1
|
Rafiei F, Wiersma J, Scofield S, Zhang C, Alizadeh H, Mohammadi M. Facts, uncertainties, and opportunities in wheat molecular improvement. Heredity (Edinb) 2024; 133:371-380. [PMID: 39237600 PMCID: PMC11589648 DOI: 10.1038/s41437-024-00721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
The year 2020 was a landmark year for wheat. The wheat HB4 event harboring a drought-resistant gene from sunflowers, received regulatory approval and was grown commercially in Argentina, with approval for food and feed in other countries. This, indeed, is many years after the adoption of genetic modifications in other crops. The lack of consumer acceptance and resulting trade barriers halted the commercialization of the earliest events and had a chilling effect on, especially, private Research & Development (R&D) investments. As regulations for modern breeding technologies such as genome-edited cultivars are being discussed and/or adopted across the globe, we would like to propose a framework to ensure that wheat is not left behind a second time as the potential benefits far outweigh the perceived risks. In this paper, after a review of the technical challenges wheat faces with the generation of trans- and cis-genic wheat varieties, we discuss some of the factors that could help demystify the risk/reward equation and thereby the consumer's reluctance or acceptance of these techniques for future wheat improvement. The advent of next-generation sequencing is shedding light on natural gene transfer between species and the number of perturbations other accepted techniques like mutagenesis create. The transition from classic breeding techniques and embracing transgenic, cisgenic, and genome editing approaches feels inevitable for wheat improvement if we are to develop climate-resilient wheat varieties to feed a growing world population.
Collapse
Affiliation(s)
- Fariba Rafiei
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Jochum Wiersma
- Department of Agronomy and Plant Genetics, University of Minnesota, Northwest Research and Outreach Center, Crookston, MN, USA
| | - Steve Scofield
- USDA-ARS, Crop Production and Pest Control Research Unit, West Lafayette, IN, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Houshang Alizadeh
- Department of Agronomy & Plant Breeding, College of Agricultural and Natural Resource, University of Tehran, Karaj, Iran
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Markel K, Sabety J, Wijesinghe S, Shih PM. Design and Characterization of a Transcriptional Repression Toolkit for Plants. ACS Synth Biol 2024; 13:3137-3143. [PMID: 39313930 PMCID: PMC11494698 DOI: 10.1021/acssynbio.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Regulation of gene expression is essential for all life. Tools to manipulate the gene expression level have therefore proven to be very valuable in efforts to engineer biological systems. However, there are few well-characterized genetic parts that reduce gene expression in plants, commonly known as transcriptional repressors. We characterized the repression activity of a library consisting of repression motifs from approximately 25% of the members of the largest known family of repressors. Combining sequence information with our trans-regulatory function data, we next generated a library of synthetic transcriptional repression motifs with function predicted in advance. After characterizing our synthetic library, we demonstrated not only that many of our synthetic constructs were functional as repressors but also that our advance predictions of repression strength were better than random guesses. Finally, we assessed the functionality of known transcriptional repression motifs from a wide range of eukaryotes. Our study represents the largest plant repressor motif library experimentally characterized to date, providing unique opportunities for tuning transcription in plants.
Collapse
Affiliation(s)
- Kasey Markel
- Department
of Plant and Microbial Biology, University
of California, Berkeley, California 94720, United States
- Feedstocks
Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94608, United States
| | - Jean Sabety
- Department
of Plant Biology, University of California, Davis, California 95616, United States
| | - Shehan Wijesinghe
- Department
of Plant Biology, University of California, Davis, California 95616, United States
| | - Patrick M. Shih
- Department
of Plant and Microbial Biology, University
of California, Berkeley, California 94720, United States
- Feedstocks
Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94608, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Zhang F, Wang J, Ding T, Lin X, Hu H, Ding Z, Tian H. MYB2 and MYB108 regulate lateral root development by interacting with LBD29 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1675-1687. [PMID: 38923126 DOI: 10.1111/jipb.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
AUXIN RESPONSE FACTOR 7 (ARF7)-mediated auxin signaling plays a key role in lateral root (LR) development by regulating downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor genes, including LBD16, LBD18, and LBD29. LBD proteins are believed to regulate the transcription of downstream genes as homodimers or heterodimers. However, whether LBD29 forms dimers with other proteins to regulate LR development remains unknown. Here, we determined that the Arabidopsis thaliana (L.) Heynh. MYB transcription factors MYB2 and MYB108 interact with LBD29 and regulate auxin-induced LR development. Both MYB2 and MYB108 were induced by auxin in an ARF7-dependent manner. Disruption of MYB2 by fusion with an SRDX domain severely affected auxin-induced LR formation and the ability of LBD29 to induce LR development. By contrast, overexpression of MYB2 or MYB108 resulted in greater LR numbers, except in the lbd29 mutant background. These findings underscore the interdependence and importance of MYB2, MYB108, and LBD29 in regulating LR development. In addition, MYB2-LBD29 and MYB108-LBD29 complexes promoted the expression of CUTICLE DESTRUCTING FACTOR 1 (CDEF1), a member of the GDSL (Gly-Asp-Ser-Leu) lipase/esterase family involved in LR development. In summary, this study identified MYB2-LBD29 and MYB108-LBD29 regulatory modules that act downstream of ARF7 and intricately control auxin-mediated LR development.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tingting Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xuefeng Lin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Haiying Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Galindo-Trigo S, Bågman AM, Ishida T, Sawa S, Brady SM, Butenko MA. Dissection of the IDA promoter identifies WRKY transcription factors as abscission regulators in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2417-2434. [PMID: 38294133 PMCID: PMC11016851 DOI: 10.1093/jxb/erae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Plants shed organs such as leaves, petals, or fruits through the process of abscission. Monitoring cues such as age, resource availability, and biotic and abiotic stresses allow plants to abscise organs in a timely manner. How these signals are integrated into the molecular pathways that drive abscission is largely unknown. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene is one of the main drivers of floral organ abscission in Arabidopsis and is known to transcriptionally respond to most abscission-regulating cues. By interrogating the IDA promoter in silico and in vitro, we identified transcription factors that could potentially modulate IDA expression. We probed the importance of ERF- and WRKY-binding sites for IDA expression during floral organ abscission, with WRKYs being of special relevance to mediate IDA up-regulation in response to biotic stress in tissues destined for separation. We further characterized WRKY57 as a positive regulator of IDA and IDA-like gene expression in abscission zones. Our findings highlight the promise of promoter element-targeted approaches to modulate the responsiveness of the IDA signaling pathway to harness controlled abscission timing for improved crop productivity.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Siobhán M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
5
|
Wang W, Chen W, Wang J. FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism. BMC PLANT BIOLOGY 2023; 23:650. [PMID: 38102566 PMCID: PMC10724965 DOI: 10.1186/s12870-023-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Fu H, Wei X, Chen Q, Yong S, Liu Q, Dang J, Wu D, Liang G, Guo Q. Comparative transcriptome analysis of molecular mechanisms underlying adventitious root developments in Huangshan Bitter tea ( Camellia gymnogyna Chang) under red light quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1154169. [PMID: 37025148 PMCID: PMC10070859 DOI: 10.3389/fpls.2023.1154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
As the formation of adventitious roots (AR) is an important component of in vitro regeneration of tea plants, the propagation and preservation of Huangshan Bitter tea (Camellia gymnogyna Chang) cuttings have been hindered due to its lower rooting rate. As light is a crucial environmental factor that affects AR formation, this study aimed to investigate the special role of red light (RL) in the formation of AR in Huangshan Bitter tea plants, which has not been well understood. Huangshan Bitter tea plants were induced with white light (control, WL) and red light (660 nm, RL) qualities 36 days after induced treatment (DAI) to investigate dynamic AR formation and development, anatomical observation, hormones content change, and weighted gene co-expression network analysis (WGCNA) of the transcriptome. Results showed that RL promoted the rooting rate and root characteristics compared to WL. Anatomical observations demonstrated that root primordium was induced earlier by RL at the 4 DAI. RL positively affected IAA, ZT and GA3 content and negatively influenced ABA from the 4 to 16 DAI. RNA-seq and analysis of differential expression genes (DEGs) exhibited extensive variation in gene expression profiles between RL and WL. Meanwhile, the results of WGCNA and correlation analysis identified three highly correlated modules and hub genes mainly participated in 'response to hormone', 'cellular glucan metabolic progress', and 'response to auxin'. Furthermore, the proportion of transcription factors (TFs) such as ethylene response factor (ERF), myeloblastosis (MYB), basic helix-loop-helix (bHLH), and WRKYGQK (WRKY) were the top four in DEGs. These results suggested that the AR-promoting potential of red light was due to complex hormone interactions in tea plants by regulating the expression of related genes. This study provided an important reference to shorten breeding cycles and accelerate superiority in tea plant propagation and preservation.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| | - Xu Wei
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Qian Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| | - Shunyuan Yong
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| | - Qinjin Liu
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
- Chongqing Institute of Ancient Tea Plant and Product, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing, China
| |
Collapse
|
7
|
Swinka C, Hellmann E, Zwack P, Banda R, Rashotte AM, Heyl A. Cytokinin Response Factor 9 Represses Cytokinin Responses in Flower Development. Int J Mol Sci 2023; 24:4380. [PMID: 36901811 PMCID: PMC10002603 DOI: 10.3390/ijms24054380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A multi-step phosphorelay system is the main conduit of cytokinin signal transduction. However, several groups of additional factors that also play a role in this signaling pathway have been found-among them the Cytokinin Response Factors (CRFs). In a genetic screen, CRF9 was identified as a regulator of the transcriptional cytokinin response. It is mainly expressed in flowers. Mutational analysis indicates that CRF9 plays a role in the transition from vegetative to reproductive growth and silique development. The CRF9 protein is localized in the nucleus and functions as a transcriptional repressor of Arabidopsis Response Regulator 6 (ARR6)-a primary response gene for cytokinin signaling. The experimental data suggest that CRF9 functions as a repressor of cytokinin during reproductive development.
Collapse
Affiliation(s)
- Christine Swinka
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Eva Hellmann
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Paul Zwack
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Ramya Banda
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Alexander Heyl
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| |
Collapse
|
8
|
Mandal D, Datta S, Raveendar G, Mondal PK, Nag Chaudhuri R. RAV1 mediates cytokinin signaling for regulating primary root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:106-126. [PMID: 36423224 DOI: 10.1111/tpj.16039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.
Collapse
Affiliation(s)
- Drishti Mandal
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Saptarshi Datta
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Giridhar Raveendar
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Pranab Kumar Mondal
- Department of Mechanical Engineering, Indian Institute of Technology, Surjyamukhi Road, Amingaon, Guwahati, Assam, 781039, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| |
Collapse
|
9
|
Geng L, Li Q, Jiao L, Xiang Y, Deng Q, Zhou DX, Zhao Y. WOX11 and CRL1 act synergistically to promote crown root development by maintaining cytokinin homeostasis in rice. THE NEW PHYTOLOGIST 2023; 237:204-216. [PMID: 36208055 DOI: 10.1111/nph.18522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Crown root (CR) morphogenesis is critical for normal growth and nutrition absorption in cereals. In rice, WUSCHEL-RELATED HOMEOBOX11 (WOX11) and CROWN ROOTLESS1 (CRL1) play vital roles in controlling CR development. Despite their importance, whether and how the two regulators coordinate CR formation remains unclear. Electrophoretic mobility shift assays, transient expression, and chromatin immunoprecipitation qPCR suggested that WOX11 and CRL1 directly bind to OsCKX4 to regulate its expression during CR development. CRL1 enhances OsCKX4 activation through direct interaction with WOX11 at root emergence and elongation stages. Genetic dissection showed that the wox11/crl1 double mutant exhibits a more severe root phenotype. OsCKX4 knockout plants generated by CRISPR/Cas9 exhibited fewer CRs and higher cytokinin levels in the root meristem. Increased expression of OsCKX4 could partially complement the CR phenotypes of both crl1 and wox11 mutants. Furthermore, cytokinin can promote WOX11 protein accumulation in the root meristem. Together, these findings show that cytokinin accumulation is tightly regulated by the WOX11-CRL1 complex during CR elongation by counteracting the negative regulatory effects of cytokinin on root development. Importantly, these results reveal an intrinsic link between WOX11 protein accumulation and cytokinin to maintain CR growth.
Collapse
Affiliation(s)
- Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lele Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Pavlů J, Kerchev P, Černý M, Novák J, Berka M, Jobe TO, López Ramos JM, Saiz-Fernández I, Rashotte AM, Kopriva S, Brzobohatý B. Cytokinin modulates the metabolic network of sulfur and glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7417-7433. [PMID: 36226742 DOI: 10.1093/jxb/erac391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - José Maria López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aaron Michael Rashotte
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
11
|
Sharma S, Kaur P, Gaikwad K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front Genet 2022; 13:940660. [PMID: 36313429 PMCID: PMC9597640 DOI: 10.3389/fgene.2022.940660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cytokinins constitutes a vital group of plant hormones regulating several developmental processes, including growth and cell division, and have a strong influence on grain yield. Chemically, they are the derivatives of adenine and are the most complex and diverse group of hormones affecting plant physiology. In this review, we have provided a molecular understanding of the role of cytokinins in developing seeds, with special emphasis on pulses and oilseed crops. The importance of cytokinin-responsive genes including cytokinin oxidases and dehydrogenases (CKX), isopentenyl transferase (IPT), and cytokinin-mediated genetic regulation of seed size are described in detail. In addition, cytokinin expression in germinating seeds, its biosynthesis, source-sink dynamics, cytokinin signaling, and spatial expression of cytokinin family genes in oilseeds and pulses have been discussed in context to its impact on increasing economy yields. Recently, it has been shown that manipulation of the cytokinin-responsive genes by mutation, RNA interference, or genome editing has a significant effect on seed number and/or weight in several crops. Nevertheless, the usage of cytokinins in improving crop quality and yield remains significantly underutilized. This is primarily due to the multigene control of cytokinin expression. The information summarized in this review will help the researchers in innovating newer and more efficient ways of manipulating cytokinin expression including CKX genes with the aim to improve crop production, specifically of pulses and oilseed crops.
Collapse
Affiliation(s)
- Sandhya Sharma
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
- *Correspondence: Kishor Gaikwad,
| |
Collapse
|
12
|
He Q, Yuan R, Zhang T, An F, Wang N, Lan J, Wang X, Zhang Z, Pan Y, Wang X, Zhang J, Guo D, Qin G. Arabidopsis TIE1 and TIE2 transcriptional repressors dampen cytokinin response during root development. SCIENCE ADVANCES 2022; 8:eabn5057. [PMID: 36083905 PMCID: PMC9462699 DOI: 10.1126/sciadv.abn5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cytokinin plays critical roles in root development. Cytokinin signaling depends on activation of key transcription factors known as type B Arabidopsis response regulators (ARRs). However, the mechanisms underlying the finely tuned regulation of type B ARR activity remain unclear. In this study, we demonstrate that the ERF-associated amphiphilic repression (EAR) motif-containing protein TCP interactor containing ear motif protein2 (TIE2) forms a negative feedback loop to finely tune the activity of type B ARRs during root development. Disruption of TIE2 and its close homolog TIE1 causes severely shortened roots. TIE2 interacts with type B ARR1 and represses transcription of ARR1 targets. The cytokinin response is correspondingly enhanced in tie1-1 tie2-1. We further show that ARR1 positively regulates TIE1 and TIE2 by directly binding to their promoters. Our findings demonstrate that TIEs play key roles in controlling plant development and reveal an important negative feedback regulation mechanism for cytokinin signaling.
Collapse
|
13
|
Lardon R, Trinh HK, Xu X, Vu LD, Van De Cotte B, Pernisová M, Vanneste S, De Smet I, Geelen D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. FRONTIERS IN PLANT SCIENCE 2022; 13:894208. [PMID: 36684719 PMCID: PMC9847488 DOI: 10.3389/fpls.2022.894208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Collapse
Affiliation(s)
- Robin Lardon
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho, Vietnam
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Markéta Pernisová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Steffen Vanneste
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Lin L, Du M, Li S, Sun C, Wu F, Deng L, Chen Q, Li C. Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:871-883. [PMID: 35212455 DOI: 10.1111/jipb.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Grain number is a flexible trait and contributes significantly to grain yield. In rice, the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) controls grain number by directly regulating cytokinin oxidase/dehydrogenase 2 (OsCKX2) expression. Although specific upstream regulators of the DST-OsCKX2 module have been identified, the mechanism employed by DST to regulate the expression of OsCKX2 remains unclear. Here, we demonstrate that DST-interacting protein 1 (DIP1), known as Mediator subunit OsMED25, acts as an interacting coactivator of DST. Phenotypic analyses revealed that OsMED25-RNAi and the osmed25 mutant plants exhibited enlarged panicles, with enhanced branching and spikelet number, similar to the dst mutant. Genetic analysis indicated that OsMED25 acts in the same pathway as the DST-OsCKX2 module to regulate spikelet number per panicle. Further biochemical analysis showed that OsMED25 physically interacts with DST at the promoter region of OsCKX2, and then recruits RNA polymerase II (Pol II) to activate OsCKX2 transcription. Thus, OsMED25 was involved in the communication between DST and Pol II general transcriptional machinery to regulate spikelet number. In general, our findings reveal a novel function of OsMED25 in DST-OsCKX2 modulated transcriptional regulation, thus enhancing our understanding of the regulatory mechanism underlying DST-OsCKX2-mediated spikelet number.
Collapse
Affiliation(s)
- Lihao Lin
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
15
|
Zhou H, Xu L, Li F, Li Y. Transcriptional regulation by CRISPR/dCas9 in common wheat. Gene 2022; 807:145919. [PMID: 34454034 DOI: 10.1016/j.gene.2021.145919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
The application of CRISPR/Cas9 system for gene editing, as a technical coup for biotechnology, is worldwide and encompasses multiple of species. The inactivation of catalytical site in Cas9 (dCas9) has been reprogrammed as an effective approach to regulate the transcriptional level of target genes, especially for the functionally essential genes and redundant genes. Here, we exploited the CRISPR/dCas9 system to manipulate the transcriptional level of target genes in common wheat. To improve target gene's expression, we generated transcriptional activator by fusing 6×TAL-VP128 activation domain to the C-terminus of dCas9 in frame. For target gene's repressing expression transcriptionally, 3×SRDX repression domain was conjugated to the C-terminus of dCas9 in frame. Our results showed that dCas9 fused activation or repression domain could increase or decrease the transcriptional level of target gene effectively in stable transgenic lines of wheat. The study on the tRNA-processing system in CRISPR/dCas9 based transcriptional regulation system demonstrated that this robust multiplex targeted tool can be incorporated to the CRISPR/dCas9 system to facilitate the target regulation of several genes' transcriptional level. Our data broaden the application of CRISPR/dCas9 based transcriptional regulation and provide great opportunities to investigate the function of essential genes in common wheat.
Collapse
Affiliation(s)
- Huajie Zhou
- College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Jinan 250014, Shandong, China
| | - Lei Xu
- College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Lixia District, Jinan 250014, Shandong, China
| | - Feng Li
- Shandong Shunfeng Biotechnology Co. Ltd., 11 Floor, Main Building, QiLu Innovalley Incubator, High-tech Industry Development Zone, Jinan 250000, Shandong, China
| | - Yansha Li
- Shandong Shunfeng Biotechnology Co. Ltd., 11 Floor, Main Building, QiLu Innovalley Incubator, High-tech Industry Development Zone, Jinan 250000, Shandong, China.
| |
Collapse
|
16
|
Leuendorf JE, Schmülling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071458. [PMID: 34371661 PMCID: PMC8309282 DOI: 10.3390/plants10071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.
Collapse
|
17
|
Yang Z, Yan B, Dong H, He G, Zhou Y, Sun J. BIC1 acts as a transcriptional coactivator to promote brassinosteroid signaling and plant growth. EMBO J 2021; 40:e104615. [PMID: 33280146 PMCID: PMC7780237 DOI: 10.15252/embj.2020104615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
The BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor family plays an essential role in plant brassinosteroid (BR) signaling, but the signaling mechanism through which BZR1 and its homologs cooperate with certain coactivators to facilitate transcription of target genes remains incompletely understood. In this study, we used an efficient protein interaction screening system to identify blue-light inhibitor of cryptochromes 1 (BIC1) as a new BZR1-interacting protein in Arabidopsis thaliana. We show that BIC1 positively regulates BR signaling and acts as a transcriptional coactivator for BZR1-dependent activation of BR-responsive genes. Simultaneously, BIC1 interacts with the transcription factor PIF4 to synergistically and interdependently activate expression of downstream genes including PIF4 itself, and to promote plant growth. Chromatin immunoprecipitation assays demonstrate that BIC1 and BZR1/PIF4 interdependently associate with the promoters of common target genes. In addition, we show that the interaction between BIC1 and BZR1 is evolutionally conserved in the model monocot plant Triticum aestivum (bread wheat). Together, our results reveal mechanistic details of BR signaling mediated by a transcriptional activation module BIC1/BZR1/PIF4 and thus provide new insights into the molecular mechanisms underlying the integration of BR and light signaling in plants.
Collapse
Affiliation(s)
- Zongju Yang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Baiqiang Yan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Guanhua He
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
18
|
Werner S, Bartrina I, Novák O, Strnad M, Werner T, Schmülling T. The Cytokinin Status of the Epidermis Regulates Aspects of Vegetative and Reproductive Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:613488. [PMID: 33732273 PMCID: PMC7959818 DOI: 10.3389/fpls.2021.613488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 05/14/2023]
Abstract
The epidermal cell layer of plants has important functions in regulating plant growth and development. We have studied the impact of an altered epidermal cytokinin metabolism on Arabidopsis shoot development. Increased epidermal cytokinin synthesis or breakdown was achieved through expression of the cytokinin synthesis gene LOG4 and the cytokinin-degrading CKX1 gene, respectively, under the control of the epidermis-specific AtML1 promoter. During vegetative growth, increased epidermal cytokinin production caused an increased size of the shoot apical meristem and promoted earlier flowering. Leaves became larger and the shoots showed an earlier juvenile-to-adult transition. An increased cytokinin breakdown had the opposite effect on these phenotypic traits indicating that epidermal cytokinin metabolism can be a factor regulating these aspects of shoot development. The phenotypic consequences of abbreviated cytokinin signaling in the epidermis achieved through expression of the ARR1-SRDX repressor were generally milder or even absent indicating that the epidermal cytokinin acts, at least in part, cell non-autonomously. Enhanced epidermal cytokinin synthesis delayed cell differentiation during leaf development leading to an increased cell proliferation and leaf growth. Genetic analysis showed that this cytokinin activity was mediated mainly by the AHK3 receptor and the transcription factor ARR1. We also demonstrate that epidermal cytokinin promotes leaf growth in a largely cell-autonomous fashion. Increased cytokinin synthesis in the outer layer of reproductive tissues and in the placenta enhanced ovule formation by the placenta and caused the formation of larger siliques. This led to a higher number of seeds in larger pods resulting in an increased seed yield per plant. Collectively, the results provide evidence that the cytokinin metabolism in the epidermis is a relevant parameter determining vegetative and reproductive plant growth and development.
Collapse
Affiliation(s)
- Sören Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Isabel Bartrina
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Institute of Biology, NAWI Graz, University of Graz, Graz, Austria
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Institute of Biology, NAWI Graz, University of Graz, Graz, Austria
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- *Correspondence: Thomas Schmülling,
| |
Collapse
|
19
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
20
|
Moradpour M, Abdulah SNA. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:32-44. [PMID: 31392820 PMCID: PMC6920162 DOI: 10.1111/pbi.13232] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/19/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and Cas9-associated protein systems provide a powerful genetic manipulation tool that can drive plant research forward. Nuclease-dead Cas9 (dCas9) is an enzymatically inactive mutant of Cas9 in which its endonuclease activity is non-functional. The applications of CRISPR/dCas9 have expanded and diversified in recent years. Originally, dCas9 was used as a CRISPR/Cas9 re-engineering tool that enables targeted expression of any gene or multiple genes through recruitment of transcriptional effector domains without introducing irreversible DNA-damaging mutations. Subsequent applications have made use of its ability to recruit modifying enzymes and reporter proteins to DNA target sites. In this paper, the most recent progress in the applications of CRISPR/dCas9 in plants, which include gene activation and repression, epigenome editing, modulation of chromatin topology, live-cell chromatin imaging and DNA-free genetic modification, will be reviewed. The associated strategies for exploiting the CRISPR/dCas9 system for crop improvement with a dimer of the future of the CRISPR/dCas9 system in the functional genomics of crops and the development of traits will be briefly discussed.
Collapse
Affiliation(s)
- Mahdi Moradpour
- Laboratory of Science and TechnologyInstitute of Plantation StudiesUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Siti Nor Akmar Abdulah
- Laboratory of Science and TechnologyInstitute of Plantation StudiesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Department of Agricultural TechnologyFaculty of AgricultureUniversiti Putra MalaysiaSerdangSelangorMalaysia
| |
Collapse
|
21
|
Lee JE, Neumann M, Duro DI, Schmid M. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants. PLoS One 2019; 14:e0222778. [PMID: 31557222 PMCID: PMC6762090 DOI: 10.1371/journal.pone.0222778] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Programmable gene regulators that can modulate the activity of selected targets in trans are a useful tool for probing and manipulating gene function. CRISPR technology provides a convenient method for gene targeting that can also be adapted for multiplexing and other modifications to enable strong regulation by a range of different effectors. We generated a vector toolbox for CRISPR/dCas9-based targeted gene regulation in plants, modified with the previously described MS2 system to amplify the strength of regulation, and using Golden Gate-based cloning to enable rapid vector assembly with a high degree of flexibility in the choice of promoters, effectors and targets. We tested the system using the floral regulator FLOWERING LOCUS T (FT) as a target and a range of different effector domains including the transcriptional activator VP64, the H3K27 acetyltransferase p300 and the H3K9 methyltransferase KRYPTONITE. When transformed into Arabidopsis thaliana, several of the constructs caused altered flowering time phenotypes that were associated with changes in FT expression and/or epigenetic status, thus demonstrating the effectiveness of the system. The MS2-CRISPR/dCas9 system can be used to modulate transcriptional activity and epigenetic status of specific target genes in plants, and provides a versatile tool that can easily be used with different targets and types of regulation for a range of applications.
Collapse
Affiliation(s)
- Joanne E. Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany
| | - Daniel Iglesias Duro
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Fourounjian P, Tang J, Tanyolac B, Feng Y, Gelfand B, Kakrana A, Tu M, Wakim C, Meyers BC, Ma J, Messing J. Post-transcriptional adaptation of the aquatic plant Spirodela polyrhiza under stress and hormonal stimuli. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1120-1133. [PMID: 30801806 DOI: 10.1111/tpj.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The Lemnaceae family comprises aquatic plants of angiosperms gaining attention due to their utility in wastewater treatment, and rapid production of biomass that can be used as feed, fuel, or food. Moreover, it can serve as a model species for neotenous growth and environmental adaptation. The latter properties are subject to post-transcriptional regulation of gene expression, meriting investigation of how miRNAs in Spirodela polyrhiza, the most basal and most thoroughly sequenced member of the family, are expressed under different growth conditions. To further scientific understanding of its capacity to adapt to environmental cues, we measured miRNA expression and processing of their target sequences under different temperatures, and in the presence of abscisic acid, copper, kinetin, nitrate, and sucrose. Using two small RNA sequencing experiments and one degradome sequencing experiment, we provide evidence for 108 miRNAs. Sequencing cleaved mRNAs validated 42 conserved miRNAs with 83 targets and 24 novel miRNAs regulating 66 targets and created a list of 575 predicted and verified targets. These analyses revealed condition-induced changes in miRNA expression and cleavage activity, and resulted in the addition of stringently reviewed miRNAs to miRBase. This combination of small RNA and degradome sequencing provided not only high confidence predictions of conserved and novel miRNAs and targets, but also a view of the post-transcriptional regulation of adaptations. A unique aspect is the role of miR156 and miR172 expression and activity in its clonal propagation and neoteny. Additionally, low levels of 24 nt sRNAs were observed, despite the lack of recent retrotransposition.
Collapse
Affiliation(s)
- Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Jie Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Bahattin Tanyolac
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Brian Gelfand
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Atul Kakrana
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Min Tu
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Chris Wakim
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Jiong Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ, 08854, USA
| |
Collapse
|
23
|
Nehnevajova E, Ramireddy E, Stolz A, Gerdemann-Knörck M, Novák O, Strnad M, Schmülling T. Root enhancement in cytokinin-deficient oilseed rape causes leaf mineral enrichment, increases the chlorophyll concentration under nutrient limitation and enhances the phytoremediation capacity. BMC PLANT BIOLOGY 2019; 19:83. [PMID: 30786853 PMCID: PMC6381662 DOI: 10.1186/s12870-019-1657-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cytokinin is a negative regulator of root growth, and a reduction of the cytokinin content or signalling causes the formation a larger root system in model plants, improves their growth under drought and nutrient limitation and causes increased accumulation of elements in the shoot. Roots are an important but understudied target of plant breeding. Here we have therefore explored whether root enhancement by lowering the cytokinin content can also be achieved in oilseed rape (Brassica napus L.) plants. RESULTS Transgenic plants overexpressing the CKX2 gene of Arabidopsis thaliana encoding a cytokinin-degrading cytokinin oxidase/dehydrogenase showed higher CKX activity and a strongly reduced cytokinin content. Cytokinin deficiency led to the formation of a larger root system under different growth conditions, which was mainly due to an increased number of lateral and adventitious roots. In contrast, shoot growth was comparable to wild type, which caused an enhanced root-to-shoot ratio. Transgenic plants accumulated in their leaves higher concentrations of macro- and microelements including P, Ca, Mg, S, Zn, Cu, Mo and Mn. They formed more chlorophyll under Mg- and S-deficiency and accumulated a larger amount of Cd and Zn from contaminated medium and soil. CONCLUSIONS These findings demonstrate the usefulness of ectopic CKX gene expression to achieve root enhancement in oilseed rape and underpin the functional relevance of a larger root system. Furthermore, the lack of major developmental consequences on shoot growth in cytokinin-deficient oilseed rape indicates species-specific differences of CKX gene and/or cytokinin action.
Collapse
Affiliation(s)
- Erika Nehnevajova
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: Indian Institute of Science Education and Research (IISER) Tirupati, Biology Division, 517507, Tirupati, Andhra Pradesh India
| | - Andrea Stolz
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Maria Gerdemann-Knörck
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Ondřej Novák
- Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Olomouc, Czech Republic
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
24
|
Song GQ, Walworth A. An invaluable transgenic blueberry for studying chilling-induced flowering in woody plants. BMC PLANT BIOLOGY 2018; 18:265. [PMID: 30382848 PMCID: PMC6211425 DOI: 10.1186/s12870-018-1494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Many deciduous woody crops require a minimum level of chilling to break dormancy and allow the seasonal growth of vegetative and floral buds. In this study, we report the discovery of an invaluable transgenic event of the blueberry cultivar 'Legacy' (hereafter, Mu-Legacy) for studying chilling-induced flowering in woody plants. Mu-legacy and its progeny provide a unique material to study the unknown mechanism of chilling-mediated flowering in woody plants. RESULTS Unlike nontransgenic 'Legacy' and plants of 48 other transgenic events, Mu-Legacy plants were able to flower under nonchilling conditions and had early flower bud formation, reduced plant size, and reduced chilling requirement for normal flowering. These characteristics were heritable and also observed in self-pollinated, transgenic T1 progenies of Mu-Legacy. A 47-Kbp genomic sequence surrounding the transgene insertion position was identified. RNA-sequencing data showed increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2), located adjacent to the insertion position in Mu-Legacy and likely driven by the CaMV 35S promoter of the transgene. The Mu-Legacy showed 209 differentially expressed genes (DEGs) in nonchilled flower buds (compared to nontransgenic 'Legacy'), of which only four DEGs were in the flowering pathway. This suggests altered expression of these few genes, VcRR2 and four flowering DEGs, is sufficient to significantly change flowering behavior in Mu-Legacy. CONCLUSIONS The significance of VcRR2 in Mu-Legacy suggests that the VcRR2-involved cytokinin pathway likely contributes to the major differences in chilling-mediated flowering between woody and herbaceous plants. More importantly, Mu-Legacy shows increased yield potential, a decreased chilling requirement, and better winter hardiness than many low-chilling cultivars growing in southern warm winter conditions.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
25
|
Fukudome A, Koiwa H. Cytokinin-overinduced transcription factors and thalianol cluster genes in CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4-silenced Arabidopsis roots during de novo shoot organogenesis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513299. [PMID: 30188775 PMCID: PMC6204838 DOI: 10.1080/15592324.2018.1513299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Cytokinin (CK) is one of key phytohormones for de-differentiation and de novo organogenesis in plants. During the CK-mediated organogenesis not only genes in CK homeostasis, perception and signal transduction, but also factors regulating basic transcription, splicing and chromatin remodeling contribute to coordinate a sequence of events leading to formation of new organs. We have found that silencing of RNA polymerase II CTD-phosohatase-like 4 (CPL4RNAi) in Arabidopsis induces CK-oversensitive de novo shoot organogenesis (DNSO) from roots, partly by early activation of transcription factors such as WUSCHEL and SHOOT MERISTEMLESS during pre-incubation on callus induction media. Here we show that a cluster of thalianol-biogenesis genes is highly expressed in the CPL4RNAi during DNSO, implying involvement of CPL4 in transcriptional regulation of the thalianol pathway in DNSO.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
26
|
Gu J, Li Z, Mao Y, Struik PC, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:320-331. [PMID: 30080619 DOI: 10.1016/j.plantsci.2018.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 05/03/2023]
Abstract
Nitrogen is an essential, often limiting, factor in plant growth and development. To regulate growth under limited nitrogen supply, plants sense the internal and external nitrogen status, and coordinate various metabolic processes and developmental programs accordingly. This coordination requires the transmission of various signaling molecules that move across the entire plant. Cytokinins, phytohormones derived from adenine and synthesized in various parts of the plant, are considered major local and long-distance messengers. Cytokinin metabolism and signaling are closely associated with nitrogen availability. They are systemically transported via the vasculature from plant roots to shoots, and vice versa, thereby coordinating shoot and root development. Tight linkage exists between the nitrogen signaling network and cytokinins during diverse developmental and physiological processes. However, the cytokinin-nitrogen interactions and the communication systems involved in sensing rhizospheric nitrogen status and in regulating canopy development remain obscure. We review current knowledge on cytokinin biosynthesis, transport and signaling, nitrogen acquisition, metabolism and signaling, and their interactive roles in regulating root-shoot morphological and physiological characteristics. We also discuss the role of spatio-temporal regulation of cytokinins in enhancing beneficial crop traits of yield and nitrogen use efficiency.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhikang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yiqi Mao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Science, Wageningen University, PO Box 430, Wageningen, 6700 AK, The Netherlands
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
27
|
Ramireddy E, Hosseini SA, Eggert K, Gillandt S, Gnad H, von Wirén N, Schmülling T. Root Engineering in Barley: Increasing Cytokinin Degradation Produces a Larger Root System, Mineral Enrichment in the Shoot and Improved Drought Tolerance. PLANT PHYSIOLOGY 2018; 177:1078-1095. [PMID: 29871980 PMCID: PMC6052998 DOI: 10.1104/pp.18.00199] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 05/18/2023]
Abstract
Root size and architecture are important crop plant traits, as they determine access to water and soil nutrients. The plant hormone cytokinin is a negative regulator of root growth and branching. Here, we generated transgenic barley (Hordeum vulgare) plants with an enlarged root system by enhancing cytokinin degradation in roots to explore the potential of cytokinin modulations in improving root functions. This was achieved through root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE gene. Enhanced biomass allocation to roots did not penalize shoot growth or seed yield, indicating that these plants were not source limited. In leaves of transgenic lines, the concentrations of several macroelements and microelements were increased, particularly those with low soil mobility (phosphorus, manganese, and zinc). Importantly, seeds contained up to 44% more zinc, which is beneficial for human nutrition. Transgenic lines also demonstrated dampened stress responses to long-term drought conditions, indicating lower drought sensitivity. Taken together, this work demonstrates that root engineering of cereals is a promising strategy to improve nutrient efficiency, biofortification, and drought tolerance.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
- Indian Institute of Science Education and Research Tirupati, Biology Division, Tirupati-517507, Andhra Pradesh, India
| | - Seyed A Hosseini
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Kai Eggert
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Sabine Gillandt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Heike Gnad
- Saaten-Union Biotec, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
28
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW. A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration. THE PLANT CELL 2017; 29:1073-1087. [PMID: 28389585 PMCID: PMC5466026 DOI: 10.1105/tpc.16.00863] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 05/18/2023]
Abstract
Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- National Center for Plant Gene Research, Beijing 100101, P.R. China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, P.R. China
- ShanghaiTech University, Shanghai 200031, P.R. China
| |
Collapse
|
30
|
Cen H, Ye W, Liu Y, Li D, Wang K, Zhang W. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass. Sci Rep 2016; 6:27320. [PMID: 27251327 PMCID: PMC4890315 DOI: 10.1038/srep27320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
Abstract
The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement.
Collapse
Affiliation(s)
- Huifang Cen
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Wenxing Ye
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Kexin Wang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, P. R. China.,National Energy R&D Center for Biomass (NECB), China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
31
|
Breuninger H, Thamm A, Streubel S, Sakayama H, Nishiyama T, Dolan L. Diversification of a Transcription Factor Family Led to the Evolution of Antagonistically Acting Genetic Regulators of Root Hair Growth. Curr Biol 2016; 26:1622-1628. [PMID: 27265398 PMCID: PMC4920954 DOI: 10.1016/j.cub.2016.04.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 10/25/2022]
Abstract
Streptophytes colonized the land some time before 470 million years ago [1-3]. The colonization coincided with an increase in morphological and cellular diversity [4-7]. This increase in diversity is correlated with a proliferation in transcription factors encoded in genomes [8-10]. This suggests that gene duplication and subsequent diversification of function was instrumental in the generation of land plant diversity. Here, we investigate the diversification of the streptophyte-specific Lotus japonicus ROOTHAIRLESS LIKE (LRL) transcription factor (TF) [11, 12] subfamily of basic loop helix (bHLH) proteins by comparing gene function in early divergent and derived land plant species. We report that the single Marchantia polymorpha LRL gene acts as a general growth regulator required for rhizoid development, a function that has been partially conserved throughout multicellular streptophytes. In contrast, the five relatively derived Arabidopsis thaliana LRL genes comprise two antagonistically acting groups of differentially expressed genes. The diversification of LRL genes accompanied the evolution of an antagonistic regulatory element controlling root hair development.
Collapse
Affiliation(s)
- Holger Breuninger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Anna Thamm
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Susanna Streubel
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
32
|
Guo D, Zhang J, Wang X, Han X, Wei B, Wang J, Li B, Yu H, Huang Q, Gu H, Qu LJ, Qin G. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis. THE PLANT CELL 2015; 27:3112-27. [PMID: 26578700 PMCID: PMC4682308 DOI: 10.1105/tpc.15.00829] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/31/2015] [Indexed: 05/15/2023]
Abstract
Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways.
Collapse
Affiliation(s)
- Dongshu Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xinlei Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiang Han
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Baoye Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianqiao Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Boxun Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
33
|
Chang L, Ramireddy E, Schmülling T. Cytokinin as a positional cue regulating lateral root spacing in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4759-68. [PMID: 26019251 PMCID: PMC4507779 DOI: 10.1093/jxb/erv252] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The root systems of plants have developed adaptive architectures to exploit soil resources. The formation of lateral roots (LRs) contributes to root system architecture. Roots of plants with a lower cytokinin status form LR primordia (LRP) in unusually close proximity, indicating a role for the hormone in regulating the positioning of LRs along the main root axis. Data obtained from cytokinin-synthesis mutants of Arabidopsis thaliana combined with gene expression analysis indicate that cytokinin synthesis by IPT5 and LOG4 occurring early during LRP initiation generates a local cytokinin signal abbreviating LRP formation in neighbouring pericycle cells. In addition, IPT3, IPT5, and IPT7 contribute to cytokinin synthesis in the vicinity of existing LRP, thus suppressing initiation of new LRs. Interestingly, mutation of CYP735A genes required for trans-zeatin biosynthesis caused strong defects in LR positioning, indicating an important role for this cytokinin metabolite in regulating LR spacing. Further it is shown that cytokinin and a known regulator of LR spacing, the receptor-like kinase ARABIDOPSIS CRINKLY4 (ACR4), operate in a non-hierarchical manner but might exert reciprocal control at the transcript level. Taken together, the results suggest that cytokinin acts as a paracrine hormonal signal in regulating root system architecture.
Collapse
Affiliation(s)
- Ling Chang
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D- 14195 Berlin, Germany Present address: Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan 430062, China
| | - Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D- 14195 Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D- 14195 Berlin, Germany
| |
Collapse
|
34
|
Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:578-89. [PMID: 25400128 DOI: 10.1111/pbi.12284] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/19/2014] [Accepted: 09/21/2014] [Indexed: 05/20/2023]
Abstract
Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3::uidA targets in plant cells. Further, the dCas9:SRDX-mediated transcriptional repression of an endogenous gene. Thus, our results suggest that the synthetic transcriptional repressor (dCas9:SRDX) and activators (dCas9:EDLL and dCas9:TAD) can be used as endogenous transcription factors to repress or activate transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9 DNA-targeting platform can be used in plants as a functional genomics tool and for biotechnological applications.
Collapse
Affiliation(s)
- Agnieszka Piatek
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Figueroa P, Browse J. Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:849-60. [PMID: 25627909 DOI: 10.1111/tpj.12776] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 05/11/2023]
Abstract
Jasmonate hormone (JA) plays critical roles in both plant defense and reproductive development. Arabidopsis thaliana plants deficient in JA-biosynthesis or -signaling are male-sterile, with defects in stamen and pollen development. MYC2, MYC3 and MYC4 are JAZ-interacting bHLH transcription factors that play a major role in controlling JA responses in vegetative tissue, but are not likely to play a role in reproductive tissue. We found that a closely related transcription factor, MYC5 (bHLH28), was able to induce JAZ promoters that control some of the early JA-responsive genes in a Daucus carota (carrot) protoplast expression system. A G-box sequence in the JAZ2 promoter was necessary and sufficient for induction by MYC5 (as it is for MYC2, MYC3 and MYC4), and induction of JAZ genes was repressed by co-expression of a stabilized, JAZ1ΔJas repressor. Two allelic myc5 mutants exhibited no overt phenotype; however, transgenic lines expressing MYC5 fused to an SRDX (SUPERMAN repressive domain X) motif phenocopied mutants defective in JA signaling. In particular, MYC5-SRDX plants were male-sterile, with defects in stamen filament elongation, anther dehiscence and pollen viability. Importantly, expression of MYB21 and other transcription factors required for stamen and pollen maturation was strongly reduced in stamens of MYC5-SRDX plants relative to the wild type. Taken together, these results indicate that MYC5, probably together with other, redundant transcription factors, may be activated by JA signaling to induce the expression of MYB21 and components required for male fertility.
Collapse
Affiliation(s)
- Pablo Figueroa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | | |
Collapse
|
36
|
Brenner WG, Schmülling T. Summarizing and exploring data of a decade of cytokinin-related transcriptomics. FRONTIERS IN PLANT SCIENCE 2015; 6:29. [PMID: 25741346 PMCID: PMC4330702 DOI: 10.3389/fpls.2015.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/13/2015] [Indexed: 05/17/2023]
Abstract
The genome-wide transcriptional response of the model organism Arabidopsis thaliana to cytokinin has been investigated by different research groups as soon as large-scale transcriptomic techniques became affordable. Over the last 10 years many transcriptomic datasets related to cytokinin have been generated using different technological platforms, some of which are published only in databases, culminating in an RNA sequencing experiment. Two approaches have been made to establish a core set of cytokinin-regulated transcripts by meta-analysis of these datasets using different preferences regarding their selection. Here we add another meta-analysis derived from an independent microarray platform (CATMA), combine all the meta-analyses available with RNAseq data in order to establish an advanced core set of cytokinin-regulated transcripts, and compare the results with the regulation of orthologous rice genes by cytokinin. We discuss the functions of some of the less known cytokinin-regulated genes indicating areas deserving further research to explore cytokinin function. Finally, we investigate the promoters of the core set of cytokinin-induced genes for the abundance and distribution of known cytokinin-responsive cis elements and identify a set of novel candidate motifs.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- *Correspondence: Wolfram G. Brenner and Thomas Schmülling, Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany e-mail: ;
| | - Thomas Schmülling
- *Correspondence: Wolfram G. Brenner and Thomas Schmülling, Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany e-mail: ;
| |
Collapse
|
37
|
Veerabagu M, Kirchler T, Elgass K, Stadelhofer B, Stahl M, Harter K, Mira-Rodado V, Chaban C. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression. MOLECULAR PLANT 2014; 7:1560-77. [PMID: 24948556 DOI: 10.1093/mp/ssu074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As the first and rate-limiting enzyme of proline degradation, PROLINE DEHYDROGENASE1 (PDH1) is tightly regulated during plant stress responses, including induction under hypoosmolarity and repression under water deficit. The plant receptor histidine kinases AHKs, elements of the two-component system (TCS) in Arabidopsis thaliana, are proposed to function in water stress responses by regulating different stress-responsive genes. However, little information is available concerning AHK phosphorelay-mediated downstream signaling. Here we show that the Arabidopsis type-B response regulator 18 (ARR18) functions as a positive osmotic stress response regulator in Arabidopsis seeds and affects the activity of the PDH1 promoter, known to be controlled by C-group bZIP transcription factors. Moreover, direct physical interaction of ARR18 with bZIP63 was identified and shown to be dependent on phosphorylation of the conserved aspartate residue in the ARR18 receiver domain. We further show that bZIP63 itself functions as a negative regulator of seed germination upon osmotic stress. Using reporter gene assays in protoplasts, we demonstrated that ARR18 interaction negatively interferes with the transcriptional activity of bZIP63 on the PDH1 promoter. Our findings provide new insight into the function of ARR18 and bZIP63 as antagonistic regulators of gene expression in Arabidopsis.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- a Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany b Present address: Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491- Trondheim, Norway
| | - Tobias Kirchler
- a Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kirstin Elgass
- a Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany c Present address: Biochemistry Department, Physical Science 4, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bettina Stadelhofer
- d Central Facilities, Analytics, ZMBP, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Mark Stahl
- d Central Facilities, Analytics, ZMBP, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Klaus Harter
- a Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Virtudes Mira-Rodado
- a Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Christina Chaban
- a Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Konishi M, Yanagisawa S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5589-600. [PMID: 25005135 DOI: 10.1093/jxb/eru267] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrogen is one of the primary macronutrients of plants, and nitrate is the most abundant inorganic form of nitrogen in soils. Plants take up nitrate in soils and utilize it both for nitrogen assimilation and as a signalling molecule. Thus, an essential role for nitrate in plants is triggering changes in gene expression patterns, including immediate induction of the expression of genes involved in nitrate transport and assimilation, as well as several transcription factor genes and genes related to carbon metabolism and cytokinin biosynthesis and response. Significant progress has been made in recent years towards understanding the molecular mechanisms underlying nitrate-regulated gene expression in higher plants; a new stage in our understanding of this process is emerging. A key finding is the identification of NIN-like proteins (NLPs) as transcription factors governing nitrate-inducible gene expression. NLPs bind to nitrate-responsive DNA elements (NREs) located at nitrate-inducible gene loci and activate their NRE-dependent expression. Importantly, post-translational regulation of NLP activity by nitrate signalling was strongly suggested to be a vital process in NLP-mediated transcriptional activation and subsequent nitrate responses. We present an overview of the current knowledge of the molecular mechanisms underlying nitrate-regulated gene expression in higher plants.
Collapse
Affiliation(s)
- Mineko Konishi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
39
|
Simonini S, Kater MM. Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1455-65. [PMID: 24482368 PMCID: PMC3967085 DOI: 10.1093/jxb/eru003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The BASIC PENTACYSTEINE (BCP) family is a poorly characterized plant transcription factor family of GAGA BINDING PROTEINS. In Arabidopsis, there are seven members (BPC1-7) that are broadly expressed, and they can potentially bind more than 3000 Arabidopsis GAGA-repeat-containing genes. To date, BPCs are known to be direct regulators of the INNER NO OUTER (INO), SEEDSTICK (STK), and LEAFY COTYLEDON 2 (LEC2) genes. Because of the high functional redundancy, neither single knockout nor double bpc mutant combinations cause aberrant phenotypes. The bpc1-2 bpc2 bpc3 triple mutant shows several pleiotropic developmental defects, including enlargement of the inflorescence meristem and flowers with supernumerary floral organs. Here, we demonstrated through expression analysis and chromatin immunoprecipitation assays that this phenotype is probably due to deregulation of the expression of the SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS/KNAT1 (BP) genes, which are both direct targets of BPCs. Moreover, we assigned a role to BPCs in the fine regulation of the cytokinin content in the meristem, as both ISOPENTENYLTRANSFERASE 7 (IPT7) and ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) genes were shown to be overexpressed in the bpc1-2 bpc2 bpc3 triple mutant.
Collapse
Affiliation(s)
- Sara Simonini
- * Present address: Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UH, UK
| | | |
Collapse
|
40
|
Cortleven A, Nitschke S, Klaumünzer M, AbdElgawad H, Asard H, Grimm B, Riefler M, Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. PLANT PHYSIOLOGY 2014; 164:1470-83. [PMID: 24424319 PMCID: PMC3938634 DOI: 10.1104/pp.113.224667] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 05/17/2023]
Abstract
Cytokinins are plant hormones that regulate diverse processes in plant development and responses to biotic and abiotic stresses. In this study, we show that Arabidopsis (Arabidopsis thaliana) plants with a reduced cytokinin status (i.e. cytokinin receptor mutants and transgenic cytokinin-deficient plants) are more susceptible to light stress compared with wild-type plants. This was reflected by a stronger photoinhibition after 24 h of high light (approximately 1,000 µmol m(-2) s(-1)), as shown by the decline in maximum quantum efficiency of photosystem II photochemistry. Photosystem II, especially the D1 protein, is highly sensitive to the detrimental impact of light. Therefore, photoinhibition is always observed when the rate of photodamage exceeds the rate of D1 repair. We demonstrate that in plants with a reduced cytokinin status, the D1 protein level was strongly decreased upon light stress. Inhibition of the D1 repair cycle by lincomycin treatment indicated that these plants experience stronger photodamage. The efficiency of photoprotective mechanisms, such as nonenzymatic and enzymatic scavenging systems, was decreased in plants with a reduced cytokinin status, which could be a cause for the increased photodamage and subsequent D1 degradation. Additionally, slow and incomplete recovery in these plants after light stress indicated insufficient D1 repair. Mutant analysis revealed that the protective function of cytokinin during light stress depends on the Arabidopsis histidine KINASE2 (AHK2) and AHK3 receptors and the type B Arabidopsis response regulator1 (ARR1) and ARR12. We conclude that proper cytokinin signaling and regulation of specific target genes are necessary to protect leaves efficiently from light stress.
Collapse
|
41
|
Kurepa J, Li Y, Perry SE, Smalle JA. Ectopic expression of the phosphomimic mutant version of Arabidopsis response regulator 1 promotes a constitutive cytokinin response phenotype. BMC PLANT BIOLOGY 2014; 14:28. [PMID: 24423196 PMCID: PMC3907372 DOI: 10.1186/1471-2229-14-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/09/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cytokinins control numerous plant developmental processes, including meristem formation and activity, nutrient distribution, senescence timing and responses to both the abiotic and biotic environments. Cytokinin signaling leads to the activation of type-B response regulators (RRBs), Myb-like transcription factors that are activated by the phosphorylation of a conserved aspartate residue in their response receiver domain. Consistent with this, overexpression of RRBs does not substantially alter plant development, but instead leads to cytokinin hypersensitivity. RESULTS Here we present comparative analysis of plants overexpressing Arabidopsis RRB 1 (ARR1) or a phosphomimic ARR1D94E mutant in which the conserved aspartate-94 (D94) is replaced by the phosphomimic residue glutamate (E). The D94E substitution causes a 100-fold increase in response activation and instigates developmental and physiological changes that characterize wild-type plants treated with cytokinins or transgenic plants with increased cytokinin content. CONCLUSION The current model of cytokinin signaling emphasizes the essential role of conserved aspartate residue phosphorylation of RRBs in promoting cytokinin responses. Our comparative analyses of developmental and physiological traits of ARR1 and ARR1D94E overexpressing plants revealed that the ARR1D94E protein is indeed a constitutive and wide-spectrum cytokinin response activator.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Yan Li
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Sharyn E Perry
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Jan A Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| |
Collapse
|
42
|
Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z, Latché A, Pech JC, Bouzayen M, Regad F. A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:406-19. [PMID: 23931552 DOI: 10.1111/tpj.12305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 05/20/2023]
Abstract
Ethylene Response Factors (ERFs) are downstream components of the ethylene signal transduction pathway, although their role in ethylene-dependent developmental processes remains poorly understood. As the ethylene-inducible tomato Sl-ERF.B3 has been shown previously to display a strong binding affinity to GCC-box-containing promoters, its physiological significance was addressed here by a reverse genetics approach. However, classical up- and down-regulation strategies failed to give clear clues to its roles in planta, probably due to functional redundancy among ERF family members. Expression of a dominant repressor ERF.B3-SRDX version of Sl-ERF.B3 in the tomato resulted in pleiotropic ethylene responses and vegetative and reproductive growth phenotypes. The dominant repressor etiolated seedlings displayed partial constitutive ethylene response in the absence of ethylene and adult plants exhibited typical ethylene-related alterations such as leaf epinasty, premature flower senescence and accelerated fruit abscission. The multiple symptoms related to enhanced ethylene sensitivity correlated with the altered expression of ethylene biosynthesis and signaling genes and suggested the involvement of Sl-ERF.B3 in a feedback mechanism that regulates components of ethylene production and response. Moreover, Sl-ERF.B3 was shown to modulate the transcription of a set of ERFs and revealed the existence of a complex network interconnecting different ERF genes. Overall, the study indicated that Sl-ERF.B3 had a critical role in the regulation of multiple genes and identified a number of ERFs among its primary targets, consistent with the pleiotropic phenotypes displayed by the dominant repression lines.
Collapse
Affiliation(s)
- Mingchun Liu
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France; INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chang L, Ramireddy E, Schmülling T. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5021-32. [PMID: 24023250 PMCID: PMC3830484 DOI: 10.1093/jxb/ert291] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant root system is important for the uptake of water and nutrients and the anchoring of plants in the soil. Lateral roots (LRs) contribute considerably to root system architecture. Their post-embryonic formation is regulated by hormones and environmental cues. The hormone cytokinin influences LR formation and growth in Arabidopsis thaliana on different levels by disturbing cell division activity and pattern formation. This includes inhibition of the first formative cell division of pericycle founder cells and inhibition of the outgrowth of young LR primordia. Mutant analysis revealed that the cytokinin biosynthesis genes IPT3 and IPT5 and all three cytokinin receptor genes (AHK2, AHK3, and CRE1/AHK4) act redundantly during LR initiation. Mutation of AHK2 and AHK3 caused increased auxin sensitivity of LR formation, corroborating the functional relevance of auxin-cytokinin interaction during LR formation. In contrast, LR development of cytokinin receptor mutants in response to other hormones was mostly similar to that of the wild type, which is consistent with separate response pathways. A noticeable exception was an increased sensitivity of LR elongation to brassinolide in ahk2 ahk3 mutants indicating antagonistic action of cytokinin and brassinosteroid. It is proposed that the multilevel redundancy of the cytokinin system in modulating LR formation reflects its role in mediating environmental cues.
Collapse
|
44
|
Post-embryonic induction of ATML1-SRDX alters the morphology of seedlings. PLoS One 2013; 8:e79312. [PMID: 24205380 PMCID: PMC3808298 DOI: 10.1371/journal.pone.0079312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/21/2013] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana MERISTEM LAYER 1 (ATML1), an HD-ZIP class IV homeobox gene, is one of the key regulators promoting epidermal cell differentiation in Arabidopsis thaliana. We recently showed that ATML1 was able to confer an ectopic shoot epidermis cell fate to non-epidermal tissues of seedlings, suggesting that ATML1 is a master regulator of epidermal cell fate. To further assess the roles of ATML1 and its homologs in epidermal cell differentiation, I generated transgenic plants expressing ATML1 fused with a transcriptional repressor sequence (ATML1-SRDX). Estradiol-induced expression of ATML1-SRDX in the seedlings decreased transcript levels of several epidermis-related genes. Moreover, these transgenic plants exhibited phenotypes such as increased permeability to a hydrophilic dye and fusion of leaves and cotyledons, which are reminiscent of epidermis and/or cuticle-deficient mutants. Epidermal cell morphology was severely affected in the strong lines: filamentous protrusions were formed on the surface of the cotyledons. Marker gene analyses showed that these protrusions did not have epidermis, mesophyll, root hair, or trichome cell identity, suggesting that post-embryonic expression of ATML1-SRDX was sufficient to alter cell identity in pre-existing protodermal cells of the cotyledons. Taken together, these results suggest that ATML1 and/or its target genes are not only necessary for the initial specification of epidermal cell fate but also may be necessary for the maintenance of epidermal cells in later stages.
Collapse
|
45
|
Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 2013; 4:1617. [PMID: 23511481 DOI: 10.1038/ncomms2621] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/20/2013] [Indexed: 01/30/2023] Open
Abstract
In plants, nitrate is not only a major nitrogen source but also a signalling molecule that modulates the expression of a wide range of genes and that regulates growth and development. The critical role of nitrate as a signalling molecule has been established for several decades. However, the molecular mechanisms underlying the nitrate response have remained elusive, as the transcription factor that primarily responds to nitrate signals has not yet been identified. Here we show that Arabidopsis NIN-LIKE PROTEIN (NLP) family proteins bind the nitrate-responsive cis-element and activate nitrate-responsive cis-element-dependent and nitrate-responsive transcription. Our results also suggest that the activity of NLPs is post-translationally modulated by nitrate signalling. Furthermore, the suppression of NLP function impairs the nitrate-inducible expression of a number of genes and causes severe growth inhibition. These results indicate that NLPs are the transcription factors mediating the nitrate signal and thereby function as master regulators of the nitrate response.
Collapse
Affiliation(s)
- Mineko Konishi
- Laboratory of Plant Biotechnology, Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
46
|
Ramireddy E, Brenner WG, Pfeifer A, Heyl A, Schmülling T. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. PLANT & CELL PHYSIOLOGY 2013; 54:1079-92. [PMID: 23620480 DOI: 10.1093/pcp/pct060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The phytohormone cytokinin plays a key role in regulating plant growth and development, and is involved in numerous physiological responses to environmental changes. The type-B response regulators, which regulate the transcription of cytokinin response genes, are a part of the cytokinin signaling system. Arabidopsis thaliana encodes 11 type-B response regulators (type-B ARRs), and some of them were shown to bind in vitro to the core cytokinin response motif (CRM) 5'-(A/G)GAT(T/C)-3' or, in the case of ARR1, to an extended motif (ECRM), 5'-AAGAT(T/C)TT-3'. Here we obtained in planta proof for the functionality of the latter motif. Promoter deletion analysis of the primary cytokinin response gene ARR6 showed that a combination of two extended motifs within the promoter is required to mediate the full transcriptional activation by ARR1 and other type-B ARRs. CRMs were found to be over-represented in the vicinity of ECRMs in the promoters of cytokinin-regulated genes, suggesting their functional relevance. Moreover, an evolutionarily conserved 27 bp long T-rich region between -220 and -193 bp was identified and shown to be required for the full activation by type-B ARRs and the response to cytokinin. This novel enhancer is not bound by the DNA-binding domain of ARR1, indicating that additional proteins might be involved in mediating the transcriptional cytokinin response. Furthermore, genome-wide expression profiling identified genes, among them ARR16, whose induction by cytokinin depends on both ARR1 and other specific type-B ARRs. This together with the ECRM/CRM sequence clustering indicates cooperative action of different type-B ARRs for the activation of particular target genes.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil IT, Gaudinová A, Štorchová H, Ge E, Werner T, Schmülling T, Vanková R. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2805-15. [PMID: 23669573 PMCID: PMC3741687 DOI: 10.1093/jxb/ert131] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.
Collapse
Affiliation(s)
- Hana Macková
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Marie Hronková
- Institute of Plant Molecular Biology, Biology Centre AS CR, Branišovská 31/1160, 37005 České Budějovice, Czech Republic
| | - Jana Dobrá
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Zuzana Lubovská
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Václav Motyka
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Daniel Haisel
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Tomáš Hájek
- Institute of Botany AS CR, Dukelska 135, 37982 Třebon, Czech Republic
| | - Ilja Tom Prášil
- Crop Research Institute, Drnovská 507/73, 16106 Prague 6, Czech Republic
| | - Alena Gaudinová
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Helena Štorchová
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Eva Ge
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| | - Tomáš Werner
- Freie Universität Berlin, Dahlem Centre of Plant Sciences/Applied Genetics, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Thomas Schmülling
- Freie Universität Berlin, Dahlem Centre of Plant Sciences/Applied Genetics, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Radomíra Vanková
- Institute of Experimental Botany AS CR, Rozvojová 263, 16502 Prague 6, Czech Republic
| |
Collapse
|
48
|
Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:272-94. [PMID: 23524861 PMCID: PMC3641208 DOI: 10.1104/pp.113.217026] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/21/2013] [Indexed: 05/17/2023]
Abstract
Cytokinins are N(6)-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been validated by other methods. RNA-seq validated about 73% of the up-regulated genes identified by this meta-analysis. In silico promoter analysis indicated an overrepresentation of type-B Arabidopsis response regulator binding elements, consistent with the role of type-B Arabidopsis response regulators as primary mediators of cytokinin-responsive gene expression. RNA-seq analysis identified 73 cytokinin-regulated genes that were not represented on the ATH1 microarray. Representative genes were verified using quantitative reverse transcription-polymerase chain reaction and NanoString analysis. Analysis of the genes identified reveals a substantial effect of cytokinin on genes encoding proteins involved in secondary metabolism, particularly those acting in flavonoid and phenylpropanoid biosynthesis, as well as in the regulation of redox state of the cell, particularly a set of glutaredoxin genes. Novel splicing events were found in members of some gene families that are known to play a role in cytokinin signaling or metabolism. The genes identified in this analysis represent a robust set of cytokinin-responsive genes that are useful in the analysis of cytokinin function in plants.
Collapse
|
49
|
Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. PLANT PHYSIOLOGY 2013; 161:1066-75. [PMID: 23355633 PMCID: PMC3585579 DOI: 10.1104/pp.112.211763] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/24/2013] [Indexed: 05/17/2023]
Abstract
Cytokinins are classic plant hormones that orchestrate plant growth, development, and physiology. They affect gene expression in target cells by activating a multistep phosphorelay network. Type-B response regulators, acting as transcriptional activators, mediate the final step in the signaling cascade. Previously, we have introduced a synthetic reporter, Two Component signaling Sensor (TCS)::green fluorescent protein (GFP), which reflects the transcriptional activity of type-B response regulators. TCS::GFP was instrumental in uncovering roles of cytokinin and deepening our understanding of existing functions. However, TCS-mediated expression of reporters is weak in some developmental contexts where cytokinin signaling has a documented role, such as in the shoot apical meristem or in the vasculature of Arabidopsis (Arabidopsis thaliana). We also observed that GFP expression becomes rapidly silenced in TCS::GFP transgenic plants. Here, we present an improved version of the reporter, TCS new (TCSn), which, compared with TCS, is more sensitive to phosphorelay signaling in Arabidopsis and maize (Zea mays) cellular assays while retaining its specificity. Transgenic Arabidopsis TCSn::GFP plants exhibit strong and dynamic GFP expression patterns consistent with known cytokinin functions. In addition, GFP expression has been stable over generations, allowing for crosses with different genetic backgrounds. Thus, TCSn represents a significant improvement to report the transcriptional output profile of phosphorelay signaling networks in Arabidopsis, maize, and likely other plants that display common response regulator DNA-binding specificities.
Collapse
|
50
|
Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 2013; 110:3167-72. [PMID: 23382237 DOI: 10.1073/pnas.1300359110] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The phytohormone cytokinin (CK) positively regulates the activity and function of the shoot apical meristem (SAM), which is a major parameter determining seed production. The rice (Oryza sativa L.) Gn1a/OsCKX2 (Grain number 1a/Cytokinin oxidase 2) gene, which encodes a cytokinin oxidase, has been identified as a major quantitative trait locus contributing to grain number improvement in rice breeding practice. However, the molecular mechanism of how the expression of OsCKX2 is regulated in planta remains elusive. Here, we report that the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) directly regulates OsCKX2 expression in the reproductive meristem. DST-directed expression of OsCKX2 regulates CK accumulation in the SAM and, therefore, controls the number of the reproductive organs. We identify that DST(reg1), a semidominant allele of the DST gene, perturbs DST-directed regulation of OsCKX2 expression and elevates CK levels in the reproductive SAM, leading to increased meristem activity, enhanced panicle branching, and a consequent increase of grain number. Importantly, the DST(reg1) allele provides an approach to pyramid the Gn1a-dependent and Gn1a-independent effects on grain production. Our study reveals that, as a unique regulator of reproductive meristem activity, DST may be explored to facilitate the genetic enhancement of grain production in rice and other small grain cereals.
Collapse
|