1
|
da Silva RCC, Roldan-Filho RS, de Luna-Aragão MA, de Oliveira Silva RL, Ferreira-Neto JRC, da Silva MD, Benko-Iseppon AM. Omics-driven bioinformatics for plant lectins discovery and functional annotation - A comprehensive review. Int J Biol Macromol 2024; 279:135511. [PMID: 39260647 DOI: 10.1016/j.ijbiomac.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Lectins are known for their specific and reversible binding capacity to carbohydrates. These molecules have been particularly explored in plants due to their reported properties, highlighting antimicrobial, antiviral, anticancer, antiparasitic, insecticidal, and immunoregulatory actions. The increasing availability of lectin and lectin-like sequences in omics data banks provides an opportunity to identify important candidates, inferring their roles in essential signaling pathways and processes in plants. Bioinformatics enables a fast and low-cost scenario for elucidating sequences and predicting functions in the lectinology universe. Thus, this review addresses the state of the art of annotation, structural characterization, classification, and predicted applications of plant lectins. Their allergenic and toxic properties are also discussed, as well as tools for predicting such effects from the primary structure. This review uncovers a promising scenario for plant lectins and new study possibilities, particularly for studies in lectinology in the omics era.
Collapse
Affiliation(s)
| | | | | | - Roberta Lane de Oliveira Silva
- General Microbiology Laboratory, Agricultural Science Campus, Universidade Federal do Vale do São Francisco, Petrolina 56300-990, Brazil.
| | | | - Manassés Daniel da Silva
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil.
| | - Ana Maria Benko-Iseppon
- Bioscience Centre, Genetics Department, Universidade Federal de Pernambuco, Recife 50670-420, Brazil.
| |
Collapse
|
2
|
Sastre DE, Sultana N, V A S Navarro M, Huliciak M, Du J, Cifuente JO, Flowers M, Liu X, Lollar P, Trastoy B, Guerin ME, Sundberg EJ. Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate. Nat Commun 2024; 15:5123. [PMID: 38879612 PMCID: PMC11180146 DOI: 10.1038/s41467-024-48802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-β-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.
Collapse
Affiliation(s)
- Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research (NIDCR/NIH), Bethesda, MD, USA
| | - Marcos V A S Navarro
- Institute of Physics (IFSC-USP), University of São Paulo, São Carlos, SP, Brazil
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Maros Huliciak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Javier O Cifuente
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, Barcelona, Catalonia, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Gupta A, Yadav K, Yadav A, Ahmad R, Srivastava A, Kumar D, Khan MA, Dwivedi UN. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 2024; 41:1-33. [PMID: 38244136 DOI: 10.1007/s10719-023-10142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| | - Anurag Yadav
- Department of Microbiology, C.P. College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, District-Banaskantha, Gujarat, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Mohammad Amir Khan
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Osman MEM, Osman RSH, Elmubarak SA, Dirar AI, Konozy EHE. Phoenix dactylifera (date palm; Arecaceae) putative lectin homologs: Genome-wide search, architecture analysis, and evolutionary relationship. Saudi J Biol Sci 2023; 30:103676. [PMID: 37213699 PMCID: PMC10197109 DOI: 10.1016/j.sjbs.2023.103676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
The date palm, Phoenix dactylifera, is a vital crop in nations in the Middle East and North Africa. The date palm was thought to have outstanding traditional medicinal value because it was abundant in phytochemicals with diverse chemical structures. The date palm's ability to withstand harsh environments could be partly attributed to a class of proteins known as lectins, which are carbohydrate-binding proteins that can bind sugar moieties reversibly and without changing their chemical structures. After scanning the genome of P. dactylifera (GCF 009389715.1), this in silico study discovered 196 possible lectin homologs from 11 different families, some specific to plants. At the same time, others could also be found in other kingdoms of life. Their domain architectures and functional amino acid residues were investigated, and they yielded a 40% true-lectin with known conserved carbohydrate-binding residues. Further, their probable subcellular localization, physiochemical and phylogenetic analyses were also performed. Scanning all putative lectin homologs against the anticancer peptide (ACP) dataset found in the AntiCP2.0 webpage identified 26 genes with protein kinase receptors (Lec-KRs) belonging to 5 lectin families, which are reported to have at least one ACP motif. Our study offers the first account of Phoenix-lectins and their organization that can be used for further structural and functional analysis and investigating their potential as anticancer proteins.
Collapse
Affiliation(s)
| | | | - Sara A.A Elmubarak
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan
| | - Amina I. Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | - Emadeldin Hassan E. Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan
- Pharmaceutical Research and Development, Centre Faculty of Pharmacy, Karary University, Omdurman, Khartoum State, Sudan
| |
Collapse
|
5
|
Tanaka J, Takashima T, Abe N, Fukamizo T, Numata T, Ohnuma T. Characterization of two rice GH18 chitinases belonging to family 8 of plant pathogenesis-related proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111524. [PMID: 36328178 DOI: 10.1016/j.plantsci.2022.111524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Two rice GH18 chitinases, Oschib1 and Oschib2, belonging to family 8 of plant pathogenesis-related proteins (PR proteins) were expressed, purified, and characterized. These enzymes, which have the structural features of class IIIb chitinases, preferentially cleaved the second glycosidic linkage from the non-reducing end of substrate chitin oligosaccharides as opposed to rice class IIIa enzymes, OsChib3a and OsChib3b, which mainly cleaved the fourth linkage from the non-reducing end of chitin hexasaccharide [(GlcNAc)6]. Oschib1 and Oschiab2 inhibited the growth of Fusarium solani, but showed only a weak or no antifungal activity against Aspergillus niger and Trichoderma viride on the agar plates. Structural analysis of Oschib1 and Oschib2 revealed that these enzymes have two large loops extruded from the (β/α)8 TIM-barrel fold, which are absent in the structures of class IIIa chitinases. The differences in the cleavage site preferences toward chitin oligosaccharides between plant class IIIa and IIIb chitinases are likely attributed to the additional loop structures found in the IIIb enzymes. The class IIIb chitinases, Oschib1 and Oschib2, seem to play important roles for the effective hydrolysis of chitin oligosaccharides released from the cell wall of the pathogenic fungi by the cooperative actions with the extracellular chitinases in rice.
Collapse
Affiliation(s)
- Jun Tanaka
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tomoya Takashima
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Naojiro Abe
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan.
| |
Collapse
|
6
|
Oguri S. Structure and Function of Plant Chitin-binding Lectins and Tomato Lectin. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2123.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Suguru Oguri
- Department of Northern Biosphere Agriculture, Faculty of Bioindustry Tokyo University of Agriculture
| |
Collapse
|
7
|
Oguri S. Structure and Function of Plant Chitin-binding Lectins and Tomato Lectin. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2123.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Suguru Oguri
- Department of Northern Biosphere Agriculture, Faculty of Bioindustry Tokyo University of Agriculture
| |
Collapse
|
8
|
Petrova N, Mokshina N. Using FIBexDB for In-Depth Analysis of Flax Lectin Gene Expression in Response to Fusarium oxysporum Infection. PLANTS 2022; 11:plants11020163. [PMID: 35050051 PMCID: PMC8779086 DOI: 10.3390/plants11020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Plant proteins with lectin domains play an essential role in plant immunity modulation, but among a plurality of lectins recruited by plants, only a few members have been functionally characterized. For the analysis of flax lectin gene expression, we used FIBexDB, which includes an efficient algorithm for flax gene expression analysis combining gene clustering and coexpression network analysis. We analyzed the lectin gene expression in various flax tissues, including root tips infected with Fusarium oxysporum. Two pools of lectin genes were revealed: downregulated and upregulated during the infection. Lectins with suppressed gene expression are associated with protein biosynthesis (Calreticulin family), cell wall biosynthesis (galactose-binding lectin family) and cytoskeleton functioning (Malectin family). Among the upregulated lectin genes were those encoding lectins from the Hevein, Nictaba, and GNA families. The main participants from each group are discussed. A list of lectin genes, the expression of which can determine the resistance of flax, is proposed, for example, the genes encoding amaranthins. We demonstrate that FIBexDB is an efficient tool both for the visualization of data, and for searching for the general patterns of lectin genes that may play an essential role in normal plant development and defense.
Collapse
|
9
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
10
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Lin B, Qing X, Liao J, Zhuo K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020; 9:E1022. [PMID: 32326128 PMCID: PMC7226260 DOI: 10.3390/cells9041022] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Host-pathogen interactions are fundamental to our understanding of infectious diseases. Protein glycosylation is one kind of common post-translational modification, forming glycoproteins and modulating numerous important biological processes. It also occurs in host-pathogen interaction, affecting host resistance or pathogen virulence often because glycans regulate protein conformation, activity, and stability, etc. This review summarizes various roles of different glycoproteins during the interaction, which include: host glycoproteins prevent pathogens as barriers; pathogen glycoproteins promote pathogens to attack host proteins as weapons; pathogens glycosylate proteins of the host to enhance virulence; and hosts sense pathogen glycoproteins to induce resistance. In addition, this review also intends to summarize the roles of lectin (a class of protein entangled with glycoprotein) in host-pathogen interactions, including bacterial adhesins, viral lectins or host lectins. Although these studies show the importance of protein glycosylation in host-pathogen interaction, much remains to be discovered about the interaction mechanism.
Collapse
Affiliation(s)
- Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xue Qing
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jensen DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol 2018; 18:178. [PMID: 30404596 PMCID: PMC6223089 DOI: 10.1186/s12866-018-1310-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Pectin is one of the major and most complex plant cell wall components that needs to be overcome by microorganisms as part of their strategies for plant invasion or nutrition. Microbial pectinolytic enzymes therefore play a significant role for plant-associated microorganisms and for the decomposition and recycling of plant organic matter. Recently, comparative studies revealed significant gene copy number expansion of the polysaccharide lyase 1 (PL1) pectin/pectate lyase gene family in the Clonostachys rosea genome, while only low numbers were found in Trichoderma species. Both of these fungal genera are widely known for their ability to parasitize and kill other fungi (mycoparasitism) and certain species are thus used for biocontrol of plant pathogenic fungi. Results In order to understand the role of the high number of pectin degrading enzymes in Clonostachys, we studied diversity and evolution of the PL1 gene family in C. rosea compared with other Sordariomycetes with varying nutritional life styles. Out of 17 members of C. rosea PL1, we could only detect two to be secreted at acidic pH. One of them, the pectate lyase pel12 gene was found to be strongly induced by pectin and, to a lower degree, by polygalacturonic acid. Heterologous expression of the PEL12 in a PL1-free background of T. reesei revealed direct enzymatic involvement of this protein in utilization of pectin at pH 5 without a requirement for Ca2+. The mutants showed increased utilization of pectin compounds, but did not increase biocontrol ability in detached leaf assay against the plant pathogen Botrytis cinerea compared to the wild type. Conclusions In this study, we aimed to gain insight into diversity and evolution of the PL1 gene family in C. rosea and other Sordariomycete species in relation to their nutritional modes. We show that C. rosea PL1 expansion does not correlate with its mycoparasitic nutritional mode and resembles those of strong plant pathogenic fungi. We further investigated regulation, specificity and function of the C. rosea PEL12 and show that this enzyme is directly involved in degradation of pectin and pectin-related compounds, but not in C. rosea biocontrol. Electronic supplementary material The online version of this article (10.1186/s12866-018-1310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lea Atanasova
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden. .,Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria. .,Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| | - Mukesh Dubey
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Marica Grujić
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Mikael Gudmundsson
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Cindy Lorenz
- Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Mats Sandgren
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Christian P Kubicek
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Vienna, Austria
| | - Dan Funck Jensen
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| |
Collapse
|
13
|
Tuppo L, Giangrieco I, Alessandri C, Ricciardi T, Rafaiani C, Ciancamerla M, Ferrara R, Zennaro D, Bernardi ML, Tamburrini M, Mari A, Ciardiello MA. Pomegranate chitinase III: Identification of a new allergen and analysis of sensitization patterns to chitinases. Mol Immunol 2018; 103:89-95. [PMID: 30241023 DOI: 10.1016/j.molimm.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Allergy to pomegranate is often associated with severe symptoms. Two allergens have previously been described: 9k-LTP Pun g 1 and pommaclein Pun g 7. This study describes the isolation of a chitinase III, identified by direct protein sequencing and mass spectrometry. It is a 29-kDa protein showing 69% sequence identity with the latex hevamine and IgE binding in dot blotting, immunoblotting and FABER®test. Chitinase-specific IgE were detected in 69 of 357 patients sensitized to one or more pomegranate allergenic preparations present on the FABER®test. Using this test, 19.2% of the patients sensitized to kiwifruit chitinase IV were also sensitized to pomegranate chitinase III, rather than to latex chitinase I (7.2%) with which it shares the N-terminal hevein-like domain. In conclusion, a new allergen has been identified, contributing to improving food allergy diagnosis. This study reveals the important role of chitinases III and IV as allergy sensitizers and prompts further investigations.
Collapse
Affiliation(s)
- Lisa Tuppo
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy; Allergy Data Laboratories s.r.l., Latina, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy; Allergy Data Laboratories s.r.l., Latina, Italy
| | - Claudia Alessandri
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Teresa Ricciardi
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy
| | - Chiara Rafaiani
- Allergy Data Laboratories s.r.l., Latina, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | - Rosetta Ferrara
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Danila Zennaro
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Maria Livia Bernardi
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | - Adriano Mari
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | |
Collapse
|
14
|
Zhang LY, Cai J, Li RJ, Liu W, Wagner C, Wong KB, Xie ZP, Staehelin C. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity. Open Biol 2017; 6:rsob.160061. [PMID: 27383628 PMCID: PMC4967823 DOI: 10.1098/rsob.160061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization.
Collapse
Affiliation(s)
- Lan-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Kam-Bo Wong
- Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, People's Republic of China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, People's Republic of China
| |
Collapse
|
15
|
The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search. Int J Mol Sci 2017; 18:ijms18010091. [PMID: 28054982 PMCID: PMC5297725 DOI: 10.3390/ijms18010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.
Collapse
|
16
|
Iwata Y, Hayashi N, Tabara K, Mishiba KI, Koizumi N. Tunicamycin-induced inhibition of protein secretion into culture medium of Arabidopsis T87 suspension cells through mRNA degradation on the endoplasmic reticulum. Biosci Biotechnol Biochem 2016; 80:1168-71. [DOI: 10.1080/09168451.2016.1151340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
The N-glycosylation inhibitor tunicamycin triggers endoplasmic reticulum stress response and inhibits efficient protein secretion in eukaryotes. Using Arabidopsis suspension cells, we showed that the reduced secretion of mannose-binding lectin 1 (MBL1) protein by tunicamycin is accompanied by a significant decrease in MBL1 mRNA, suggesting that mRNA destabilization is the major cause of the inhibition of protein secretion in plants.
Collapse
Affiliation(s)
- Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Noriko Hayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kazuki Tabara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kei-ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
17
|
Kesari P, Patil DN, Kumar P, Tomar S, Sharma AK, Kumar P. Structural and functional evolution of chitinase-like proteins from plants. Proteomics 2015; 15:1693-705. [PMID: 25728311 DOI: 10.1002/pmic.201400421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 02/06/2023]
Abstract
The plant genome contains a large number of sequences that encode catalytically inactive chitinases referred to as chitinase-like proteins (CLPs). Although CLPs share high sequence and structural homology with chitinases of glycosyl hydrolase 18 (TIM barrel domain) and 19 families, they may lack the binding/catalytic activity. Molecular genetic analysis revealed that gene duplication events followed by mutation in the existing chitinase gene have resulted in the loss of activity. The evidences show that adaptive functional diversification of the CLPs has been achieved through alterations in the flexible regions than in the rigid structural elements. The CLPs plays an important role in the defense response against pathogenic attack, biotic and abiotic stress. They are also involved in the growth and developmental processes of plants. Since the physiological roles of CLPs are similar to chitinase, such mutations have led to plurifunctional enzymes. The biochemical and structural characterization of the CLPs is essential for understanding their roles and to develop potential utility in biotechnological industries. This review sheds light on the structure-function evolution of CLPs from chitinases.
Collapse
Affiliation(s)
- Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Dipak Narhari Patil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pramod Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
18
|
Sulzenbacher G, Roig-Zamboni V, Peumans WJ, Henrissat B, van Damme EJM, Bourne Y. Structural basis for carbohydrate binding properties of a plant chitinase-like agglutinin with conserved catalytic machinery. J Struct Biol 2015; 190:115-21. [PMID: 25727185 DOI: 10.1016/j.jsb.2015.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 01/13/2023]
Abstract
A new chitinase-like agglutinin, RobpsCRA, related to family GH18 chitinases, has previously been identified in black locust (Robinia pseudoacacia) bark. The crystal structure of RobpsCRA at 1.85Å resolution reveals unusual molecular determinants responsible for the lack of its ancestral chitinase activity. Unlike other chitinase-like proteins, which lack chitinase catalytic residues, RobpsCRA has conserved its catalytic machinery. However, concerted rearrangements of loop regions coupled to non-conservative substitutions of aromatic residues central to the chitin-binding groove explain the lack of hydrolytic activity against chitin and the switch toward recognition of high-mannose type N-glycans. Identification of close homologs in flowering plants with conservation of sequence motifs associated to the structural adaptations seen in RobpsCRA defines an emerging class of agglutinins, as emphasized by a phylogenetic analysis, that are likely to share a similar carbohydrate binding specificity for high-mannose type N-glycans. This study illustrates the recent evolution and molecular adaptation of a versatile TIM-barrel scaffold within the ancestral GH18 family.
Collapse
Affiliation(s)
- Gerlind Sulzenbacher
- Aix-Marseille University, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Véronique Roig-Zamboni
- Aix-Marseille University, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Willy J Peumans
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Bernard Henrissat
- Aix-Marseille University, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Els J M van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Yves Bourne
- Aix-Marseille University, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
19
|
Van Holle S, Van Damme EJM. Distribution and evolution of the lectin family in soybean (Glycine max). Molecules 2015; 20:2868-91. [PMID: 25679048 PMCID: PMC6272470 DOI: 10.3390/molecules20022868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/06/2015] [Indexed: 01/02/2023] Open
Abstract
Lectins are a diverse group of proteins that bind specific carbohydrates and are found throughout all kingdoms. In plants, lectins are involved in a range of important processes such as plant defense and stress signaling. Although the genome sequence of Glycine max (soybean) has been published, little is known about the abundance and expansion patterns of lectin genes in soybean. Using BLAST and hidden Markov models, a total of 359 putative lectin genes have been identified. Furthermore, these sequences could be classified in nine of the twelve plant lectin families identified today. Analysis of the domain organization demonstrated that most of the identified lectin genes encode chimerolectins, consisting of one or multiple lectin domains combined with other known protein domains. Both tandem and segmental duplication events have contributed to the expansion of the lectin gene family. These data provide a detailed understanding of the domain architecture and molecular evolution of the lectin gene family in soybean.
Collapse
Affiliation(s)
- Sofie Van Holle
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Yokoyama K, Sato M, Haneda T, Yamazaki K, Kitano T, Umetsu K. An N-acetyllactosamine-specific lectin, PFA, isolated from a moth (Phalera flavescens), structurally resembles an invertebrate-type lysozyme. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:106-111. [PMID: 25257940 DOI: 10.1016/j.ibmb.2014.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 06/03/2023]
Abstract
PFA (Phalera flavescens agglutinin) lectin purified from larvae of the lobster moth (P. flavescens) shows a strong binding ability specific to the N-acetyllactosamine (Galβ1-4GlcNAc) site. We determined the genomic and cDNA sequences of the PFA gene, which consists of five exons and spans approximately 5 kb of a genomic region. Surprisingly, the amino acid sequence (149 amino acids) was similar to invertebrate-type lysozymes and related proteins. The predicted tertiary structure of the PFA protein was similar to the lysozymes of clams such as the common orient clam (Meretrix lusoria) and Japanese littleneck (Venerupis philippinarum (Tapes japonica)). The PFA, however, lacks a catalytically essential amino acid, an Asp (D), which is one of the two important amino acids (Glu (E) and D) express the function of lysozyme. As a result, lysozyme activity assays indicated that PFA does not have lysozyme activity. Results suggest that the PFA gene evolved from a lysozyme gene through the loss of lysozyme activity sites and the acquisition of lectin activity during evolution of the genus Phalera.
Collapse
Affiliation(s)
- Kazutaka Yokoyama
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan
| | - Michihiko Sato
- Technical Support Center of Education and Research, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Toshihiro Haneda
- Department of Forensic Medicine, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Kentaro Yamazaki
- Department of Forensic Medicine, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Takashi Kitano
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi 316-8511, Japan.
| | - Kazuo Umetsu
- Department of Forensic Medicine, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
21
|
Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol 2014; 6:2088-95. [PMID: 25079342 PMCID: PMC4231632 DOI: 10.1093/gbe/evu166] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/23/2022] Open
Abstract
Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive "just-so story" in evolutionary biology.
Collapse
Affiliation(s)
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Matthew J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - John F Mulley
- School of Biological Sciences, Bangor University, United Kingdom
| |
Collapse
|
22
|
Tian Y, Liu W, Cai J, Zhang LY, Wong KB, Feddermann N, Boller T, Xie ZP, Staehelin C. The nodulation factor hydrolase of Medicago truncatula: characterization of an enzyme specifically cleaving rhizobial nodulation signals. PLANT PHYSIOLOGY 2013; 163:1179-90. [PMID: 24082029 PMCID: PMC3813642 DOI: 10.1104/pp.113.223966] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/28/2013] [Indexed: 05/03/2023]
Abstract
Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and sulfated tetramer, is resistant to hydrolysis by all plant chitinases tested so far. Nevertheless, this NF is rapidly degraded in the host rhizosphere. Here, we identify and characterize MtNFH1 (for Medicago truncatula Nod factor hydrolase 1), a legume enzyme structurally related to defense-related class V chitinases (glycoside hydrolase family 18). MtNFH1 lacks chitinase activity but efficiently hydrolyzes all tested NFs of S. meliloti. The enzyme shows a high cleavage preference, releasing exclusively lipodisaccharides from NFs. Substrate specificity and kinetic properties of MtNFH1 were compared with those of class V chitinases from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), which cannot hydrolyze tetrameric NFs of S. meliloti. The Michaelis-Menten constants of MtNFH1 for NFs are in the micromolar concentration range, whereas nonmodified chitin oligosaccharides represent neither substrates nor inhibitors for MtNFH1. The three-dimensional structure of MtNFH1 was modeled on the basis of the known structure of class V chitinases. Docking simulation of NFs to MtNFH1 predicted a distinct binding cleft for the fatty acid moiety, which is absent in the class V chitinases. Point mutation analysis confirmed the modeled NF-MtNFH1 interaction. Silencing of MtNFH1 by RNA interference resulted in reduced NF degradation in the rhizosphere of M. truncatula. In conclusion, we have found a novel legume hydrolase that specifically inactivates NFs.
Collapse
MESH Headings
- Amino Acid Sequence
- Carbohydrate Sequence
- Chitin/chemistry
- Chitin/metabolism
- Cloning, Molecular
- Host-Pathogen Interactions
- Hydrolases/classification
- Hydrolases/genetics
- Hydrolases/metabolism
- Immunoblotting
- Kinetics
- Medicago truncatula/enzymology
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Root Nodulation
- Protein Structure, Tertiary
- Root Nodules, Plant/enzymology
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction
- Sinorhizobium meliloti/metabolism
- Sinorhizobium meliloti/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Symbiosis
Collapse
Affiliation(s)
| | | | - Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | - Lan-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | - Kam-Bo Wong
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | | | - Thomas Boller
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, 510006 Guangzhou, China (Y.T., W.L., J.C., L.-Y.Z., Z.-P.X., C.S.)
- School of Life Sciences and Center for Protein Science and Crystallography, Chinese University of Hong Kong, Shatin, Hong Kong, China (K.-B.W.); and
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, 4056 Basel, Switzerland (N.F., T.B.)
| | | | | |
Collapse
|
23
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Guo P, Wang Y, Zhou X, Xie Y, Wu H, Gao X. Expression of soybean lectin in transgenic tobacco results in enhanced resistance to pathogens and pests. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:17-22. [PMID: 23987807 DOI: 10.1016/j.plantsci.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/10/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Lectins are proteins of non-immune origin that specifically interact with carbohydrates, known to play important roles in the defense system of plants. In this study, in order to study the function of a new soybean lectin (SBL), the corresponding encoding gene lec-s was introduced into tobacco plants via Agrobacterium-mediated transformation. Southern blot analyses had revealed that the lec-s gene was stable integrated into the chromosome of the tobacco. The results of the reverse transcription polymerase chain reaction (RT-PCR) also indicated that the lec-s gene in the transgenic tobacco plants could be expressed under the control of the constitutive CaMV35S promoter. Evaluation agronomic of the performance had showed that the transgenic plants could resist to the infection of Phytophthora nicotianae. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed SBL significantly (P.0.05) reduced the weight gain of larvae of the beet armyworm (Spodoptera exigua). Further on, the lectins retarded the development of the larvae and their metamorphosis. These findings suggest that soybean lectins have potential as a protective agent against pathogens and insect pests through a transgenic approach.
Collapse
Affiliation(s)
- Peipei Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases. PLoS One 2013; 8:e63779. [PMID: 23717482 PMCID: PMC3662789 DOI: 10.1371/journal.pone.0063779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/06/2013] [Indexed: 01/03/2023] Open
Abstract
The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases.
Collapse
|
26
|
Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum. Mol Biol Rep 2012; 40:147-58. [PMID: 23065213 DOI: 10.1007/s11033-012-2043-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/02/2012] [Indexed: 01/17/2023]
Abstract
Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
Collapse
|
27
|
Yang H, Zhang T, Masuda T, Lv C, Sun L, Qu G, Zhao G. Chitinase III in pomegranate seeds (Punica granatum Linn.): a high-capacity calcium-binding protein in amyloplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:765-76. [PMID: 21790816 DOI: 10.1111/j.1365-313x.2011.04727.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chitinases are a class of ubiquitous proteins that are widely distributed in plants. Defense is the major natural role for chitinases, primarily against fungal pathogens. Little is known regarding their non-defensive roles in seeds. In this study, a new class III chitinase from pomegranate seeds (pomegranate seed chitinase, PSC) was isolated and purified to homogeneity. The native state of PSC is a monomer with a molecular weight of approximately 30 kDa. This chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a calcium storage protein. Consistent with this idea, its amino acid sequence (inferred from cDNA) is rich in acidic amino acid residues, especially Asp, similar to reported calcium storage proteins. The presence of calcium considerably improves the stability of the protein but has little effect on its enzymatic activity. Transmission electron microscopy analyses indicate that, similar to phytoferritin, this enzyme is widely distributed in the stroma of amyloplasts of the embryonic cells, suggesting that amyloplasts in seeds could serve as an alternative plastid for calcium storage. Indeed, the transmission electron microscopy results showed that, within the embryonic cells, calcium ions are mainly distributed in the stroma of the amyloplasts, consistent with a role for PSC in calcium storage. Thus, the plant appears to have evolved a new plastid for calcium storage in seeds. During seed germination, the content of this enzyme decreases with time, suggesting that it is involved in the germination process.
Collapse
Affiliation(s)
- Haixia Yang
- CAU & ACC Joint Laboratory of Space Food, College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Lv C, Masuda T, Yang H, Sun L, Zhao G. High-capacity calcium-binding chitinase III from pomegranate seeds (Punica granatum Linn.) is located in amyloplasts. PLANT SIGNALING & BEHAVIOR 2011; 6:1963-5. [PMID: 22112454 PMCID: PMC3337188 DOI: 10.4161/psb.6.12.18147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have recently identified a new class III chitinase from pomegranate seeds (PSC). Interestingly, this new chitinase naturally binds calcium ions with high capacity and low affinity, suggesting that PSC is a Ca-storage protein. Analysis of the amino acid sequence showed that this enzyme is rich in acidic amino acid residues, especially Asp, which are responsible for calcium binding. Different from other known chitinases, PSC is located in the stroma of amyloplasts in pomegranate seeds. Transmission electron microscopy (TEM) analysis indicated that the embryonic cells of pomegranate seeds are rich in calcium ions, most of which are distributed in the stroma and the starch granule of the amyloplasts, consistent with the above idea that PSC is involved in calcium storage, a newly non-defensive function.
Collapse
Affiliation(s)
- Chenyan Lv
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| | - Taro Masuda
- Laboratory of Food Quality Design and Development; Division of Agronomy and Horticultural Science; Graduate School of Agriculture; Kyoto University; Kyoto, Japan
| | - Haixia Yang
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| | - Lei Sun
- Center for Biological Imaging; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Guanghua Zhao
- CAU & ACC Joint-Laboratory of Space Food; College of Food Science & Nutritional Engineering; China Agricultural University; Key Laboratory of Functional Dairy; Beijing, China
| |
Collapse
|
29
|
Ohnuma T, Numata T, Osawa T, Mizuhara M, Vårum KM, Fukamizo T. Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 2011; 75:291-304. [PMID: 21240541 DOI: 10.1007/s11103-010-9727-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/26/2010] [Indexed: 05/30/2023]
Abstract
A class V chitinase from Nicotiana tabacum (NtChiV) with amino acid sequence similar to that of Serratia marcescens chitinase B (SmChiB) was expressed in E. coli and purified to homogeneity. When N-acetylglucosamine oligosaccharides [(NAG)(n)] were hydrolyzed by the purified NtChiV, the second glycosidic linkage from the non-reducing end was predominantly hydrolyzed in a manner similar to that of SmChiB. NtChiV was shown to hydrolyze partially N-acetylated chitosan non-processively, whereas SmChiB hydrolyzes the same substrate processively. The crystal structure of NtChiV was determined by the single-wavelength anomalous dispersion method at 1.2 Å resolution. The protein adopts a classical (β/α)₈-barrel fold (residues 1-233 and 303-348) with an insertion of a small (α + β) domain (residues 234-302). This is the first crystal structure of a plant class V chitinase. The crystal structure of the inactive mutant NtChiV E115Q complexed with (NAG)₄ was also solved and exhibited a linear conformation of the bound oligosaccharide occupying -2, +1, +2, and +3 subsites. The complex structure corresponds to an initial state of (NAG)₄ binding, which is proposed to be converted into a bent conformation through sliding of the +1, +2, and +3 sugar units to -1, +1, and +2 subsites. Although NtChiV is similar to SmChiB, the chitin-binding domain is present in the C-terminus of the latter, but not in the former. Aromatic amino acid residues found in the substrate binding cleft of SmChiB, including Trp97, are substituted with aliphatic residues in NtChiV. These structural differences appear to be responsible for NtChiV being a non-processive enzyme.
Collapse
Affiliation(s)
- Takayuki Ohnuma
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Hwang IS, Hwang BK. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. PLANT PHYSIOLOGY 2011; 155:447-63. [PMID: 21205632 PMCID: PMC3075774 DOI: 10.1104/pp.110.164848] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.
Collapse
|
31
|
Novel Concepts About the Role of Lectins in the Plant Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:271-94. [DOI: 10.1007/978-1-4419-7877-6_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity. Glycoconj J 2010; 27:309-20. [PMID: 20213246 DOI: 10.1007/s10719-010-9279-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/24/2010] [Accepted: 01/24/2010] [Indexed: 12/13/2022]
Abstract
A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80 degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 microg/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.
Collapse
|
33
|
Koh J, Soltis PS, Soltis DE. Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 2010; 11:97. [PMID: 20141639 PMCID: PMC2829515 DOI: 10.1186/1471-2164-11-97] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/08/2010] [Indexed: 12/22/2022] Open
Abstract
Background Although polyploidy has long been recognized as a major force in the evolution of plants, most of what we know about the genetic consequences of polyploidy comes from the study of crops and model systems. Furthermore, although many polyploid species have formed repeatedly, patterns of genome evolution and gene expression are largely unknown for natural polyploid populations of independent origin. We therefore examined patterns of loss and expression in duplicate gene pairs (homeologs) in multiple individuals from seven natural populations of independent origin of Tragopogon mirus (Asteraceae), an allopolyploid that formed repeatedly within the last 80 years from the diploids T. dubius and T. porrifolius. Results Using cDNA-AFLPs, we found differential band patterns that could be attributable to gene silencing, novel expression, and/or maternal/paternal effects between T. mirus and its diploid parents. Subsequent cleaved amplified polymorphic sequence (CAPS) analyses of genomic DNA and cDNA revealed that 20 of the 30 genes identified through cDNA-AFLP analysis showed additivity, whereas nine of the 30 exhibited the loss of one parental homeolog in at least one individual. Homeolog loss (versus loss of a restriction site) was confirmed via sequencing. The remaining gene (ADENINE-DNA GLYCOSYLASE) showed ambiguous patterns in T. mirus because of polymorphism in the diploid parent T. dubius. Most (63.6%) of the homeolog loss events were of the T. dubius parental copy. Two genes, NUCLEAR RIBOSOMAL DNA and GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE, showed differential expression of the parental homeologs, with the T. dubius copy silenced in some individuals of T. mirus. Conclusions Genomic and cDNA CAPS analyses indicated that plants representing multiple populations of this young natural allopolyploid have experienced frequent and preferential elimination of homeologous loci. Comparable analyses of synthetic F1 hybrids showed only additivity. These results suggest that loss of homeologs and changes in gene expression are not the immediate result of hybridization, but are processes that occur following polyploidization, occurring during the early (<40) generations of the young polyploid. Both T. mirus and a second recently formed allopolyploid, T. miscellus, exhibit more homeolog losses than gene silencing events. Furthermore, both allotetraploids undergo biased loss of homeologs contributed by their shared diploid parent, T. dubius. Further studies are required to assess whether the results for the 30 genes so far examined are representative of the entire genome.
Collapse
Affiliation(s)
- Jin Koh
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
34
|
Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi GI, Iwasaki H, Ohnuma T, Fukamizo T. A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology 2009; 19:1452-61. [PMID: 19696236 DOI: 10.1093/glycob/cwp119] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chitinase-A (CrChi-A) was purified from leaf rachises of Cycas revoluta by several steps of column chromatography. It was found to be a glycoprotein with a molecular mass of 40 kDa and an isoelectric point of 5.6. CrChi-A produced mainly (GlcNAc)(3) from the substrate (GlcNAc)(6) through a retaining mechanism. More interestingly, CrChi-A exhibited transglycosylation activity, which has not been observed in plant chitinases investigated so far. A cDNA encoding CrChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction procedures. It consisted of 1399 nucleotides and encoded an open reading frame of 387-amino-acid residues. Sequence analysis indicated that CrChi-A belongs to the group of plant class V chitinases. From peptide mapping and mass spectrometry of the native and recombinant enzyme, we found that an N-terminal signal peptide and a C-terminal extension were removed from the precursor (M1-A387) to produce a mature N-glycosylated protein (Q24-G370). This is the first report on a plant chitinase with transglycosylation activity and posttranslational modification of a plant class V chitinase.
Collapse
Affiliation(s)
- Toki Taira
- Department of Bioscience and Biotechnology, Ryukyu University, Okinawa 903-0213, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hahn MW. Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 2009; 100:605-17. [PMID: 19596713 DOI: 10.1093/jhered/esp047] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Determining the evolutionary forces responsible for the maintenance of gene duplicates is key to understanding the processes leading to evolutionary adaptation and novelty. In his highly prescient book, Susumu Ohno recognized that duplicate genes are fixed and maintained within a population with 3 distinct outcomes: neofunctionalization, subfunctionalization, and conservation of function. Subsequent researchers have proposed a multitude of population genetic models that lead to these outcomes, each differing largely in the role played by adaptive natural selection. In this paper, I present a nonmathematical review of these models, their predictions, and the evidence collected in support of each of them. Though the various outcomes of gene duplication are often strictly associated with the presence or absence of adaptive natural selection, I argue that determining the outcome of duplication is orthogonal to determining whether natural selection has acted. Despite an ever-growing field of research into the fate of gene duplicates, there is not yet clear evidence for the preponderance of one outcome over the others, much less evidence for the importance of adaptive or nonadaptive forces in maintaining these duplicates.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology and School of Informatics, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
36
|
Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics 2009; 182:503-17. [PMID: 19363125 PMCID: PMC2691759 DOI: 10.1534/genetics.109.102608] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 04/02/2009] [Indexed: 12/19/2022] Open
Abstract
Polyploidy is an important force in the evolution of flowering plants. Genomic merger and doubling induce an extensive array of genomic effects, including immediate and long-term alterations in the expression of duplicate genes ("homeologs"). Here we employed a novel high-resolution, genome-specific, mass-spectrometry technology and a well-established phylogenetic framework to investigate relative expression levels of each homeolog for 63 gene pairs in 24 tissues in naturally occurring allopolyploid cotton (Gossypium L.), a synthetic allopolyploid of the same genomic composition, and models of the diploid progenitor species. Results from a total of 2177 successful expression assays permitted us to determine the extent of expression evolution accompanying genomic merger of divergent diploid parents, genome doubling, and genomic coevolution in a common nucleus subsequent to polyploid formation. We demonstrate that 40% of homeologs are transcriptionally biased in at least one stage of cotton development, that genome merger per se has a large effect on relative expression of homeologs, and that the majority of these alterations are caused by cis-regulatory divergence between the diploid progenitors. We describe the scope of transcriptional subfunctionalization and 15 cases of probable neofunctionalization among 8 tissues. To our knowledge, this study represents the first characterization of transcriptional neofunctionalization in an allopolyploid. These results provide a novel temporal perspective on expression evolution of duplicate genomes and add to our understanding of the importance of polyploidy in plants.
Collapse
Affiliation(s)
- Bhupendra Chaudhary
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Shridhar S, Chattopadhyay D, Yadav G. PLecDom: a program for identification and analysis of plant lectin domains. Nucleic Acids Res 2009; 37:W452-8. [PMID: 19474338 PMCID: PMC2703983 DOI: 10.1093/nar/gkp409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PLecDom is a program for detection of Plant Lectin Domains in a polypeptide or EST sequence, followed by a classification of the identified domains into known families. The web server is a collection of plant lectin domain families represented by alignments and profile Hidden Markov Models. PLecDom was developed after a rigorous analysis of evolutionary relationships between available sequences of lectin domains with known specificities. Users can test their sequences for potential lectin domains, catalog the identified domains into broad substrate classes, estimate the extent of divergence of new domains with existing homologs, extract domain boundaries and examine flanking sequences for further analysis. The high prediction accuracy of PLecDom combined with the ease with which it handles large scale input, enabled us to apply the program to protein and EST data from 48 plant genome-sequencing projects in various stages of completion. Our results represent a significant enrichment of the currently annotated plant lectins, and highlight potential targets for biochemical characterization. The search algorithm requires input in fasta format and is designed to process simultaneous connection requests from multiple users, such that huge sets of input sequences can be scanned in a matter of seconds. PLecDom is available at http://www.nipgr.res.in/plecdom.html.
Collapse
Affiliation(s)
- Smriti Shridhar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
38
|
Bridgham JT, Brown JE, Rodríguez-Marí A, Catchen JM, Thornton JW. Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 2008; 4:e1000191. [PMID: 18787702 PMCID: PMC2527136 DOI: 10.1371/journal.pgen.1000191] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models.
Collapse
Affiliation(s)
- Jamie T. Bridgham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Justine E. Brown
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon, United States of America
| | - Joseph W. Thornton
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
39
|
Subramanyam S, Smith DF, Clemens JC, Webb MA, Sardesai N, Williams CE. Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae. PLANT PHYSIOLOGY 2008; 147:1412-26. [PMID: 18467454 PMCID: PMC2442546 DOI: 10.1104/pp.108.116145] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 05/05/2008] [Indexed: 05/19/2023]
Abstract
We previously cloned and characterized a novel jacalin-like lectin gene from wheat (Triticum aestivum) plants that responds to infestation by Hessian fly (Mayetiola destructor) larvae, a major dipteran pest of this crop. The infested resistant plants accumulated higher levels of Hfr-1 (for Hessian fly-responsive gene 1) transcripts compared with uninfested or susceptible plants. Here, we characterize the soluble and active recombinant His(6)-HFR1 protein isolated from Escherichia coli. Functional characterization of the protein using hemagglutination assays revealed lectin activity. Glycan microarray-binding assays indicated strong affinity of His(6)-HFR1 to Manalpha1-6(Manalpha1-3)Man trisaccharide structures. Resistant wheat plants accumulated high levels of HFR1 at the larval feeding sites, as revealed by immunodetection, but the avirulent larvae were deterred from feeding and consumed only small amounts of the lectin. Behavioral studies revealed that avirulent Hessian fly larvae on resistant plants exhibited prolonged searching and writhing behaviors as they unsuccessfully attempted to establish feeding sites. During His(6)-HFR1 feeding bioassays, Drosophila melanogaster larvae experienced significant delays in growth and pupation, while percentage mortality increased with progressively higher concentrations of His(6)-HFR1 in the diet. Thus, HFR1 is an antinutrient to dipteran larvae and may play a significant role in deterring Hessian fly larvae from feeding on resistant wheat plants.
Collapse
|
40
|
Fouquaert E, Peumans WJ, Smith DF, Proost P, Savvides SN, Van Damme EJM. The "old" Euonymus europaeus agglutinin represents a novel family of ubiquitous plant proteins. PLANT PHYSIOLOGY 2008; 147:1316-24. [PMID: 18451263 PMCID: PMC2442556 DOI: 10.1104/pp.108.116764] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 04/25/2008] [Indexed: 05/20/2023]
Abstract
Molecular cloning of the "old" but still unclassified Euonymus europaeus agglutinin (EEA) demonstrated that the lectin is a homodimeric protein composed of 152 residue subunits. Analysis of the deduced sequence indicated that EEA is synthesized without a signal peptide and undergoes no posttranslational processing apart from the removal of a six-residue N-terminal peptide. Glycan array screening confirmed the previously reported high reactivity of EEA toward blood group B oligosaccharides but also revealed binding to high mannose N-glycans, providing firm evidence for the occurrence of a plant carbohydrate-binding domain that can interact with structurally different glycans. Basic Local Alignment Search Tool searches indicated that EEA shares no detectable sequence similarity with any other lectin but is closely related evolutionarily to a domain that was first identified in some abscisic acid- and salt stress-responsive rice (Oryza sativa) proteins, and, according to the available sequence data, might be ubiquitous in Spermatophyta. Hence, EEA can be considered the prototype of a novel family of presumably cytoplasmic/nuclear proteins that are apparently ubiquitous in plants. Taking into account that some of these proteins are definitely stress related, the present identification of the EEA lectin domain might be a first step in the recognition of the involvement and importance of protein-glycoconjugate interactions in some essential cellular processes in Embryophyta.
Collapse
Affiliation(s)
- Elke Fouquaert
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology , Ghent University, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Purification of a PHA-Like Chitin-binding Protein from Acacia farnesiana Seeds: A Time-dependent Oligomerization Protein. Appl Biochem Biotechnol 2008; 150:97-111. [DOI: 10.1007/s12010-008-8144-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
42
|
Bussink AP, Speijer D, Aerts JMFG, Boot RG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 2007; 177:959-70. [PMID: 17720922 PMCID: PMC2034658 DOI: 10.1534/genetics.107.075846] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Family 18 of glycosyl hydrolases encompasses chitinases and so-called chi-lectins lacking enzymatic activity due to amino acid substitutions in their active site. Both types of proteins widely occur in mammals although these organisms lack endogenous chitin. Their physiological function(s) as well as evolutionary relationships are still largely enigmatic. An overview of all family members is presented and their relationships are described. Molecular phylogenetic analyses suggest that both active chitinases (chitotriosidase and AMCase) result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. The homologous genes encoding chitinase(-like) proteins are clustered in two distinct loci that display a high degree of synteny among mammals. Despite the shared chromosomal location and high homology, individual genes have evolved independently. Orthologs are more closely related than paralogues, and calculated substitution rate ratios indicate that protein-coding sequences underwent purifying selection. Substantial gene specialization has occurred in time, allowing for tissue-specific expression of pH optimized chitinases and chi-lectins. Finally, several family 18 chitinase-like proteins are present only in certain lineages of mammals, exemplifying recent evolutionary events in the chitinase protein family.
Collapse
Affiliation(s)
- Anton P Bussink
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|