Minerals and Mining (BRIMM), University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Hundacker J, Linda T, Hilker M, Lortzing V, Bittner N. The impact of insect egg deposition on Pinus sylvestris transcriptomic and phytohormonal responses to larval herbivory. TREE PHYSIOLOGY 2024; 44:tpae008. [PMID: 38227779 PMCID: PMC10878248 DOI: 10.1093/treephys/tpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Plants can improve their resistance to feeding damage by insects if they have perceived insect egg deposition prior to larval feeding. Molecular analyses of these egg-mediated defence mechanisms have until now focused on angiosperm species. It is unknown how the transcriptome of a gymnosperm species responds to insect eggs and subsequent larval feeding. Scots pine (Pinus sylvestris L.) is known to improve its defences against larvae of the herbivorous sawfly Diprion pini L. if it has previously received sawfly eggs. Here, we analysed the transcriptomic and phytohormonal responses of Scots pine needles to D. pini eggs (E-pine), larval feeding (F-pine) and to both eggs and larval feeding (EF-pine). Pine showed strong transcriptomic responses to sawfly eggs and-as expected-to larval feeding. Many egg-responsive genes were also differentially expressed in response to feeding damage, and these genes play an important role in biological processes related to cell wall modification, cell death and jasmonic acid signalling. EF-pine showed fewer transcriptomic changes than F-pine, whereas EF-treated angiosperm species studied so far showed more transcriptional changes to the initial phase of larval feeding than only feeding-damaged F-angiosperms. However, as with responses of EF-angiosperms, EF-pine showed higher salicylic acid concentrations than F-pine. Based on the considerable overlap of the transcriptomes of E- and F-pine, we suggest that the weaker transcriptomic response of EF-pine than F-pine to larval feeding damage is compensated by the strong, egg-induced response, which might result in maintained pine defences against larval feeding.
Collapse
Affiliation(s)
- Janik Hundacker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Tom Linda
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Straße 9, Berlin 12163, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, Berlin 14195, Germany
| |
Collapse
|
3
|
Manzoor M, Yang L, Wu S, El-Shafie H, Haider MS, Ahmad JN. Feeding preference of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) on different date palm cultivars and host biochemical responses to its infestation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:494-501. [PMID: 35382914 DOI: 10.1017/s0007485321001012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To counter the insect infestation, plants respond with wide-ranging and highly dynamic biochemical reactions. Of these, the anti-oxidative activity is poorly understood. The red palm weevil (RPW) Rhynchophorus ferrugineus (Oliver), one of the most widespread pests in Pakistan, prefers to infest date palm Phoenix dactylifera. Our present study investigated the feeding preference of RPW to 11 different date palm cultivars and the results suggested that the Hillawi cultivar was most preferred. Greater infestation rate, fecundity and hatching rate were also recorded from Hillawi and Mozawati than other cultivars. No significant decreases were observed in chlorophyll a, chlorophyll b, total chlorophylls and carotenoids of RPW-infested Hillawi cultivar over un-infested control. In contrast, the contents of enzymatic antioxidants including phenols, proline, hydrogen peroxide, anthocyanin, malondialdehyde, ascorbic acid and glycine betaine showed a drastic increase after RPW infestation, and there was enhanced superoxide dismutase, peroxidase and catalase activities. Furthermore, we recorded the increase of total protein and sugar contents in RPW-infested date palms. These findings offer valuable insight into the antioxidative molecular mechanism of date palms under RPW attack and may contribute to the breeding of insect-resistant crops.
Collapse
Affiliation(s)
- Mujahid Manzoor
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Lei Yang
- Hainan University, Haikou, China
| | | | - Hamadttu El-Shafie
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Jam Nazeer Ahmad
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Malhotra EV, Jain R, Tyagi S, Venkat Raman K, Bansal S, Pattanayak D. Identification of dynamic microRNA associated with systemic defence against Helicoverpa armigera infestation in Cajanus scarabaeoides. PEST MANAGEMENT SCIENCE 2022; 78:3144-3154. [PMID: 35452179 DOI: 10.1002/ps.6941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Helicoverpa armigera is a major insect pest of several crop plants, including pigeonpea. Resistant gene sources are not available in the cultivated gene pool, but resistance has been observed in its crop wild relative, Cajanus scarabaeoides. Gene regulatory mechanisms governing the systemic immune response of this plant to pod borer infestation have not yet been deciphered. MicroRNA (miRNA) profiles of H. armigera-infested and undamaged adjacent leaves of C. scarabaeoides were compared to gain an insight into the plant-insect interactions and to identify dynamic miRNA molecules potentially acting as mediators of systemic defence responses. RESULTS A total of 211 conserved, temporally dynamic miRNA were identified in the unfed adjacent leaves, out of which 98 were found to be differentially expressed in comparison to control leaves. On further analysis, most of the miRNA detected in the adjacent leaves was found to target genes involved in the defence pathways and plant immune response. An overlap of the differentially expressing miRNAs was observed between insect-fed and adjacent unfed leaves, indicating the transmission of signal from the site of infestation to the undamaged parts of the plant, indicative of induction of a systemic defence response. CONCLUSION The miRNA response in the unfed leaves had the signatures of induced changes in metabolism and signal transduction for induction of defence pathway genes. This study reveals the participation of miRNAs in imparting pod borer resistance and mounting a systemic defence response against pod borer infestation in C. scarabaeoides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rishu Jain
- ICAR - National Bureau of Plant Genetic Resources, New Delhi, India
| | - Saurabh Tyagi
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - K Venkat Raman
- ICAR - National Institute for Plant Biotechnology, New Delhi, India
| | - Sangita Bansal
- ICAR - National Bureau of Plant Genetic Resources, New Delhi, India
| | | |
Collapse
|
5
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|
6
|
|
7
|
Ojeda-Martinez D, Diaz I, Santamaria ME. Transcriptomic Landscape of Herbivore Oviposition in Arabidopsis: A Systematic Review. FRONTIERS IN PLANT SCIENCE 2022; 12:772492. [PMID: 35126411 PMCID: PMC8815302 DOI: 10.3389/fpls.2021.772492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Herbivore oviposition produces all sorts of responses in plants, involving wide and complex genetic rearrangements. Many transcriptomic studies have been performed to understand this interaction, producing a bulk of transcriptomic data. However, the use of many transcriptomic techniques across the years, the lack of comparable transcriptomic context at the time of publication, and the use of outdated databases are limitations to understand this biological process. The current analysis intends to retrieve oviposition studies and process them with up-to-date techniques and updated databases. To reduce heterogeneities, the same processing techniques were applied, and Arabidopsis was selected to avoid divergencies on plant taxa stress response strategies. By doing so, we intended to understand the major mechanisms and regulatory processes linked to oviposition response. Differentially expressed gene (DEG) identification and co-expression network-based analyses were the main tools to achieve this goal. Two microarray studies and three RNA-seq analyses passed the screening criteria. The collected data pertained to the lepidopteran Pieris brassicae and the mite Tetranychus urticae, and covered a timeline from 3 to 144 h. Among the 18, 221 DEGs found, 15, 406 were exclusive of P. brassicae (72 h) and 801 were exclusive for the rest of the experiments. Excluding P. brassicae (72 h), shared genes on the rest of the experiments were twice the unique genes, indicating common response mechanisms were predominant. Enrichment analyses indicated that shared processes were circumscribed to earlier time points, and after 24 h, the divergences escalated. The response was characterized by patterns of time-dependent waves of unique processes. P. brassicae oviposition induced a rich response that shared functions across time points, while T. urticae eggs triggered less but more diverse time-dependent functions. The main processes altered were associated with hormonal cascades [e.g., salicilic acid (SA) and jasmonic acid (JA)], defense [reactive oxygen species (ROS) and glucosinolates], cell wall rearrangements, abiotic stress responses, and energy metabolism. Key gene drivers of the identified processes were also identified and presented. The current results enrich and clarify the information regarding the molecular behavior of the plant in response to oviposition by herbivores. This information is valuable for multiple stress response engineering tools, among other applications.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| |
Collapse
|
8
|
Changes in Light Energy Utilization in Photosystem II and Reactive Oxygen Species Generation in Potato Leaves by the Pinworm Tuta absoluta. Molecules 2021; 26:molecules26102984. [PMID: 34069787 PMCID: PMC8157303 DOI: 10.3390/molecules26102984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv′/Fm′) did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.
Collapse
|
9
|
Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M. Defense of Scots pine against sawfly eggs ( Diprion pini) is primed by exposure to sawfly sex pheromones. Proc Natl Acad Sci U S A 2019; 116:24668-24675. [PMID: 31748269 PMCID: PMC6900732 DOI: 10.1073/pnas.1910991116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plants respond to insect infestation with defenses targeting insect eggs on their leaves and the feeding insects. Upon perceiving cues indicating imminent herbivory, such as damage-induced leaf odors emitted by neighboring plants, they are able to prime their defenses against feeding insects. Yet it remains unknown whether plants can amplify their defenses against insect eggs by responding to cues indicating imminent egg deposition. Here, we tested the hypothesis that a plant strengthens its defenses against insect eggs by responding to insect sex pheromones. Our study shows that preexposure of Pinus sylvestris to pine sawfly sex pheromones reduces the survival rate of subsequently laid sawfly eggs. Exposure to pheromones does not significantly affect the pine needle water content, but results in increased needle hydrogen peroxide concentrations and increased expression of defense-related pine genes such as SOD (superoxide dismutase), LOX (lipoxygenase), PAL (phenylalanine ammonia lyase), and PR-1 (pathogenesis related protein 1) after egg deposition. These results support our hypothesis that plant responses to sex pheromones emitted by an herbivorous insect can boost plant defensive responses to insect egg deposition, thus highlighting the ability of a plant to mobilize its defenses very early against an initial phase of insect attack, the egg deposition.
Collapse
Affiliation(s)
- Norbert Bittner
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Janik Hundacker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Ander Achotegui-Castells
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, 08193 Catalonia, Spain
- Global Ecology Unit, CREAF-Consejo Superior de Investigaciones Científicas, Universitat Autònoma de Barcelona, Barcelona, 08193 Catalonia, Spain
| | | | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany;
| |
Collapse
|
10
|
Mäntylä E, Kleier S, Lindstedt C, Kipper S, Hilker M. Insectivorous Birds Are Attracted by Plant Traits Induced by Insect Egg Deposition. J Chem Ecol 2018; 44:1127-1138. [PMID: 30417204 DOI: 10.1007/s10886-018-1034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023]
Abstract
Insectivorous birds feed upon all developmental stages of herbivorous insects, including insect eggs if larvae and adults are unavailable. Insect egg deposition on plants can induce plant traits that are subsequently exploited by egg parasitoids searching for hosts. However, it is unknown whether avian predators can also use egg-induced plant changes for prey localization. Here, we studied whether great tits (Parus major) and blue tits (Cyanistes caeruleus) are attracted by traits of the Scots pine (Pinus sylvestris) induced by pine sawfly (Diprion pini) egg deposition. We chose this plant - insect system because sawfly egg deposition on pine needles is known to locally and systemically induce a change in pine volatile organic compounds (VOCs), and tits are known to prey upon sawfly eggs. In dual choice laboratory experiments, we simultaneously offered the birds an egg-free control branch and a systemically egg-induced branch. Significantly more birds visited the egg-induced branch first. We confirmed by GC-MS analyses that systemically egg-induced branches released more (E)-β-farnesene compared to control branches. Spectrophotometric analyses showed that control branches reflected more light than egg-induced branches throughout the avian visual range. Although a discrimination threshold model for blue tits suggests that the birds are poor at discriminating this visual difference, the role of visual stimuli in attracting the birds to egg-induced pines cannot be discounted. Our study shows, for the first time, that egg-induced odorous and/or visual plant traits can help birds to locate insect eggs without smelling or seeing those eggs.
Collapse
Affiliation(s)
- Elina Mäntylä
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, DE-12163, Berlin, Germany. .,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Sven Kleier
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, DE-12163, Berlin, Germany
| | - Carita Lindstedt
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Silke Kipper
- Animal Behaviour, Institute of Biology, Freie Universität Berlin, Takustr. 6, DE-14195, Berlin, Germany.,Chair of Zoology, Technische Universität München, Liesel-Beckmann-Str. 4, DE-85350, Freising, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, DE-12163, Berlin, Germany
| |
Collapse
|
11
|
Abstract
Plants can respond to insect egg deposition and thus resist attack by herbivorous insects from the beginning of the attack, egg deposition. We review ecological effects of plant responses to insect eggs and differentiate between egg-induced plant defenses that directly harm the eggs and indirect defenses that involve egg parasitoids. Furthermore, we discuss the ability of plants to take insect eggs as warning signals; the eggs indicate future larval feeding damage and trigger plant changes that either directly impair larval performance or attract enemies of the larvae. We address the questions of how egg-associated cues elicit plant defenses, how the information that eggs have been laid is transmitted within a plant, and which molecular and chemical plant responses are induced by egg deposition. Finally, we highlight evolutionary aspects of the interactions between plants and insect eggs and ask how the herbivorous insect copes with egg-induced plant defenses and may avoid them by counteradaptations.
Collapse
Affiliation(s)
- Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 12163 Berlin, Germany;
| | | |
Collapse
|
12
|
Huang J, Zhang PJ, Zhang J, Lu YB, Huang F, Li MJ. Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:973-979. [PMID: 24073741 DOI: 10.1603/en12342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herbivore injury has indirect effects on the growth and performance of host plants through photosynthetic suppression. It causes uncertain reduction in photosynthesis, which likely depends on the degree of infestation. Rapid light curves provide detailed information on the saturation characteristics of electron transport as well as the overall photosynthetic performance of a plant. We examined the effects of different intensities of infestation of the invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), on the relative chlorophyll content and rapid light curves of tomato Solanum lycopersicum L. leaves using a chlorophyll meter and chlorophyll fluorescence measurement system, respectively, under greenhouse conditions. After 38 d of P. solenopsis feeding, relative chlorophyll content of tomato plants with initial high of P. solenopsis was reduced by 57.3%. Light utilization efficiency (α) for the initial high-density treatment was reduced by 42.4%. However, no significant difference between initial low-density treatment and uninfested control was found. The values of the maximum electron transport rate and minimum saturating irradiance for initial high-density treatment were reduced by 82.0 and 69.7%, respectively, whereas the corresponding values for low-density treatment were reduced by 55.9 and 58.1%, respectively. These data indicated that changes were induced by P. solenopsis feeding in the relative chlorophyll content and chlorophyll fluorescence of infested tomato plants. The results indicating that low initial infestation by P. solenopsis caused no change in relative leaf chlorophyll content or light utilization efficiency could have been because the plants rapidly adapted to P. solenopsis feeding or because of compensatory photosynthesis.
Collapse
Affiliation(s)
- Jun Huang
- Flower Research and Development Centre, Zhejiang Academy of Agricultural Sciences, Hangzhou 311202, P. R. China
| | | | | | | | | | | |
Collapse
|
13
|
Reymond P. Perception, signaling and molecular basis of oviposition-mediated plant responses. PLANTA 2013; 238:247-58. [PMID: 23748628 PMCID: PMC3722449 DOI: 10.1007/s00425-013-1908-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/28/2013] [Indexed: 05/04/2023]
Abstract
Eggs deposited on plants by herbivorous insects represent a threat as they develop into feeding larvae. Plants are not a passive substrate and have evolved sophisticated mechanisms to detect eggs and induce direct and indirect defenses. Recent years have seen exciting development in molecular aspects of egg-induced responses. Some egg-associated elicitors have been identified, and signaling pathways and egg-induced expression profiles are being uncovered. Depending on the mode of oviposition, both the jasmonic acid and salicylic acid pathways seem to play a role in the induction of defense responses. An emerging concept is that eggs are recognized like microbial pathogens and innate immune responses are triggered. In addition, some eggs contain elicitors that induce highly specific defenses in plants. Examples of egg-induced suppression of defense or, on the contrary, egg-induced resistance highlight the complexity of plant-egg interactions in an on-going arms race between herbivores and their hosts. A major challenge is to identify plant receptors for egg-associated elicitors, to assess the specificity of these elicitors and to identify molecular components that underlie various responses to oviposition.
Collapse
Affiliation(s)
- Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Switzerland.
| |
Collapse
|
14
|
Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:665-74. [PMID: 23264520 PMCID: PMC3542055 DOI: 10.1093/jxb/ers362] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Insect egg deposition activates plant defence, but very little is known about signalling events that control this response. In Arabidopsis thaliana, oviposition by Pieris brassicae triggers salicylic acid (SA) accumulation and induces the expression of defence genes. This is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here, the involvement of known signalling components of PTI in response to oviposition was studied. Treatment with P. brassicae egg extract caused a rapid induction of early PAMP-responsive genes. In addition, expression of the defence gene PR-1 required EDS1, SID2, and, partially, NPR1, thus implicating the SA pathway downstream of egg recognition. PR-1 expression was triggered by a non-polar fraction of egg extract and by an oxidative burst modulated through the antagonistic action of EDS1 and NUDT7, but which did not depend on the NADPH oxidases RBOHD and RBOHF. Searching for receptors of egg-derived elicitors, a receptor-like kinase mutant, lecRK-I.8, was identified which shows a much reduced induction of PR-1 in response to egg extract treatment. These results demonstrate the importance of the SA pathway in response to egg-derived elicitor(s) and unravel intriguing similarities between the detection of insect eggs and PTI in Arabidopsis.
Collapse
|
15
|
Martínez G, Soler R, Dicke M. Behavioral Ecology of Oviposition-Site Selection in Herbivorous True Bugs. ADVANCES IN THE STUDY OF BEHAVIOR 2013. [DOI: 10.1016/b978-0-12-407186-5.00004-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One 2012; 7:e43607. [PMID: 22912893 PMCID: PMC3422343 DOI: 10.1371/journal.pone.0043607] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/23/2012] [Indexed: 11/27/2022] Open
Abstract
Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.
Collapse
Affiliation(s)
- Nina E Fatouros
- Laboratory of Entomology, Research Centre, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Büchel K, McDowell E, Nelson W, Descour A, Gershenzon J, Hilker M, Soderlund C, Gang DR, Fenning T, Meiners T. An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics 2012; 13:242. [PMID: 22702658 PMCID: PMC3439254 DOI: 10.1186/1471-2164-13-242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/15/2012] [Indexed: 01/07/2023] Open
Abstract
Background Plants can defend themselves against herbivorous insects prior to the onset of larval feeding by responding to the eggs laid on their leaves. In the European field elm (Ulmus minor), egg laying by the elm leaf beetle ( Xanthogaleruca luteola) activates the emission of volatiles that attract specialised egg parasitoids, which in turn kill the eggs. Little is known about the transcriptional changes that insect eggs trigger in plants and how such indirect defense mechanisms are orchestrated in the context of other biological processes. Results Here we present the first large scale study of egg-induced changes in the transcriptional profile of a tree. Five cDNA libraries were generated from leaves of (i) untreated control elms, and elms treated with (ii) egg laying and feeding by elm leaf beetles, (iii) feeding, (iv) artificial transfer of egg clutches, and (v) methyl jasmonate. A total of 361,196 ESTs expressed sequence tags (ESTs) were identified which clustered into 52,823 unique transcripts (Unitrans) and were stored in a database with a public web interface. Among the analyzed Unitrans, 73% could be annotated by homology to known genes in the UniProt (Plant) database, particularly to those from Vitis, Ricinus, Populus and Arabidopsis. Comparative in silico analysis among the different treatments revealed differences in Gene Ontology term abundances. Defense- and stress-related gene transcripts were present in high abundance in leaves after herbivore egg laying, but transcripts involved in photosynthesis showed decreased abundance. Many pathogen-related genes and genes involved in phytohormone signaling were expressed, indicative of jasmonic acid biosynthesis and activation of jasmonic acid responsive genes. Cross-comparisons between different libraries based on expression profiles allowed the identification of genes with a potential relevance in egg-induced defenses, as well as other biological processes, including signal transduction, transport and primary metabolism. Conclusion Here we present a dataset for a large-scale study of the mechanisms of plant defense against insect eggs in a co-evolved, natural ecological plant–insect system. The EST database analysis provided here is a first step in elucidating the transcriptional responses of elm to elm leaf beetle infestation, and adds further to our knowledge on insect egg-induced transcriptomic changes in plants. The sequences identified in our comparative analysis give many hints about novel defense mechanisms directed towards eggs.
Collapse
Affiliation(s)
- Kerstin Büchel
- Freie Universität Berlin, Applied Zoology / Animal Ecology, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inderjit. Exotic plant invasion in the context of plant defense against herbivores. PLANT PHYSIOLOGY 2012; 158:1107-14. [PMID: 22257854 PMCID: PMC3291276 DOI: 10.1104/pp.111.190777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/12/2012] [Indexed: 05/31/2023]
Affiliation(s)
- Inderjit
- Department of Environmental Studies, Centre for Environmental Management of Degraded Ecosystems, University of Delhi, Delhi 110007, India.
| |
Collapse
|
19
|
Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. PLANT, CELL & ENVIRONMENT 2012; 35:441-53. [PMID: 21752032 DOI: 10.1111/j.1365-3040.2011.02399.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under herbivore attack plants mount a defence response characterized by the accumulation of secondary metabolites and inhibitory proteins. Significant changes are observed in the transcriptional profiles of genes encoding enzymes of primary metabolism. Such changes have often been interpreted in terms of a requirement for an increased investment of resources to 'fuel' the synthesis of secondary metabolites. While enhanced secondary metabolism undoubtedly exerts an influence on primary metabolism, accumulating evidence suggests that rather than stimulating photosynthesis insect herbivory reduces photosynthetic carbon fixation and this response occurs by a re-programming of gene expression. Within this context, reactive oxygen species (ROS) and reductant/oxidant (redox) signalling play a central role. Accumulating evidence suggests that ROS signalling pathways are closely interwoven with hormone-signalling pathways in plant-insect interactions. Here we consider how insect infestation impacts on the stress signalling network through effects on ROS and cellular redox metabolism with particular emphasis on the roles of ROS in the plant responses to phloem-feeding insects.
Collapse
Affiliation(s)
- Pavel I Kerchev
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | |
Collapse
|
20
|
Miresmailli S, Gries R, Gries G, Zamar RH, Isman MB. Population density and feeding duration of cabbage looper larvae on tomato plants alter the levels of plant volatile emissions. PEST MANAGEMENT SCIENCE 2012; 68:101-107. [PMID: 22034107 DOI: 10.1002/ps.2229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND As part of their indirect defense, plants under herbivore attack release volatile chemicals that attract natural enemies of the herbivore. This is a very well-documented phenomenon. However, relatively few studies have investigated the response of plants to different population levels of herbivores and their feeding duration. RESULTS Working with larvae of the cabbage looper, Trichoplusia ni (Hübner), and tomato plants, Lycopersicon esculentum Mill cv. clarence, and using an ultrafast gas chromatograph (the zNose™) for volatile analyses, the authors studied the effect of larval density and feeding duration on levels of plant volatile emissions. Intense herbivory caused higher emission levels of the herbivore-induced plant volatiles (HIPVs) (Z)-3-hexenyl acetate, (E)-β-ocimene and β-caryophyllene than those caused by moderate herbivory. When herbivory had ceased following 12-24 h of larval feeding, plants kept releasing HIPVs at a high level for a longer period of time than they did following only 6 h of larval feeding. The plants' slow adjustment in their volatile emissions following prolonged larval feeding might be strategic, as such feeding is more likely to have ceased just temporarily. CONCLUSION This information may help in the development of a pest monitoring system that is based on herbivore-induced plant volatiles.
Collapse
Affiliation(s)
- Saber Miresmailli
- Energy Biosciences Institute, Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | | | | | | | | |
Collapse
|
21
|
Hilker M, Meiners T. Plants and insect eggs: how do they affect each other? PHYTOCHEMISTRY 2011; 72:1612-23. [PMID: 21439598 DOI: 10.1016/j.phytochem.2011.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/07/2011] [Accepted: 02/22/2011] [Indexed: 05/07/2023]
Abstract
Plant-insect interactions are not just influenced by interactions between plants and the actively feeding stages, but also by the close relationships between plants and insect eggs. Here, we review both effects of plants on insect eggs and, vice versa, effects of eggs on plants. We consider the influence of plants on the production of insect eggs and address the role of phytochemicals for the biosynthesis and release of insect sex pheromones, as well as for insect fecundity. Effects of plants on insect oviposition by contact and olfactory plant cues are summarised. In addition, we consider how the leaf boundary layer influences both insect egg deposition behaviour and development of the embryo inside the egg. The effects of eggs on plants involve egg-induced changes of photosynthetic activity and of the plant's secondary metabolism. Except for gall-inducing insects, egg-induced changes of phytochemistry were so far found to be detrimental to the eggs. Egg deposition can induce hypersensitive-like plant response, formation of neoplasms or production of ovicidal plant substances; these plant responses directly harm the eggs. In addition, egg deposition can induce a change of the plant's odour and leaf surface chemistry which serve indirect plant defence with the help of antagonists of the insect eggs. These egg-induced changes lead to attraction of egg parasitoids and their arrestance on a leaf, respectively. Finally, we summarise knowledge of the elicitors of egg-induced plant changes and address egg-induced effects on the plant's transcriptional pattern.
Collapse
Affiliation(s)
- Monika Hilker
- Freie Universität Berlin, Institute of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, D-12163 Berlin, Germany.
| | | |
Collapse
|
22
|
Peñaflor MFGV, Erb M, Robert CAM, Miranda LA, Werneburg AG, Dossi FCA, Turlings TCJ, Bento JMS. Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. PLANTA 2011; 234:207-15. [PMID: 21509694 DOI: 10.1007/s00425-011-1409-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/29/2011] [Indexed: 05/07/2023]
Abstract
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant's signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.
Collapse
Affiliation(s)
- M Fernanda Gomes Villalba Peñaflor
- Laboratory of Chemical Ecology and Insect Behavior, Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias 11, CP09 Piracicaba, SP 13418-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Halitschke R, Hamilton JG, Kessler A. Herbivore-specific elicitation of photosynthesis by mirid bug salivary secretions in the wild tobacco Nicotiana attenuata. THE NEW PHYTOLOGIST 2011; 191:528-535. [PMID: 21443673 DOI: 10.1111/j.1469-8137.2011.03701.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herbivory is thought to be detrimental to plant fitness and commonly results in a metabolic shift in the plant: photosynthetic processes are typically down-regulated, while resource allocation to defenses is increased in herbivore-attacked plants, resulting in fitness costs of induced plant responses. Wild tobacco, Nicotiana attenuata, attacked by Tupiocoris notatus mirid bugs becomes resistant against more damaging herbivores through mirid-induced direct and indirect defenses. However, mirid-induced resistance and tissue loss do not result in a reduction of plant fitness. These findings suggest induced metabolic responses allowing the plant to compensate for the lost tissue and resources allocated to defenses. While feeding by Manduca sexta larvae results in a strong down-regulation of photosynthesis, we demonstrate a specific induction of elevated photosynthetic activity in N. attenuata leaves by elicitors in mirid salivary secretions. The elevated CO(2) assimilation rate is sufficient to compensate for the loss of photosynthetically active tissue and balances the net photosynthesis of infested leaves. We discuss the observed increase in the plant's primary metabolic activity as a mechanism that allows plants to alleviate negative fitness effects of mirid attack and mediates the vaccination effects that result in a net benefit in environments with multiple herbivores.
Collapse
Affiliation(s)
- Rayko Halitschke
- Ecology and Evolutionary Biology, Cornell University, E443 Corson Hall, Ithaca, NY 14853, USA
| | - Jason G Hamilton
- Department of Environmental Studies and Sciences, Ithaca College, 252 CNS, Ithaca, NY 14850, USA
| | - André Kessler
- Ecology and Evolutionary Biology, Cornell University, E443 Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Miresmailli S, Gries R, Gries G, Zamar RH, Isman MB. Herbivore-induced plant volatiles allow detection of Trichoplusia ni (Lepidoptera: Noctuidae) infestation on greenhouse tomato plants. PEST MANAGEMENT SCIENCE 2010; 66:916-924. [PMID: 20602512 DOI: 10.1002/ps.1967] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Monitoring of insect populations is an important component of integrated pest management and typically is based on the presence and number of insects in various development stages. Yet plants respond to insect herbivory and release herbivore-induced plant volatiles (HIPVs), which could be exploited in monitoring systems. The present objective was to investigate whether the information associated with HIPVs has potential to become part of advanced technologies for monitoring pest insect populations. RESULTS In a laboratory experiment, it was determined that tomato plants, Lycopersicon esculentum Mill cv. clarence, each infested with 20 caterpillars of the cabbage looper, Trichoplusia ni (Hübner), emit HIPVs, of which (Z)-3-hexenyl acetate, (E)-beta-ocimene and beta-caryophyllene were selected as chemicals indicative of herbivory. Using an ultrafast portable gas chromatograph (zNose()) in a research greenhouse and in a commercial greenhouse, it was possible (i) to reveal differential emissions of these three indicator chemicals from plants with or without herbivory, (ii) to detect herbivory within 6 h of its onset, (iii) to track changes in indicator chemical emissions over time and (iv) to study the effect of environmental and crop-maintenance-related factors on the emission of indicator chemicals. CONCLUSION HIPVs appear to be promising as reliable indicators of plant health, but further studies are needed to fully understand the potential of this concept.
Collapse
Affiliation(s)
- Saber Miresmailli
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
25
|
Ecophysiological responses of salt cedar (Tamarix spp. L.) to the northern tamarisk beetle (Diorhabda carinulata Desbrochers) in a controlled environment. Biol Invasions 2010. [DOI: 10.1007/s10530-010-9772-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P. Insect eggs suppress plant defence against chewing herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:876-85. [PMID: 20230509 DOI: 10.1111/j.1365-313x.2010.04200.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA-deficient mutant sid2-1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross-talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg-induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.
Collapse
Affiliation(s)
- Friederike Bruessow
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides x P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC PLANT BIOLOGY 2010; 10:100. [PMID: 20509918 PMCID: PMC2887455 DOI: 10.1186/1471-2229-10-100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/28/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cinnamyl Alcohol Dehydrogenase (CAD) proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.). Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks) was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. RESULTS CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. CONCLUSIONS Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions.
Collapse
Affiliation(s)
- Abdelali Barakat
- The School of Forest Resources, and The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Christopher J Frost
- The School of Forest Resources, and The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA
- Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA
| | - John E Carlson
- The School of Forest Resources, and The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA
| |
Collapse
|
28
|
Velikova V, Salerno G, Frati F, Peri E, Conti E, Colazza S, Loreto F. Influence of Feeding and Oviposition by Phytophagous Pentatomids on Photosynthesis of Herbaceous Plants. J Chem Ecol 2010; 36:629-41. [DOI: 10.1007/s10886-010-9801-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/29/2022]
|
29
|
|
30
|
Bolton MD. Primary Metabolism and Plant Defense—Fuel for the Fire. MOLECULAR PLANT-MICROBE INTERACTIONS® 2009; 22:487-97. [PMID: 19348567 DOI: 10.1094/mpmi-22-5-0487] [Citation(s) in RCA: 478] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have the ability to recognize and respond to a multitude of microorganisms. Recognition of pathogens results in a massive reprogramming of the plant cell to activate and deploy defense responses to halt pathogen growth. Such responses are associated with increased demands for energy, reducing equivalents, and carbon skeletons that are provided by primary metabolic pathways. Although pathogen recognition and downstream resistance responses have been the focus of major study, an intriguing and comparatively understudied phenomenon is how plants are able to recruit energy for the defense response. To that end, this review will summarize current research on energy-producing primary metabolism pathways and their role in fueling the resistance response.
Collapse
|
31
|
Campos ML, de Almeida M, Rossi ML, Martinelli AP, Litholdo Junior CG, Figueira A, Rampelotti-Ferreira FT, Vendramim JD, Benedito VA, Peres LEP. Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4347-61. [PMID: 19734261 DOI: 10.1093/jxb/erp270] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Given the susceptibility of tomato plants to pests, the aim of the present study was to understand how hormones are involved in the formation of tomato natural defences against insect herbivory. Tomato hormone mutants, previously introgressed into the same genetic background of reference, were screened for alterations in trichome densities and allelochemical content. Ethylene, gibberellin, and auxin mutants indirectly showed alteration in trichome density, through effects on epidermal cell area. However, brassinosteroids (BRs) and jasmonates (JAs) directly affected trichome density and allelochemical content, and in an opposite fashion. The BR-deficient mutant dpy showed enhanced pubescence, zingiberene biosynthesis, and proteinase inhibitor expression; the opposite was observed for the JA-insensitive jai1-1 mutant. The dpy x jai1-1 double mutant showed that jai1-1 is epistatic to dpy, indicating that BR acts upstream of the JA signalling pathway. Herbivory tests with the poliphagous insect Spodoptera frugiperda and the tomato pest Tuta absoluta clearly confirmed the importance of the JA-BR interaction in defence against herbivory. The study underscores the importance of hormonal interactions on relevant agricultural traits and raises a novel biological mechanism in tomato that may differ from the BR and JA interaction already suggested for Arabidopsis.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba-SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M. Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 2008. [DOI: 10.1093/beheco/arn011] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Guerenstein PG, Hildebrand JG. Roles and effects of environmental carbon dioxide in insect life. ANNUAL REVIEW OF ENTOMOLOGY 2008; 53:161-78. [PMID: 17803457 DOI: 10.1146/annurev.ento.53.103106.093402] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carbon dioxide (CO(2)) is a ubiquitous sensory cue that plays multiple roles in insect behavior. In recent years understanding of the well-known role of CO(2) in foraging by hematophagous insects (e.g., mosquitoes) has grown, and research on the roles of CO(2) cues in the foraging and oviposition behavior of phytophagous insects and in behavior of social insects has stimulated interest in this area of insect sensory biology. This review considers those advances, as well as some of the mechanistic bases of the modulation of behavior by CO(2) and important progress in our understanding of the detection and CNS processing of CO(2) information in insects. Finally, this review briefly addresses how the ongoing increase in atmospheric CO(2) levels may affect insect life.
Collapse
Affiliation(s)
- Pablo G Guerenstein
- Arizona Research Laboratories, Division of Neurobiology, The University of Arizona, Tucson, AZ 85721-0077, USA.
| | | |
Collapse
|
34
|
Little D, Gouhier-Darimont C, Bruessow F, Reymond P. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:784-800. [PMID: 17142483 PMCID: PMC1803735 DOI: 10.1104/pp.106.090837] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.
Collapse
Affiliation(s)
- Dawn Little
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
35
|
Peñuelas J, Sardans J, Stefanescu C, Parella T, Filella I. Lonicera Implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas Aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J Chem Ecol 2006; 32:1925-33. [PMID: 16902827 DOI: 10.1007/s10886-006-9118-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 03/02/2006] [Accepted: 03/27/2006] [Indexed: 11/30/2022]
Abstract
We tested in the field the hypothesis that the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae, Melitaeinae) lays eggs on leaves of Lonicera implexa (Caprifoliaceae) plants with greater iridoid concentrations. We conducted our investigations in a Mediterranean site by analyzing leaves with and without naturally laid egg clusters. There were no significant differences in iridoid glycoside concentrations between leaves from plants that did not receive eggs and the unused leaves from plants receiving eggs, a fact that would seem to indicate that E. aurinia butterflies do not choose plants for oviposition by their iridoid content. However, the leaves of L. implexa that bore egg clusters had dramatically greater (over 15-fold) concentrations of iridoid glycosides than the directly opposite leaves on the same plant. These huge foliar concentrations of iridoids (15% leaf dry weight) may provide specialist herbivores with compounds that they either sequester for their own defense or use as a means of avoiding competition for food from generalist herbivores. Nevertheless, it may still be possible that these high concentrations are detrimental to the herbivore, even if the herbivore is a specialist feeder on the plant.
Collapse
Affiliation(s)
- Josep Peñuelas
- Unitat d'Ecofisiologia CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecològica i Aplicacions Forestals), Edifici C, CSIC-CREAF, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
36
|
Mumm R, Hilker M. Direct and indirect chemical defence of pine against folivorous insects. TRENDS IN PLANT SCIENCE 2006; 11:351-8. [PMID: 16769239 DOI: 10.1016/j.tplants.2006.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/01/2006] [Accepted: 05/26/2006] [Indexed: 05/09/2023]
Abstract
The chemical defence of pine against herbivorous insects has been intensively studied with respect to its effects on the performance and behaviour of the herbivores as well as on the natural enemies of pine herbivores. The huge variety of terpenoid pine components play a major role in mediating numerous specific food web interactions. The constitutive terpenoid pattern can be adjusted to herbivore attack by changes induced by insect feeding or oviposition activity. Recent studies on folivorous pine sawflies have highlighted the role of induced pine responses in herbivore attack and have demonstrated the importance of analysing the variability of pine defence and its finely tuned specificity with respect to the herbivore attacker in a multitrophic context.
Collapse
Affiliation(s)
- Roland Mumm
- Institute of Biology, Freie Universität Berlin, Haderslebener Strasse 9, D-12163 Berlin, Germany.
| | | |
Collapse
|
37
|
Hilker M, Meiners T. Early Herbivore Alert: Insect Eggs Induce Plant Defense. J Chem Ecol 2006; 32:1379-97. [PMID: 16718566 DOI: 10.1007/s10886-006-9057-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/19/2005] [Accepted: 08/31/2005] [Indexed: 11/27/2022]
Abstract
Plants are able to "notice" insect egg deposition and to respond by activating direct and indirect defenses. An overview of these defenses and the underlying mechanisms is given from a tritrophic perspective. First, the interface between plant and eggs is addressed with respect to the mode of attachment of eggs on the plant surface. It is elucidated which plant cells might respond to components from insect eggs or the egg deposition. The scarce knowledge on the elicitors associated with the eggs or the egg-laying female is outlined. Since endosymbiotic microorganisms are often present on the eggs, and microorganisms are also abundant on the leaf surface, the role of these hidden players for eliciting oviposition-induced plant responses is considered. Furthermore, the question of which physiological and molecular processes are induced within the plant in response to egg deposition is addressed. Second, studies on the response of the herbivorous insect to oviposition-induced plant defenses are outlined. Third, the importance of oviposition-induced plant volatiles and contact cues for host and prey location of parasitoids and predators is discussed in the context of other informative chemicals used by carnivores when searching for food. Finally, physiological and ecological costs of oviposition-induced plant responses are addressed.
Collapse
Affiliation(s)
- Monika Hilker
- Freie Universität Berlin, Institut für Biologie, Germany.
| | | |
Collapse
|
38
|
D'Alessandro M, Turlings TCJ. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 2006; 131:24-32. [PMID: 16365659 DOI: 10.1039/b507589k] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relatively new research field of Chemical Ecology has, over the last two decades, revealed an important role of plant-produced volatile organic compounds (VOCs) in mediating interactions between plants and other organisms. Of particular interest are the volatile blends that plants actively emit in response to herbivore damage. Various efforts are underway to pinpoint the bioactive compounds in these complex blends, but this has proven to be exceedingly difficult. Here we give a short overview on the role of herbivore-induced plant volatiles in interactions between plants and other organisms and we review methods that are currently employed to collect and identify key volatile compounds mediating these interactions. Our perspective on future directions of this fascinating research field places special emphasis on the need for an interdisciplinary approach. Joint efforts by chemists and biologists should not only facilitate the elucidation of crucial compounds, but can also be expected to lead to an exploitation of this knowledge, whereby ecological interactions may be chemically manipulated in order to protect crops and the environment.
Collapse
Affiliation(s)
- Marco D'Alessandro
- University of Neuchâtel, Institute of Zoology, Laboratory of Evolutionary Entomology, Case Postale 2, CH-2007 Neuchâtel, Switzerland
| | | |
Collapse
|