1
|
Chen G, Shao T, Zhou Y, Chen F, Zhang D, Gu H, Yue Y, Wang L, Yang X. Analysis of the Aging-Related AP2/ERF Transcription Factor Gene Family in Osmanthus fragrans. Int J Mol Sci 2024; 25:8025. [PMID: 39125596 PMCID: PMC11312093 DOI: 10.3390/ijms25158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; (G.C.); (T.S.); (Y.Z.); (F.C.); (D.Z.); (H.G.); (Y.Y.); (L.W.)
| |
Collapse
|
2
|
Zhang X, Jiang J, Ma Z, Yang Y, Meng L, Xie F, Cui G, Yin X. Cloning of TaeRF1 gene from Caucasian clover and its functional analysis responding to low-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:968965. [PMID: 36605954 PMCID: PMC9809470 DOI: 10.3389/fpls.2022.968965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Low temperature (LT) is an important threat to the normal growth of plants. In this study, based on the full-length transcriptome sequencing results, the cold resistance genes were cloned from Caucasian clover with strong cold resistance. We cloned the CDS of TaeRF1, which is 1311 bp in length and encodes 436 amino acids. The molecular weight of the protein is 48.97 kDa, which had no transmembrane structure, and its isoelectric point (pI) was 5.42. We predicted the structure of TaeRF1 and found 29 phosphorylation sites. Subcellular localization showed that TaeRF1 was localized and expressed in cell membrane and chloroplasts. The TaeRF1 gene was induced by stress due to cold, salt, alkali and drought and its expression level was higher in roots and it was more sensitive to LT. Analysis of transgenic A. thaliana plants before and after LT treatment showed that the TaeRF1 gene enhanced the removal of excess H2O2, and increased the activity of antioxidant enzymes, thus improving the plant's ability to resist stress. Additionally, the OE lines showed increased cold tolerance by upregulating the transcription level of cold-responsive genes (CBF1, CBF2, COR15B, COR47, ICE1, and RD29A). This study demonstrates that TaeRF1 is actively involved in the responses of plants to LT stress. We also provide a theoretical basis for breeding and a potential mechanism underlying the responses of Caucasian clover to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
3
|
Buhrow LM, Liu Z, Cram D, Sharma T, Foroud NA, Pan Y, Loewen MC. Wheat transcriptome profiling reveals abscisic and gibberellic acid treatments regulate early-stage phytohormone defense signaling, cell wall fortification, and metabolic switches following Fusarium graminearum-challenge. BMC Genomics 2021; 22:798. [PMID: 34742254 PMCID: PMC8571860 DOI: 10.1186/s12864-021-08069-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/10/2021] [Indexed: 01/21/2023] Open
Abstract
Background Treatment of wheat with the phytohormones abscisic acid (ABA) and gibberellic acid (GA) has been shown to affect Fusarium head blight (FHB) disease severity. However, the molecular mechanisms underlying the elicited phenotypes remain unclear. Toward addressing this gap in our knowledge, global transcriptomic profiling was applied to the FHB-susceptible wheat cultivar ‘Fielder’ to map the regulatory responses effected upon treatment with ABA, an ABA receptor antagonist (AS6), or GA in the presence or absence of Fusarium graminearum (Fg) challenge. Results Spike treatments resulted in a total of 30,876 differentially expressed genes (DEGs) identified in ‘Fielder’ (26,004) and the Fg (4872) pathogen. Topology overlap and correlation analyses defined 9689 wheat DEGs as Fg-related across the treatments. Further enrichment analyses demonstrated that these included expression changes within ‘Fielder’ defense responses, cell structural metabolism, molecular transport, and membrane/lipid metabolism. Dysregulation of ABA and GA crosstalk arising from repression of ‘Fielder’ FUS3 was noted. As well, expression of a putative Fg ABA-biosynthetic cytochrome P450 was detected. The co-applied condition of Fg + ABA elicited further up-regulation of phytohormone biosynthesis, as well as SA and ET signaling pathways and cell wall/polyphenolic metabolism. In contrast, co-applied Fg + GA mainly suppressed phytohormone biosynthesis and signaling, while modulating primary and secondary metabolism and flowering. Unexpectedly, co-applied Fg + AS6 did not affect ABA biosynthesis or signaling, but rather elicited antagonistic responses tied to stress, phytohormone transport, and FHB disease-related genes. Conclusions Observed exacerbation (misregulation) of classical defense mechanisms and cell wall fortifications upon ABA treatment are consistent with its ability to promote FHB severity and its proposed role as a fungal effector. In contrast, GA was found to modulate primary and secondary metabolism, suggesting a general metabolic shift underlying its reduction in FHB severity. While AS6 did not antagonize traditional ABA pathways, its impact on host defense and Fg responses imply potential for future investigation. Overall, by comparing these findings to those previously reported for four additional plant genotypes, an additive model of the wheat-Fg interaction is proposed in the context of phytohormone responses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08069-0.
Collapse
Affiliation(s)
- Leann M Buhrow
- National Research Council of Canada, Aquatic and Crop Resources Development Research Centre, 110 Gymnasium Place, Saskatoon, SK, S7N 0M8, Canada
| | - Ziying Liu
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Dustin Cram
- National Research Council of Canada, Aquatic and Crop Resources Development Research Centre, 110 Gymnasium Place, Saskatoon, SK, S7N 0M8, Canada
| | - Tanya Sharma
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Nora A Foroud
- Agriculture and Agri-food Canada, Lethbridge Research and Development Centre, 5403 1st Ave, Lethbridge, AB, T1J 4B1, Canada
| | - Youlian Pan
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Michele C Loewen
- National Research Council of Canada, Aquatic and Crop Resources Development Research Centre, 110 Gymnasium Place, Saskatoon, SK, S7N 0M8, Canada. .,University of Ottawa, Department of Chemistry and Biomolecular Sciences, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N 6N5, Canada. .,National Research Council of Canada, Aquatic and Crop Resources Development Research Centre, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
4
|
Mirzaee H, Neira Peralta NL, Carvalhais LC, Dennis PG, Schenk PM. Plant-produced bacteriocins inhibit plant pathogens and confer disease resistance in tomato. N Biotechnol 2021; 63:54-61. [PMID: 33766789 DOI: 10.1016/j.nbt.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/31/2023]
Abstract
Bacteriocins are a diverse group of bacterial antimicrobial peptides (AMPs) that represent potential replacements for current antibiotics due to their novel modes of action. At present, production costs are a key constraint to the use of bacteriocins and other AMPs. Here, we report the production of bacteriocins in planta - a potentially scalable and cost-effective approach for AMP production. Nine bacteriocin genes with three different modes of action and minimal or no post-translational modifications were synthesized, cloned and used to transform Arabidopsis thaliana. To confirm bacteriocin functionality and the potential to use these plants as biofactories, Arabidopsis T3 crude leaf extracts were subjected to inhibition assays against the bacterial pathogens Clavibacter michiganensis subsp. michiganensis (Cmm) and Pseudomonas syringae pv. tomato DC3000 (Pst). Six and seven of nine extracts significantly inhibited Cmm and Pst, respectively. Three bacteriocin genes (plantaricin, enteriocin, and leucocin) were then selected for over-expression in tomato (Solanum lycopersicum). In vitro plant pathogen inhibition assays of T0, T1 and T2 transgenic tomato leaf extracts confirmed antimicrobial activity against both pathogens for all three generations of plants, indicating their potential use as stable biopesticide biofactories. Plantaricin and leucocin-expressing T2 tomato plants were resistant to Cmm, and leucocin-expressing T2 plants were resistant to Pst. This study highlights that plants can be used as biofactories for AMP production and that the expression of bacteriocins in planta may offer new opportunities for disease control in agriculture.
Collapse
Affiliation(s)
- Hooman Mirzaee
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Noelia L Neira Peralta
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Lilia C Carvalhais
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia; Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
Kailasam S, Singh S, Liu MJ, Lin CC, Yeh KC. A HemK class glutamine-methyltransferase is involved in the termination of translation and essential for iron homeostasis in Arabidopsis. THE NEW PHYTOLOGIST 2020; 226:1361-1374. [PMID: 31968122 DOI: 10.1111/nph.16440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Iron (Fe) transport and utilization are controlled by Fe-dependent transcriptional cascades. Many genes participate in these processes, transcriptionally controlled by Fe-status. Thorough knowledge of the translational check-points is lacking. We identified a non-response to Fe-deficiency1-1 (nrf1-1) mutant of Arabidopsis thaliana, which displayed a hypersensitive phenotype under Fe-deficient conditions. By mapping nrf1-1, we found that the AT3G13440 locus encoding a HemK methyltransferase is responsible for the phenotype. Analyses of ProUBQ10:NRF1CDS overexpression nrf1-1 lines and a T-DNA insertion mutant nrf1-2, confirmed that loss-of-function of NRF1 results in enhanced Fe-starvation-sensitivity. NRF1 is required for the proper expression of the majority of Fe-deficiency-inducible (FDI) genes. The nrf1 mutants accumulated more polysomes in the roots, due to stalled ribosomes on several transcripts. Ribosome-footprint (RF) mapping revealed that ribosomes are stalled at a stop codon that amplified the stalling of trailing ribosomes. We detected higher RF levels in many FDI transcripts in nrf1-2. Our study demonstrates the requirement of NRF1 for an accurate termination of protein synthesis essential not only for a precise iron homeostasis, but also cellular ion balance. NRF1 is also important for normal growth and development. A check-point that fine-tunes peptide release in plants is uncovered.
Collapse
Affiliation(s)
- Sakthivel Kailasam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Surjit Singh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ming-Jung Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Ching Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
| |
Collapse
|
6
|
Elakhdar A, Ushijima T, Fukuda M, Yamashiro N, Kawagoe Y, Kumamaru T. Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine-poor prolamines in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:223-231. [PMID: 30824055 DOI: 10.1016/j.plantsci.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Prolamines are alcohol-soluble proteins classified as either cysteine-poor (CysP) or cysteine-rich (CysR) based on whether they can be alcohol-extracted without or with reducing agents, respectively. In rice esp1 mutants, various CysP prolamines exhibit both reduced and normal amounts of isoelectric focusing bands, indicating that the mutation affects only certain prolamine classes. To examine the genetic regulation of CysP prolamine synthesis and accumulation, we constructed a high-resolution genetic linkage map of ESP1. The ESP1 gene was mapped to within a 20 kb region on rice chromosome 7. Sequencing analysis of annotated genes in this region revealed a single-nucleotide polymorphism within eukaryotic peptide chain release factor (eRF1), which participates in stop-codon recognition and nascent-polypeptide release from ribosomes during translation. A subsequent complementation test revealed that ESP1 encodes eRF1. We also identified UAA as the stop codon of CysP prolamines with reduced concentration in esp1 mutants. Recognition assays and microarray analysis confirmed that ESP1/eRF1 recognizes UAA/UAG, but not UGA. Our results provide convincing evidence that ESP1/eRF1 participates in the translation termination of CysP prolamines during seed development.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tomokazu Ushijima
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Masako Fukuda
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Noriko Yamashiro
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Niedziela A. The influence of Al 3+ on DNA methylation and sequence changes in the triticale (× Triticosecale Wittmack) genome. J Appl Genet 2018; 59:405-417. [PMID: 30159773 PMCID: PMC7902597 DOI: 10.1007/s13353-018-0459-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023]
Abstract
Abiotic stressors such as drought, salinity, and exposure to heavy metals can induce epigenetic changes in plants. In this study, liquid chromatography (RP-HPLC), methylation amplified fragment length polymorphisms (metAFLP), and methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effects of aluminum (Al) stress on DNA methylation levels in the crop species triticale. RP-HPLC, but not metAFLP or MSAP, revealed significant differences in methylation between Al-tolerant (T) and non-tolerant (NT) triticale lines. The direction of methylation change was dependent on phenotype and organ. Al treatment increased the level of global DNA methylation in roots of T lines by approximately 0.6%, whereas demethylation of approximately 1.0% was observed in NT lines. DNA methylation in leaves was not affected by Al stress. The metAFLP and MSAP approaches identified DNA alterations induced by Al3+ treatment. The metAFLP technique revealed sequence changes in roots of all analyzed triticale lines and few mutations in leaves. MSAP showed that demethylation of CCGG sites reached approximately 3.97% and 3.75% for T and NT lines, respectively, and was more abundant than de novo methylation, which was observed only in two tolerant lines affected by Al stress. Three of the MSAP fragments showed similarity to genes involved in abiotic stress.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzików, Błonie, Poland.
| |
Collapse
|
8
|
Nyikó T, Auber A, Szabadkai L, Benkovics A, Auth M, Mérai Z, Kerényi Z, Dinnyés A, Nagy F, Silhavy D. Expression of the eRF1 translation termination factor is controlled by an autoregulatory circuit involving readthrough and nonsense-mediated decay in plants. Nucleic Acids Res 2017; 45:4174-4188. [PMID: 28062855 PMCID: PMC5397192 DOI: 10.1093/nar/gkw1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022] Open
Abstract
When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood. Here we show that expression of plant eRF1 is controlled by a complex negative autoregulatory circuit, which is based on the unique features of the 3΄untranslated region (3΄UTR) of the eRF1-1 transcript. The stop codon of the eRF1-1 mRNA is in a translational readthrough promoting context, while its 3΄UTR induces nonsense-mediated decay (NMD), a translation termination coupled mRNA degradation mechanism. We demonstrate that readthrough partially protects the eRF1-1 mRNA from its 3΄UTR induced NMD, and that elevated eRF1 levels inhibit readthrough and stimulate NMD. Thus, high eRF1 level leads to reduced eRF1-1 expression, as weakened readthrough fails to protect the eRF1-1 mRNA from the more intense NMD. This eRF1 autoregulatory circuit might serve to finely balance general translation termination efficiency.
Collapse
Affiliation(s)
- Tünde Nyikó
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andor Auber
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Levente Szabadkai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Anna Benkovics
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Mariann Auth
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zsuzsanna Mérai
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Zoltán Kerényi
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Andrea Dinnyés
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári 62, H-6726, Hungary
| | - Dániel Silhavy
- Department of Genetics, Agricultural Biotechnology Institute, Gödöllő, Szent-Györgyi 4, H-2100, Hungary
| |
Collapse
|
9
|
Lin YT, Chen LJ, Herrfurth C, Feussner I, Li HM. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. THE PLANT CELL 2016; 28:219-32. [PMID: 26721860 PMCID: PMC4746690 DOI: 10.1105/tpc.15.01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cornelia Herrfurth
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Petrova A, Kiktev D, Askinazi O, Chabelskaya S, Moskalenko S, Zemlyanko O, Zhouravleva G. The translation termination factor eRF1 (Sup45p) of Saccharomyces cerevisiae is required for pseudohyphal growth and invasion. FEMS Yeast Res 2015; 15:fov033. [PMID: 26054854 DOI: 10.1093/femsyr/fov033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 01/16/2023] Open
Abstract
Mutations in the essential genes SUP45 and SUP35, encoding yeast translation termination factors eRF1 and eRF3, respectively, lead to a wide range of phenotypes and affect various cell processes. In this work, we show that nonsense and missense mutations in the SUP45, but not the SUP35, gene abolish diploid pseudohyphal and haploid invasive growth. Missense mutations that change phosphorylation sites of Sup45 protein do not affect the ability of yeast strains to form pseudohyphae. Deletion of the C-terminal part of eRF1 did not lead to impairment of filamentation. We show a correlation between the filamentation defect and the budding pattern in sup45 strains. Inhibition of translation with specific antibiotics causes a significant reduction in pseudohyphal growth in the wild-type strain, suggesting a strong correlation between translation and the ability for filamentous growth. Partial restoration of pseudohyphal growth by addition of exogenous cAMP assumes that sup45 mutants are defective in the cAMP-dependent pathway that control filament formation.
Collapse
Affiliation(s)
- Alexandra Petrova
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Denis Kiktev
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Olga Askinazi
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Chabelskaya
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Moskalenko
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Olga Zemlyanko
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Galina Zhouravleva
- Department of Genetics and Biotechnology, St Petersburg State University and St Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| |
Collapse
|
11
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
12
|
Oh M, Komatsu S. Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics 2015; 114:161-81. [PMID: 25464361 DOI: 10.1016/j.jprot.2014.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. BIOLOGICAL SIGNIFICANCE This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses.
Collapse
Affiliation(s)
- MyeongWon Oh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
13
|
Moyle RL, Koia JH, Vrebalov J, Giovannoni J, Botella JR. The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant. PLANT MOLECULAR BIOLOGY 2014; 86:395-407. [PMID: 25139231 DOI: 10.1007/s11103-014-0236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of ethylene in climacteric tomato. LeMADS-RIN has been proposed to be a global ripening regulator shared among climacteric and non-climacteric species, although few functional homologs of LeMADS-RIN have been identified in non-climacteric species. AcMADS1 shares 67 % protein sequence similarity and a similar expression pattern in ripening fruits as LeMADS-RIN. However, in this study AcMADS1 was not able to complement the tomato rin mutant phenotype, indicating AcMADS1 may not be a functionally conserved homolog of LeMADS-RIN or has sufficiently diverged to be unable to act in the context of the tomato network of interacting proteins. The AcMADS1 promoter directed strong expression of the GUS reporter gene to fruits and developing floral organs in tomato and Arabidopsis thaliana, suggesting AcMADS1 may play a role in flower development as well as fruitlet ripening. The AcMADS1 promoter provides a useful molecular tool for directing transgene expression, particularly where up-regulation in developing flowers and fruits is desirable.
Collapse
Affiliation(s)
- Richard L Moyle
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, 4072, Australia,
| | | | | | | | | |
Collapse
|
14
|
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:799-807. [PMID: 24453229 DOI: 10.1093/jxb/ert474] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.
Collapse
Affiliation(s)
- Jeroen Lastdrager
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
An Y, Lou Y, Xu Y. Overexpression, crystallization and preliminary X-ray crystallographic analysis of release factor eRF1-1 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1295-8. [PMID: 24192373 PMCID: PMC3818057 DOI: 10.1107/s1744309113027784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/10/2013] [Indexed: 11/10/2022]
Abstract
Peptide release factor 1 (RF1) regulates the termination of translation in protein synthesis by recognizing the stop codons. The eukaryotic RF1s (eRF1s) from Arabidopsis thaliana and human have different stop-codon preferences even though they share high sequence similarity. Based on known RF1 structures, it has been suggested that the specificity depends on both the local structure and the domain arrangement, but the lack of a structure of Arabidopsis eRF1 hinders a detailed comparison. To reveal the mechanism of stop-codon recognition and compare it with that of human eRF1, one of the three Arabidopsis eRF1s, AteRF1-1, was studied and a preliminary X-ray crystallographic analysis is reported here. The protein was overexpressed in Escherichia coli and crystallized at room temperature using the vapour-diffusion method. Crystals were grown from 1.6 M lithium sulfate, 0.1 M Tris-HCl pH 8.0, 2%(v/v) PEG 400 and diffracted to 3.77 Å resolution. The data were processed in point group 622, with unit-cell parameters a = b = 136.6, c = 325.7 Å.
Collapse
Affiliation(s)
- Yan An
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 331300, People’s Republic of China
| | - Yongfeng Lou
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 331300, People’s Republic of China
| | - Yingwu Xu
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 331300, People’s Republic of China
| |
Collapse
|
16
|
Koia J, Moyle R, Hendry C, Lim L, Botella JR. Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2013; 81:327-36. [PMID: 23263857 DOI: 10.1007/s11103-012-0002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/12/2012] [Indexed: 05/10/2023]
Abstract
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5' untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.
Collapse
Affiliation(s)
- Jonni Koia
- University of Queensland, Brisbane, 4072, Australia
| | | | | | | | | |
Collapse
|
17
|
Chakravorty D, Trusov Y, Botella JR. Site-directed mutagenesis of the Arabidopsis heterotrimeric G protein β subunit suggests divergent mechanisms of effector activation between plant and animal G proteins. PLANTA 2012; 235:615-27. [PMID: 22002625 DOI: 10.1007/s00425-011-1526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/22/2011] [Indexed: 05/23/2023]
Abstract
Heterotrimeric G proteins are integral components of signal transduction in humans and other mammals and have been therefore extensively studied. However, while they are known to mediate many processes, much less is currently known about the effector pathways and molecular mechanisms used by these proteins to regulate effectors in plants. We designed a complementation strategy to study G protein signaling in Arabidopsis thaliana, particularly the mechanism of action of AGB1, the sole identified β subunit. We used biochemical and effector regulation data from human G protein studies to identify four potentially important residues for site-directed mutagenesis (T65, M111, D250 and W361 of AGB1). Each residue was individually mutated and the resulting mutated protein introduced in the agb1-2 mutant background under the control of the native AGB1 promoter. Interestingly, even though these mutations have been shown to have profound effects on effector signaling in humans, all the mutated subunits were able to restore thirteen of the fifteen Gβ-deficient phenotypes characterized in this study. Only one mutated protein, T65A was unable to complement the hypersensitivity to mannitol during germination observed in agb1 mutants; while only D250A failed to restore lateral root numbers in the agb1 mutant to wild-type levels. Our results suggest that the mechanisms used in mammalian G protein signaling are not well conserved in plant G protein signaling, and that either the effectors used by plant G proteins, or the mechanisms used to activate them, are at least partially divergent from the well-studied mammalian G proteins.
Collapse
Affiliation(s)
- David Chakravorty
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
18
|
Zhou X, Sun TH, Wang N, Ling HQ, Lu S, Li L. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1. THE NEW PHYTOLOGIST 2011; 190:89-100. [PMID: 21175633 DOI: 10.1111/j.1469-8137.2010.03578.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tian-Hu Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ning Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Zhouravleva GA, Petrova AV. The role of translation termination factor eRF1 in the regulation of pseudohyphal growth in Saccharomyces cerevisiae cells. DOKL BIOCHEM BIOPHYS 2010; 433:209-11. [PMID: 20714858 DOI: 10.1134/s1607672910040162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Indexed: 11/23/2022]
|
20
|
Zhou X, Cooke P, Li L. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:357-67. [PMID: 19939886 PMCID: PMC2803205 DOI: 10.1093/jxb/erp308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/22/2009] [Accepted: 10/01/2009] [Indexed: 05/20/2023]
Abstract
Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA, and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for the recognition of the stop codons in mRNAs during protein synthesis. Accumulating evidence indicates that eRF1 functions in other processes in addition to translation termination. The physiological role of eRF1-2, a member of the eRF1 family, in Arabidopsis was examined here. The eRF1-2 gene was found to be specifically induced by glucose. Arabidopsis plants overexpressing eRF1-2 were hypersensitive to glucose during germination and early seedling development. Such hypersensitivity to glucose was accompanied by a dramatic reduction of the expression of glucose-regulated genes, chlorophyll a/b binding protein and plastocyanin. The hypersensitive response was not due to the enhanced accumulation of ABA. In addition, the eRF1-2 overexpressing plants showed increased sensitivity to paclobutrazol, an inhibitor of GA biosynthesis, and exogenous GA restored their normal growth. By contrast, the loss-of-function erf1-2 mutant exhibited resistance to paclobutrazol, suggesting that eRF1-2 may exert a negative effect on the GA signalling pathway. Collectively, these data provide evidence in support of a novel role of eRF1-2 in affecting glucose and phytohormone responses in modulating plant growth and development.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Peter Cooke
- Microscopic Imaging, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
McDonnell L, Plett JM, Andersson-Gunnerås S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S. Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. PHYSIOLOGIA PLANTARUM 2009; 136:94-109. [PMID: 19508369 DOI: 10.1111/j.1399-3054.2009.01208.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Control of the levels of the plant hormone ethylene is crucial in the regulation of many developmental processes and stress responses. Ethylene production can be controlled by altering endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene or by altering its conversion to ethylene. ACC is known to be irreversibly broken down by bacterial or fungal ACC deaminases (ACDs). Sequence analysis revealed two putative ACD genes encoded for in the genome of Arabidopsis thaliana (A. thaliana) and we detected ACD activity in plant extracts. Expression of one of these A. thaliana genes (AtACD1) in bacteria indicated that it had ACD activity. Moreover, transgenic plants harboring antisense constructs of the gene decreased ACD activity to 70% of wild-type (WT) levels, displayed an increased sensitivity to ACC and produced significantly more ethylene. Taken together, these results show that AtACD1 can act as a regulator of ACC levels in A. thaliana.
Collapse
Affiliation(s)
- Lisa McDonnell
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Trusov Y, Zhang W, Assmann SM, Botella JR. Ggamma1 + Ggamma2 not equal to Gbeta: heterotrimeric G protein Ggamma-deficient mutants do not recapitulate all phenotypes of Gbeta-deficient mutants. PLANT PHYSIOLOGY 2008; 147:636-49. [PMID: 18441222 PMCID: PMC2409028 DOI: 10.1104/pp.108.117655] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/22/2008] [Indexed: 05/20/2023]
Abstract
Heterotrimeric G proteins are signaling molecules ubiquitous among all eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains one Galpha (GPA1), one Gbeta (AGB1), and two Ggamma subunit (AGG1 and AGG2) genes. The Gbeta requirement of a functional Ggamma subunit for active signaling predicts that a mutant lacking both AGG1 and AGG2 proteins should phenotypically resemble mutants lacking AGB1 in all respects. We previously reported that Gbeta- and Ggamma-deficient mutants coincide during plant pathogen interaction, lateral root development, gravitropic response, and some aspects of seed germination. Here, we report a number of phenotypic discrepancies between Gbeta- and Ggamma-deficient mutants, including the double mutant lacking both Ggamma subunits. While Gbeta-deficient mutants are hypersensitive to abscisic acid inhibition of seed germination and are hyposensitive to abscisic acid inhibition of stomatal opening and guard cell inward K+ currents, none of the available Ggamma-deficient mutants shows any deviation from the wild type in these responses, nor do they show the hypocotyl elongation and hook development defects that are characteristic of Gbeta-deficient mutants. In addition, striking discrepancies were observed in the aerial organs of Gbeta- versus Ggamma-deficient mutants. In fact, none of the distinctive traits observed in Gbeta-deficient mutants (such as reduced size of cotyledons, leaves, flowers, and siliques) is present in any of the Ggamma single and double mutants. Despite the considerable amount of phenotypic overlap between Gbeta- and Ggamma-deficient mutants, confirming the tight relationship between Gbeta and Ggamma subunits in plants, considering the significant differences reported here, we hypothesize the existence of new and as yet unknown elements in the heterotrimeric G protein signaling complex.
Collapse
Affiliation(s)
- Yuri Trusov
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
23
|
Chauvin C, Salhi S, Jean-Jean O. Human eukaryotic release factor 3a depletion causes cell cycle arrest at G1 phase through inhibition of the mTOR pathway. Mol Cell Biol 2007; 27:5619-29. [PMID: 17562865 PMCID: PMC1952125 DOI: 10.1128/mcb.00035-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic release factor 3 (eRF3) is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. Studies have related eRF3 with cell cycle regulation, cytoskeleton organization, and tumorigenesis. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. eRF3a is the major factor acting in translation termination, and its expression level controls termination complex formation. Here, we investigate the role of eRF3a in cell cycle progression using short interfering RNAs and flow cytometry. We show that eRF3a depletion induces a G1 arrest and that eRF3a GTP-binding activity, but not the eRF3a N-terminal domain, is required to restore G1-to-S-phase progression. We also show that eRF3a depletion decreases the global translation rate and reduces the polysome charge of mRNA. Finally, we show that two substrates of the mammalian TOR (mTOR) kinase, 4E-BP1 and protein kinase S6K1, are hypophosphorylated in eRF3a-depleted cells. These results strongly suggest that the G1 arrest and the decrease in translation induced by eRF3a depletion are due to the inhibition of mTOR activity and hence that eRF3a belongs to the regulatory pathway of mTOR activity.
Collapse
Affiliation(s)
- Céline Chauvin
- Unité de Biochimie Cellulaire, UMR 7098 CNRS-Université Pierre et Marie Curie, 9 quai Saint-Bernard, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
24
|
Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, Chen JG, Jones AM, Botella JR. Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. THE PLANT CELL 2007; 19:1235-50. [PMID: 17468261 PMCID: PMC1913745 DOI: 10.1105/tpc.107.050096] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/22/2007] [Accepted: 04/10/2007] [Indexed: 05/15/2023]
Abstract
The Arabidopsis thaliana heterotrimeric G protein complex is encoded by single canonical Galpha and Gbeta subunit genes and two Ggamma subunit genes (AGG1 and AGG2), raising the possibility that the two potential G protein complexes mediate different cellular processes. Mutants with reduced expression of one or both Ggamma genes revealed specialized roles for each Ggamma subunit. AGG1-deficient mutants, but not AGG2-deficient mutants, showed impaired resistance against necrotrophic pathogens, reduced induction of the plant defensin gene PDF1.2, and decreased sensitivity to methyl jasmonate. By contrast, both AGG1- and AGG2-deficient mutants were hypersensitive to auxin-mediated induction of lateral roots, suggesting that Gbetagamma1 and Gbetagamma2 synergistically inhibit auxin-dependent lateral root initiation. However, the involvement of each Ggamma subunit in this root response differs, with Gbetagamma1 acting within the central cylinder, attenuating acropetally transported auxin signaling, while Gbetagamma2 affects the action of basipetal auxin and graviresponsiveness within the epidermis and/or cortex. This selectivity also operates in the hypocotyl. Selectivity in Gbetagamma signaling was also found in other known AGB1-mediated pathways. agg1 mutants were hypersensitive to glucose and the osmotic agent mannitol during seed germination, while agg2 mutants were only affected by glucose. We show that both Ggamma subunits form functional Gbetagamma dimers and that each provides functional selectivity to the plant heterotrimeric G proteins, revealing a mechanism underlying the complexity of G protein-mediated signaling in plants.
Collapse
Affiliation(s)
- Yuri Trusov
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|