1
|
Späth G, Loiseleur O. Chemical case studies from natural products of recent interest in the crop protection industry. Nat Prod Rep 2024; 41:1915-1938. [PMID: 39297571 DOI: 10.1039/d4np00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Covering: up to 2024This review showcases selected natural products, which are of high relevance to the craft of crop protection, including in its most recent aspects such as their non-cidal use as biostimulants in plant health. Focussing on the chemistry and associated structure-activity relationships that were disclosed, the review presents case studies from the recent chemical development of important natural products and compounds inspired by them for their use in the crop protection industry.
Collapse
Affiliation(s)
- Georg Späth
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland.
| | - Olivier Loiseleur
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland.
| |
Collapse
|
2
|
Acevedo FE. The Spotted Lanternfly Contains High Concentrations of Plant Hormones in its Salivary Glands: Implications in Host Plant Interactions. J Chem Ecol 2024; 50:799-806. [PMID: 39138763 DOI: 10.1007/s10886-024-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The spotted lanternfly (SLF), Lycorma delicatula is an invasive species in the United States that has emerged as a significant pest in vineyards. This polyphagous insect causes significant damage to grapevines and tree of heaven (TOH). SLF feeds voraciously on plant tissues using its piercing and sucking mouthparts through which it injects saliva and uptakes plant sap. Despite its impact, research on fundamental mechanisms mediating SLF interactions with their predominant hosts is limited. This study documents the morphology of salivary glands and quantifies plant hormones in salivary glands of SLF adults fed on grapevines and TOH using Liquid Chromatography-Mass Spectrometry (LC/MS). SLF adults have one pair of large salivary glands, ranging from 10 to 15 mm in length that extend from the insect's head to the last sections of the abdomen. The salivary glands of SLF contain salicylic acid (89 ng/g), abscisic acid (6.5 ng/g), 12-oxo-phytodienoic acid (5.7 ng/g), indole-3-acetic acid (2 ng/g), jasmonic acid (0.6 ng/g), jasmonic acid isoleucine (0.037 ng/g), and the cytokinin ribosides trans-zeatin (0.6 ng/g) and cis-zeatin (0.1 ng/g). While the concentrations of these hormones were similar in insects fed on grapevines and TOH, abscisic acid was more abundant in insects fed on grapevines, and jasmonic acid isoleucine was only detected in insects fed on grape. These results are discussed in the context of the possible implications that these hormones may have on the regulation of plant defenses. This study contributes to our understanding of the composition of SLF saliva and its potential role in plant immunity.
Collapse
Affiliation(s)
- Flor E Acevedo
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Yang Y, Xu L, Hao C, Wan M, Tao Y, Zhuang Y, Su Y, Li L. The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells. THE PLANT CELL 2024; 36:4338-4355. [PMID: 38723161 PMCID: PMC11448907 DOI: 10.1093/plcell/koae144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 10/05/2024]
Abstract
The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.
Collapse
Affiliation(s)
- Yanzhi Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Miaomiao Wan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanning Su
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Yang J, Song J, Liu J, Dong X, Zhang H, Jeong BR. Prolonged Post-Harvest Preservation in Lettuce ( Lactuca sativa L.) by Reducing Water Loss Rate and Chlorophyll Degradation Regulated through Lighting Direction-Induced Morphophysiological Improvements. PLANTS (BASEL, SWITZERLAND) 2024; 13:2564. [PMID: 39339539 PMCID: PMC11435055 DOI: 10.3390/plants13182564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
To investigate the relationship between the lighting direction-induced morphophysiological traits and post-harvest storage of lettuce, the effects of different lighting directions (top, T; top + side, TS; top + bottom, TB; side + bottom, SB; and top + side + bottom, TSB; the light from different directions for a sum of light intensity of 600 μmol·m-2·s-1 photosynthetic photon flux density (PPFD)) on the growth morphology, root development, leaf thickness, stomatal density, chlorophyll concentration, photosynthesis, and chlorophyll fluorescence, as well as the content of nutrition such as carbohydrates and soluble proteins in lettuce were analyzed. Subsequently, the changes in water loss rate, membrane permeability (measured as relative conductivity and malondialdehyde (MDA) content), brittleness (assessed by both brittleness index and β-galactosidase (β-GAL) activity), and yellowing degree (evaluated based on chlorophyll content, and activities of chlorophyllase (CLH) and pheophytinase (PPH)) were investigated during the storage after harvest. The findings indicate that the TS treatment can effectively reduce shoot height, increase crown width, enhance leaves' length, width, number, and thickness, and improve chlorophyll fluorescence characteristics, photosynthetic capacity, and nutrient content in lettuce before harvest. Specifically, lettuce's leaf thickness and stomatal density showed a significant increase. Reasonable regulation of water loss in post-harvested lettuce is essential for delaying chlorophyll degradation. It was utilized to mitigate the increase in conductivity and hinder the accumulation of MDA in lettuce. The softening speed of leafy vegetables was delayed by effectively regulating the activity of the β-GAL. Chlorophyll degradation was alleviated by affecting CLH and PPH activities. This provides a theoretical basis for investigating the relationship between creating a favorable light environment and enhancing the post-harvest preservation of leafy vegetables, thus prolonging their post-harvest storage period through optimization of their morphophysiological phenotypes.
Collapse
Affiliation(s)
- Jingli Yang
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.); (J.L.); (X.D.); (H.Z.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.); (J.L.); (X.D.); (H.Z.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jie Liu
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.); (J.L.); (X.D.); (H.Z.)
| | - Xinxiu Dong
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.); (J.L.); (X.D.); (H.Z.)
| | - Haijun Zhang
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.); (J.L.); (X.D.); (H.Z.)
| | - Byoung Ryong Jeong
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Zandalinas SI, Peláez-Vico MÁ, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1800-1814. [PMID: 37996968 DOI: 10.1111/tpj.16557] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, Missouri, 65201, USA
| |
Collapse
|
6
|
Pecherina A, Dimitrieva A, Mudrilov M, Ladeynova M, Zanegina D, Brilkina A, Vodeneev V. Salt-Induced Early Changes in Photosynthesis Activity Caused by Root-to-Shoot Signaling in Potato. Int J Mol Sci 2024; 25:1229. [PMID: 38279229 PMCID: PMC10816847 DOI: 10.3390/ijms25021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.
Collapse
Affiliation(s)
- Anna Pecherina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Anastasia Dimitrieva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maxim Mudrilov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maria Ladeynova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Daria Zanegina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| |
Collapse
|
7
|
Liu Y, Cao Y. GmWRKY17-mediated transcriptional regulation of GmDREB1D and GmABA2 controls drought tolerance in soybean. PLANT MOLECULAR BIOLOGY 2023; 113:157-170. [PMID: 37973764 DOI: 10.1007/s11103-023-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/24/2023] [Indexed: 11/19/2023]
Abstract
Drought affects soybean growth and ultimately led to yield reduction. WRKY transcription factors involve in the regulation of abiotic stress. Few functions of WRKY transcription factors underlying drought tolerance in soybean are clear. Here, we reported a WRKY transcription factor named GmWRKY17 that positively regulates soybean drought tolerance by regulating drought-induced genes and ABA-related genes. Transcriptome sequencing (RNA-Seq) and yeast one hybrid analysis identified downstream genes regulated by GmWRKY17. ChIP-qPCR, EMSA and dual-luciferase reporter assay showed that GmWRKY17 directly bound to the promoters of the GmDREB1D and GmABA2, and activated their expression under drought stress. Overexpression of GmDREB1D gene enhanced drought tolerance of soybean. Taken together, our study revealed a regulatory mechanism that GmWRKY17 transcription factor may improve soybean drought tolerance by mediating ABA synthesis and DREB signaling pathway.
Collapse
Affiliation(s)
- Yi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueping Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Ceusters J, Van de Poel B. Effect of ethylene pretreatment on tomato plant responses to salt, drought, and waterlogging stress. PLANT DIRECT 2023; 7:e548. [PMID: 38028648 PMCID: PMC10654692 DOI: 10.1002/pld3.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Salinity, drought, and waterlogging are common environmental stresses that negatively impact plant growth, development, and productivity. One of the responses to abiotic stresses is the production of the phytohormone ethylene, which induces different coping mechanisms that help plants resist or tolerate stress. In this study, we investigated if an ethylene pretreatment can aid plants in activating stress-coping responses prior to the onset of salt, drought, and waterlogging stress. Therefore, we measured real-time transpiration and CO2 assimilation rates and the impact on biomass during and after 3 days of abiotic stress. Our results showed that an ethylene pretreatment of 1 ppm for 4 h did not significantly influence the negative effects of waterlogging stress, while plants were more sensitive to salt stress as reflected by enhanced water losses due to a higher transpiration rate. However, when exposed to drought stress, an ethylene pretreatment resulted in reduced transpiration rates, reducing water loss during drought stress. Overall, our findings indicate that pretreating tomato plants with ethylene can potentially regulate their responses during the forthcoming stress period, but optimization of the ethylene pre-treatment duration, timing, and dose is needed. Furthermore, it remains tested if the effect is related to the stress duration and severity and whether an ethylene pretreatment has a net positive or negative effect on plant vigor during stress recovery. Further investigations are needed to elucidate the mode of action of how ethylene priming impacts subsequent stress responses.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Johan Ceusters
- Research Group for sustainable plant production and protection, Division of Crop Biotechnics, Department of BiosystemsKU LeuvenGeelBelgium
- Leuven Plant Institute (LPI)University of LeuvenLeuvenBelgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI)University of LeuvenLeuvenBelgium
| |
Collapse
|
9
|
Kitavi M, Gemenet DC, Wood JC, Hamilton JP, Wu S, Fei Z, Khan A, Buell CR. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis. PLANT DIRECT 2023; 7:e532. [PMID: 37794882 PMCID: PMC10546384 DOI: 10.1002/pld3.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.
Collapse
Affiliation(s)
- Mercy Kitavi
- Research Technology Support Facility (RTSF)Michigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Dorcus C. Gemenet
- International Potato CenterLimaPeru
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF HouseNairobiKenya
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityGenevaNew YorkUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics, & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
10
|
Moustaka J, Moustakas M. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. BIOSENSORS 2023; 13:796. [PMID: 37622882 PMCID: PMC10452221 DOI: 10.3390/bios13080796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll a fluorescence imaging, which can evaluate spatiotemporal leaf changes, permitting the pre-symptomatic monitoring of plant physiological status long before any visible symptoms develop, allowing for high-throughput assessment. Here, we review different examples of how chlorophyll a fluorescence imaging analysis can be used to evaluate biotic and abiotic stress. Chlorophyll a is able to detect biotic stress as early as 15 min after Spodoptera exigua feeding, or 30 min after Botrytis cinerea application on tomato plants, or on the onset of water-deficit stress, and thus has potential for early stress detection. Chlorophyll fluorescence (ChlF) analysis is a rapid, non-invasive, easy to perform, low-cost, and highly sensitive method that can estimate photosynthetic performance and detect the influence of diverse stresses on plants. In terms of ChlF parameters, the fraction of open photosystem II (PSII) reaction centers (qp) can be used for early stress detection, since it has been found in many recent studies to be the most accurate and appropriate indicator for ChlF-based screening of the impact of environmental stress on plants.
Collapse
Affiliation(s)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Sinha R, Shostak B, Induri SP, Sen S, Zandalinas SI, Joshi T, Fritschi FB, Mittler R. Differential transpiration between pods and leaves during stress combination in soybean. PLANT PHYSIOLOGY 2023; 192:753-766. [PMID: 36810691 PMCID: PMC10231362 DOI: 10.1093/plphys/kiad114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Climate change is causing an increase in the frequency and intensity of droughts, heat waves, and their combinations, diminishing agricultural productivity and destabilizing societies worldwide. We recently reported that during a combination of water deficit (WD) and heat stress (HS), stomata on leaves of soybean (Glycine max) plants are closed, while stomata on flowers are open. This unique stomatal response was accompanied by differential transpiration (higher in flowers, while lower in leaves) that cooled flowers during a combination of WD + HS. Here, we reveal that developing pods of soybean plants subjected to a combination of WD + HS use a similar acclimation strategy of differential transpiration to reduce internal pod temperature by approximately 4 °C. We further show that enhanced expression of transcripts involved in abscisic acid degradation accompanies this response and that preventing pod transpiration by sealing stomata causes a significant increase in internal pod temperature. Using an RNA-Seq analysis of pods developing on plants subjected to WD + HS, we also show that the response of pods to WD, HS, or WD + HS is distinct from that of leaves or flowers. Interestingly, we report that although the number of flowers, pods, and seeds per plant decreases under conditions of WD + HS, the seed mass of plants subjected to WD + HS increases compared to plants subjected to HS, and the number of seeds with suppressed/aborted development is lower in WD + HS compared to HS. Taken together, our findings reveal that differential transpiration occurs in pods of soybean plants subjected to WD + HS and that this process limits heat-induced damage to seed production.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin Shostak
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Sai Preethi Induri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Sidharth Sen
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, Universitat Jaume I, Castelló de la Plana 12071, Spain
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
12
|
Postiglione AE, Muday GK. Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. PLANT PHYSIOLOGY 2023; 192:469-487. [PMID: 36573336 PMCID: PMC10152677 DOI: 10.1093/plphys/kiac601] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/04/2022] [Indexed: 05/03/2023]
Abstract
Abscisic acid (ABA) drives stomatal closure to minimize water loss due to transpiration in response to drought. We examined the subcellular location of ABA-increased accumulation of reactive oxygen species (ROS) in guard cells, which drive stomatal closure, in Arabidopsis (Arabidopsis thaliana). ABA-dependent increases in fluorescence of the generic ROS sensor, dichlorofluorescein (DCF), were observed in mitochondria, chloroplasts, cytosol, and nuclei. The ABA response in all these locations was lost in an ABA-insensitive quintuple receptor mutant. The ABA-increased fluorescence in mitochondria of both DCF- and an H2O2-selective probe, Peroxy Orange 1, colocalized with Mitotracker Red. ABA treatment of guard cells transformed with the genetically encoded H2O2 reporter targeted to the cytoplasm (roGFP2-Orp1), or mitochondria (mt-roGFP2-Orp1), revealed H2O2 increases. Consistent with mitochondrial ROS changes functioning in stomatal closure, we found that guard cells of a mutant with mitochondrial defects, ABA overly sensitive 6 (abo6), have elevated ABA-induced ROS in mitochondria and enhanced stomatal closure. These effects were phenocopied with rotenone, which increased mitochondrial ROS. In contrast, the mitochondrially targeted antioxidant, MitoQ, dampened ABA effects on mitochondrial ROS accumulation and stomatal closure in Col-0 and reversed the guard cell closure phenotype of the abo6 mutant. ABA-induced ROS accumulation in guard cell mitochondria was lost in mutants in genes encoding respiratory burst oxidase homolog (RBOH) enzymes and reduced by treatment with the RBOH inhibitor, VAS2870, consistent with RBOH machinery acting in ABA-increased ROS in guard cell mitochondria. These results demonstrate that ABA elevates H2O2 accumulation in guard cell mitochondria to promote stomatal closure.
Collapse
Affiliation(s)
- Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| | - Gloria K Muday
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston Salem, North Carolina, USA 27109
| |
Collapse
|
13
|
Jin X, Zhang Y, Li X, Huang J. OsNF-YA3 regulates plant growth and osmotic stress tolerance by interacting with SLR1 and SAPK9 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:914-933. [PMID: 36906910 DOI: 10.1111/tpj.16183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023]
Abstract
The antagonism between gibberellin (GA) and abscisic acid (ABA) signaling pathways is vital to balance plant growth and stress response. Nevertheless, the mechanism by which plants determine the balance remains to be elucidated. Here, we report that rice NUCLEAR FACTOR-Y A3 (OsNF-YA3) modulates GA- and ABA-mediated balance between plant growth and osmotic stress tolerance. OsNF-YA3 loss-of-function mutants exhibit stunted growth, compromised GA biosynthetic gene expression, and decreased GA levels, while its overexpression lines have promoted growth and enhanced GA content. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis and transient transcriptional regulation assays demonstrate that OsNF-YA3 activates GA biosynthetic gene OsGA20ox1 expression. Furthermore, the DELLA protein SLENDER RICE1 (SLR1) physically interacts with OsNF-YA3 and thus inhibits its transcriptional activity. On the other side, OsNF-YA3 negatively regulates plant osmotic stress tolerance by repressing ABA response. OsNF-YA3 reduces ABA levels by transcriptionally regulating ABA catabolic genes OsABA8ox1 and OsABA8ox3 by binding to their promoters. Furthermore, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9), the positive component in ABA signaling, interacts with OsNF-YA3 and mediates OsNF-YA3 phosphorylation, resulting in its degradation in plants. Collectively, our findings establish OsNF-YA3 as an important transcription factor that positively modulates GA-regulated plant growth and negatively controls ABA-mediated water-deficit and salt tolerance. These findings shed light on the molecular mechanism underlying the balance between the growth and stress response of the plant.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yifan Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
14
|
Jiao P, Liang Y, Chen S, Yuan Y, Chen Y, Hu H. Bna.EPF2 Enhances Drought Tolerance by Regulating Stomatal Development and Stomatal Size in Brassica napus. Int J Mol Sci 2023; 24:ijms24098007. [PMID: 37175713 PMCID: PMC10179174 DOI: 10.3390/ijms24098007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Drought stress severely affects global plant growth and production. The enhancement of plant water-use efficiency (WUE) and drought tolerance by the manipulation of the stomata is an effective strategy to deal with water shortage. However, increasing the WUE and drought tolerance by manipulation on the stomata has rarely been tested in Brassica napus. Here, we isolated Bna.EPF2, an epidermal patterning factor (EPF) in Brassica napus (ecotype Westar), and identified its role in drought performance. Bna.EPF2 overexpression lines had a reduction average of 19.02% in abaxial stomatal density and smaller stomatal pore size, leading to approximately 25% lower transpiration, which finally resulted in greater instantaneous WUE and enhanced drought tolerance. Interestingly, the reduction in stomatal density did not affect the CO2 assimilation or yield-related agronomic traits in Bna.EPF2 overexpression plants. Together with the complementation of Bna.EPF2 significantly decreasing the stomatal density of Arabidopsis epf2, and Bna.EPF2 being expressed in mature guard cells, these results suggest that Bna.EPF2 not only functions in stomatal density development, but also in stomatal dimension in Brassicas. Taken together, our results suggest that Bna.EPF2 improves WUE and drought tolerance by the regulation of stomatal density and stomatal size in Brassica without growth and yield penalty, and provide insight into the manipulation of this gene in the breeding of drought tolerant plants with increased production under water deficit conditions.
Collapse
Affiliation(s)
- Peipei Jiao
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yuanlin Liang
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Tan QW, Lim PK, Chen Z, Pasha A, Provart N, Arend M, Nikoloski Z, Mutwil M. Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat Commun 2023; 14:986. [PMID: 36813788 PMCID: PMC9946954 DOI: 10.1038/s41467-023-36517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Abiotic stresses negatively impact ecosystems and the yield of crops, and climate change will increase their frequency and intensity. Despite progress in understanding how plants respond to individual stresses, our knowledge of plant acclimatization to combined stresses typically occurring in nature is still lacking. Here, we used a plant with minimal regulatory network redundancy, Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, gene expression, and activity of cellular pathways. While the transcriptomic responses show a conserved differential gene expression between Arabidopsis and Marchantia, we also observe a strong functional and transcriptional divergence between the two species. The reconstructed high-confidence gene regulatory network demonstrates that the response to specific stresses dominates those of others by relying on a large ensemble of transcription factors. We also show that a regression model could accurately predict the gene expression under combined stresses, indicating that Marchantia performs arithmetic multiplication to respond to multiple stresses. Lastly, two online resources ( https://conekt.plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi ) are provided to facilitate the study of gene expression in Marchantia exposed to abiotic stresses.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Zhong Chen
- Amoeba Education Hub, 1 West Coast Road, 128020, Singapore, Singapore
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
16
|
Ha CV, Mostofa MG, Nguyen KH, Tran CD, Watanabe Y, Li W, Osakabe Y, Sato M, Toyooka K, Tanaka M, Seki M, Burritt DJ, Anderson CM, Zhang R, Nguyen HM, Le VP, Bui HT, Mochida K, Tran LSP. The histidine phosphotransfer AHP4 plays a negative role in Arabidopsis plant response to drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1732-1752. [PMID: 35883014 DOI: 10.1111/tpj.15920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.
Collapse
Affiliation(s)
- Chien Van Ha
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Mohammad Golam Mostofa
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Kien Huu Nguyen
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Cuong Duy Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi, 100000, Vietnam
| | - Yasuko Watanabe
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, J2-12, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, 975 N Warson Rd, Saint Louis, Missouri, 63132, USA
| | - Huong Mai Nguyen
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Vy Phuong Le
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| | - Hien Thuy Bui
- Division of Plant Science and Technology, Christopher S. Bond Life Science Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Keiichi Mochida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Science, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, 2500 Broadway, Lubbock, Texas, 79409, USA
| |
Collapse
|
17
|
Zhang K, Lan Y, Wu M, Wang L, Liu H, Xiang Y. PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:121-134. [PMID: 35835078 DOI: 10.1016/j.plaphy.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the most serious environmental stresses. Plant AT-rich sequence and zinc-binding (PLATZ) proteins perform indispensable functions to regulate plant growth and development and to respond to environmental stress. In this present study, we identified PhePLATZ1 in moso bamboo and found that its expression was up-regulated in response to 20% PEG-6000 and abscisic acid (ABA) treatments. Next, transgenic PhePLATZ1-overexpressing Arabidopsis lines were generated. Overexpression of PhePLATZ1 improved drought stress resistance of transgenic plants by mediating osmotic regulation, enhancing water retention capacity and reducing membrane and oxidative damage. These findings were corroborated by analysing physiological indicators including chlorophyll, relative water content, leaf water loss rate, electrolyte leakage, H2O2, proline, malondialdehyde content and the enzyme activities of peroxidase and catalase. Subsequent seed germination and seedling root length experiments that included exposure to exogenous ABA treatments showed that ABA sensitivity decreased in transgenic plants relative to wild-type plants. Moreover, transgenic PhePLATZ1-overexpressing plants promoted stomatal closure in response to ABA treatment, suggesting that PhePLATZ1 might play a positive regulatory role in the drought resistance of plants via the ABA signaling pathway. In addition, the transgenic PhePLATZ1-OE plants showed altered expression of some stress-related genes when grown under drought conditions. Taken together, these findings improve our understanding of the drought response of moso bamboo and provide a key candidate gene for the molecular breeding of this species for drought tolerance.
Collapse
Affiliation(s)
- Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
18
|
Sinha R, Zandalinas SI, Fichman Y, Sen S, Zeng S, Gómez-Cadenas A, Joshi T, Fritschi FB, Mittler R. Differential regulation of flower transpiration during abiotic stress in annual plants. THE NEW PHYTOLOGIST 2022; 235:611-629. [PMID: 35441705 PMCID: PMC9323482 DOI: 10.1111/nph.18162] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 05/10/2023]
Abstract
Heat waves occurring during droughts can have a devastating impact on yield, especially if they happen during the flowering and seed set stages of the crop cycle. Global warming and climate change are driving an alarming increase in the frequency and intensity of combined drought and heat stress episodes, critically threatening global food security. Because high temperature is detrimental to reproductive processes, essential for plant yield, we measured the inner temperature, transpiration, sepal stomatal aperture, hormone concentrations and transcriptomic response of closed soybean flowers developing on plants subjected to a combination of drought and heat stress. Here, we report that, during a combination of drought and heat stress, soybean plants prioritize transpiration through flowers over transpiration through leaves by opening their flower stomata, while keeping their leaf stomata closed. This acclimation strategy, termed 'differential transpiration', lowers flower inner temperature by about 2-3°C, protecting reproductive processes at the expense of vegetative tissues. Manipulating stomatal regulation, stomatal size and/or stomatal density of flowers could serve as a viable strategy to enhance the yield of different crops and mitigate some of the current and future impacts of global warming and climate change on agriculture.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sara I Zandalinas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Yosef Fichman
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sidharth Sen
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Trupti Joshi
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Health Management and Informatics, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
19
|
Yang N, Han MH, Teng RM, Yang YZ, Wang YH, Xiong AS, Zhuang J. Exogenous Melatonin Enhances Photosynthetic Capacity and Related Gene Expression in A Dose-Dependent Manner in the Tea Plant ( Camellia sinensis (L.) Kuntze). Int J Mol Sci 2022; 23:ijms23126694. [PMID: 35743137 PMCID: PMC9223723 DOI: 10.3390/ijms23126694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
The enhancement of photosynthesis of tea leaves can increase tea yield. In order to explore the regulation mechanism of exogenous melatonin (MT) on the photosynthetic characteristics of tea plants, tea variety 'Zhongcha 108' was used as the experimental material in this study. The effects of different concentrations (0, 0.2, 0.3, 0.4 mM) of melatonin on the chlorophyll (Chl) content, stomatal opening, photosynthetic and fluorescence parameters, antioxidant enzyme activity, and related gene expression of tea plants were detected and analyzed. The results showed that under 0.2-mM MT treatment, chlorophyll (Chl) content, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) improved, accompanied by a decrease in stomata density and increase in stomata area. Zero point two millimolar MT increased Chl fluorescence level and superoxide dismutase (SOD) activity, and reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, indicating that MT alleviated PSII inhibition and improved photochemical efficiency. At the same time, 0.2 mM MT induced the expression of genes involved in photosynthesis and chlorophyll metabolism to varying degrees. The study demonstrated that MT can effectively enhance the photosynthetic capacity of tea plants in a dose-dependent manner. These results may promote a comprehensive understanding of the potential regulatory mechanism of exogenous MT on photosynthesis in tea plants.
Collapse
Affiliation(s)
- Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.Y.); (M.-H.H.); (R.-M.T.); (Y.-Z.Y.)
| | - Miao-Hua Han
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.Y.); (M.-H.H.); (R.-M.T.); (Y.-Z.Y.)
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.Y.); (M.-H.H.); (R.-M.T.); (Y.-Z.Y.)
| | - Ya-Zhuo Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.Y.); (M.-H.H.); (R.-M.T.); (Y.-Z.Y.)
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (Y.-H.W.); (A.-S.X.)
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (Y.-H.W.); (A.-S.X.)
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.Y.); (M.-H.H.); (R.-M.T.); (Y.-Z.Y.)
- Correspondence:
| |
Collapse
|
20
|
Zhou K, Li Y, Hu L, Zhang J, Yue H, Yang S, Liu Y, Gong X, Ma F. Overexpression of MdASMT9, an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. TREE PHYSIOLOGY 2022; 42:1114-1126. [PMID: 34865159 DOI: 10.1093/treephys/tpab157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Improving apple water-use efficiency (WUE) is increasingly desirable in the face of global climate change. Melatonin is a pleiotropic molecule that functions in plant development and stress tolerance. In apple, exogenous application of melatonin has been largely investigated, but melatonin biosynthesis and its physiological roles remain elusive. In the plant biosynthetic pathway of melatonin, the last and key step is that N-acetylserotonin methyltransferase (ASMT) converts N-acetylserotonin into melatonin. Here, we identified an apple ASMT gene, MdASMT9, using homology-based cloning and in vitro enzyme assays. Overexpression of MdASMT9 significantly increased melatonin accumulation in transgenic apple lines. Moreover, an enhanced WUE was observed in the MdASMT9-overexpressing apple lines. Under well-watered conditions, this increase in WUE was attributed to an enhancement of photosynthetic rate and stomatal aperture via a reduction in abscisic acid biosynthesis. By contrast, under long-term moderate water deficit conditions, regulations in photoprotective mechanisms, stomatal behavior, osmotic adjustment and antioxidant activity enhanced the WUE in transgenic apple lines. Taken together, our findings shed light on the positive effect of MdASMT9 on improving WUE of apple by modulating melatonin biosynthesis.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shulin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Liu YL, Zheng L, Jin LG, Liu YX, Kong YN, Wang YX, Yu TF, Chen J, Zhou YB, Chen M, Wang FZ, Ma YZ, Xu ZS, Lan JH. Genome-Wide Analysis of the Soybean TIFY Family and Identification of GmTIFY10e and GmTIFY10g Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:845314. [PMID: 35401633 PMCID: PMC8984480 DOI: 10.3389/fpls.2022.845314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 05/24/2023]
Abstract
TIFY proteins play crucial roles in plant abiotic and biotic stress responses. Our transcriptome data revealed several TIFY family genes with significantly upregulated expression under drought, salt, and ABA treatments. However, the functions of the GmTIFY family genes are still unknown in abiotic stresses. We identified 38 GmTIFY genes and found that TIFY10 homologous genes have the most duplication events, higher selection pressure, and more obvious response to abiotic stresses compared with other homologous genes. Expression pattern analysis showed that GmTIFY10e and GmTIFY10g genes were significantly induced by salt stress. Under salt stress, GmTIFY10e and GmTIFY10g transgenic Arabidopsis plants showed higher root lengths and fresh weights and had significantly better growth than the wild type (WT). In addition, overexpression of GmTIFY10e and GmTIFY10g genes in soybean improved salt tolerance by increasing the PRO, POD, and CAT contents and decreasing the MDA content; on the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of GmTIFY10e and GmTIFY10g in Arabidopsis and soybean could improve the salt tolerance of plants, while the RNAi of GmTIFY10e and GmTIFY10g significantly increased sensitivity to salt stress in soybean. Further analysis demonstrated that GmTIFY10e and GmTIFY10g genes changed the expression levels of genes related to the ABA signal pathway, including GmSnRK2, GmPP2C, GmMYC2, GmCAT1, and GmPOD. This study provides a basis for comprehensive analysis of the role of soybean TIFY genes in stress response in the future.
Collapse
Affiliation(s)
- Ya-Li Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Lei Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yuan-Xia Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Ya-Nan Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yi-Xuan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Feng-Zhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement/Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Campitelli BE, Razzaque S, Barbero B, Abdulkina LR, Hall MH, Shippen DE, Juenger TE, Shakirov EV. Plasticity, pleiotropy and fitness trade-offs in Arabidopsis genotypes with different telomere lengths. THE NEW PHYTOLOGIST 2022; 233:1939-1952. [PMID: 34826163 PMCID: PMC9218941 DOI: 10.1111/nph.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
Telomere length has been implicated in the organismal response to stress, but the underlying mechanisms are unknown. Here we examine the impact of telomere length changes on the responses to three contrasting abiotic environments in Arabidopsis, and measure 32 fitness, developmental, physiological and leaf-level anatomical traits. We report that telomere length in wild-type and short-telomere mutants is resistant to abiotic stress, while the elongated telomeres in ku70 mutants are more plastic. We detected significant pleiotropic effects of telomere length on flowering time and key leaf physiological and anatomical traits. Furthermore, our data reveal a significant genotype by environment (G × E) interaction for reproductive fitness, with the benefits and costs to performance depending on the growth conditions. These results imply that life-history trade-offs between flowering time and reproductive fitness are impacted by telomere length variation. We postulate that telomere length in plants is subject to natural selection imposed by different environments.
Collapse
Affiliation(s)
- Brandon E. Campitelli
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- Texas Institute for Discovery Education in Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Borja Barbero
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
| | - Mitchell H. Hall
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Thomas E. Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eugene V. Shakirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
23
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
24
|
Park YJ, Kim JY, Lee JH, Han SH, Park CM. External and Internal Reshaping of Plant Thermomorphogenesis. TRENDS IN PLANT SCIENCE 2021; 26:810-821. [PMID: 33583729 DOI: 10.1016/j.tplants.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plants dynamically adapt to changing temperatures to ensure propagation and reproductive success, among which morphogenic responses to warm temperatures have been extensively studied in recent years. As readily inferred from the cyclic co-oscillations of environmental cues in nature, plant thermomorphogenesis is coordinately reshaped by various external conditions. Accumulating evidence supports that internal and developmental cues also contribute to harmonizing thermomorphogenic responses. The external and internal reshaping of thermomorphogenesis is facilitated by versatile temperature sensing and interorgan communication processes, circadian and photoperiodic gating of thermomorphogenic behaviors, and their metabolic coordination. Here, we discuss recent advances in plant thermal responses with focus on the diel and seasonal reshaping of thermomorphogenesis and briefly explore its application to developing climate-smart crops.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
25
|
Zeng Y, Verstraeten I, Trinh HK, Heugebaert T, Stevens CV, Garcia-Maquilon I, Rodriguez PL, Vanneste S, Geelen D. Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling. Genes (Basel) 2021; 12:genes12081141. [PMID: 34440314 PMCID: PMC8392626 DOI: 10.3390/genes12081141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition.
Collapse
Affiliation(s)
- Yinwei Zeng
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (I.V.); (H.K.T.); (S.V.)
| | - Inge Verstraeten
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (I.V.); (H.K.T.); (S.V.)
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Hoang Khai Trinh
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (I.V.); (H.K.T.); (S.V.)
| | - Thomas Heugebaert
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.H.); (C.V.S.)
| | - Christian V. Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.H.); (C.V.S.)
| | - Irene Garcia-Maquilon
- Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia, Avd de los Naranjos, 46022 Valencia, Spain; (I.G.-M.); (P.L.R.)
| | - Pedro L. Rodriguez
- Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia, Avd de los Naranjos, 46022 Valencia, Spain; (I.G.-M.); (P.L.R.)
| | - Steffen Vanneste
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (I.V.); (H.K.T.); (S.V.)
- Department of Plant Biotechnology and bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Korea
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (I.V.); (H.K.T.); (S.V.)
- Correspondence: ; Tel.: +32-9-264-6070
| |
Collapse
|
26
|
Li H, Yang Y, Wang H, Liu S, Jia F, Su Y, Li S, He F, Feng C, Niu M, Wang J, Liu C, Yin W, Xia X. The Receptor-Like Kinase ERECTA Confers Improved Water Use Efficiency and Drought Tolerance to Poplar via Modulating Stomatal Density. Int J Mol Sci 2021; 22:ijms22147245. [PMID: 34298865 PMCID: PMC8303786 DOI: 10.3390/ijms22147245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Poplar is one of the most important tree species in the north temperate zone, but poplar plantations are quite water intensive. We report here that CaMV 35S promoter-driven overexpression of the PdERECTA gene, which is a member of the LRR-RLKs family from Populus nigra × (Populus deltoides × Populus nigra), improves water use efficiency and enhances drought tolerance in triploid white poplar. PdERECTA localizes to the plasma membrane. Overexpression plants showed lower stomatal density and larger stomatal size. The abaxial stomatal density was 24-34% lower and the stomatal size was 12-14% larger in overexpression lines. Reduced stomatal density led to a sharp restriction of transpiration, which was about 18-35% lower than the control line, and instantaneous water use efficiency was around 14-63% higher in overexpression lines under different conditions. These phenotypic changes led to increased drought tolerance. PdERECTA overexpression plants not only survived longer after stopping watering but also performed better when supplied with limited water, as they had better physical and photosynthesis conditions, faster growth rate, and higher biomass accumulation. Taken together, our data suggest that PdERECTA can alter the development pattern of stomata to reduce stomatal density, which then restricts water consumption, conferring enhanced drought tolerance to poplar. This makes PdERECTA trees promising candidates for establishing more water use efficient plantations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xinli Xia
- Correspondence: ; Tel.: +86-010-6233-6400
| |
Collapse
|
27
|
Muppala S, Gudlavalleti PK, Malireddy KR, Puligundla SK, Dasari P. Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:96. [PMID: 34165656 PMCID: PMC8225737 DOI: 10.1186/s43141-021-00195-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND In crop plants, to cope up with the demand of food for rising population, revolutionary crop improvement programmes are being implemented for higher and higher yields. Abiotic stress, especially at flowering stage, causes drastic effect on yield in plants. Deforestation and urbanization made the water table very low and changed the climate which led to untimely and unforeseen rains which affect the yield of a crop through stress, both by lack of water as well as water logging (abiotic stress). Development of tolerant plants through breeding is a time-consuming programme and does not perform well in normal conditions. Development of stress-tolerant plants through transgenic technology is the better solution. Maize is a major crop used as food and fodder and has the commercial value in ethanol production. Hence, the genes viz., nced (9-cis-epoxycarotenoid dioxygenase) and rpk (receptor-like protein kinase), which play the key roles in the abscisic acid pathway and upstream component in ABA signaling have been transferred into maize plants through Agrobacterium-mediated transformation by optimizing several parameters to obtain maximum frequency of transformation. RESULTS Cultures raised from immature embryos of 2-mm size isolated from maize cobs, 12-15 days after pollination, were used for transformation. rpk and nced genes under the control of leaP and salT promoters respectively, cloned using gateway technology, have been introduced into elite maize inbred lines. Maximum frequency of transformation was observed with the callus infected after 20 days of inoculation by using 100 μM acetosyringone, 10 min infection time, and 2 days incubation period after co-cultivation resulted in maximum frequency of transformation (6%) in the NM5884 inbred line. Integration of the genes has been confirmed with molecular characterization by performing PCRs with marker as well as gene-specific primers and through southern hybridization. Physiological and biochemical characterization was done in vitro (artificial stress) and in vivo (pot experiments). CONCLUSIONS Changes in the parameters which affect the transformation frequency yielded maximum frequency of transformation with 20-day-old callus in the NM5884 inbred line. Introducing two or more genes using gateway technology is useful for developing stable transgenic plants with desired characters, abiotic stress tolerance in this study.
Collapse
Affiliation(s)
- Sridevi Muppala
- Department of Biotechnology, Nuziveedu Seeds Limited, Hyderabad, Telangana, 501401, India.,Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, Telangana, 500085, India
| | | | - Kodandarami Reddy Malireddy
- Department of Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | | | - Premalatha Dasari
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, Telangana, 500085, India
| |
Collapse
|
28
|
Mahajan M, Thakur BK, Pal PK. Moisture stress and nitrogen availability modulate the secondary metabolite profiles, enzymatic activity, and physiological and agronomic traits of Stevia rebaudiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:56-68. [PMID: 33667967 DOI: 10.1016/j.plaphy.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Performances of crops are mainly influenced by frost, heat and availability of soil-water and nitrogen (N). However, little is known about the interaction between soil-water and N on Stevia rebaudiana. Thus, a field experiment was conducted with fifteen treatment combinations comprising three levels of soil-moisture (irrigation at 20, 50 and 75 kPa soil-water-potential) and five N levels (0-140 kg ha-1) to understand how soil-moisture and N influence growth, physiological and biochemical activities of stevia. Plants irrigated at 50 kPa registered 6.3-18.9% and 20.7-21.2% higher dry leaf yield compared with 20 and 75 kPa, respectively. No significant (P ≥ 0.05) differences in concentrations of total steviol glycosides (TSGs) in leaf were found due to moisture regimes. Total soluble sugars (TSS), proline, total phenols were decreased significantly (P ≤ 0.05) with plants irrigated at 20 kPa whereas SOD, CAT, and POX were decreased at both excessive and deficit water conditions. Photosynthetic rate (PN) and stomatal conductance (gs) decreased with plant irrigated at 75 kPa. Anatomical changes in leaf were also observed due to different moisture regimes. Among the N levels, 105 kg ha-1 registered approximately 50-53% higher dry leaf yield compared with control (0 kg N ha-1), irrespective of irrigation level. Excess (140 kg ha-1) and shortage of N significantly decreased the PN, gs, and enzyme activities. Concentrations of TSS and TSGs were higher with N at 105 and 70 kg ha-1, respectively. Our results emphasize that irrigation at 50 kPa and application of N 105 kg ha-1 is the suitable combination for sustainable cultivation of stevia.
Collapse
Affiliation(s)
- Mitali Mahajan
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, 176 061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babit Kumar Thakur
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, 176 061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Probir Kumar Pal
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, 176 061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Chuong NN, Hoang XLT, Nghia DHT, Nguyen NC, Thao DTT, Tran TB, Ngoc TTM, Thu NBA, Nguyen QT, Thao NP. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. PLANT CELL REPORTS 2021; 40:819-834. [PMID: 33725150 DOI: 10.1007/s00299-021-02677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Duong Hoang Trong Nghia
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Cao Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Dau Thi Thanh Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tram Bao Tran
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Tran Thi My Ngoc
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Quang Thien Nguyen
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
- Vietnam National University, Linh Trung Ward, Thu Duc, Ho Chi Minh, 700000, Vietnam.
| |
Collapse
|
30
|
Akhter N, Aqeel M, Shahnaz MM, Alnusairi GSH, Alghanem SM, Kousar A, Hashem M, Kanwal H, Alamri S, Ilyas A, Al-zoubi OM, Noman A. Physiological homeostasis for ecological success of Typha ( Typha domingensis Pers.) populations in saline soils. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:687-701. [PMID: 33967456 PMCID: PMC8055787 DOI: 10.1007/s12298-021-00963-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
The natural capacity of plants to endure salt stress is largely regulated by multifaceted structural and physio-biochemical modulations. Salt toxicity endurance mechanism of six ecotypes of Typha domingensis Pers. was evaluated by analyzing photosynthesis, ionic homeostasis, and stomatal physiology under different levels of salinity (0, 100, 200 and 300 mM NaCl). Typha populations were collected across different areas of Punjab, an eastern province in Pakistan. All studied attributes among ecotypes presented differential changes as compared to control. Different salt treatments not only affected gas exchange attributes but also shown significant modifications in stomatal anatomical changes. As compared to control, net photosynthetic rate, transpiration rate, total chlorophyll contents and carotenoids were increased by 111%, 64%, 103% and 171% respectively, in Sahianwala ecotype among all other ecotypes. Similarly, maximum water use efficiency (WUE), sub stomatal CO2 concentration, sodium (Na+) and chloride (Cl-) contents were observed in Sahianwala (191%, 93%, 168%, 158%) and Knotti (162%, 75%, 146%, 182%) respectively, as compared to the others ecotypes. Adaxial and abaxial stomatal areas remained stable in Sahianwala and Knotti. The highest abaxial stomatal density was observed in Gatwala ecotype (42 mm2) and maximum adaxial stomatal density was recorded in Sahianwala ecotype (43 mm2) at 300 mM NaCl salinity. The current study showed that Typha ecotypes responded varyingly to salinity in terms of photosynthesis attributes to avoid damages due to salinity. Overall, differential photosynthetic activity, WUE, and changes in stomatal attributes of Sahianwala and Knotti ecotypes contributed more prominently in tolerating salinity stress. Therefore, Typha domingensis is a potential species to be used to rehabilitate salt affected lands for agriculture and aquatic habitat. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00963-x.
Collapse
Affiliation(s)
- Noreen Akhter
- Department of Botany, Government College Women University, Faisalabad, 38000 Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000 People’s Republic of China
| | - Muhammad Muslim Shahnaz
- Department of Botany, Government Post Graduate College of Science, Faisalabad, Pakistan
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | | | | | - Abida Kousar
- Department of Botany, Government College Women University, Faisalabad, 38000 Pakistan
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413 Saudi Arabia
- Botany Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Hina Kanwal
- Department of Botany, Government College Women University, Faisalabad, 38000 Pakistan
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413 Saudi Arabia
| | - Aisha Ilyas
- Department of Botany, Government College Women University, Faisalabad, 38000 Pakistan
| | - Omar Mahmoud Al-zoubi
- Department of Biology, Faculty of Science in Yanbu, Taibah University, Medina, Saudi Arabia
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
31
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
32
|
Zhao Q, Hu R, Liu D, Liu X, Wang J, Xiang X, Li Y. The AP2 transcription factor NtERF172 confers drought resistance by modifying NtCAT. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2444-2455. [PMID: 32445603 PMCID: PMC7680539 DOI: 10.1111/pbi.13419] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 05/19/2023]
Abstract
Drought stress often limits plant growth and global crop yields. Catalase (CAT)-mediated hydrogen peroxide (H2 O2 ) scavenging plays an important role in the adaptation of plant stress responses, but the transcriptional regulation of the CAT gene in response to drought stress is not well understood. Here, we isolated an APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) domain-containing transcription factor (TF), NtERF172, which was strongly induced by drought, abscisic acid (ABA) and H2 O2 , from tobacco (Nicotiana tabacum) by yeast one-hybrid screening. NtERF172 localized to the nucleus and acted as a transcriptional activator. Chromatin immunoprecipitation, yeast one-hybrid assays, electrophoretic mobility shift assays and transient expression analysis assays showed that NtERF172 directly bound to the promoter region of the NtCAT gene and positively regulated its expression. Transgenic plants overexpressing NtERF172 displayed enhanced tolerance to drought stress, whereas suppression of NtERF172 decreased drought tolerance. Under drought stress conditions, the NtERF172-overexpressed lines showed higher catalase activity and lower accumulation of H2 O2 compared with wild-type (WT) plants, while the NtERF172-silenced plants showed the inverse correlation. Exogenous application of amino-1,2,4-triazole (3-AT), an irreversible CAT inhibitor, to the NtERF172-overexpression lines showed decreased catalase activity and drought tolerance, and increased levels of cellular H2 O2 . Knockdown of NtCAT in the NtERF172-overexpression lines displayed a more drought stress-sensitive phenotype than NtERF172-overexpression lines. We propose that NtERF172 acts as a positive factor in drought stress tolerance, at least in part through the regulation of CAT-mediated H2 O2 homeostasis.
Collapse
Affiliation(s)
- Qiang Zhao
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
| | - Ri‐Sheng Hu
- Hunan Tobacco Research InstituteChangshaHunanChina
| | - Dan Liu
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoShandong ProvinceChina
| | - Xin Liu
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
| | - Jie Wang
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoShandong ProvinceChina
| | - Xiao‐Hua Xiang
- Haikou Cigar Research InstitutionHaikouHainan ProvinceChina
| | - Yang‐Yang Li
- Hunan Tobacco Research InstituteChangshaHunanChina
| |
Collapse
|
33
|
Liu Q, Zhou Y, Li H, Liu R, Wang W, Wu W, Yang N, Wang S. Osmotic stress-triggered stomatal closure requires Phospholipase Dδ and hydrogen sulfide in Arabidopsis thaliana. Biochem Biophys Res Commun 2020; 534:914-920. [PMID: 33187643 DOI: 10.1016/j.bbrc.2020.10.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Osmotic stress is one of the main stresses seriously affects the growth and development of plants. Hydrogen sulfide (H2S) emerges as the third gaseous signal molecule to involve in the complex network of signaling events. Phospholipase Dδ (PLDδ), as signal enzyme, responds to many biotic or abiotic stress responses. In this study, the functions and the relationship of PLDδ and H2S in stomatal closure induced by osmotic stress were explored. Using the seedlings of ecotype (WT), PLDδ deficient mutant (pldδ), L-cysteine desulfhydrase (LCD) deficient mutant (lcd) and pldδlcd double mutant as materials, the Real-time quantitative PCR (RT-qPCR) and the stomatal aperture were analyzed. Osmotic stress induced the expressions of PLDδ and LCD. The H2S content and the activities of PLD and LCD ascended in WT under osmotic stress. The phenotypes of pldδ, lcd and pldδlcd were more sensitive to osmotic stress than WT. Compared with pldδ, the stomatal of lcd showed lower sensitivity to osmotic stress, and the stomatal aperture of pldδlcd was similar to that of lcd. Simultaneous application of PA and NaHS resulted in tighter closure of stomatal than application of either PA or NaHS alone. These results suggested that osmotic stress-triggered stomatal closure requires PLDδ and H2S in A. thaliana. LCD acted downstream of PLDδ to regulate the stomatal closure induced by osmotic stress.
Collapse
Affiliation(s)
- Qin Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yaping Zhou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Hui Li
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ruirui Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Wangze Wu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Shuyang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
34
|
Zhao Q, Fan Z, Qiu L, Che Q, Wang T, Li Y, Wang Y. MdbHLH130, an Apple bHLH Transcription Factor, Confers Water Stress Resistance by Regulating Stomatal Closure and ROS Homeostasis in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:543696. [PMID: 33163009 PMCID: PMC7581937 DOI: 10.3389/fpls.2020.543696] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/31/2020] [Indexed: 05/06/2023]
Abstract
Drought is a major environmental factor that significantly limits crop yield and quality worldwide. Basic helix-loop-helix (bHLH) transcription factors have been reported to participate in the regulation of various abiotic stresses. In this study, a bHLH transcription factor in apple, MdbHLH130, which contains a highly conserved bHLH domain, was isolated and characterized. qRT-PCR and PMdbHLH130::GUS analyses showed that MdbHLH130 was notably induced in response to dehydration stress. Compared with the wild-type (WT), transgenic apple calli overexpressing MdbHLH130 displayed greater resistance to PEG6000 treatment. In contrast, the MdbHLH130-Anti lines were more sensitive to PEG6000 treatment than WT. Moreover, ectopic expression of MdbHLH130 in tobacco improved tolerance to water deficit stress, and plants exhibited higher germination rates and survival rates, longer roots, and lower ABA-induced stomatal closure and leaf water loss than the WT control. Furthermore, overexpression of MdbHLH130 in tobacco also led to lower electrolyte leakage, malondialdehyde contents, and reactive oxygen species (ROS) accumulation and upregulation of the expression of some ROS-scavenging and stress-responsive genes under water deficit stress. In addition, MdbHLH130 transgenic tobacco plants exhibited improved tolerance to oxidative stress compared with WT. In conclusion, these results indicate that MdbHLH130 acts as a positive regulator of water stress responses through modulating stomatal closure and ROS-scavenging in tobacco.
Collapse
Affiliation(s)
- Qiang Zhao
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zihao Fan
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Lina Qiu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Qinqin Che
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Ting Wang
- Editorial Office of YanTai Fruits, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China
| | - Yongzhang Wang
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Verma K, Song XP, Zeng Y, Li DM, Guo DJ, Rajput VD, Chen GL, Barakhov A, Minkina TM, Li YR. Characteristics of Leaf Stomata and Their Relationship with Photosynthesis in Saccharum officinarum Under Drought and Silicon Application. ACS OMEGA 2020; 5:24145-24153. [PMID: 32984737 PMCID: PMC7513552 DOI: 10.1021/acsomega.0c03820] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 05/04/2023]
Abstract
Silicon (Si) plays an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticide use is a big challenge nowadays. The use of Si has been proven to be an environmentally sound way of enhancing crop productivity by facilitating plant growth and development through either a direct or indirect mechanism, especially in tropical and subtropical regions. In particular, it has been investigated for its role in water stress management. The aim of the current experiment was to examine the protective role of Si in the photosynthetic capacity of different leaf segments and the ultrastructure of sugarcane (Saccharum officinarm) plants under water stress. Sugarcane cv. GT 42 plants were supplied with 0, 100, 300, and 500 mg L-1 Si and exposed for 60 days under each stress condition such as 100-95, 55-50, and 35-30% of field capacity. For the photosynthetic responses, each leaf was observed and separated into three equal parts (base, middle, and tip). We used intact leaves and were able to assess leaf photosynthetic responses. Under moderate and severe stress conditions, applied Si increased the photosynthesis (base, ∼16-143%; middle, 20-66%; and tip leaf part, 41-71%), transpiration rate (base, 15-97%; middle, 26-68%; and tip leaf part, 6-61%), and stomatal conductance (base, 26-137%; middle, 12-70%; and tip leaf part, 7-75%) in sugarcane plants. Ultrastructural examination of sugarcane leaves using scanning electron microscopy showed the remarkable effects on stomata ultrastructure. Silicon increased plant growth development, photosynthetic efficiency, and biomass/yield, and promoted better adaptation of stomata to drought. This study suggests that the application of Si may be used to increase the stress tolerance of sugarcane plants.
Collapse
Affiliation(s)
- Krishan
K. Verma
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Xiu-Peng Song
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Yuan Zeng
- International
Co-operation Division, Guangxi Academy of
Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Dong-Mei Li
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| | - Dao-Jun Guo
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
- College
of Agriculture, Guangxi University, Nanning 530 004, Guangxi, China
| | - Vishnu D. Rajput
- Academy
of Biology and Biotechnology, Southern Federal
University, Rostov-on-Don 344 006, Russia
| | - Gan-Lin Chen
- Institute
of Biotechnology, Guangxi Academy of Agricultural
Sciences, Nanning 530 007, Guangxi, China
| | - Anatoly Barakhov
- Academy
of Biology and Biotechnology, Southern Federal
University, Rostov-on-Don 344 006, Russia
| | - Tatiana M. Minkina
- Academy
of Biology and Biotechnology, Southern Federal
University, Rostov-on-Don 344 006, Russia
| | - Yang-Rui Li
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530 007, Guangxi, China
| |
Collapse
|
36
|
Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, Wang X. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics 2020; 21:507. [PMID: 32698760 PMCID: PMC7376677 DOI: 10.1186/s12864-020-06917-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Wild sugarcane Saccharum spontaneum plants vary in ploidy, which complicates the utilization of its germplasm in sugarcane breeding. Investigations on cold tolerance in relation to different ploidies in S. spontaneum may promote the exploitation of its germplasm and accelerate the improvement of sugarcane varieties. RESULTS A hypoploid clone 12-23 (2n = 54) and hyperploid clone 15-28 (2n = 92) of S. spontaneum were analysed under cold stress from morphological, physiological, and transcriptomic perspectives. Compared with clone 15-28, clone 12-23 plants had lower plant height, leaf length, internode length, stem diameter, and leaf width; depressed stomata and prominent bristles and papillae; and thick leaves with higher bulliform cell groups and thicker adaxial epidermis. Compared with clone 15-28, clone 12-23 showed significantly lower electrical conductivity, significantly higher water content, soluble protein content, and superoxide dismutase activity, and significantly higher soluble sugar content and peroxidase activity. Under cold stress, the number of upregulated genes and downregulated genes of clone 12-23 was higher than clone 15-28, and many stress response genes and pathways were affected and enriched to varying degrees, particularly sugar and starch metabolic pathways and plant hormone signalling pathways. Under cold stress, the activity of 6-phosphate glucose trehalose synthase, trehalose phosphate phosphatase, and brassinosteroid-signalling kinase and the content of trehalose and brassinosteroids of clone 12-23 increased. CONCLUSIONS Compared with hyperploid clone 15-28, hypoploid clone 12-23 maintained a more robust osmotic adjustment system through sugar accumulation and hormonal regulation, which resulted in stronger cold tolerance.
Collapse
Affiliation(s)
- Hongli Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Tianju Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.,Chuxiong normal university, Chuxiong, 675000, Yunnan Province, PR China
| | - Xinghua Yu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.,Wenshan Academy of Agricultural Sciences, Wenshan, 663000, Yunnan Province, PR China
| | - Yang Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Chunfang Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Qinghui Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.
| | - Xianhong Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.
| |
Collapse
|
37
|
Alvarez-Maldini C, Acevedo M, Dumroese RK, González M, Cartes E. Intraspecific Variation in Drought Response of Three Populations of Cryptocarya alba and Persea lingue, Two Native Species From Mediterranean Central Chile. FRONTIERS IN PLANT SCIENCE 2020; 11:1042. [PMID: 32765551 PMCID: PMC7378861 DOI: 10.3389/fpls.2020.01042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/24/2020] [Indexed: 05/24/2023]
Abstract
An increase in the severity of drought events on Mediterranean climates highlights the need of using plant material adapted to drought during restoration efforts. Thus, we investigated between-population morpho-physiological differences in Cryptocarya alba and Persea lingue, two native species from Mediterranean central Chile, for traits that could effectively discriminate population performance in response to water restriction (WR) testing. Three populations from each species were subjected to WR treatment and physiological, morphological, and growth parameters were assessed at the beginning and at the end of the experiment. In C. alba, the most xeric population displayed smaller plants with mesophyllous leaves and lower photosynthetic rates indicating a resource saving strategy. Moreover, the xeric population performed better during WR than the most mesic populations, exhibiting higher water use efficiency (iWUE) and maintenance of growth rates. All C. alba populations responded equally to WR in terms of morphology and biomass partitioning. In contrast, differences among P. lingue populations were subtle at the morpho-physiological level with no apparent relation to provenance environmental conditions, and no morphological traits were affected by WR. However, in response to WR application, the most mesic population was, as observed through reduction in relative growth rates, more affected than xeric populations. We attribute such discrete differences between P. lingue provenances to the lower distributional range of selected populations. Our results show that relative growth rates in both species, and iWUE only in C. alba, exhibited population specific responses upon WR imposition; these results correspond with the environmental conditions found at the origin of each populations. Both traits could further assist in the selection of populations for restoration according to their response to water stress.
Collapse
Affiliation(s)
- Carolina Alvarez-Maldini
- Institute of Agri-food, Animal and Environmental Sciences (ICA3), Universidad de O Higgins, San Fernando, Chile
| | - Manuel Acevedo
- Centro Tecnológico de la Planta Forestal, Instituto Forestal, San Pedro de la Paz, Chile
| | - R. Kasten Dumroese
- Rocky Mountain Research Station, US Department of Agriculture, Forest Service, Moscow, ID, United States
| | - Marta González
- Centro Tecnológico de la Planta Forestal, Instituto Forestal, San Pedro de la Paz, Chile
| | - Eduardo Cartes
- Centro Tecnológico de la Planta Forestal, Instituto Forestal, San Pedro de la Paz, Chile
| |
Collapse
|
38
|
Lin Q, Wang S, Dao Y, Wang J, Wang K. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4285-4297. [PMID: 32242234 DOI: 10.1093/jxb/eraa173] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/01/2020] [Indexed: 05/03/2023]
Abstract
Transpiration occurs through stomata. The alteration of stomatal apertures in response to drought stress is an important process associated with water use efficiency (WUE). Trehalose-6-phosphate phosphatase (TPP) family genes have been reported to participate in adjustment of stomatal aperture. However, there have been no reports of the trehalose metabolism pathway genes improving WUE, and the upstream signalling pathway modulating these genes is not clear. Here, we demonstrate that a member of the TPP gene family, AtTPPI, confers drought resistance and improves WUE by decreasing stomatal apertures and improving root architecture. The reduced expression of AtTPPI caused a drought-sensitive phenotype, while its overexpression significantly increased drought tolerance. Abscisic acid (ABA)-induced stomatal closure experiments confirmed that AtTPPI mutation increased the stomatal aperture compared with that of wild-type plants; in contrast, overexpression plants had smaller stomatal apertures than those of wild-type plants. Moreover, AtTPPI mutation also caused stunted primary root length and compromised auxin transport, while overexpression plants had longer primary root lengths. Yeast one-hybrid assays showed that ABA-responsive element-binding factor1 (ABF1), ABF2, and ABF4 directly regulated AtTPPI expression. In summary, the way in which AtTPPI responds to drought stress suggests that AtTPPI-mediated stomatal regulation is an important mechanism to cope with drought stress and improve WUE.
Collapse
Affiliation(s)
- Qingfang Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yihang Dao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianyong Wang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Postiglione AE, Muday GK. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:968. [PMID: 32695131 PMCID: PMC7338657 DOI: 10.3389/fpls.2020.00968] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
The hormonal and environmental regulation of stomatal aperture is mediated by a complex signaling pathway found within the guard cells that surround stomata. Abscisic acid (ABA) induces stomatal closure in response to drought stress by binding to its guard cell localized receptor, initiating a signaling cascade that includes synthesis of reactive oxygen species (ROS). Genetic evidence in Arabidopsis indicates that ROS produced by plasma membrane respiratory burst oxidase homolog (RBOH) enzymes RBOHD and RBOHF modulate guard cell signaling and stomatal closure. However, ABA-induced ROS accumulates in many locations such as the cytoplasm, chloroplasts, nucleus, and endomembranes, some of which do not coincide with plasma membrane localized RBOHs. ABA-induced guard cell ROS accumulation has distinct spatial and temporal patterns that drive stomatal closure. Productive ROS signaling requires both rapid increases in ROS, as well as the ability of cells to prevent ROS from reaching damaging levels through synthesis of antioxidants, including flavonols. The relationship between locations of ROS accumulation and ABA signaling and the role of enzymatic and small molecule ROS scavengers in maintaining ROS homeostasis in guard cells are summarized in this review. Understanding the mechanisms of ROS production and homeostasis and the role of ROS in guard cell signaling can provide a better understanding of plant response to stress and could provide an avenue for the development of crop plants with increased stress tolerance.
Collapse
|
40
|
Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY, Zhang JS. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca 2+ signaling pathways in transgenic soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:384-398. [PMID: 31271689 DOI: 10.1111/tpj.14449] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors play important roles in response to various abiotic stresses. Previous study have proved that soybean GmWRKY54 can improve stress tolerance in transgenic Arabidopsis. Here, we generated soybean transgenic plants and further investigated roles and biological mechanisms of GmWRKY54 in response to drought stress. We demonstrated that expression of GmWRKY54, driven by either a constitutive promoter (pCm) or a drought-induced promoter (RD29a), confers drought tolerance. GmWRKY54 is a transcriptional activator and affects a large number of stress-related genes as revealed by RNA sequencing. Gene ontology (GO) enrichment and co-expression network analysis, together with measurement of physiological parameters, supported the idea that GmWRKY54 enhances stomatal closure to reduce water loss, and therefore confers drought tolerance in soybean. GmWRKY54 directly binds to the promoter regions of genes including PYL8, SRK2A, CIPK11 and CPK3 and activates them. Therefore GmWRKY54 achieves its function through abscisic acid (ABA) and Ca2+ signaling pathways. It is valuable that GmWRKY54 activates an ABA receptor and an SnRK2 kinase in the upstream position, unlike other WRKY proteins that regulate downstream genes in the ABA pathway. Our study revealed the role of GmWRKY54 in drought tolerance and further manipulation of this gene should improve growth and production in soybean and other legumes/crops under unfavorable conditions.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Wei Liang
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hui Xiao
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Guo XY, Wang Y, Zhao PX, Xu P, Yu GH, Zhang LY, Xiong Y, Xiang CB. AtEDT1/HDG11 regulates stomatal density and water-use efficiency via ERECTA and E2Fa. THE NEW PHYTOLOGIST 2019; 223:1478-1488. [PMID: 31004497 DOI: 10.1111/nph.15861] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/15/2019] [Indexed: 05/27/2023]
Abstract
Improvement of crop drought resistance and water-use efficiency (WUE) has been a major endeavor in agriculture. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor we previously identified from the enhanced drought tolerance1 mutant (edt1), has been demonstrated to improve drought tolerance and WUE significantly in multiple plant species when constitutively overexpressed. Here, we report the genetic evidence suggesting a genetic pathway, which consists of EDT1/HDG11, ERECTA, and E2Fa loci, and regulates WUE by modulating stomatal density. AtEDT1/HDG11 transcriptionally activates ERECTA by binding to homeodomain-binding (HD) cis-elements in the ERECTA promoter. ERECTA, in turn, depends on E2Fa to modulate the expression of cell cycle-related genes. This modulation affects the transition from mitosis to endocycle, leading to increased ploidy levels in leaf cells, and therefore increased cell size and decreased stomatal density. Our results suggest a possible EDT1/HDG11-ERECTA-E2Fa genetic pathway that reduces stomatal density by increasing cell size and provide a new avenue to improve WUE of crops.
Collapse
Affiliation(s)
- Xiao-Yu Guo
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Yao Wang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Ping-Xia Zhao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Ping Xu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, China
| | - Guo-Hua Yu
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Li-Yong Zhang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| |
Collapse
|
42
|
Lekklar C, Suriya-Arunroj D, Pongpanich M, Comai L, Kositsup B, Chadchawan S, Buaboocha T. Comparative Genomic Analysis of Rice with Contrasting Photosynthesis and Grain Production under Salt Stress. Genes (Basel) 2019; 10:genes10080562. [PMID: 31349693 PMCID: PMC6722916 DOI: 10.3390/genes10080562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/22/2023] Open
Abstract
Unfavourable environmental conditions, including soil salinity, lead to decreased rice (Oryza sativa L.) productivity, especially at the reproductive stage. In this study, we examined 30 rice varieties, which revealed significant differences in the photosynthetic performance responses under salt stress conditions during the reproductive stage, which ultimately affected yield components after recovery. In rice with a correlation between net photosynthetic rate (PN) and intercellular CO2 concentration (Ci) under salt stress, PN was found to be negatively correlated with filled grain number after recovery. Applying stringent criteria, we identified 130,317 SNPs and 15,396 InDels between two “high-yield rice” varieties and two “low-yield rice” varieties with contrasting photosynthesis and grain yield characteristics. A total of 2089 genes containing high- and moderate-impact SNPs or InDels were evaluated by gene ontology (GO) enrichment analysis, resulting in over-represented terms in the apoptotic process and kinase activity. Among these genes, 262 were highly expressed in reproductive tissues, and most were annotated as receptor-like protein kinases. These findings highlight the importance of variations in signaling components in the genome and these loci can serve as potential genes in rice breeding to produce a variety with salt avoidance that leads to increased yield in saline soil.
Collapse
Affiliation(s)
- Chakkree Lekklar
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangjai Suriya-Arunroj
- Nakohn Ratchasima Rice Research Center, Rice Department, Ministry of Agriculture and Cooperative, Nakohn Ratchasima 30110, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Boonthida Kositsup
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
43
|
Chen XM, Li YJ, Han D, Zhu HC, Xue CD, Chui HC, Cao T, Qin KR. A Capillary-Evaporation Micropump for Real-Time Sweat Rate Monitoring with an Electrochemical Sensor. MICROMACHINES 2019; 10:mi10070457. [PMID: 31284628 PMCID: PMC6680474 DOI: 10.3390/mi10070457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023]
Abstract
Sweat collection and real time monitoring of sweat rate play essential roles in physiology monitoring and assessment of an athlete’s performance during exercise. In this paper, we report a micropump for sweat simulant collection based on the capillary–evaporation effect. An electrochemical sensor is integrated into the micropump, which monitors the flow rate in real-time by detecting the current using three electrodes. The evaporation rate from micropore array, equivalent to the sweat rate, was theoretically and numerically investigated. The designed micropump yields the maximum collection rate as high as 0.235 μL/min. In addition, the collection capability of the micropump was validated experimentally; the flow rate through the microchannel was further detected in real-time with the electrochemical sensor. The experimental maximum collection rate showed good consistency with the theoretical data. Our proposed device shows the potential for sweat collection and real-time monitoring of sweat rate, which is a promising candidate for being a wearable platform for real-time physiology and performance monitoring during exercise.
Collapse
Affiliation(s)
- Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Dan Han
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hui-Chao Zhu
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Hsiang-Chen Chui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Kai-Rong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
44
|
Kale L, Nakurte I, Jalakas P, Kunga-Jegere L, Brosché M, Rostoks N. Arabidopsis mutant dnd2 exhibits increased auxin and abscisic acid content and reduced stomatal conductance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:18-26. [PMID: 31078052 DOI: 10.1016/j.plaphy.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Arabidopsis thaliana cyclic nucleotide-gated ion channel gene 4 (AtCNGC4) loss-of-function mutant dnd2 exhibits elevated accumulation of salicylic acid (SA), dwarfed morphology, reduced hypersensitive response (HR), altered disease resistance and spontaneous lesions on plant leaves. An orthologous barley mutant, nec1, has been reported to over-accumulate indole-3-acetic acid (IAA) and to exhibit changes in stomatal regulation in response to exogenous auxin. Here we show that the Arabidopsis dnd2 over-accumulates both IAA and abscisic acid (ABA) and displays related phenotypic and physiological changes, such as, reduced stomatal size, higher stomatal density and stomatal index. dnd2 showed increased salt tolerance in root growth assay and significantly reduced stomatal conductance, while maintaining near wt reaction in stomatal conductance upon external application of ABA, and probably consequently increased drought stress tolerance. Introduction of both sid2-1 and fmo1 into dnd2 background resulting in removal of SA did not alter stomatal conductance. Hence, the closed stomata of dnd2 is probably a result of increased ABA levels and not increased SA levels. The triple dnd2sid2abi1-1 mutant exhibited intermediate stomatal conductance compared to dnd2 and abi1-1 (ABA insensitive, open stomata), while the response to external ABA was as in abi1-1 suggesting that reduced stomatal conductance in dnd2 is not due to impaired ABA signaling. In conclusion, Arabidopsis dnd2 mutant exhibited ABA overaccumulation and stomatal phenotypes, which may contribute to the observed improvement in drought stress resistance. Thus, Arabidopsis dnd2 mutant may serve as a model for studying crosstalk between biotic and abiotic stress and hormonal response in plants.
Collapse
Affiliation(s)
- Liga Kale
- Faculty of Biology, University of Latvia, 1 Jelgavas Street, Riga, LV-1004, Latvia
| | - Ilva Nakurte
- Faculty of Chemistry, University of Latvia, 1 Jelgavas Street, Riga, LV-1004, Latvia
| | - Pirko Jalakas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Laura Kunga-Jegere
- Faculty of Biology, University of Latvia, 1 Jelgavas Street, Riga, LV-1004, Latvia
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Nils Rostoks
- Faculty of Biology, University of Latvia, 1 Jelgavas Street, Riga, LV-1004, Latvia.
| |
Collapse
|
45
|
Qi S, Lin Q, Feng X, Han H, Liu J, Zhang L, Wu S, Le J, Blumwald E, Hua X. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1446-1457. [PMID: 30623555 PMCID: PMC6576023 DOI: 10.1111/pbi.13070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by SPEECHLESS (SPCH). Phosphorylation of SPCH at the post-translational level has been reported to regulate stomatal development. Here we report that IDD16 acts as a negative regulator for stomatal initiation by directly regulating SPCH transcription. In Arabidopsis, IDD16 overexpression decreased abaxial stomatal density in a dose-dependent manner. Time course analysis revealed that the initiation of stomatal precursor cells in the IDD16-OE plants was severely inhibited. Consistent with these findings, the transcription of SPCH was greatly repressed in the IDD16-OE plants. In contrast, IDD16-RNAi transgenic line resulted in enhanced stomatal density, suggesting that IDD16 is an intrinsic regulator of stomatal development. ChIP analysis indicated that IDD16 could directly bind to the SPCH promoter. Furthermore, Arabidopsis plants overexpressing IDD16 exhibited significantly increased drought tolerance and higher integrated water use efficiency (WUE) due to reduction in leaf transpiration. Collectively, our results established that IDD16 negatively regulates stomatal initiation via trans-repression of SPCH, and thus provide a practical tool for increasing plant WUE through the manipulation of IDD16 expression.
Collapse
Affiliation(s)
- Shi‐Lian Qi
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing‐Fang Lin
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Jun Feng
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui‐Ling Han
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Liu
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liu Zhang
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Shuang Wu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jie Le
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xue‐Jun Hua
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Life SciencesZhejiang Sci‐Tech UniversityHangzhouZhejiangChina
| |
Collapse
|
46
|
Lastochkina O, Aliniaeifard S, Seifikalhor M, Yuldashev R, Pusenkova L, Garipova S. Plant Growth-Promoting Bacteria: Biotic Strategy to Cope with Abiotic Stresses in Wheat. WHEAT PRODUCTION IN CHANGING ENVIRONMENTS 2019:579-614. [DOI: 10.1007/978-981-13-6883-7_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
47
|
Boutej H, Rahimian R, Thammisetty SS, Béland LC, Lalancette-Hébert M, Kriz J. Diverging mRNA and Protein Networks in Activated Microglia Reveal SRSF3 Suppresses Translation of Highly Upregulated Innate Immune Transcripts. Cell Rep 2018; 21:3220-3233. [PMID: 29241548 DOI: 10.1016/j.celrep.2017.11.058] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Uncontrolled microglial activation may lead to the development of inflammation-induced brain damage. Here, we uncover a ribosome-based mechanism/checkpoint involved in control of the innate immune response and microglial activation. Using an in vivo model system for analysis of the dynamic translational state of microglial ribosomes, with mRNAs as input and newly synthesized peptides as an output, we find a marked dissociation of microglia mRNA and protein networks following innate immune challenge. Highly upregulated and ribosome-associated mRNAs were not translated, resulting in two distinct microglial molecular signatures, a highly specialized pro-inflammatory mRNA signature and an immunomodulatory/homeostatic protein signature. We find that this is due to specific translational suppression of highly expressed mRNAs through a 3' UTR-mediated mechanism involving the RNA-binding protein SRSF3. This discovery suggests avenues for therapeutic modulation of innate immune response in resident microglia.
Collapse
Affiliation(s)
- Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Reza Rahimian
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Sai Sampath Thammisetty
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Louis-Charles Béland
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Mélanie Lalancette-Hébert
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Faculty of Medicine, Laval University, Québec, QC G1J2G3, Canada.
| |
Collapse
|
48
|
Wang Z, Tian X, Zhao Q, Liu Z, Li X, Ren Y, Tang J, Fang J, Xu Q, Bu Q. The E3 Ligase DROUGHT HYPERSENSITIVE Negatively Regulates Cuticular Wax Biosynthesis by Promoting the Degradation of Transcription Factor ROC4 in Rice. THE PLANT CELL 2018; 30:228-244. [PMID: 29237723 PMCID: PMC5810576 DOI: 10.1105/tpc.17.00823] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 05/17/2023]
Abstract
Cuticular wax plays crucial roles in protecting plants from environmental stresses, particularly drought stress. Many enzyme-encoding genes and transcription factors involved in wax biosynthesis have been identified, but the underlying posttranslational regulatory mechanisms are poorly understood. Here, we demonstrate that DROUGHT HYPERSENSITIVE (DHS), encoding a Really Interesting New Gene (RING)-type protein, is a critical regulator of wax biosynthesis in rice (Oryza sativa). The cuticular wax contents were significantly reduced in DHS overexpression plants but increased in dhs mutants compared with the wild type, which resulted in a response opposite that of drought stress. DHS exhibited E3 ubiquitin ligase activity and interacted with the homeodomain-leucine zipper IV protein ROC4. Analysis of ROC4 overexpression plants and roc4 mutants indicated that ROC4 positively regulates cuticular wax biosynthesis and the drought stress response. ROC4 is ubiquitinated in vivo and subjected to ubiquitin/26S proteasome-mediated degradation. ROC4 degradation was promoted by DHS but delayed in dhs mutants. ROC4 acts downstream of DHS, and Os-BDG is a direct downstream target of the DHS-ROC4 cascade. These results suggest a mechanism whereby DHS negatively regulates wax biosynthesis by promoting the degradation of ROC4, and they suggest that DHS and ROC4 are valuable targets for the engineering of drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhen Zhao
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Zhiqi Liu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Yuekun Ren
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Fang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Qijiang Xu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
49
|
Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L. OsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2108. [PMID: 29312378 PMCID: PMC5733117 DOI: 10.3389/fpls.2017.02108] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 05/19/2023]
Abstract
Jasmonates (JAs) and abscisic acid (ABA) are phytohormones known play important roles in plant response and adaptation to various abiotic stresses including salinity, drought, wounding, and cold. JAZ (JASMONATE ZIM-domain) proteins have been reported to play negative roles in JA signaling. However, direct evidence is still lacking that JAZ proteins regulate drought resistance. In this study, OsJAZ1 was investigated for its role in drought resistance in rice. Expression of OsJAZ1 was strongly responsive to JA treatment, and it was slightly responsive to ABA, salicylic acid, and abiotic stresses including drought, salinity, and cold. The OsJAZ1-overexpression rice plants were more sensitive to drought stress treatment than the wild-type (WT) rice Zhonghua 11 (ZH11) at both the seedling and reproductive stages, while the jaz1 T-DNA insertion mutant plants showed increased drought tolerance compared to the WT plants. The OsJAZ1-overexpression plants were hyposensitive to MeJA and ABA, whereas the jaz1 mutant plants were hypersensitive to MeJA and ABA. In addition, there were significant differences in shoot and root length between the OsJAZ1 transgenic and WT plants under the MeJA and ABA treatments. A subcellular localization assay indicated that OsJAZ1 was localized in both the nucleus and cytoplasm. Transcriptome profiling analysis by RNA-seq revealed that the expression levels of many genes in the ABA and JA signaling pathways exhibited significant differences between the OsJAZ1-overexpression plants and WT ZH11 under drought stress treatment. Quantitative real-time PCR confirmed the expression profiles of some of the differentially expressed genes, including OsNCED4, OsLEA3, RAB21, OsbHLH006, OsbHLH148, OsDREB1A, OsDREB1B, SNAC1, and OsCCD1. These results together suggest that OsJAZ1 plays a role in regulating the drought resistance of rice partially via the ABA and JA pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
El-Katony TM, Khedr AHAF, Mergeb SO. Drought stress affects gas exchange and uptake and partitioning of minerals in swallowwort (Cynanchum acutum L.). RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2017. [DOI: 10.1007/s12210-017-0654-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|