1
|
Jiang X, Hu Q, Mei D, Li X, Xiang L, Al-Shehbaz IA, Song X, Liu J, Lysak MA, Sun P. Chromosome fusions shaped karyotype evolution and evolutionary relationships in the model family Brassicaceae. Nat Commun 2025; 16:4631. [PMID: 40389407 PMCID: PMC12089291 DOI: 10.1038/s41467-025-59640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/29/2025] [Indexed: 05/21/2025] Open
Abstract
The ancestral crucifer karyotype and 22 conserved genomic blocks (CGBs) facilitate phylogenomic analyses in the Brassicaceae. Chromosomal rearrangements reshuffled CGBs of ancestral chromosomes during karyotype evolution. Here, we identify eight protochromosomes representing the common ancestral karyotype (ACBK) of the two Brassicoideae supertribes: Camelinodae (Lineage I) and Brassicodae (Lineage II). The characterization of multiple cascading fusion events allows us to infer evolutionary relationships based on these events. In the Camelinodae, the ACBK first evolved into the AKI genome, which remained conserved in the Cardamineae, whereas it was altered to tAKI by a reciprocal translocation that preceded the diversification of most Camelinodae tribes. The identified fusion breakpoints largely overlap with CGB boundaries, suggesting that CGBs are mainly disrupted by chromosome fusions. Our results demonstrate the stable inheritance of chromosome fusions and their importance for reconstructing evolutionary relationships. The chromosomal breakpoint approach provides a basis for ancestral state reconstruction based on chromosome-level genome assemblies.
Collapse
Affiliation(s)
- Xinyao Jiang
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaonan Li
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology and Department of Experimental Botany, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China.
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
2
|
Hay NM, Windham MD, Mandáková T, Lysak MA, Hendriks KP, Mummenhoff K, Lens F, Pryer KM, Bailey CD. A Hyb-Seq phylogeny of Boechera and related genera using a combination of Angiosperms353 and Brassicaceae-specific bait sets. AMERICAN JOURNAL OF BOTANY 2023; 110:e16226. [PMID: 37561651 DOI: 10.1002/ajb2.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
PREMISE Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.
Collapse
Affiliation(s)
- Nikolai M Hay
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Michael D Windham
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kasper P Hendriks
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
| | - Frederic Lens
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
3
|
Boyd JN, Baskauf C, Lindsay A, Anderson JT, Brzyski J, Cruse‐Sanders J. Phenotypic plasticity and genetic diversity shed light on endemism of rare Boechera perstellata and its potential vulnerability to climate warming. Ecol Evol 2023; 13:e10540. [PMID: 37720057 PMCID: PMC10502469 DOI: 10.1002/ece3.10540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023] Open
Abstract
The rapid pace of contemporary environmental change puts many species at risk, especially rare species constrained by limited capacity to adapt or migrate due to low genetic diversity and/or fitness. But the ability to acclimate can provide another way to persist through change. We compared the capacity of rare Boechera perstellata (Braun's rockcress) and widespread B. laevigata to acclimate to change. We investigated the phenotypic plasticity of growth, biomass allocation, and leaf morphology of individuals of B. perstellata and B. laevigata propagated from seed collected from several populations throughout their ranges in a growth chamber experiment to assess their capacity to acclimate. Concurrently, we assessed the genetic diversity of sampled populations using 17 microsatellite loci to assess evolutionary potential. Plasticity was limited in both rare B. perstellata and widespread B. laevigata, but differences in the plasticity of root traits between species suggest that B. perstellata may have less capacity to acclimate to change. In contrast to its widespread congener, B. perstellata exhibited no plasticity in response to temperature and weaker plastic responses to water availability. As expected, B. perstellata also had lower levels of observed heterozygosity than B. laevigata at the species level, but population-level trends in diversity measures were inconsistent due to high heterogeneity among B. laevigata populations. Overall, the ability of phenotypic plasticity to broadly explain the rarity of B. perstellata versus commonness of B. laevigata is limited. However, some contextual aspects of our plasticity findings compared with its relatively low genetic variability may shed light on the narrow range and habitat associations of B. perstellata and suggest its vulnerability to climate warming due to acclimatory and evolutionary constraints.
Collapse
Affiliation(s)
- Jennifer Nagel Boyd
- Department of Biology, Geology, and Environmental ScienceUniversity of Tennessee at ChattanoogaChattanoogaTennesseeUSA
| | - Carol Baskauf
- Department of BiologyAustin Peay State UniversityClarksvilleTennesseeUSA
| | - Annie Lindsay
- Department of BiologyAustin Peay State UniversityClarksvilleTennesseeUSA
| | - Jill T. Anderson
- Department of Genetics, Odum School of Ecology, Davison Life SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Jessica Brzyski
- Department of BiologySeton Hill UniversityGreensburgPennsylvaniaUSA
| | | |
Collapse
|
4
|
Li Q, Zhao T, Liang L, Hou S, Wang G, Ma Q. Molecular cloning and expression analysis of hybrid hazelnut (Corylus heterophylla × Corylus avellana) ChaSRK1/2 genes and their homologs from other cultivars and species. Gene 2020; 756:144917. [PMID: 32590104 DOI: 10.1016/j.gene.2020.144917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/22/2020] [Accepted: 06/17/2020] [Indexed: 12/01/2022]
Abstract
The self-incompatibility system of Corylus is a sporophytic type that is phenotypically similar to that of Brassica. While the molecular mechanism of sporophytic self-incompatibility (SSI) has been investigated extensively in Brassica (Brassicaceae), little is known about the corresponding mechanism in Corylus (Betulaceae). Here, we discuss the SSI mechanism with respect to S-locus receptor kinase (SRK) gene homologs. To obtain two SRK candidate unigenes, we compared all of the unigenes in a transcriptional protein database from our previous study with BnSRK-1 (AB270767) using BLASTX with a cutoff e-value of 10-5. We then cloned the full-length cDNA of ChaSRK1 and ChaSRK2 genes from Ping'ou hybrid hazelnut (Corylus heterophylla × Corylus avellana) using RACE techniques. Bioinformatics approaches were used to analyze the cDNA sequences, protein sequences, and domains of the encoded proteins. The full-length ChaSRK1 cDNA was 2883 base pairs (bp) with a coding sequence (CDS) of 2,547 bp encoding 849 amino acid residues. The full-length ChaSRK2 cDNA was 2,693 bp, with a CDS of 2,433 bp encoding 811 amino acids. The ChaSRK1/2 proteins contained an S-domain (extracellular domain), a transmembrane domain, a Ser/Thr protein kinase active site (kinase domain), and DUF3660 and/or DUF3403 domains. The lengths of 18 partial SRK homologs ranged from 1347 to 1451 bp, and they contained the same structural domains as ChaSRK1 and ChaSRK2. Phylogenetic analysis revealed that all SRK homologs could be divided into two categories that were similar to the classification of SRKs in Brassica. The expression patterns of ChaSRK1 and ChaSRK2 differed: ChaSRK2 was predominantly expressed in mature stigmatic styles, while ChaSRK1 was expressed in other tissues with the highest in the root tips of Corylus. Using dual-color fluorescence in situ hybridization, ChaSRK1/2 expression was found to be localized in papillar cells. Collectively, these results revealed that SRKs from Corylus had similar characteristics to SRKs from Brassica. We therefore speculated that the SSI mechanism in Corylus might be more similar to the Brassica mechanism than to other SSI types.
Collapse
Affiliation(s)
- Qing Li
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Tiantian Zhao
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Lisong Liang
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Sihao Hou
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Guixi Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China
| | - Qinghua Ma
- Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Beijing 100091, China; Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China; National Hazelnut Industry Innovation Alliance, Beijing 100091, China.
| |
Collapse
|
5
|
Forsythe ES, Nelson ADL, Beilstein MA. Biased Gene Retention in the Face of Introgression Obscures Species Relationships. Genome Biol Evol 2020; 12:1646-1663. [PMID: 33011798 PMCID: PMC7533067 DOI: 10.1093/gbe/evaa149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Phylogenomic analyses are recovering previously hidden histories of hybridization, revealing the genomic consequences of these events on the architecture of extant genomes. We applied phylogenomic techniques and several complementary statistical tests to show that introgressive hybridization appears to have occurred between close relatives of Arabidopsis, resulting in cytonuclear discordance and impacting our understanding of species relationships in the group. The composition of introgressed and retained genes indicates that selection against incompatible cytonuclear and nuclear-nuclear interactions likely acted during introgression, whereas linkage also contributed to genome composition through the retention of ancient haplotype blocks. We also applied divergence-based tests to determine the species branching order and distinguish donor from recipient lineages. Surprisingly, these analyses suggest that cytonuclear discordance arose via extensive nuclear, rather than cytoplasmic, introgression. If true, this would mean that most of the nuclear genome was displaced during introgression whereas only a small proportion of native alleles were retained.
Collapse
|
6
|
Olsen J, Singh Gill G, Haugen R, Matzner SL, Alsdurf J, Siemens DH. Evolutionary constraint on low elevation range expansion: Defense-abiotic stress-tolerance trade-off in crosses of the ecological model Boechera stricta. Ecol Evol 2019; 9:11532-11544. [PMID: 31695866 PMCID: PMC6822064 DOI: 10.1002/ece3.5499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/27/2023] Open
Abstract
Most transplant experiments across species geographic range boundaries indicate that adaptation to stressful environments outside the range is often constrained. However, the mechanisms of these constraints remain poorly understood. We used extended generation crosses from diverged high and low elevation populations. In experiments across low elevation range boundaries, there was selection on the parental lines for abiotic stress-tolerance and resistance to herbivores. However, in support of a defense-tolerance trade-off, extended generation crosses showed nonindependent segregation of these traits in the laboratory across a drought-stress gradient and in the field across the low elevation range boundary. Genotypic variation in a marker from a region of the genome containing a candidate gene (MYC2) was associated with change in the genetic trade-off. Thus, using crosses and forward genetics, we found experimental genetic and molecular evidence for a pleiotropic trade-off that could constrain the evolution of range expansion.
Collapse
Affiliation(s)
- Jason Olsen
- Integrative Genomics ProgramBlack Hills State UniversitySpearfishSDUSA
- Present address:
500 W Fort Street 111RBoiseID83702USA
| | - Gunbharpur Singh Gill
- Integrative Genomics ProgramBlack Hills State UniversitySpearfishSDUSA
- Present address:
Department of BiologyUtah State UniversityLoganUTUSA
| | - Riston Haugen
- Integrative Genomics ProgramBlack Hills State UniversitySpearfishSDUSA
| | | | - Jake Alsdurf
- Integrative Genomics ProgramBlack Hills State UniversitySpearfishSDUSA
- Present address:
Division of BiologyKansas State UniversityManhattanKSUSA
| | - David H. Siemens
- Integrative Genomics ProgramBlack Hills State UniversitySpearfishSDUSA
| |
Collapse
|
7
|
Rojek J, Kapusta M, Kozieradzka-Kiszkurno M, Majcher D, Górniak M, Sliwinska E, Sharbel TF, Bohdanowicz J. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). ANNALS OF BOTANY 2018. [PMID: 29982367 DOI: 10.1093/aob/mcy11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS In the Brassicaceae family, apomictic development is characteristic of the genus Boechera. Hybridization, polyploidy and environmental adaptation that arose during the evolution of Boechera may serve as (epi)genetic regulators of apomictic initiation in this genus. Here we focus on Boechera stricta, a predominantly diploid species that reproduces sexually. However, apomictic development in this species has been reported in several studies, indicating non-obligate sexuality. METHODS A progressive investigation of flower development was conducted using three accessions to assess the reproductive system of B. stricta. We employed molecular and cyto-embryological identification using histochemistry, transmission electron microscopy and Nomarski and epifluorescence microscopy. KEY RESULTS Data from internal transcribed spacer (ITS) and chloroplast haplotype sequencing, in addition to microsatellite variation, confirmed the B. stricta genotype for all lines. Embryological data indicated irregularities in sexual reproduction manifested by heterochronic ovule development, longevity of meiocyte and dyad stages, diverse callose accumulation during meiocyte-to-gametophyte development, and the formation of triads and tetrads in several patterns. The arabinogalactan-related sugar epitope recognized by JIM13 immunolocalized to one or more megaspores. Furthermore, pollen sterility and a high frequency of seed abortion appeared to accompany reproduction of the accession ES512, along with the initiation of parthenogenesis. Data from flow cytometric screening revealed both sexual and apomictic seed formation. CONCLUSION These results imply that B. stricta is a species with an underlying ability to initiate apomixis, at least with respect to the lines examined here. The existence of apomixis in an otherwise diploid sexual B. stricta may provide the genomic building blocks for establishing highly penetrant apomictic diploids and hybrid relatives. Our findings demonstrate that apomixis per se is a variable trait upon which natural selection could act.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Poland
| | - Malgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Poland
| | | | - Daria Majcher
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Poland
| | - Marcin Górniak
- Department of Molecular Evolution, Faculty of Biology, University of Gdansk, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Technology and Life Sciences in Bydgoszcz, Poland
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jerzy Bohdanowicz
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Poland
| |
Collapse
|
8
|
Rojek J, Kapusta M, Kozieradzka-Kiszkurno M, Majcher D, Górniak M, Sliwinska E, Sharbel TF, Bohdanowicz J. Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae). ANNALS OF BOTANY 2018; 122:513-539. [PMID: 29982367 PMCID: PMC6153484 DOI: 10.1093/aob/mcy114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/21/2018] [Indexed: 05/15/2023]
Abstract
Background and aims In the Brassicaceae family, apomictic development is characteristic of the genus Boechera. Hybridization, polyploidy and environmental adaptation that arose during the evolution of Boechera may serve as (epi)genetic regulators of apomictic initiation in this genus. Here we focus on Boechera stricta, a predominantly diploid species that reproduces sexually. However, apomictic development in this species has been reported in several studies, indicating non-obligate sexuality. Methods A progressive investigation of flower development was conducted using three accessions to assess the reproductive system of B. stricta. We employed molecular and cyto-embryological identification using histochemistry, transmission electron microscopy and Nomarski and epifluorescence microscopy. Key Results Data from internal transcribed spacer (ITS) and chloroplast haplotype sequencing, in addition to microsatellite variation, confirmed the B. stricta genotype for all lines. Embryological data indicated irregularities in sexual reproduction manifested by heterochronic ovule development, longevity of meiocyte and dyad stages, diverse callose accumulation during meiocyte-to-gametophyte development, and the formation of triads and tetrads in several patterns. The arabinogalactan-related sugar epitope recognized by JIM13 immunolocalized to one or more megaspores. Furthermore, pollen sterility and a high frequency of seed abortion appeared to accompany reproduction of the accession ES512, along with the initiation of parthenogenesis. Data from flow cytometric screening revealed both sexual and apomictic seed formation. Conclusion These results imply that B. stricta is a species with an underlying ability to initiate apomixis, at least with respect to the lines examined here. The existence of apomixis in an otherwise diploid sexual B. stricta may provide the genomic building blocks for establishing highly penetrant apomictic diploids and hybrid relatives. Our findings demonstrate that apomixis per se is a variable trait upon which natural selection could act.
Collapse
Affiliation(s)
- Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Poland
| | | | - Daria Majcher
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Poland
| | - Marcin Górniak
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Technology and Life Sciences in Bydgoszcz, Poland
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jerzy Bohdanowicz
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Poland
| |
Collapse
|
9
|
Abstract
Boechera stricta (B. stricta) is a wild relative of Arabidopsis, occurring in mostly montane regions of western North America. In this article, we assembled the complete mitochondrial (mt) DNA sequence of B. stricta into a circular genome of length 271,601 bp, including 31 protein-coding genes, 21 tRNA genes, and 3 rRNA genes. From the neighbour-joining phylogenetic tree was constructed, based on the 23 conserved protein-coding genes of B. stricta and other 23 plant species, and the phylogenic relationship and evolution position of B. stricta were determined. The complete mt genome would be useful for further investigation of the genotype-by-environment interactions in mitochondria of Boechera.
Collapse
Affiliation(s)
- Junji Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing,China.,MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing,China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing,China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing,China
| |
Collapse
|
10
|
Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. PLANT PHYSIOLOGY 2018; 177:1410-1424. [PMID: 29907701 PMCID: PMC6084661 DOI: 10.1104/pp.18.00503] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.
Collapse
Affiliation(s)
- Steven A Arisz
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Jae-Yun Heo
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Pieter van Egmond
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | | | | | - Baosheng Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Lee CR, Hsieh JW, Schranz ME, Mitchell-Olds T. The Functional Change and Deletion of FLC Homologs Contribute to the Evolution of Rapid Flowering in Boechera stricta. FRONTIERS IN PLANT SCIENCE 2018; 9:1078. [PMID: 30108602 PMCID: PMC6080596 DOI: 10.3389/fpls.2018.01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 05/04/2023]
Abstract
Differences in the timing of vegetative-to-reproductive phase transition have evolved independently and repeatedly in different plant species. Due to their specific biological functions and positions in pathways, some genes are important targets of repeated evolution - independent mutations on these genes caused the evolution of similar phenotypes in distantly related organisms. While many studies have investigated these genes, it remains unclear how gene duplications influence repeated phenotypic evolution. Here we characterized the genetic architecture underlying a novel rapid-flowering phenotype in Boechera stricta and investigated the candidate genes BsFLC1 and BsFLC2. The expression patterns of BsFLC1 suggested its function in flowering time suppression, and the deletion of BsFLC1 is associated with rapid flowering and loss of vernalization requirement. In contrast, BsFLC2 did not appear to be associated with flowering and had accumulated multiple amino acid substitutions in the relatively short evolutionary timeframe after gene duplication. These non-synonymous substitutions greatly changed the physicochemical properties of the original amino acids, concentrated non-randomly near a protein-interacting domain, and had greater substitution rate than synonymous changes. Here we suggested that, after recent gene duplication of the FLC gene, the evolution of rapid phenology was made possible by the change of BsFLC2 expression pattern or protein sequences and the deletion of BsFLC1.
Collapse
Affiliation(s)
- Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- *Correspondence: Cheng-Ruei Lee,
| | - Jo-Wei Hsieh
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - M. E. Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
12
|
Lee CR, Wang B, Mojica JP, Mandáková T, Prasad KVSK, Goicoechea JL, Perera N, Hellsten U, Hundley HN, Johnson J, Grimwood J, Barry K, Fairclough S, Jenkins JW, Yu Y, Kudrna D, Zhang J, Talag J, Golser W, Ghattas K, Schranz ME, Wing R, Lysak MA, Schmutz J, Rokhsar DS, Mitchell-Olds T. Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat Ecol Evol 2017; 1:119. [PMID: 28812690 PMCID: PMC5607633 DOI: 10.1038/s41559-017-0119] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/16/2017] [Indexed: 12/23/2022]
Abstract
Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.
Collapse
Affiliation(s)
- Cheng-Ruei Lee
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA
- Institute of Ecology and Evolutionary Biology and Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan ROC
| | - Baosheng Wang
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA
- Department of Plant Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Julius P Mojica
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA
| | - Terezie Mandáková
- Plant Cytogenomics Group, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | | | - Jose Luis Goicoechea
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Nadeesha Perera
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA
| | - Uffe Hellsten
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Hope N Hundley
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jenifer Johnson
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Stephen Fairclough
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jerry W Jenkins
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Yeisoo Yu
- Phyzen Genomics Institute, Phyzen Inc., Seoul 151-836, South Korea
| | - Dave Kudrna
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Jianwei Zhang
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Jayson Talag
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Wolfgang Golser
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Kathryn Ghattas
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Rod Wing
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Martin A Lysak
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Daniel S Rokhsar
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Thomas Mitchell-Olds
- Department of Biology, Duke University, Box 90338, Durham, North Carolina 27708, USA
| |
Collapse
|
13
|
The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Sci Rep 2017; 7:40728. [PMID: 28094805 PMCID: PMC5240624 DOI: 10.1038/srep40728] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
The genus Barbarea has emerged as a model for evolution and ecology of plant defense compounds, due to its unusual glucosinolate profile and production of saponins, unique to the Brassicaceae. One species, B. vulgaris, includes two ‘types’, G-type and P-type that differ in trichome density, and their glucosinolate and saponin profiles. A key difference is the stereochemistry of hydroxylation of their common phenethylglucosinolate backbone, leading to epimeric glucobarbarins. Here we report a draft genome sequence of the G-type, and re-sequencing of the P-type for comparison. This enables us to identify candidate genes underlying glucosinolate diversity, trichome density, and study the genetics of biochemical variation for glucosinolate and saponins. B. vulgaris is resistant to the diamondback moth, and may be exploited for “dead-end” trap cropping where glucosinolates stimulate oviposition and saponins deter larvae to the extent that they die. The B. vulgaris genome will promote the study of mechanisms in ecological biochemistry to benefit crop resistance breeding.
Collapse
|
14
|
Lysak MA, Mandáková T, Schranz ME. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:108-15. [PMID: 26945766 DOI: 10.1016/j.pbi.2016.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
A decade ago the concept of the Ancestral Crucifer Karyotype (ACK) and the definition of 24 conserved genomic blocks was presented. Subsequently, 35 cytogenetic reconstructions and/or draft genome sequences of crucifer species (members of the Brassicaceae family) have been analyzed in the context of this system; placing crucifers at the forefront of plant phylogenomics. In this review, we highlight how the ACK and genomic blocks have facilitated and guided genomic analysis of crucifers in the last 10 years and provide an update of this robust model.
Collapse
Affiliation(s)
- Martin A Lysak
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| |
Collapse
|
15
|
Cacho NI, Kliebenstein DJ, Strauss SY. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. THE NEW PHYTOLOGIST 2015; 208:915-27. [PMID: 26192213 DOI: 10.1111/nph.13561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/08/2015] [Indexed: 05/12/2023]
Abstract
We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California. One Shields Avenue, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Sharon Y Strauss
- Center for Population Biology, and Department of Evolution of Ecology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:785-93. [PMID: 25864414 DOI: 10.1111/tpj.12849] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 05/19/2023]
Abstract
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes - the submetacentric Het' and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.
Collapse
Affiliation(s)
- Terezie Mandáková
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - M Eric Schranz
- Plant Systematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Timothy F Sharbel
- Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466, Germany
| | - Hans de Jong
- Laboratory of Genetics, Wageningen UR PSG, P.O. Box 16, Wageningen, 6700 AA, The Netherlands
| | - Martin A Lysak
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| |
Collapse
|
17
|
Heo JY, Feng D, Niu X, Mitchell-Olds T, van Tienderen PH, Tomes D, Schranz ME. Identification of quantitative trait loci and a candidate locus for freezing tolerance in controlled and outdoor environments in the overwintering crucifer Boechera stricta. PLANT, CELL & ENVIRONMENT 2014; 37:2459-69. [PMID: 24811132 PMCID: PMC4416058 DOI: 10.1111/pce.12365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 05/29/2023]
Abstract
Development of chilling and freezing tolerance is complex and can be affected by photoperiod, temperature and photosynthetic performance; however, there has been limited research on the interaction of these three factors. We evaluated 108 recombinant inbred lines of Boechera stricta, derived from a cross between lines originating from Montana and Colorado, under controlled long day (LD), short-day (SD) and in an outdoor environment (OE). We measured maximum quantum yield of photosystem II, lethal temperature for 50% survival and electrolyte leakage of leaves. Our results revealed significant variation for chilling and freezing tolerance and photosynthetic performance in different environments. Using both single- and multi-trait analyses, three main-effect quantitative trait loci (QTL) were identified. QTL on linkage group (LG)3 were SD specific, whereas QTL on LG4 were found under both LD and SD. Under all conditions, QTL on LG7 were identified, but were particularly predictive for the outdoor experiment. The co-localization of photosynthetic performance and freezing tolerance effects supports these traits being co-regulated. Finally, the major QTL on LG7 is syntenic to the Arabidopsis C-repeat binding factor locus, known regulators of chilling and freezing responses in Arabidopsis thaliana and other species.
Collapse
Affiliation(s)
- Jae-Yun Heo
- Biosystematics Group, Wageningen University & Research Center, Wageningen, the Netherlands
| | - Dongsheng Feng
- Pioneer Hi-Bred International, Inc., a DuPont Business, Johnston, USA
| | - Xiaomu Niu
- Pioneer Hi-Bred International, Inc., a DuPont Business, Johnston, USA
| | | | - Peter H. van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Dwight Tomes
- Pioneer Hi-Bred International, Inc., a DuPont Business, Johnston, USA
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University & Research Center, Wageningen, the Netherlands
| |
Collapse
|
18
|
Stitt M. Chill out with rockcress: quantitative genetics of frost tolerance in the North American wild perennial Boechera stricta. PLANT, CELL & ENVIRONMENT 2014; 37:2453-2455. [PMID: 24905747 DOI: 10.1111/pce.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
19
|
Hay AS, Pieper B, Cooke E, Mandáková T, Cartolano M, Tattersall AD, Ioio RD, McGowan SJ, Barkoulas M, Galinha C, Rast MI, Hofhuis H, Then C, Plieske J, Ganal M, Mott R, Martinez-Garcia JF, Carine MA, Scotland RW, Gan X, Filatov DA, Lysak MA, Tsiantis M. Cardamine hirsuta: a versatile genetic system for comparative studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1-15. [PMID: 24460550 DOI: 10.1111/tpj.12447] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C. hirsuta and show that the genome structure of C. hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C. hirsuta and A. thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C. hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C. hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.
Collapse
Affiliation(s)
- Angela S Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Anderson JT, Lee CR, Mitchell-Olds T. Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection. Evolution 2014; 68:16-31. [PMID: 24102539 PMCID: PMC3928097 DOI: 10.1111/evo.12259] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 08/16/2013] [Indexed: 12/12/2022]
Abstract
Fitness trade-offs across episodes of selection and environments influence life-history evolution and adaptive population divergence. Documenting these trade-offs remains challenging as selection can vary in magnitude and direction through time and space. Here, we evaluate fitness trade-offs at the levels of the whole organism and the quantitative trait locus (QTL) in a multiyear field study of Boechera stricta (Brassicaceae), a genetically tractable mustard native to the Rocky Mountains. Reciprocal local adaptation was pronounced for viability, but not for reproductive components of fitness. Instead, local genomes had a fecundity advantage only in the high latitude garden. By estimating realized selection coefficients from individual-level data on viability and reproductive success and permuting the data to infer significance, we examined the genetic basis of fitness trade-offs. This analytical approach (Conditional Neutrality-Antagonistic Pleiotropy, CNAP) identified genetic trade-offs at a flowering phenology QTL (costs of adaptation) and revealed genetic trade-offs across fitness components (costs of reproduction). These patterns would not have emerged from traditional ANOVA-based QTL mapping. Our analytical framework can be applied to other systems to investigate fitness trade-offs. This task is becoming increasingly important as climate change may alter fitness landscapes, potentially disrupting fitness trade-offs that took many generations to evolve.
Collapse
Affiliation(s)
- Jill T Anderson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208.
| | | | | |
Collapse
|
21
|
Mau M, Corral JM, Vogel H, Melzer M, Fuchs J, Kuhlmann M, de Storme N, Geelen D, Sharbel TF. The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species. PLANT PHYSIOLOGY 2013; 163:1640-59. [PMID: 24130193 PMCID: PMC3850206 DOI: 10.1104/pp.113.222448] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In apomictic Boechera spp., meiotic diplospory leads to the circumvention of meiosis and the suppression of recombination to produce unreduced male and female gametes (i.e. apomeiosis). Here, we have established an early flower developmental staging system and have performed microarray-based comparative gene expression analyses of the pollen mother cell stage in seven diploid sexual and seven diploid apomictic genotypes to identify candidate factors for unreduced pollen formation. We identified a transcript unique to apomictic Boechera spp. called UPGRADE2 (BspUPG2), which is highly up-regulated in their pollen mother cells. BspUPG2 is highly conserved among apomictic Boechera spp. genotypes but has no homolog in sexual Boechera spp. or in any other taxa. BspUPG2 undergoes posttranscriptional processing but lacks a prominent open reading frame. Together with the potential of stably forming microRNA-like secondary structures, we hypothesize that BspUPG2 functions as a long regulatory noncoding messenger RNA-like RNA. BspUPG2 has apparently arisen through a three-step process initiated by ancestral gene duplication of the original BspUPG1 locus, followed by sequential insertions of segmentally duplicated gene fragments, with final exonization of its sequence structure. Its genesis reflects the hybridization history that characterizes the genus Boechera.
Collapse
|
22
|
Baskauf CJ, Jinks NC, Mandel JR, McCauley DE. Population genetics of Braun's Rockcress (Boechera perstellata, Brassicaceae), an endangered plant with a disjunct distribution. J Hered 2013; 105:265-75. [PMID: 24163403 DOI: 10.1093/jhered/est074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Boechera perstellata is an endangered plant found only in middle Tennessee and north central Kentucky. After sampling 4 Tennessee and 3 Kentucky populations, genetic variability and population structure were examined for this species using isozymes, chloroplast DNA, and microsatellites (averaging 35, 29, and 27 individuals per population per class of marker, respectively). The only genetic variability detected for 23 isozymes was a fixed difference between Tennessee and Kentucky populations at 1 locus. Fixed differences between populations of the 2 states were also observed for 3 chloroplast markers. Polymorphism at 19 nuclear microsatellites was 74% at the species level and averaged 21% at the population level. However, observed heterozygosity was extremely low in all populations, ranging from 0.000 to 0.005. High F IS values (0.93) suggest that Boechera perstellata is a primarily selfing species. Tennessee populations have more genetic diversity than Kentucky populations of B. perstellata. Microsatellite markers revealed substantial genetic divergence between the states and genetic differences among populations within each state. Analysis of molecular variance indicates that most variability in this species occurs between the 2 states (49%) and among populations within each state (42%), with relatively little variation found within populations (9%). These data indicate that there is very little gene flow among populations of B. perstellata and that it is important to protect as many populations as possible in order to conserve the genetic diversity of this rare species.
Collapse
Affiliation(s)
- Carol J Baskauf
- Department of Biology, Austin Peay State University, PO Box 4718, Clarksville, TN 37044
| | | | | | | |
Collapse
|
23
|
Fletcher RS, Mullen JL, Yoder S, Bauerle WL, Reuning G, Sen S, Meyer E, Juenger TE, McKay JK. Development of a next-generation NIL library in Arabidopsis thaliana for dissecting complex traits. BMC Genomics 2013; 14:655. [PMID: 24063355 PMCID: PMC3849958 DOI: 10.1186/1471-2164-14-655] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/20/2013] [Indexed: 12/30/2022] Open
Abstract
Background The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. Results In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. Conclusions The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.
Collapse
Affiliation(s)
- Richard S Fletcher
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, 80523 Fort Collins, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cano LM, Raffaele S, Haugen RH, Saunders DGO, Leonelli L, MacLean D, Hogenhout SA, Kamoun S. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta. PLoS One 2013; 8:e75293. [PMID: 24069397 PMCID: PMC3775748 DOI: 10.1371/journal.pone.0075293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023] Open
Abstract
Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.
Collapse
Affiliation(s)
| | - Sylvain Raffaele
- The Sainsbury Laboratory, Norwich, United Kingdom
- Laboratoire des Interactions Plantes Micro-organismes, UMR441 INRA - UMR2594 CNRS, Castanet Tolosan, France
| | - Riston H. Haugen
- Black Hills State University, Integrative Genomics Program, Spearfish, South Dakota, United States of America
| | | | - Lauriebeth Leonelli
- The Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Dan MacLean
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Riaz S, Hu R, Walker MA. A framework genetic map of Muscadinia rotundifolia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1195-1210. [PMID: 22688272 DOI: 10.1007/s00122-012-1906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
This study presents a framework linkage map based on microsatellite markers for Muscadinia rotundifolia (1n = 20). The mapping population consisted of 206 progeny generated from a cross of two M. rotundifolia varieties, 'Fry' and 'Trayshed'. A total of 884 primers were tested for their ability to amplify markers: 686 amplified and 312 simple sequence repeat (SSR) primer pairs generated 322 polymorphic markers for either one or both parents. The map for the female parent 'Fry' consisted of 212 markers and covered 879 cM on 18 chromosomes. The average distance between the markers was 4.1 cM and chromosome 6 was not represented due to a lack of polymorphic markers. The map for the male parent 'Trayshed' consisted of 191 markers and covered 841 cM on 19 chromosomes. The consensus map consisted of 314 markers on 19 chromosomes with a total distance of 1,088 cM, which represented 66 % of the distance covered by the Vitis vinifera reference linkage map. Marker density varied greatly among chromosomes from 5 to 35 mapped markers. Relatively good synteny was observed across 19 chromosomes based on markers in common with the V. vinifera reference map. Extreme segregation distortion was observed for chromosome 8 and 14 on the female parent map, and 4 on the male parent map. The lack of mapping coverage for the 20th M. rotundifolia chromosome is discussed in relation to possible evolutionary events that led to the reduction in chromosome number from 21 to 19 in the ancestral genome.
Collapse
Affiliation(s)
- S Riaz
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | | | | |
Collapse
|
26
|
Prasad KVSK, Song BH, Olson-Manning C, Anderson JT, Lee CR, Schranz ME, Windsor AJ, Clauss MJ, Manzaneda AJ, Naqvi I, Reichelt M, Gershenzon J, Rupasinghe SG, Schuler MA, Mitchell-Olds T. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 2012; 337:1081-4. [PMID: 22936775 DOI: 10.1126/science.1221636] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Identification of the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a quantitative trait locus that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA (branched-chain methionine allocation) loci controlling this variation and by two selectively favored amino acid changes in the glucosinolate-biosynthetic cytochrome P450 proteins that they encode. These changes cause a gain of novel enzyme function, modulated by allelic differences in catalytic rate and gene copy number. Ecological interactions in diverse environments likely contribute to the widespread polymorphism of this biochemical function.
Collapse
Affiliation(s)
- Kasavajhala V S K Prasad
- Department of Biology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lohe AR, Perotti E. Intertribal hybrid plants produced from crossing Arabidopsis thaliana with apomictic Boechera. PLANTA 2012; 236:371-385. [PMID: 22367110 DOI: 10.1007/s00425-012-1612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Arabidopsis thaliana and Boechera belong to different tribes of the Brassicaceae and last shared a common ancestor 13-35 million years ago. A. thaliana reproduces sexually but some Boechera accessions reproduce by apomixis (asexual reproduction by seed). The two species are reproductively isolated, preventing introgression of the trait(s) controlling apomixis from Boechera into A. thaliana and their molecular characterisation. To identify if "escapers" from such hybridisation barriers exist, we crossed diploid or tetraploid A. thaliana mothers carrying a conditional male sterile mutation with a triploid Boechera apomict. These cross-pollinations generated zygotes and embryos. Most aborted or suffered multiple developmental defects at all stages of growth, but some seed matured and germinated. Seedlings grew slowly but eventually some developed into mature plants that were novel synthetic allopolyploid hybrids. With one exception, intertribal hybrids contained three Boechera plus either one or two A. thaliana genomes (depending on maternal ploidy) and were male and female sterile. The exception was a semi-fertile, sexual partial hybrid with one Boechera plus two A. thaliana genomes. The synthesis of "escapers" that survive rigorous early developmental challenges in crosses between A. thaliana and Boechera demonstrates that the inviability form of postzygotic reproductive isolation separating these distantly related species is not impenetrable. The recovery of a single semi-fertile partial hybrid also demonstrates that hybrid sterility, another form of postzygotic reproductive isolation, can be overcome between these species.
Collapse
Affiliation(s)
- Allan R Lohe
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | | |
Collapse
|
28
|
Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc Biol Sci 2012; 279:3843-52. [PMID: 22787021 DOI: 10.1098/rspb.2012.1051] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.
Collapse
Affiliation(s)
- Jill T Anderson
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
29
|
Kim JA, Kim JS, Hong JK, Lee YH, Choi BS, Seol YJ, Jeon CH. Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa. Mol Genet Genomics 2012; 287:373-88. [PMID: 22466714 DOI: 10.1007/s00438-012-0682-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/15/2012] [Indexed: 12/30/2022]
Abstract
Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suinro Gwonseon-gu, Suwon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Anderson JT, Lee CR, Rushworth CA, Colautti RI, Mitchell-Olds T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol Ecol 2012; 22:699-708. [PMID: 22420446 DOI: 10.1111/j.1365-294x.2012.05522.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Divergent natural selection promotes local adaptation and can lead to reproductive isolation of populations in contrasting environments; however, the genetic basis of local adaptation remains largely unresolved in natural populations. Local adaptation might result from antagonistic pleiotropy, where alternate alleles are favoured in distinct habitats, and polymorphism is maintained by selection. Alternatively, under conditional neutrality some alleles may be favoured in one environment but neutral at other locations. Antagonistic pleiotropy maintains genetic variation across the landscape; however, there is a systematic bias against discovery of antagonistic pleiotropy because the fitness benefits of local alleles need to be significant in at least two environments. Here, we develop a generally applicable method to investigate polygenic local adaptation and identify loci that are the targets of selection. This approach evaluates allele frequency changes after selection at loci across the genome to distinguish antagonistic pleiotropy from conditional neutrality and deleterious variation. We investigate local adaptation at the qualitative trait loci (QTL) level in field experiments, in which we expose 177 F(6) recombinant inbred lines and parental lines of Boechera stricta (Brassicaceae) to their parental environments over two seasons. We demonstrate polygenic selection for native alleles in both environments, with 2.8% of the genome exhibiting antagonistic pleiotropy and 8% displaying conditional neutrality. Our study strongly supports antagonistic pleiotropy at one large-effect flowering phenology QTL (nFT): native homozygotes had significantly greater probabilities of flowering than foreign homozygotes in both parental environments. Such large-scale field studies are essential to elucidate the genetic basis of adaptation in natural populations.
Collapse
Affiliation(s)
- Jill T Anderson
- Department of Biology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Ecological model systems provide a conduit to understand the ecological impact of information gained from laboratory model species. Here, I review a 2011 meeting which focused on the systematic, ecological, evolutionary and developmental biology of the ecological model genus Boechera.
Collapse
Affiliation(s)
- John T Lovell
- Department of BioAgricultural Sciences and Pest Management, C129 Plant Sciences, Colorado State University, Fort Collins, CO 80523-1177, USA.
| |
Collapse
|
32
|
Abstract
The selection and development of a study system for evolutionary and ecological functional genomics (EEFG) depend on a variety of factors. Here, we present the genus Boechera as an exemplary system with which to address ecological and evolutionary questions. Our focus on Boechera is based on several characteristics as follows: (i) native populations in undisturbed habitats where current environments reflect historical conditions over several thousand years; (ii) functional genomics benefitting from its close relationship to Arabidopsis thaliana; (iii) inbreeding tolerance enabling development of recombinant inbred lines, near-isogenic lines and positional cloning; (iv) interspecific crosses permitting mapping for genetic analysis of speciation; (v) apomixis (asexual reproduction by seeds) in a genetically tractable diploid; and (vi) broad geographic distribution in North America, permitting ecological genetics for a large research community. These characteristics, along with the current sequencing of three Boechera species by the Joint Genome Institute, position Boechera as a rapidly advancing system for EEFG studies.
Collapse
Affiliation(s)
- Catherine A Rushworth
- Department of Biology, Institute for Genome Sciences and Policy, Duke University, PO Box 90338, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
33
|
Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera. BMC Res Notes 2011; 4:303. [PMID: 21851639 PMCID: PMC3171723 DOI: 10.1186/1756-0500-4-303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/19/2011] [Indexed: 11/26/2022] Open
Abstract
Background Apomixis, a natural form of asexual seed production in plants, is considered to have great biotechnological potential for agriculture. It has been hypothesised that de-regulation of the sexual developmental pathway could trigger apomictic reproduction. The genus Boechera represents an interesting model system for understanding apomixis, having both sexual and apomictic genotypes at the diploid level. Quantitative qRT-PCR is the most extensively used method for validating genome-wide gene expression analyses, but in order to obtain reliable results, suitable reference genes are necessary. In this work we have evaluated six potential reference genes isolated from a 454 (FLX) derived cDNA library of Boechera. RNA from live microdissected ovules and anthers at different developmental stages, as well as vegetative tissues of apomictic and sexual Boechera, were used to validate the candidates. Results Based on homologies with Arabidopsis, six genes were selected from a 454 cDNA library of Boechera: RPS18 (Ribosomal sub protein 18), Efalpha1 (Elongation factor 1 alpha), ACT 2 (Actin2), UBQ (polyubiquitin), PEX4 (Peroxisomal ubiquitin conjugating enzyme) and At1g09770.1 (Arabidopsis thaliana cell division cycle 5). Total RNA was extracted from 17 different tissues, qRT-PCRs were performed, and raw Ct values were analyzed for primer efficiencies and gene ratios. The geNorm and normFinder applications were used for selecting the most stable genes among all tissues and specific tissue groups (ovule, anthers and vegetative tissues) in both apomictic and sexual plants separately. Our results show that BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ were the most stable genes. Based on geNorm, the combinations of BoechRPS18 and BoechEfα1 or BoechUBQ and BoechEfα1 were the most stable in the apomictic plant, while BoechRPS18 and BoechACT2 or BoechUBQ and BoechACT2 performed best in the sexual plant. When subgroups of tissue samples were analyzed, different optimal combinations were identified in sexual ovules (BoechUBQ and BoechEfα1), in anthers from both reproductive systems (BoechACT2 and BoechEfα1), in apomictic vegetative tissues (BoechEfα1 and BoechACT2) and sexual vegetative tissues (BoechRPS18 and BoechEfα1). NormFinder ranked BoechACT2 as the most stable in the apomictic plant, while BoechRPS18 was the best in the sexual plant. The subgroups analysis identified the best gene for both apomictic and sexual ovules (BoechRPS18), for anthers from both reproductive system (BoechEfα1) and for apomictic and vegetative tissues (BoechACT2 and BoechRPS18 respectively) Conclusions From a total of six tested genes, BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ showed the best stability values. We furthermore provide detailed information for the accurate normalization of specific tissue gene expression analyses of apomictic and sexual Boechera.
Collapse
|
34
|
Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T. Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 2011; 18:401-11. [PMID: 21816873 PMCID: PMC3190960 DOI: 10.1093/dnares/dsr027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.
Collapse
Affiliation(s)
- Feng Li
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anderson JT, Lee CR, Mitchell-Olds T. Life-history QTLS and natural selection on flowering time in Boechera stricta, a perennial relative of Arabidopsis. Evolution 2011; 65:771-87. [PMID: 21083662 PMCID: PMC3155413 DOI: 10.1111/j.1558-5646.2010.01175.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plants must precisely time flowering to capitalize on favorable conditions. Although we know a great deal about the genetic basis of flowering phenology in model species under controlled conditions, the genetic architecture of this ecologically important trait is poorly understood in nonmodel organisms. Here, we evaluated the transition from vegetative growth to flowering in Boechera stricta, a perennial relative of Arabidopsis thaliana. We examined flowering time QTLs using 7920 recombinant inbred individuals, across seven laboratory and field environments differing in vernalization, temperature, and photoperiod. Genetic and environmental factors strongly influenced the transition to reproduction. We found directional selection for earlier flowering in the field. In the growth chamber experiment, longer winters accelerated flowering, whereas elevated ambient temperatures delayed flowering. Our analyses identified one large effect QTL (nFT), which influenced flowering time in the laboratory and the probability of flowering in the field. In Montana, homozygotes for the native allele at nFT showed a selective advantage of 6.6%. Nevertheless, we found relatively low correlations between flowering times in the field and the growth chambers. Additionally, we detected flowering-related QTLs in the field that were absent across the full range of laboratory conditions, thus emphasizing the need to conduct experiments in natural environments.
Collapse
Affiliation(s)
- Jill T. Anderson
- Institute for Genome Sciences and Policy Department of Biology Duke University P.O. Box 90338 Durham, North Carolina 27708 USA
| | - Cheng-Ruei Lee
- Institute for Genome Sciences and Policy Department of Biology Duke University P.O. Box 90338 Durham, North Carolina 27708 USA
| | - Thomas Mitchell-Olds
- Institute for Genome Sciences and Policy Department of Biology Duke University P.O. Box 90338 Durham, North Carolina 27708 USA
| |
Collapse
|
36
|
Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. TRENDS IN PLANT SCIENCE 2011; 16:108-16. [PMID: 21177137 DOI: 10.1016/j.tplants.2010.11.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 05/03/2023]
Abstract
Life without the mustard family (Brassicaceae) would be a world without many crop species and the model organism Arabidopsis (Arabidopsis thaliana) that has revolutionized our knowledge in almost every field of modern plant biology. Despite this importance, research breakthroughs in understanding family-wide evolutionary patterns and processes within this flowering plant family were not achieved until the past few years. In this review, we examine recent outcomes from diverse botanical disciplines (taxonomy, systematics, genomics, paleobotany and other fields) to synthesize for the first time a holistic view on the evolutionary history of the mustard family.
Collapse
Affiliation(s)
- Andreas Franzke
- Heidelberg Botanic Garden, Centre for Organismal Studies Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
37
|
BURRELL AMILLIE, TAYLOR KATHERINEG, WILLIAMS RYANJ, CANTRELL ROBERTT, MENZ MONICAA, PEPPER ALANE. A comparative genomic map for Caulanthus amplexicaulis and related species (Brassicaceae). Mol Ecol 2011; 20:784-98. [DOI: 10.1111/j.1365-294x.2010.04981.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Mandáková T, Heenan PB, Lysak MA. Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol Biol 2010; 10:367. [PMID: 21114825 PMCID: PMC3014931 DOI: 10.1186/1471-2148-10-367] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/29/2010] [Indexed: 12/02/2022] Open
Abstract
Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species.
Collapse
Affiliation(s)
- Terezie Mandáková
- Department of Functional Genomics and Proteomics, Masaryk University, and CEITEC, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
39
|
Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P. Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. AMERICAN JOURNAL OF BOTANY 2010; 97:e124-9. [PMID: 21616814 DOI: 10.3732/ajb.1000280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Microsatellite primers were developed from bacterial artificial chromosome (BAC) end sequences of Citrus clementina and their transferability and polymorphism tested in the genus Citrus for future anchorage of physical and genetic maps and comparative interspecific genetic mapping. • METHODS AND RESULTS Using PAGE and DNA silver staining, 79 primer pairs were selected for their transferability and polymorphism among 526 microsatellites mined in BES. A preliminary diversity study in Citrus was conducted with 18 of them, in C. reticulata, C. maxima, C. medica, C. sinensis, C. aurantium, C. paradisi, C. lemon, C. aurantifolia, and some papedas (wild citrus), using a capillary electrophoresis fragment analyzer. Intra- and interspecific polymorphism was observed, and heterozygous markers were identified for the different genotypes to be used for genetic mapping. • CONCLUSIONS These results indicate the utility of the developed primers for comparative mapping studies and the integration of physical and genetic maps.
Collapse
Affiliation(s)
- Frédérique Ollitrault
- Centro de Protección Vegetal y Biotecnología, IVIA, Apartado Oficial 46113 Moncada (Valencia), Spain
| | | | | | | | | | | |
Collapse
|
40
|
Aliyu OM, Schranz ME, Sharbel TF. Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2010; 97:1719-31. [PMID: 21616805 DOI: 10.3732/ajb.1000188] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels (diploid and triploid). Apomixis is characterized by three components: unreduced embryo-sac formation (apomeiosis), fertilization-independent embryogenesis (parthenogenesis), and functional endosperm formation (pseudogamy or autonomous endosperm formation). Understanding the variation in these traits within and between species has been hindered by the laborious histological analyses required to analyze large numbers of samples. • METHODS To quantify variability for the different components of apomictic seed development, we developed a high-throughput flow cytometric seed screen technique to measure embryo:endosperm ploidy in over 22000 single seeds derived from 71 accessions of diploid and triploid Boechera. • KEY RESULTS Three interrelated features were identified within and among Boechera species: (1) variation for most traits associated with apomictic seed formation, (2) three levels of apomeiosis expression (low, high, obligate), and (3) correlations between apomeiosis and parthenogenesis/pseudogamy. • CONCLUSIONS The data presented here provide a framework for choosing specific genotypes for correlations with large "omics" data sets being collected for Boechera to study population structure, gene flow, and evolution of specific traits. We hypothesize that low levels of apomeiosis represent an ancestral condition of Boechera, whereas high apomeiosis levels may have been induced by global gene regulatory changes associated with hybridization.
Collapse
Affiliation(s)
- Olawale M Aliyu
- Apomixis Research Group, Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | | | | |
Collapse
|
41
|
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. THE PLANT CELL 2010; 22:2277-90. [PMID: 20639445 PMCID: PMC2929090 DOI: 10.1105/tpc.110.074526] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 06/09/2010] [Accepted: 06/22/2010] [Indexed: 05/18/2023]
Abstract
Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred approximately 6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.
Collapse
Affiliation(s)
- Terezie Mandáková
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Simon Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal and Montreal Botanical Garden, 4101 Sherbrooke East, Montreal, Quebec, Canada H1X 2B2
| | - Martin Krzywinski
- Canada’s Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada V5Z 4S6
| | - Klaus Mummenhoff
- FB Biologie/Chemie, Botanik, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Martin A. Lysak
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- Address correspondence to
| |
Collapse
|
42
|
Sharbel TF, Voigt ML, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter B. Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. THE PLANT CELL 2010; 22:655-71. [PMID: 20305122 PMCID: PMC2861462 DOI: 10.1105/tpc.109.072223] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/27/2010] [Accepted: 03/02/2010] [Indexed: 05/19/2023]
Abstract
We have compared the transcriptomic profiles of microdissected live ovules at four developmental stages between a diploid sexual and diploid apomictic Boechera. We sequenced >2 million SuperSAGE tags and identified (1) heterochronic tags (n = 595) that demonstrated significantly different patterns of expression between sexual and apomictic ovules across all developmental stages, (2) stage-specific tags (n = 577) that were found in a single developmental stage and differentially expressed between the sexual and apomictic ovules, and (3) sex-specific (n = 237) and apomixis-specific (n = 1106) tags that were found in all four developmental stages but in only one reproductive mode. Most heterochronic and stage-specific tags were significantly downregulated during early apomictic ovule development, and 110 were associated with reproduction. By contrast, most late stage-specific tags were upregulated in the apomictic ovules, likely the result of increased gene copy number in apomictic (hexaploid) versus sexual (triploid) endosperm or of parthenogenesis. Finally, we show that apomixis-specific gene expression is characterized by a significant overrepresentation of transcription factor activity. We hypothesize that apomeiosis is associated with global downregulation at the megaspore mother cell stage. As the diploid apomict analyzed here is an ancient hybrid, these data are consistent with the postulated link between hybridization and asexuality and provide a hypothesis for multiple evolutionary origins of apomixis in the genus Boechera.
Collapse
Affiliation(s)
- Timothy F Sharbel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kaczmarek M, Koczyk G, Ziolkowski PA, Babula-Skowronska D, Sadowski J. Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. Genome 2010; 52:620-33. [PMID: 19767893 DOI: 10.1139/g09-035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We further investigated genome macrosynteny for Brassica species and Arabidopsis thaliana. This work aimed at comparative map construction for B. oleracea and A. thaliana chromosomes based on 160 known A. thaliana probes: 147 expressed sequence tags (ESTs) and 13 full-length cDNA clones. Based on an in silico study of the A. thaliana genome, most of the selected ESTs (83%) represented unique or low-copy genes. We identified conserved segments by the visual inspection of comparative data with a priori assumptions, and established their significance with the LineUp algorithm. Evaluation of the number of B. oleracea gene copies per A. thaliana EST revealed a fixed upward trend. We established a segregation distortion pattern for all genetic loci, with particular consideration of the type of selection (gametic or zygotic), and discuss its possible impact on genetic map construction. Consistent with previous reports, we found evidence for numerous chromosome rearrangements and the genome fragment replication of B. oleracea that have taken place since the divergence of the two species. Also, we found that over 54% of the B. oleracea genome is covered by 24 segments conserved with the A. thaliana genome. The average conserved segment is composed of 5 loci covering 19.3 cM in the B. oleracea genetic map and 2.42 Mb in the A. thaliana physical map. We have also attempted to use a unified system of conserved blocks (previously described) to verify our results and perform a comprehensive comparison with other Brassica species.
Collapse
Affiliation(s)
- Malgorzata Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | | | | | | | | |
Collapse
|
44
|
SIEMENS DAVIDH, HAUGEN RISTON, MATZNER STEVEN, VANASMA NICHOLAS. Plant chemical defence allocation constrains evolution of local range. Mol Ecol 2009; 18:4974-83. [DOI: 10.1111/j.1365-294x.2009.04389.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Schranz ME, Manzaneda AJ, Windsor AJ, Clauss MJ, Mitchell-Olds T. Ecological genomics of Boechera stricta: identification of a QTL controlling the allocation of methionine- vs branched-chain amino acid-derived glucosinolates and levels of insect herbivory. Heredity (Edinb) 2009; 102:465-74. [PMID: 19240753 PMCID: PMC2775550 DOI: 10.1038/hdy.2009.12] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the Brassicaceae, glucosinolates influence the feeding, reproduction and development of many insect herbivores. Glucosinolate production and effects on herbivore feeding have been extensively studied in the model species, Arabidopsis thaliana and Brassica crops, both of which constitutively produce leaf glucosinolates mostly derived from the amino acid, methionine. Much less is known about the regulation or role in defense of glucosinolates derived from other aliphatic amino acids, such as the branched-chain amino acids (BCAA), valine and isoleucine. We have identified a glucosinolate polymorphism in Boechera stricta controlling the allocation to BCAA- vs methionine-derived glucosinolates in both leaves and seeds. B. stricta is a perennial species that grows in mostly undisturbed habitats of western North America. We have measured glucosinolate profiles and concentrations in 192 F(2) lines that have earlier been used for genetic map construction. We also performed herbivory assays on six F(3) replicates per F(2) line using the generalist lepidopteran, Trichoplusia ni. Quantitative trait locus (QTL) analysis identified a single locus controlling both glucosinolate profile and levels of herbivory, the branched chain-methionine allocation or BCMA QTL. We have delimited this QTL to a small genomic region with a 1.0 LOD confidence interval just 1.9 cm wide, which, in A. thaliana, contains approximately 100 genes. We also found that methionine-derived glucosinolates provided significantly greater defense than the BCAA-derived glucosinolates against feeding by this generalist insect herbivore. The future positional cloning of this locus will allow for testing various adaptive explanations.
Collapse
Affiliation(s)
- M E Schranz
- Department of Experimental Plant Systematics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Multilocus patterns of nucleotide diversity, population structure and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 2008; 181:1021-33. [PMID: 19104077 DOI: 10.1534/genetics.108.095364] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Information about polymorphism, population structure, and linkage disequilibrium (LD) is crucial for association studies of complex trait variation. However, most genomewide studies have focused on model systems, with very few analyses of undisturbed natural populations. Here, we sequenced 86 mapped nuclear loci for a sample of 46 genotypes of Boechera stricta and two individuals of B. holboellii, both wild relatives of Arabidopsis. Isolation by distance was significant across the species range of B. stricta, and three geographic groups were identified by structure analysis, principal coordinates analysis, and distance-based phylogeny analyses. The allele frequency spectrum indicated a genomewide deviation from an equilibrium neutral model, with silent nucleotide diversity averaging 0.004. LD decayed rapidly, declining to background levels in approximately 10 kb or less. For tightly linked SNPs separated by <1 kb, LD was dependent on the reference population. LD was lower in the specieswide sample than within populations, suggesting that low levels of LD found in inbreeding species such as B. stricta, Arabidopsis thaliana, and barley may result from broad geographic sampling that spans heterogeneous genetic groups. Finally, analyses also showed that inbreeding B. stricta and A. thaliana have approximately 45% higher recombination per kilobase than outcrossing A. lyrata.
Collapse
|
47
|
Mandáková T, Lysak MA. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). THE PLANT CELL 2008; 20:2559-70. [PMID: 18836039 PMCID: PMC2590746 DOI: 10.1105/tpc.108.062166] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/06/2008] [Accepted: 09/17/2008] [Indexed: 05/18/2023]
Abstract
Karyotype evolution in species with identical chromosome number but belonging to distinct phylogenetic clades is a long-standing question of plant biology, intractable by conventional cytogenetic techniques. Here, we apply comparative chromosome painting (CCP) to reconstruct karyotype evolution in eight species with x=7 (2n=14, 28) chromosomes from six Brassicaceae tribes. CCP data allowed us to reconstruct an ancestral Proto-Calepineae Karyotype (PCK; n=7) shared by all x=7 species analyzed. The PCK has been preserved in the tribes Calepineae, Conringieae, and Noccaeeae, whereas karyotypes of Eutremeae, Isatideae, and Sisymbrieae are characterized by an additional translocation. The inferred chromosomal phylogeny provided compelling evidence for a monophyletic origin of the x=7 tribes. Moreover, chromosomal data along with previously published gene phylogenies strongly suggest the PCK to represent an ancestral karyotype of the tribe Brassiceae prior to its tribe-specific whole-genome triplication. As the PCK shares five chromosomes and conserved associations of genomic blocks with the putative Ancestral Crucifer Karyotype (n=8) of crucifer Lineage I, we propose that both karyotypes descended from a common ancestor. A tentative origin of the PCK via chromosome number reduction from n=8 to n=7 is outlined. Comparative chromosome maps of two important model species, Noccaea caerulescens and Thellungiella halophila, and complete karyotypes of two purported autotetraploid Calepineae species (2n=4x=28) were reconstructed by CCP.
Collapse
Affiliation(s)
- Terezie Mandáková
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Brno CZ-625 00, Czech Republic
| | | |
Collapse
|
48
|
Contrasting patterns of transposable-element insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid Arabidopsis species. Genetics 2008; 179:581-92. [PMID: 18493073 DOI: 10.1534/genetics.107.085761] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been hypothesized that polyploidy permits the proliferation of transposable elements, due to both the masking of deleterious recessive mutations and the breakdown of host silencing mechanisms. We investigated the patterns of insertion polymorphism of an Ac-like transposable element and nucleotide diversity at 18 gene fragments in the allotetraploid Arabidopsis suecica and the autotetraploid A. arenosa. All identified insertions were fixed in A. suecica, and many were clearly inherited from the parental species A. thaliana or A. arenosa. These results are inconsistent with a rapid increase in transposition associated with hybrid breakdown but support the evidence from nucleotide polymorphism patterns of a recent single origin of this species leading to genomewide fixations of transposable elements. In contrast, most insertions were segregating at very low frequencies in A. arenosa samples, showing a significant departure from neutrality in favor of purifying selection, even when we account for population subdivision inferred from sequence variation. Patterns of nucleotide variation at reference genes are consistent with the TE results, showing evidence for higher effective population sizes in A. arenosa than in related diploid taxa but a near complete population bottleneck associated with the origins of A. suecica.
Collapse
|
49
|
Callahan HS, Maughan H, Steiner UK. Phenotypic plasticity, costs of phenotypes, and costs of plasticity: toward an integrative view. Ann N Y Acad Sci 2008; 1133:44-66. [PMID: 18559815 DOI: 10.1196/annals.1438.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic basis of plasticity. In this vein, microbial work is especially illuminating and has three additional strengths. First, information about the machinery underlying plasticity--such as structural and regulatory genes, sensory proteins, and biochemical pathways--helps link population-level studies with underlying physiological and genetic mechanisms. Second, microbial studies involve many generations, large populations, and replication. Finally, empirical estimation of key parameters (e.g., mutation rates) is tractable. Together, these allow for rigorous investigation of gene interactions, drift, mutation, and selection--all potential factors influencing the maintenance or loss of inducible traits along with phenotypic and plasticity costs. Messages emerging from microbial work can guide future efforts to understand the evolution of plastic traits in diverse organisms.
Collapse
Affiliation(s)
- Hilary S Callahan
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | | | |
Collapse
|
50
|
Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J. Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 2008; 9:21. [PMID: 18205909 PMCID: PMC2246113 DOI: 10.1186/1471-2164-9-21] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 01/18/2008] [Indexed: 11/24/2022] Open
Abstract
Background To explore the potential value of high-throughput genotyping assays in the analysis of large and complex genomes, we designed two highly multiplexed Illumina bead arrays using the GoldenGate SNP assay for gene mapping in white spruce (Picea glauca [Moench] Voss) and black spruce (Picea mariana [Mill.] B.S.P.). Results Each array included 768 SNPs, identified by resequencing genomic DNA from parents of each mapping population. For white spruce and black spruce, respectively, 69.2% and 77.1% of genotyped SNPs had valid GoldenGate assay scores and segregated in the mapping populations. For each of these successful SNPs, on average, valid genotyping scores were obtained for over 99% of progeny. SNP data were integrated to pre-existing ALFP, ESTP, and SSR markers to construct two individual linkage maps and a composite map for white spruce and black spruce genomes. The white spruce composite map contained 821 markers including 348 gene loci. Also, 835 markers including 328 gene loci were positioned on the black spruce composite map. In total, 215 anchor markers (mostly gene markers) were shared between the two species. Considering lineage divergence at least 10 Myr ago between the two spruces, interspecific comparison of homoeologous linkage groups revealed remarkable synteny and marker colinearity. Conclusion The design of customized highly multiplexed Illumina SNP arrays appears as an efficient procedure to enhance the mapping of expressed genes and make linkage maps more informative and powerful in such species with poorly known genomes. This genotyping approach will open new avenues for co-localizing candidate genes and QTLs, partial genome sequencing, and comparative mapping across conifers.
Collapse
Affiliation(s)
- Nathalie Pavy
- Arborea and Canada Research Chair in Forest and Environmental Genomics, Centre d'Etude de la Forêt, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Québec G1V 0A6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|