1
|
Sospeter E, Ding P, Fang TH, Misran A, Abas F, Dey G. Understanding the complex aroma profile of durian fruit: A concise review. J Food Sci 2025; 90:e70099. [PMID: 40111093 DOI: 10.1111/1750-3841.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Durian fruit (Durio sp.) is a tropical fruit native to Southeast Asian countries known for its strong and unique characteristic smell. This review provides comprehensive information on durian fruit aroma, which is characterized by various volatile compounds, with esters and sulfur compounds playing a key role. Additionally, the contribution of ketones, alcohols and aldehydes to its unique aroma cannot be overlooked. The important precursors for the generation of these volatiles are branched-chain amino acids and polyunsaturated fatty acids. Moreover, the abundance and composition of aroma volatiles in durian fruit can be affected by various influencing factors, including genetic background, postharvest handling, and processing. This review also provides the common methods used to extract and analyze durian aroma components, with solid-phase microextraction gas chromatography-mass spectrometry emerging as a suitable and precise method to extract and analyze the complex aroma chemistry of the durian fruit.
Collapse
Affiliation(s)
- Eliwanzita Sospeter
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Food Science and Technology, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Phebe Ding
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teh Huey Fang
- Department of Industrial Biotechnology and Chemistry, SD Guthrie Technology, Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Serdang, Malaysia
| | - Azizah Misran
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Gargi Dey
- School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
2
|
Xu Z, Liu D, Zhu J, Zhao J, Shen S, Wang Y, Yu P. Catalysts for sulfur: understanding the intricacies of enzymes orchestrating plant sulfur anabolism. PLANTA 2024; 261:16. [PMID: 39690279 DOI: 10.1007/s00425-024-04594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This review highlights the sulfur transporters, key enzymes and their encoding genes involved in plant sulfur anabolism, focusing on their occurrence, chemistry, location, function, and regulation within sulfur assimilation pathways. Sulfur, a vital element for plant life, plays diverse roles in metabolism and stress response. This review provides a comprehensive overview of the sulfur assimilation pathway in plants, highlighting the intricate network of enzymes and their regulatory mechanisms. The primary focus is on the key enzymes involved: ATP sulfurylase (ATPS), APS reductase (APR), sulfite reductase (SiR), serine acetyltransferase (SAT), and O-acetylserine(thiol)lyase (OAS-TL). ATPS initiates the process by activating sulfate to form APS, which is then reduced to sulfite by APR. SiR further reduces sulfite to sulfide, a crucial step that requires significant energy. The cysteine synthase complex (CSC), formed by SAT and OAS-TL, facilitates the synthesis of cysteine, thereby integrating serine metabolism with sulfur assimilation. The alternative sulfation pathway, catalyzed by APS kinase and sulfotransferases, is explored for its role in synthesizing essential secondary metabolites. This review also delves into the regulatory mechanism of these enzymes such as environmental stresses, sulfate availability, phytohormones, as well as translational and post-translational regulations. Understanding the key transporters and enzymes in sulfur assimilation pathways and their corresponding regulation mechanisms can help researchers grasp the importance of sulfur anabolism for the life cycle of plants, clarify how these enzymes and their regulatory processes are integrated to balance plant life systems in response to changes in both external conditions and intrinsic signals.
Collapse
Affiliation(s)
- Ziyue Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Dun Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiadong Zhu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Jiayi Zhao
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
- Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yueduo Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China
| | - Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, China.
- Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
3
|
Berardi N, Amirsadeghi S, Swanton CJ. Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:964476. [PMID: 39228834 PMCID: PMC11368760 DOI: 10.3389/fpls.2024.964476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis 1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
Collapse
Affiliation(s)
- Nicole Berardi
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
4
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
5
|
Ma H, Song Y, Zhang Y, Guo H, Lv G, Chen H, Liu J, Liu X, An Z, Wang L, Xu Q, Jiao C, Chen P. Critical Sites of Serine Acetyltransferase in Lathyrus sativus L. Affecting Its Enzymatic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7858-7865. [PMID: 37163296 DOI: 10.1021/acs.jafc.3c00678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
LsSAT2 (serine acetyltransferase in Lathyrus sativus) is the rate-limiting enzyme in biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP), a neuroactive metabolite distributed widely in several plant species including Panax notoginseng, Panax ginseng, and L. sativus. The enzymatic activity of LsSAT2 is post-translationally regulated by its involvement in the cysteine regulatory complex in mitochondria via interaction with β-CAS (β-cyanoalanine synthase). In this study, the binding sites of LsSAT2 with the substrate Ser were first determined as Glu290, Arg316, and His317 and the catalytic sites were determined as Asp267, Asp281, and His282 via site-directed/truncated mutagenesis, in vitro enzymatic activity assay, and functional complementation of the SAT-deficient Escherichia coli strain JM39. Furthermore, the C-terminal 10-residue peptide of LsSAT2 is confirmed to be critical to interact with LsCAS, and Ile336 in C10 peptide is the critical amino acid. These results will enhance our understanding of the regulation of LsSAT2 activities and the biosynthesis of β-ODAP in L. sativus.
Collapse
Affiliation(s)
- Hao Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaoyao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiying Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guowen Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoning Liu
- School of Medicine, Huanghe S&T University, Zhengzhou, Henan 450063, China
| | - Zhenfeng An
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengjin Jiao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741000, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
7
|
Koprivova A, Elkatmis B, Gerlich SC, Trick M, Harper AL, Bancroft I, Kopriva S. Natural Variation in OASC Gene for Mitochondrial O-Acetylserine Thiollyase Affects Sulfate Levels in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 12:35. [PMID: 36616163 PMCID: PMC9824738 DOI: 10.3390/plants12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfur plays a vital role in the primary and secondary metabolism of plants, and carries an important function in a large number of different compounds. Despite this importance, compared to other mineral nutrients, relatively little is known about sulfur sensing and signalling, as well as about the mechanisms controlling sulfur metabolism and homeostasis. Sulfur contents in plants vary largely not only among different species, but also among accessions of the same species. We previously used associative transcriptomics to identify several genes potentially controlling variation in sulfate content in the leaves of Brassica napus, including an OASC gene for mitochondrial O-acetylserine thiollyase (OAS-TL), an enzyme involved in cysteine synthesis. Here, we show that loss of OASC in Arabidopsis thaliana lowers not only sulfate, but also glutathione levels in the leaves. The reduced accumulation is caused by lower sulfate uptake and translocation to the shoots; however, the flux through the pathway is not affected. In addition, we identified a single nucleotide polymorphism in the OASC gene among A. thaliana accessions that is linked to variation in sulfate content. Both genetic and transgenic complementation confirmed that the exchange of arginine at position 81 for lysine in numerous accessions resulted in a less active OASC and a lower sulfate content in the leaves. The mitochondrial isoform of OAS-TL is, thus, after the ATPS1 isoform of sulfurylase and the APR2 form of APS reductase 2, the next metabolic enzyme with a role in regulation of sulfate content in Arabidopsis.
Collapse
Affiliation(s)
- Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Büsra Elkatmis
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Silke C. Gerlich
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Andrea L. Harper
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
8
|
Liu D, Li M, Guo T, Lu J, Xie Y, Hao Y, Wang L, Zhao D, Zhang L, Liu Z, Jin Z, Pei Y. Functional characterization of the Serine acetyltransferase family genes uncovers the diversification and conservation of cysteine biosynthesis in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:913856. [PMID: 36212318 PMCID: PMC9533716 DOI: 10.3389/fpls.2022.913856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Sulfur-containing compounds are essential for plant development and environmental adaptation, and closely related to the flavor and nutrition of the agricultural products. Cysteine, the first organic sulfur-containing molecule generated in plants, is the precursor for most of these active substances. Serine acetyltransferase (SERAT) catalyzes the rate-limiting step of its formation. However, despite their importance, systematic analyses of these enzymes in individual species, especially in economically important crops, are still limited. Here, The SERAT members (SlSERATs, four in total) were identified and characterized in tomato. Phylogenetically, the four SlSERAT proteins were classified into three subgroups with distinct genomic structures and subcellular localizations. On the function, it was interesting to find that SlSERAT3;1, possessed a high ability to catalyze the formation of OAS, even though it contained a long C-terminus. However, it retained the essential C-terminal Ile, which seems to be a characteristic feature of SERAT3 subfamily members in Solanaceae. Besides, SlSERAT1;1 and SlSERAT2;2 also had high activity levels and their catalyzing abilities were significantly improved by the addition of an OAS-(thiol)-lyase protein. At the transcriptional level, the four SlSERAT genes had distinct expression patterns during tomato plant development. Under abiotic stress conditions, the chloroplast-localized SlSERATs were the main responders, and the SlSERATs adopted different strategies to cope with osmotic, ion toxicity and other stresses. Finally, analyses in the loss-of-function and overexpression lines of SlSERAT1;1 suggested that function redundancy existed in the tomato SERAT members, and the tomato SERAT member was ideal target for S-assimilation manipulating in molecular breeding.
Collapse
Affiliation(s)
- Danmei Liu
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Min Li
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Ting Guo
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Juanjuan Lu
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Yafang Xie
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Yuan Hao
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Longdan Wang
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Dan Zhao
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Liping Zhang
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Zhiqiang Liu
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan, China
| |
Collapse
|
9
|
Wang L, Zhang C, Yin W, Wei W, Wang Y, Sa W, Liang J. Single-molecule real-time sequencing of the full-length transcriptome of purple garlic (Allium sativum L. cv. Leduzipi) and identification of serine O-acetyltransferase family proteins involved in cysteine biosynthesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2864-2873. [PMID: 34741310 DOI: 10.1002/jsfa.11627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Garlic (Allium sativum L.), whose bioactive components are mainly organosulfur compounds (OSCs), is a herbaceous perennial widely consumed as a green vegetable and a condiment. Yet, the metabolic enzymes involved in the biosynthesis of OSCs are not identified in garlic. RESULTS Here, a full-length transcriptome of purple garlic was generated via PacBio and Illumina sequencing, to characterize the garlic transcriptome and identify key proteins mediating the biosynthesis of OSCs. Overall, 22.56 Gb of clean data were generated, resulting in 454 698 circular consensus sequence (CCS) reads, of which 83.4% (379 206) were identified as being full-length non-chimeric reads - their further transcript clustering facilitated identification of 36 571 high-quality consensus reads. Once corrected, their genome-wide mapping revealed that 6140 reads were novel isoforms of known genes, and 2186 reads were novel isoforms from novel genes. We detected 1677 alternative splicing events, finding 2902 genes possessing either two or more poly(A) sites. Given the importance of serine O-acetyltransferase (SERAT) in cysteine biosynthesis, we investigated the five SERAT homologs in garlic. Phylogenetic analysis revealed a three-tier classification of SERAT proteins, each featuring a serine acetyltransferase domain (N-terminal) and one or two hexapeptide transferase motifs. Template-based modeling showed that garlic SERATs shared a common homo-trimeric structure with homologs from bacteria and other plants. The residues responsible for substrate recognition and catalysis were highly conserved, implying a similar reaction mechanism. In profiling the five SERAT genes' transcript levels, their expression pattern varied significantly among different tissues. CONCLUSION This study's findings deepen our knowledge of SERAT proteins, and provide timely genetic resources that could advance future exploration into garlic's genetic improvement and breeding. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Chao Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Wei Yin
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| | - Wei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
| | - Yonghong Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xining, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, College of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| |
Collapse
|
10
|
Role of Sulfate Transporters in Chromium Tolerance in Scenedesmus acutus M. (Sphaeropleales). PLANTS 2022; 11:plants11020223. [PMID: 35050111 PMCID: PMC8780407 DOI: 10.3390/plants11020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is essential for the synthesis of important defense compounds and in the scavenging potential of oxidative stress, conferring increased capacity to cope with biotic and abiotic stresses. Chromate can induce a sort of S-starvation by competing for uptake with SO42− and causing a depletion of cellular reduced compounds, thus emphasizing the role of S-transporters in heavy-metal tolerance. In this work we analyzed the sulfate transporter system in the freshwater green algae Scenedesmus acutus, that proved to possess both H+/SO42− (SULTRs) and Na+/SO42− (SLTs) plasma membrane sulfate transporters and a chloroplast-envelope localized ABC-type holocomplex. We discuss the sulfate uptake system of S. acutus in comparison with other taxa, enlightening differences among the clade Sphaeropleales and Volvocales/Chlamydomonadales. To define the role of S transporters in chromium tolerance, we analyzed the expression of SULTRs and SULPs components of the chloroplast ABC transporter in two strains of S. acutus with different Cr(VI) sensitivity. Their differential expression in response to Cr(VI) exposure and S availability seems directly linked to Cr(VI) tolerance, confirming the role of sulfate uptake/assimilation pathways in the metal stress response. The SULTRs up-regulation, observed in both strains after S-starvation, may directly contribute to enhancing Cr-tolerance by limiting Cr(VI) uptake and increasing sulfur availability for the synthesis of sulfur-containing defense molecules.
Collapse
|
11
|
Kurt F, Filiz E, Aydın A. Genome-wide identification of serine acetyltransferase (SAT) gene family in rice (Oryza sativa) and their expressions under salt stress. Mol Biol Rep 2021; 48:6277-6290. [PMID: 34389920 DOI: 10.1007/s11033-021-06620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Assimilation of sulfur to cysteine (Cys) occurs in presence of serine acetyltransferase (SAT). Drought and salt stresses are known to be regulated by abscisic acid, whose biosynthesis is limited by Cys. Cys is formed by cysteine synthase complex depending on SAT and OASTL enzymes. Functions of some SAT genes were identified in Arabidopsis; however, it is not known how SAT genes are regulated in rice (Oryza sativa) under salt stress. METHODS AND RESULTS Sequence, protein domain, gene structure, nucleotide, phylogenetic, selection, gene duplication, motif, synteny, digital expression and co-expression, secondary and tertiary protein structures, and binding site analyses were conducted. The wet-lab expressions of OsSAT genes were also tested under salt stress. OsSATs have underwent purifying selection. Segmental and tandem duplications may be driving force of structural and functional divergences of OsSATs. The digital expression analyses of OsSATs showed that jasmonic acid (JA) was the only hormone inducing the expressions of OsSAT1;1, OsSAT2;1, and OsSAT2;2 whereas auxin and ABA only triggered OsSAT1;1 expression. Leaf blade is the only plant organ where all OsSATs but OsSAT1;1 were expressed. Wet-lab expressions of OsSATs indicated that OsSAT1;1, OsSAT1;2 and OsSAT1;3 genes were upregulated at different exposure times of salt stress. CONCLUSIONS OsSAT1;1, expressed highly in rice roots, may be a hub gene regulated by cross-talk of JA, ABA and auxin hormones. The cross-talk of the mentioned hormones and the structural variations of OsSAT proteins may also explain the different responses of OsSATs to salt stress.
Collapse
Affiliation(s)
- Fırat Kurt
- Department of Plant Production and Technologies, Faculty of Applied Sciences, Mus Alparslan University, Mus, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey.
| | - Adnan Aydın
- Department of Agricultural Biotechnology, Faculty of Agriculture, Iğdır University, Iğdır, Turkey
| |
Collapse
|
12
|
Thakur M, Anand A. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1227-1243. [PMID: 33860955 DOI: 10.1111/ppl.13432] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2 S) is a small, reactive signaling molecule that is produced within chloroplasts of plant cells as an intermediate in the assimilatory sulfate reduction pathway by the enzyme sulfite reductase. In addition, H2 S is also produced in cytosol and mitochondria by desulfhydration of l-cysteine catalyzed by l-cysteine desulfhydrase (DES1) in the cytosol and from β-cyanoalanine in mitochondria, in a reaction catalyzed by β-cyano-Ala synthase C1 (CAS-C1). H2 S exerts its numerous biological functions by post-translational modification involving oxidation of cysteine residues (RSH) to persulfides (RSSH). At lower concentrations (10-1000 μmol L-1 ), H2 S shows huge agricultural potential as it increases the germination rate, the size, fresh weight, and ultimately the crop yield. It is also involved in abiotic stress response against drought, salinity, high temperature, and heavy metals. H2 S donor, for example, sodium hydrosulfide (NaHS), has been exogenously applied on plants by various researchers to provide drought stress tolerance. Exogenous application results in the accumulation of polyamines, sugars, glycine betaine, and enhancement of the antioxidant enzyme activities in response to drought-induced osmotic and oxidative stress, thus, providing stress adaptation to plants. At the biochemical level, administration of H2 S donors reduces malondialdehyde content and lipoxygenase activity to maintain the cell integrity, causes abscisic acid-mediated stomatal closure to prevent water loss through transpiration, and accelerates the photosystem II repair cycle. Here, we review the crosstalk of H2 S with secondary messengers and phytohormones towards the regulation of drought stress response and emphasize various approaches that can be addressed to strengthen research in this area.
Collapse
Affiliation(s)
- Meenakshi Thakur
- College of Horticulture and Forestry (Dr. Y.S. Parmar University of Horticulture and Forestry), Neri, Hamirpur, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat Commun 2021; 12:1392. [PMID: 33654102 PMCID: PMC7925690 DOI: 10.1038/s41467-021-21282-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Contamination of paddy soils can lead to toxic arsenic accumulation in rice grains and low levels of the micronutrient selenium. Here the authors show that a gain of function mutant affecting an O-acetylserine (thiol) lyase enhances sulfur and selenium assimilation while reducing arsenic accumulation in grains.
Collapse
|
15
|
Gomez-Casati DF, Busi MV, Barchiesi J, Pagani MA, Marchetti-Acosta NS, Terenzi A. Fe-S Protein Synthesis in Green Algae Mitochondria. PLANTS 2021; 10:plants10020200. [PMID: 33494487 PMCID: PMC7911964 DOI: 10.3390/plants10020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Iron and sulfur are two essential elements for all organisms. These elements form the Fe-S clusters that are present as cofactors in numerous proteins and protein complexes related to key processes in cells, such as respiration and photosynthesis, and participate in numerous enzymatic reactions. In photosynthetic organisms, the ISC and SUF Fe-S cluster synthesis pathways are located in organelles, mitochondria, and chloroplasts, respectively. There is also a third biosynthetic machinery in the cytosol (CIA) that is dependent on the mitochondria for its function. The genes and proteins that participate in these assembly pathways have been described mainly in bacteria, yeasts, humans, and recently in higher plants. However, little is known about the proteins that participate in these processes in algae. This review work is mainly focused on releasing the information on the existence of genes and proteins of green algae (chlorophytes) that could participate in the assembly process of Fe-S groups, especially in the mitochondrial ISC and CIA pathways.
Collapse
Affiliation(s)
- Diego F. Gomez-Casati
- Correspondence: (D.F.G.-C.); (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.)
| | - Maria V. Busi
- Correspondence: (D.F.G.-C.); (M.V.B.); Tel.: +54-341-4391955 (ext. 113) (D.F.G.-C. & M.V.B.)
| | | | | | | | | |
Collapse
|
16
|
Ferrari M, Torelli A, Marieschi M, Cozza R. Role of DNA methylation in the chromium tolerance of Scenedesmus acutus (Chlorophyceae) and its impact on the sulfate pathway regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110680. [PMID: 33218643 DOI: 10.1016/j.plantsci.2020.110680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is a very important epigenetic modification that participates in many biological functions. Although many researches on DNA methylation have been reported in various plant species, few studies have assessed the global DNA methylation pattern in algae. Even more the complex mechanisms by which DNA methylation modulates stress in algae are yet largely unresolved, mainly with respect to heavy metal stress, for which in plants, metal- and species- specific responses were instead evidenced. In this work, we performed a comparative Whole-Genome Bisulfite Sequencing (WGBS) on two strains of the green alga Scenedesmus acutus with different Cr(VI) sensitivity. The pattern of distribution of 5-mC showed significant differences between the two strains concerning both differentially methylated local contexts (CG, CHG and CHH) and Differentially Methylated Regions (DMRs) as well. We also demonstrated that DNA methylation plays an important role in modulating some genes for sulfate uptake/assimilation confirming the involvement of the sulfate pathway in the Cr-tolerance. Our results suggest that DNA methylation may be of particular importance in defining signal specificity associated with Cr-tolerance and in establishing new epigenetic marks which contribute to the adaptation to metal stress and also to transmit the epigenomic traits to the progeny.
Collapse
Affiliation(s)
- Michele Ferrari
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci - 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Anna Torelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A - 43124, Parma, Italy.
| | - Matteo Marieschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A - 43124, Parma, Italy.
| | - Radiana Cozza
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci - 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
17
|
Rajab H, Khan MS, Wirtz M, Malagoli M, Qahar F, Hell R. Sulfur metabolic engineering enhances cadmium stress tolerance and root to shoot iron translocation in Brassica napus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:32-43. [PMID: 32387912 DOI: 10.1016/j.plaphy.2020.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 05/20/2023]
Abstract
Serine acetyltransferase (SAT) (EC 2.3.1.30) is the rate-limiting enzyme of cysteine (Cys) biosynthesis, providing the decisive precursor for the ubiquitous defense thiol glutathione (GSH). Together with O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) SAT generates Cys in the cytosol, plastids, and mitochondria of vascular plants. The current study aimed to overproduce Cys and GSH for enhanced stress tolerance via overexpression of the feedback-insensitive isoform of serine acetyltransferase from tobacco, i.e., NtSAT4. Constitutive overexpression of NtSAT4 in Brassica napus resulted in the 2.6-fold-4-fold higher SAT activity in different subcellular compartment-specific lines. This higher SAT activity led to a 2.5-fold-3.5-fold higher steady-state level of free Cys and 2.2-fold-5.3-fold elevated level of GSH in leaves compared with nontransformed plants. Among the compartment-specific lines, the mitochondrial targeted NtSAT4 overexpressor line M-182 showed the highest levels of Cys (3.5-fold) and GSH (5.3-fold) compared with wild-type plants. Overexpression of NtSAT4 conferred a physiological advantage in terms of enhanced tolerance against oxidative stress with hydrogen peroxide and the heavy metal cadmium (Cd). The NtSAT4 overexpressor lines showed a significantly higher amount of iron (Fe) translocation from roots to shoots compared with nontransformed plants. Overall, these results suggest that overexpression of NtSAT4 is a promising approach to creating plants with tolerance to heavy metals and oxidative stress and, in addition, may potentially improve plant nutrition in terms of enhanced Fe translocation from roots to shoots.
Collapse
Affiliation(s)
- Hala Rajab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Peshawar, Pakistan; Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Muhammad Sayyar Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Peshawar, Pakistan.
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, PD, Italy
| | - Fariha Qahar
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, 25130, Peshawar, Pakistan
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
18
|
Sardella A, Marieschi M, Mercatali I, Zanni C, Gorbi G, Torelli A. The relationship between sulfur metabolism and tolerance of hexavalent chromium in Scenedesmus acutus (Spheropleales): Role of ATP sulfurylase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105320. [PMID: 31590132 DOI: 10.1016/j.aquatox.2019.105320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Sulfur availability and the end products of its metabolism, cysteine, glutathione and phytochelatins, play an important role in heavy metal tolerance, chromium included. Sulfate and chromate not only compete for the transporters but also for assimilation enzymes and chromium tolerance in various organisms has been associated to differences in this pathway. We investigated the mechanisms of Cr(VI)-tolerance increase induced by S-starvation focusing on the role of ATP sulfurylase (ATS) in two strains of Scenedesmus acutus with different chromium sensitivity. S-starvation enhances the defence potential by increasing sulfate uptake/assimilation and decreasing chromium uptake, thus suggesting a change in the transport system. We isolated two isoforms of the enzyme, SaATS1 and SaATS2, with different sensitivity to sulfur availability, and analysed them in S-sufficient and S-replete condition both in standard and in chromium supplemented medium. SaATS2 expression is different in the two strains and presumably marks a different sulfur perception/exploitation in the Cr-tolerant. Its induction and silencing are compatible with a role in the transient tolerance increase induced by S-starvation. This enzyme can however hardly be responsible for the large cysteine production of the Cr-tolerant strain after starvation, suggesting that cytosolic rather than chloroplastic cysteine production is differently regulated in the two strains.
Collapse
Affiliation(s)
- Alessio Sardella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11A I-43124, Parma, Italy.
| | - Matteo Marieschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11A I-43124, Parma, Italy.
| | - Isabel Mercatali
- ISPRA - Italian National Institute for Environmental Protection and Research, Via di Castel Romano 100-00128, Rome, Italy.
| | - Corrado Zanni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11A I-43124, Parma, Italy.
| | - Gessica Gorbi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11A I-43124, Parma, Italy.
| | - Anna Torelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11A I-43124, Parma, Italy.
| |
Collapse
|
19
|
Joshi J, Renaud JB, Sumarah MW, Marsolais F. Deciphering S-methylcysteine biosynthesis in common bean by isotopic tracking with mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:176-186. [PMID: 31215701 DOI: 10.1111/tpj.14438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The suboptimal content of sulfur-containing amino acids methionine and cysteine prevents common bean (Phaseolus vulgaris) from being an excellent source of protein. Nutritional improvements to this significant crop require a better understanding of the biosynthesis of sulfur-containing compounds including the nonproteogenic amino acid S-methylcysteine and the dipeptide γ-glutamyl-S-methylcysteine, which accumulate in seed. In this study, seeds were incubated with isotopically labelled serine, cysteine or methionine and analyzed by reverse phase chromatography-high resolution mass spectrometry to track stable isotopes as they progressed through the sulfur metabolome. We determined that serine and methionine are the sole precursors of free S-methylcysteine in developing seeds, indicating that this compound is likely to be synthesized through the condensation of O-acetylserine and methanethiol. BSAS4;1, a cytosolic β-substituted alanine synthase preferentially expressed in developing seeds, catalyzed the formation of S-methylcysteine in vitro. A higher flux of labelled serine or cysteine was observed in a sequential pathway involving γ-glutamyl-cysteine, homoglutathione and S-methylhomoglutathione, a likely precursor to γ-glutamyl-S-methylcysteine. Preferential incorporation of serine over cysteine supports a subcellular compartmentation of this pathway, likely to be in the chloroplast. The origin of the methyl group in S-methylhomoglutathione was traced to methionine. There was substantial incorporation of carbons from methionine into the β-alanine portion of homoglutathione and S-methylhomoglutathione, suggesting the breakdown of methionine by methionine γ-lyase and conversion of α-ketobutyrate to β-alanine via propanoate metabolism. These findings delineate the biosynthetic pathways of the sulfur metabolome of common bean and provide an insight that will aid future efforts to improve nutritional quality.
Collapse
Affiliation(s)
- Jaya Joshi
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Justin B Renaud
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Mark W Sumarah
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
20
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Common Bean ( Phaseolus vulgaris L.) Accumulates Most S-Methylcysteine as Its γ-Glutamyl Dipeptide. PLANTS 2019; 8:plants8050126. [PMID: 31091711 PMCID: PMC6572574 DOI: 10.3390/plants8050126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
The common bean (Phaseolus vulgaris) constitutes an excellent source of vegetable dietary protein. However, there are sub-optimal levels of the essential amino acids, methionine and cysteine. On the other hand, P. vulgaris accumulates large amounts of the γ-glutamyl dipeptide of S-methylcysteine, and lower levels of free S-methylcysteine and S-methylhomoglutathione. Past results suggest two distinct metabolite pools. Free S-methylcysteine levels are high at the beginning of seed development and decline at mid-maturation, while there is a biphasic accumulation of γ-glutamyl-S-methylcysteine, at early cotyledon and maturation stages. A possible model involves the formation of S-methylcysteine by cysteine synthase from O-acetylserine and methanethiol, whereas the majority of γ-glutamyl-S-methylcysteine may arise from S-methylhomoglutathione. Metabolite profiling during development and in genotypes differing in total S-methylcysteine accumulation showed that γ-glutamyl-S-methylcysteine accounts for most of the total S-methylcysteine in mature seed. Profiling of transcripts for candidate biosynthetic genes indicated that BSAS4;1 expression is correlated with both the developmental timing and levels of free S-methylcysteine accumulated, while homoglutathione synthetase (hGS) expression was correlated with the levels of γ-glutamyl-S-methylcysteine. Analysis of S-methylated phytochelatins by liquid chromatography and high resolution tandem mass spectrometry revealed only small amounts of homophytochelatin-2 with a single S-methylcysteine. The mitochondrial localization of phytochelatin synthase 2—predominant in seed, determined by confocal microscopy of a fusion with the yellow fluorescent protein—and its spatial separation from S-methylhomoglutathione may explain the lack of significant accumulation of S-methylated phytochelatins.
Collapse
|
22
|
Feldman-Salit A, Veith N, Wirtz M, Hell R, Kummer U. Distribution of control in the sulfur assimilation in Arabidopsis thaliana depends on environmental conditions. THE NEW PHYTOLOGIST 2019; 222:1392-1404. [PMID: 30681147 DOI: 10.1111/nph.15704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/13/2019] [Indexed: 05/24/2023]
Abstract
Sulfur assimilation is central to the survival of plants and has been studied under different environmental conditions. Multiple studies have been published trying to determine rate-limiting or controlling steps in this pathway. However, the picture remains inconclusive with at least two different enzymes proposed to represent such rate-limiting steps. Here, we used computational modeling to gain an integrative understanding of the distribution of control in the sulfur assimilation pathway of Arabidopsis thaliana. For this purpose, we set up a new ordinary differential equation (ODE)-based, kinetic model of sulfur assimilation encompassing all biochemical reactions directly involved in this process. We fitted the model to published experimental data and produced a model ensemble to deal with parameter uncertainties. The ensemble was validated against additional published experimental data. We used the model ensemble to subsequently analyse the control pattern and robustly identified a set of processes that share the control in this pathway under standard conditions. Interestingly, the pattern of control is dynamic and not static, that is it changes with changing environmental conditions. Therefore, while adenosine-5'-phosphosulfate reductase (APR) and sulfite reductase (SiR) share control under standard laboratory conditions, APR takes over an even more dominant role under sulfur starvation conditions.
Collapse
Affiliation(s)
- Anna Feldman-Salit
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Nadine Veith
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| | - Markus Wirtz
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Rüdiger Hell
- Department Molecular Biology of Plants, COS Heidelberg, INF 360, Heidelberg University, 69120, Heidelberg, Germany
| | - Ursula Kummer
- Department Modeling of Biological Processes, COS Heidelberg/Bioquant, INF 267, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
23
|
Anoman AD, Flores-Tornero M, Benstein RM, Blau S, Rosa-Téllez S, Bräutigam A, Fernie AR, Muñoz-Bertomeu J, Schilasky S, Meyer AJ, Kopriva S, Segura J, Krueger S, Ros R. Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation. PLANT PHYSIOLOGY 2019; 180:153-170. [PMID: 30787133 PMCID: PMC6501105 DOI: 10.1104/pp.18.01549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/05/2019] [Indexed: 05/19/2023]
Abstract
Although the plant Phosphorylated Pathway of l-Ser Biosynthesis (PPSB) is essential for embryo and pollen development, and for root growth, its metabolic implications have not been fully investigated. A transcriptomics analysis of Arabidopsis (Arabidopsis thaliana) PPSB-deficient mutants at night, when PPSB activity is thought to be more important, suggested interaction with the sulfate assimilation process. Because sulfate assimilation occurs mainly in the light, we also investigated it in PPSB-deficient lines in the day. Key genes in the sulfate starvation response, such as the adenosine 5'phosphosulfate reductase genes, along with sulfate transporters, especially those involved in sulfate translocation in the plant, were induced in the PPSB-deficient lines. However, sulfate content was not reduced in these lines as compared with wild-type plants; besides the glutathione (GSH) steady-state levels in roots of PPSB-deficient lines were even higher than in wild type. This suggested that PPSB deficiency perturbs the sulfate assimilation process between tissues/organs. Alteration of thiol distribution in leaves from different developmental stages, and between aerial parts and roots in plants with reduced PPSB activity, provided evidence supporting this idea. Diminished PPSB activity caused an enhanced flux of 35S into thiol biosynthesis, especially in roots. GSH turnover also accelerated in the PPSB-deficient lines, supporting the notion that not only biosynthesis, but also transport and allocation, of thiols were perturbed in the PPSB mutants. Our results suggest that PPSB is required for sulfide assimilation in specific heterotrophic tissues and that a lack of PPSB activity perturbs sulfur homeostasis between photosynthetic and nonphotosynthetic tissues.
Collapse
Affiliation(s)
- Armand D Anoman
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46010 València, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - María Flores-Tornero
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46010 València, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Ruben M Benstein
- Biocenter - Botanical Institute II, University of Cologne, 50674 Cologne, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Samira Blau
- Biocenter - Botanical Institute II, University of Cologne, 50674 Cologne, Germany
| | - Sara Rosa-Téllez
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46010 València, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Andrea Bräutigam
- Fakultät für Biologie Gebäude G (CebiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alisdair R Fernie
- Max Planck Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46010 València, Spain
| | - Sören Schilasky
- INRES-Chemical Signalling, University Bonn, 53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University Bonn, 53113 Bonn, Germany
| | - Stanislav Kopriva
- Biocenter - Botanical Institute II, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Juan Segura
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46010 València, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| | - Stephan Krueger
- Biocenter - Botanical Institute II, University of Cologne, 50674 Cologne, Germany
| | - Roc Ros
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46010 València, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
24
|
Dong Y, Teleman AA, Jedmowski C, Wirtz M, Hell R. The Arabidopsis THADA homologue modulates TOR activity and cold acclimation. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:77-83. [PMID: 30098100 DOI: 10.1111/plb.12893] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/02/2018] [Indexed: 05/21/2023]
Abstract
Low temperature is one of the most important environmental factors that affect global survival of humans and animals and equally importantly the distribution of plants and crop productivity. Survival of metazoan cells under cold stress requires regulation of the sensor-kinase Target Of Rapamycin (TOR). TOR controls growth of eukaryotic cells by adjusting anabolic and catabolic metabolism. Previous studies identified the Thyroid Adenoma Associated (THADA) gene as the major effect locus by positive selection in the evolution of modern human adapted to cold. Here we investigate the role of THADA in TOR signaling and cold acclimation of plants. We applied BLAST searches and homology modeling to identify the AtTHADA (AT3G55160) in Arabidopsis thaliana as the highly probable orthologue protein. Reverse genetics approaches were combined with immunological detection of TOR activity and metabolite profiling to address the role of the TOR and THADA for growth regulation and cold acclimation. Depletion of the AtTHADA gene caused complete or partial loss of full-length mRNA, respectively, and significant retardation of growth under non-stressed conditions. Furthermore, depletion of AtTHADA caused hypersensitivity towards low-temperatures. Atthada displayed a lowered energy charge. This went along with decreased TOR activity, which offers a molecular explanation for the slow growth phenotype of Atthada. Finally, we used TOR RNAi lines to identify the de-regulation of TOR activity as one determinant for sensitivity towards low-temperatures. Taken together our results provide evidence for a conserved function of THADA in cold acclimation of eukaryotes and suggest that cold acclimation in plants requires regulation of TOR.
Collapse
Affiliation(s)
- Y Dong
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - A A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - M Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - R Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Samuilov S, Brilhaus D, Rademacher N, Flachbart S, Arab L, Alfarraj S, Kuhnert F, Kopriva S, Weber APM, Mettler-Altmann T, Rennenberg H. The Photorespiratory BOU Gene Mutation Alters Sulfur Assimilation and Its Crosstalk With Carbon and Nitrogen Metabolism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1709. [PMID: 30559749 PMCID: PMC6284229 DOI: 10.3389/fpls.2018.01709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/02/2018] [Indexed: 05/24/2023]
Abstract
This study was aimed at elucidating the significance of photorespiratory serine (Ser) production for cysteine (Cys) biosynthesis. For this purpose, sulfur (S) metabolism and its crosstalk with nitrogen (N) and carbon (C) metabolism were analyzed in wildtype Arabidopsis and its photorespiratory bou-2 mutant with impaired glycine decarboxylase (GDC) activity. Foliar glycine and Ser contents were enhanced in the mutant at day and night. The high Ser levels in the mutant cannot be explained by transcript abundances of genes of the photorespiratory pathway or two alternative pathways of Ser biosynthesis. Despite enhanced foliar Ser, reduced GDC activity mediated a decline in sulfur flux into major sulfur pools in the mutant, as a result of deregulation of genes of sulfur reduction and assimilation. Still, foliar Cys and glutathione contents in the mutant were enhanced. The use of Cys for methionine and glucosinolates synthesis was reduced in the mutant. Reduced GDC activity in the mutant downregulated Calvin Cycle and nitrogen assimilation genes, upregulated key enzymes of glycolysis and the tricarboxylic acid (TCA) pathway and modified accumulation of sugars and TCA intermediates. Thus, photorespiratory Ser production can be replaced by other metabolic Ser sources, but this replacement deregulates the cross-talk between S, N, and C metabolism.
Collapse
Affiliation(s)
- Sladjana Samuilov
- Chair of Tree Physiology, Institute of Forest Sciences, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Nadine Rademacher
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Samantha Flachbart
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
| | - Saleh Alfarraj
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Franziska Kuhnert
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Xiang X, Wu Y, Planta J, Messing J, Leustek T. Overexpression of serine acetyltransferase in maize leaves increases seed-specific methionine-rich zeins. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1057-1067. [PMID: 29044890 PMCID: PMC5902772 DOI: 10.1111/pbi.12851] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Maize kernels do not contain enough of the essential sulphur-amino acid methionine (Met) to serve as a complete diet for animals, even though maize has the genetic capacity to store Met in kernels. Prior studies indicated that the availability of the sulphur (S)-amino acids may limit their incorporation into seed storage proteins. Serine acetyltransferase (SAT) is a key control point for S-assimilation leading to Cys and Met biosynthesis, and SAT overexpression is known to enhance S-assimilation without negative impact on plant growth. Therefore, we overexpressed Arabidopsis thaliana AtSAT1 in maize under control of the leaf bundle sheath cell-specific rbcS1 promoter to determine the impact on seed storage protein expression. The transgenic events exhibited up to 12-fold higher SAT activity without negative impact on growth. S-assimilation was increased in the leaves of SAT overexpressing plants, followed by higher levels of storage protein mRNA and storage proteins, particularly the 10-kDa δ-zein, during endosperm development. This zein is known to impact the level of Met stored in kernels. The elite event with the highest expression of AtSAT1 showed 1.40-fold increase in kernel Met. When fed to chickens, transgenic AtSAT1 kernels significantly increased growth rate compared with the parent maize line. The result demonstrates the efficacy of increasing maize nutritional value by SAT overexpression without apparent yield loss. Maternal overexpression of SAT in vegetative tissues was necessary for high-Met zein accumulation. Moreover, SAT overcomes the shortage of S-amino acids that limits the expression and accumulation of high-Met zeins during kernel development.
Collapse
Affiliation(s)
- Xiaoli Xiang
- Department of Plant BiologyRutgers UniversityNew BrunswickNJUSA
- Institute of Biotechnology and Nuclear TechnologySichuan Academy of Agricultural SciencesChengduChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJUSA
| | - José Planta
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJUSA
| | - Joachim Messing
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJUSA
| | - Thomas Leustek
- Department of Plant BiologyRutgers UniversityNew BrunswickNJUSA
| |
Collapse
|
27
|
Rashid MHU, Iwasaki H, Oogai S, Fukuta M, Parveen S, Hossain MA, Anai T, Oku H. Molecular characterization of cytosolic cysteine synthase in Mimosa pudica. JOURNAL OF PLANT RESEARCH 2018; 131:319-329. [PMID: 29181648 DOI: 10.1007/s10265-017-0986-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
In the cysteine and mimosine biosynthesis process, O-acetyl-L-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine. A cDNA for cytosolic OASTL was cloned from M. pudica for the first time containing 1,410 bp nucleotides. The purified protein product from overexpressed bacterial cells produced Cys only, but not mimosine, indicating it is Cys specific. Kinetic studies revealed that pH and temperature optima for Cys production were 6.5 and 50 °C, respectively. The measured Km, Kcat, and Kcat Km-1 values were 159 ± 21 µM, 33.56 s-1, and 211.07 mM-1s-1 for OAS and 252 ± 25 µM, 32.99 s-1, and 130.91 mM-1s-1 for Na2S according to the in vitro Cys assay. The Cy-OASTL of Mimosa pudica is specific to Cys production, although it contains sensory roles in sulfur assimilation and the reduction network in the intracellular environment of M. pudica.
Collapse
Affiliation(s)
- Md Harun-Ur- Rashid
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Hironori Iwasaki
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masakazu Fukuta
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan.
| | - Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Amzad Hossain
- Graduate School of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
28
|
Yeon JY, Yoo SJ, Takagi H, Kang HA. A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic Yeast Ogataea parapolymorpha. Sci Rep 2018; 8:2377. [PMID: 29402922 PMCID: PMC5799214 DOI: 10.1038/s41598-018-20630-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/03/2022] Open
Abstract
In most bacteria and plants, direct biosynthesis of cysteine from sulfide via O-acetylserine (OAS) is essential to produce sulfur amino acids from inorganic sulfur. Here, we report the functional analysis of a novel mitochondrial serine O-acetyltransferase (SAT), responsible for converting serine into OAS, in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Domain analysis of O. parapolymorpha SAT (OpSat1p) and other fungal SATs revealed that these proteins possess a mitochondrial targeting sequence (MTS) at the N-terminus and an α/β hydrolase 1 domain at the C-terminal region, which is quite different from the classical SATs of bacteria and plants. Noticeably, OpSat1p is functionally interchangeable with Escherichia coli SAT, CysE, despite that it displays much less enzymatic activity, with marginal feedback inhibition by cysteine, compared to CysE. The Opsat1Δ-null mutant showed remarkably reduced intracellular levels of cysteine and glutathione, implying OAS generation defect. The MTS of OpSat1p directs the mitochondrial targeting of a reporter protein, thus, supporting the localization of OpSat1p in the mitochondria. Intriguingly, the OpSat1p variant lacking MTS restores the OAS auxotrophy, but not the cysteine auxotrophy of the Opsat1Δ mutant strain. This is the first study on a mitochondrial SAT with critical function in sulfur assimilatory metabolism in fungal species.
Collapse
Affiliation(s)
- Ji Yoon Yeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
29
|
Watanabe M, Tohge T, Fernie AR, Hoefgen R. The Effect of Single and Multiple SERAT Mutants on Serine and Sulfur Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:702. [PMID: 29892307 PMCID: PMC5985473 DOI: 10.3389/fpls.2018.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 05/08/2023]
Abstract
The gene family of serine acetyltransferases (SERATs) constitutes an interface between the plant pathways of serine and sulfur metabolism. SERATs provide the activated precursor, O-acetylserine for the fixation of reduced sulfur into cysteine by exchanging the serine hydroxyl moiety by a sulfhydryl moiety, and subsequently all organic compounds containing reduced sulfur moieties. We investigate here, how manipulation of the SERAT interface results in metabolic alterations upstream or downstream of this boundary and the extent to which the five SERAT isoforms exert an effect on the coupled system, respectively. Serine is synthesized through three distinct pathways while cysteine biosynthesis is distributed over the three compartments cytosol, mitochondria, and plastids. As the respective mutants are viable, all necessary metabolites can obviously cross various membrane systems to compensate what would otherwise constitute a lethal failure in cysteine biosynthesis. Furthermore, given that cysteine serves as precursor for multiple pathways, cysteine biosynthesis is highly regulated at both, the enzyme and the expression level. In this study, metabolite profiles of a mutant series of the SERAT gene family displayed that levels of the downstream metabolites in sulfur metabolism were affected in correlation with the reduction levels of SERAT activities and the growth phenotypes, while levels of the upstream metabolites in serine metabolism were unchanged in the serat mutants compared to wild-type plants. These results suggest that despite of the fact that the two metabolic pathways are directly connected, there seems to be no causal link in metabolic alterations. This might be caused by the difference of their pool sizes or the tight regulation by homeostatic mechanisms that control the metabolite concentration in plant cells. Additionally, growth conditions exerted an influence on metabolic compositions.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Mutsumi Watanabe, Rainer Hoefgen,
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Mutsumi Watanabe, Rainer Hoefgen,
| |
Collapse
|
30
|
Dong Y, Silbermann M, Speiser A, Forieri I, Linster E, Poschet G, Allboje Samami A, Wanatabe M, Sticht C, Teleman AA, Deragon JM, Saito K, Hell R, Wirtz M. Sulfur availability regulates plant growth via glucose-TOR signaling. Nat Commun 2017; 8:1174. [PMID: 29079776 PMCID: PMC5660089 DOI: 10.1038/s41467-017-01224-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply. Plants lack the amino acid sensors that regulate TOR in metazoans. Here Dong et al. show that Arabidopsis GCN2 senses carbon and nitrogen availability for cysteine synthesis while sulfur limitation activates TOR via glucose metabolism, providing a mechanism whereby plants control growth according to nutrient availability.
Collapse
Affiliation(s)
- Yihan Dong
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Marleen Silbermann
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Anna Speiser
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Eric Linster
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Arman Allboje Samami
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Mutsumi Wanatabe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Carsten Sticht
- Center for Medical Research, University of Mannheim, 68167, Mannheim, Germany
| | | | - Jean-Marc Deragon
- Laboratory of Genomes and Plant Development, Centre National de la Recherche Scientifique, University of Perpignan, 66100, Perpignan, France
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| | - Markus Wirtz
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Tahir J, Dijkwel P. β-Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:307-323. [PMID: 32480463 DOI: 10.1071/fp15272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 06/11/2023]
Abstract
Cysteine is required for the synthesis of proteins and metabolites, and is therefore an indispensable compound for growth and development. The β-substituting alanine synthase (BSAS) gene family encodes enzymes known as O-acetylserine thiol lyases (OASTLs), which carry out cysteine biosynthesis in plants. The functions of the BSAS isoforms have been reported to be crucial in assimilation of S and cysteine biosynthesis, and homeostasis in plants. In this review we explore the functional variation in this classic pyridoxal-phosphate-dependent enzyme family of BSAS isoforms. We discuss how specialisation and divergence in BSAS catalytic activities makes a more dynamic set of biological routers that integrate cysteine metabolism and abiotic and biotic stress signalling in Arabidopsis thaliana (L.) Heynh. and also other species. Our review presents a universal scenario in which enzymes modulating cysteine metabolism promote survival and fitness of the species by counteracting internal and external stress factors.
Collapse
Affiliation(s)
- Jibran Tahir
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
32
|
Divya D, Singh YT, Nair S, Bentur JS. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 2016; 16:153-69. [DOI: 10.1007/s10142-016-0474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
33
|
Kopriva S, Calderwood A, Weckopp SC, Koprivova A. Plant sulfur and Big Data. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:1-10. [PMID: 26706053 DOI: 10.1016/j.plantsci.2015.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/26/2015] [Accepted: 09/17/2015] [Indexed: 05/20/2023]
Abstract
Sulfur is an essential mineral nutrient for plants, therefore, the pathways of its uptake and assimilation have been extensively studied. Great progress has been made in elucidation of the individual genes and enzymes and their regulation. Sulfur assimilation has been intensively investigated by -omics technologies and has been target of several genome wide genetic approaches. This brought a significant step in our understanding of the regulation of the pathway and its integration in cellular metabolism. However, the large amount of information derived from other experiments not directly targeting sulfur has also brought new and exciting insights into processes affecting sulfur homeostasis. In this review we will integrate the findings of the targeted experiments with those that brought unintentional progress in sulfur research, and will discuss how to synthesize the large amount of information available in various repositories into a meaningful dissection of the regulation of a specific metabolic pathway. We then speculate how this might be used to further advance knowledge on control of sulfur metabolism and what are the main questions to be answered.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany.
| | | | - Silke C Weckopp
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| | - Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Germany
| |
Collapse
|
34
|
Kalloniati C, Krompas P, Karalias G, Udvardi MK, Rennenberg H, Herschbach C, Flemetakis E. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus. THE PLANT CELL 2015; 27:2384-400. [PMID: 26296963 PMCID: PMC4815097 DOI: 10.1105/tpc.15.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 05/09/2023]
Abstract
We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation.
Collapse
Affiliation(s)
- Chrysanthi Kalloniati
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis Krompas
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios Karalias
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, Faculty of Environment and Natural Resources, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Cornelia Herschbach
- Institute of Forest Sciences, Chair of Tree Physiology, Faculty of Environment and Natural Resources, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
35
|
Linster E, Stephan I, Bienvenut WV, Maple-Grødem J, Myklebust LM, Huber M, Reichelt M, Sticht C, Geir Møller S, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 2015; 6:7640. [PMID: 26184543 PMCID: PMC4530475 DOI: 10.1038/ncomms8640] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/27/2015] [Indexed: 11/08/2022] Open
Abstract
N-terminal acetylation (NTA) catalysed by N-terminal acetyltransferases (Nats) is among the most common protein modifications in eukaryotes, but its significance is still enigmatic. Here we characterize the plant NatA complex and reveal evolutionary conservation of NatA biochemical properties in higher eukaryotes and uncover specific and essential functions of NatA for development, biosynthetic pathways and stress responses in plants. We show that NTA decreases significantly after drought stress, and NatA abundance is rapidly downregulated by the phytohormone abscisic acid. Accordingly, transgenic downregulation of NatA induces the drought stress response and results in strikingly drought resistant plants. Thus, we propose that NTA by the NatA complex acts as a cellular surveillance mechanism during stress and that imprinting of the proteome by NatA is an important switch for the control of metabolism, development and cellular stress responses downstream of abscisic acid.
Collapse
Affiliation(s)
- Eric Linster
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg 69120, Germany
| | - Iwona Stephan
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Willy V. Bienvenut
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 21, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198, France
| | - Jodi Maple-Grødem
- Center for Organelle Research, University of Stavanger, Stavanger N-4036, Norway
| | - Line M. Myklebust
- Department of Molecular Biology, University of Bergen, Bergen N-5020, Norway
| | - Monika Huber
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg 69120, Germany
| | | | | | - Simon Geir Møller
- Center for Organelle Research, University of Stavanger, Stavanger N-4036, Norway
- Department of Biological Sciences, St John's University, New York, New York 11439, USA
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger 4068, Norway
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 21, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198, France
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen N-5020, Norway
- Department of Surgery, Haukeland University Hospital, Bergen N-5021, Norway
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 21, 1 avenue de la Terrasse, Gif-sur-Yvette F-91198, France
| | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
36
|
Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, Hell R, Giglione C, Wirtz M. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling. Proteomics 2015; 15:2426-35. [PMID: 25951519 PMCID: PMC4692087 DOI: 10.1002/pmic.201500025] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 04/30/2015] [Indexed: 11/07/2022]
Abstract
Protein N(α) -terminal acetylation represents one of the most abundant protein modifications of higher eukaryotes. In humans, six N(α) -acetyltransferases (Nats) are responsible for the acetylation of approximately 80% of the cytosolic proteins. N-terminal protein acetylation has not been evidenced in organelles of metazoans, but in higher plants is a widespread modification not only in the cytosol but also in the chloroplast. In this study, we identify and characterize the first organellar-localized Nat in eukaryotes. A primary sequence-based search in Arabidopsis thaliana revealed seven putatively plastid-localized Nats of which AT2G39000 (AtNAA70) showed the highest conservation of the acetyl-CoA binding pocket. The chloroplastic localization of AtNAA70 was demonstrated by transient expression of AtNAA70:YFP in Arabidopsis mesophyll protoplasts. Homology modeling uncovered a significant conservation of tertiary structural elements between human HsNAA50 and AtNAA70. The in vivo acetylation activity of AtNAA70 was demonstrated on a number of distinct protein N(α) -termini with a newly established global acetylome profiling test after expression of AtNAA70 in E. coli. AtNAA70 predominately acetylated proteins starting with M, A, S and T, providing an explanation for most protein N-termini acetylation events found in chloroplasts. Like HsNAA50, AtNAA70 displays N(ε) -acetyltransferase activity on three internal lysine residues. All MS data have been deposited in the ProteomeXchange with identifier PXD001947 (http://proteomecentral.proteomexchange.org/dataset/PXD001947).
Collapse
Affiliation(s)
- Trinh V Dinh
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Willy V Bienvenut
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Eric Linster
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Hartmut Hoffmann-Berling International Graduate School, University of HeidelbergHeidelberg, Germany
| | - Anna Feldman-Salit
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies gGbmHHeidelberg, Germany
| | - Vincent A Jung
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Rüdiger Hell
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudGif-sur-Yvette, France
| | - Markus Wirtz
- Department of Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
37
|
Considine MJ, Foyer CH. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries. FRONTIERS IN PLANT SCIENCE 2015; 6:60. [PMID: 25750643 PMCID: PMC4335272 DOI: 10.3389/fpls.2015.00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 05/20/2023]
Abstract
Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.
Collapse
Affiliation(s)
- Michael J. Considine
- School of Plant Biology, and The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, Yorkshire, UK
- Irrigated Agriculture and Diversification, Department of Agriculture and Food Western Australia, South Perth, WA, Australia
| | - Christine H. Foyer
- School of Plant Biology, and The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, Yorkshire, UK
| |
Collapse
|
38
|
Tavares S, Wirtz M, Beier MP, Bogs J, Hell R, Amâncio S. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:74. [PMID: 25741355 PMCID: PMC4330696 DOI: 10.3389/fpls.2015.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/28/2015] [Indexed: 05/08/2023]
Abstract
In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription.
Collapse
Affiliation(s)
- Sílvia Tavares
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Marcel P. Beier
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- Studiengang Weinbau und Oenologie, Dienstleistungszentrum Laendlicher Raum RheinpfalzNeustadt, Germany
- Fachbereich 1, Life Sciences and Engineering, Fachhochschule BingenBingen am Rhein, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- *Correspondence: Sara Amâncio, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal e-mail:
| |
Collapse
|
39
|
Birke H, De Kok LJ, Wirtz M, Hell R. The Role of Compartment-Specific Cysteine Synthesis for Sulfur Homeostasis During H2S Exposure in Arabidopsis. ACTA ACUST UNITED AC 2014; 56:358-67. [DOI: 10.1093/pcp/pcu166] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Rennenberg H, Herschbach C. A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5711-24. [PMID: 25124317 DOI: 10.1093/jxb/eru315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the dynamics of physiological process in the systems biology era requires approaches at the genome, transcriptome, proteome, and metabolome levels. In this context, metabolite flux experiments have been used in mapping metabolite pathways and analysing metabolic control. In the present review, sulphur metabolism was taken to illustrate current challenges of metabolic flux analyses. At the cellular level, restrictions in metabolite flux analyses originate from incomplete knowledge of the compartmentation network of metabolic pathways. Transport of metabolites through membranes is usually not considered in flux experiments but may be involved in controlling the whole pathway. Hence, steady-state and snapshot readings need to be expanded to time-course studies in combination with compartment-specific metabolite analyses. Because of species-specific differences, differences between tissues, and stress-related responses, the quantitative significance of different sulphur sinks has to be elucidated; this requires the development of methods for whole-sulphur metabolome approaches. Different cell types can contribute to metabolite fluxes to different extents at the tissue and organ level. Cell type-specific analyses are needed to characterize these contributions. Based on such approaches, metabolite flux analyses can be expanded to the whole-plant level by considering long-distance transport and, thus, the interaction of roots and the shoot in metabolite fluxes. However, whole-plant studies need detailed empirical and mathematical modelling that have to be validated by experimental analyses.
Collapse
Affiliation(s)
- Heinz Rennenberg
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany Centre for Biosystems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Cornelia Herschbach
- Institute of Forest Sciences, Chair of Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| |
Collapse
|
41
|
Eisenhut M, Hocken N, Weber APM. Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism. Cell Calcium 2014; 58:98-104. [PMID: 25465893 DOI: 10.1016/j.ceca.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Plant photorespiration is an essential prerequisite for oxygenic photosynthesis. This metabolic repair pathway bestrides four compartments, which poses the requirement for several metabolites transporters for pathway function. However, in contrast to the well-studied enzymatic steps of the core photorespiratory cycle, only few photorespiratory translocators have been identified to date. In this review, we give an overview of established and unknown plastidic transport proteins involved in photorespiration and intertwined nitrogen and sulfur metabolism, respectively. Furthermore, we discuss the evolutionary origin of the dicarboxylate translocators and the recently identified glycolate glycerate translocator.
Collapse
Affiliation(s)
- Marion Eisenhut
- Institute of Plant Biochemistry, Center of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Nadine Hocken
- Institute of Plant Biochemistry, Center of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Center of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
42
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
43
|
Signaling in the plant cytosol: cysteine or sulfide? Amino Acids 2014; 47:2155-64. [DOI: 10.1007/s00726-014-1786-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
44
|
Kettles NL, Kopriva S, Malin G. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. PLoS One 2014; 9:e94795. [PMID: 24733415 PMCID: PMC3986220 DOI: 10.1371/journal.pone.0094795] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/20/2014] [Indexed: 01/05/2023] Open
Abstract
Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′-phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves up-regulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment.
Collapse
Affiliation(s)
- Nicola Louise Kettles
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- John Innes Centre, Norwich, United Kingdom
| | | | - Gill Malin
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
45
|
Imhof J, Huber F, Reichelt M, Gershenzon J, Wiegreffe C, Lächler K, Binder S. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation. PLoS One 2014; 9:e91071. [PMID: 24608865 PMCID: PMC3946710 DOI: 10.1371/journal.pone.0091071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/07/2014] [Indexed: 01/01/2023] Open
Abstract
In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (ISOPROPYLMALATE ISOMERASE LARGE SUBUNIT1), three genes encode small subunits (ISOPROPYLMALATE ISOMERASE SMALL SUBUNIT1 to 3). We have now analyzed small subunit 1 (ISOPROPYLMALATE ISOMERASE SMALL SUBUNIT1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.
Collapse
Affiliation(s)
- Janet Imhof
- Institut Molekulare Botanik, Universität Ulm, Ulm, Germany
| | - Florian Huber
- Institut Molekulare Botanik, Universität Ulm, Ulm, Germany
| | - Michael Reichelt
- Max Planck Institut für Chemische Ökologie, Abt. Biochemie, Beutenberg Campus, Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institut für Chemische Ökologie, Abt. Biochemie, Beutenberg Campus, Jena, Germany
| | - Christoph Wiegreffe
- Institut für Molekulare und Zelluläre Anatomie, Universität Ulm, Ulm, Germany
| | - Kurt Lächler
- Institut Molekulare Botanik, Universität Ulm, Ulm, Germany
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
46
|
Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:264-76. [PMID: 24285094 DOI: 10.1093/mp/sst168] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.
Collapse
Affiliation(s)
- Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz KJ, Saito K, Hell R. The significance of cysteine synthesis for acclimation to high light conditions. FRONTIERS IN PLANT SCIENCE 2014; 5:776. [PMID: 25653656 PMCID: PMC4300907 DOI: 10.3389/fpls.2014.00776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/15/2014] [Indexed: 05/08/2023]
Abstract
Situations of excess light intensity are known to result in the emergence of reactive oxygen species that originate from the electron transport chain in chloroplasts. The redox state of glutathione and its biosynthesis contribute importantly to the plant's response to this stress. In this study we analyzed the significance of cysteine synthesis for long-term acclimation to high light conditions in Arabidopsis thaliana. Emphasis was put on the rate-limiting step of cysteine synthesis, the formation of the precursor O-acetylserine (OAS) that is catalyzed by serine acetyltransferase (SERAT). Wild type Arabidopsis plants responded to the high light condition (800 μmol m(-2) s(-1) for 10 days) with synthesis of photo-protective anthocyanins, induction of total SERAT activity and elevated glutathione levels when compared to the control condition (100 μmol m(-2) s(-1)). The role of cysteine synthesis in chloroplasts was probed in mutant plants lacking the chloroplast isoform SERAT2;1 (serat2;1) and two knock-out alleles of CYP20-3, a positive interactor of SERAT in the chloroplast. Acclimation to high light resulted in a smaller growth enhancement than wild type in the serat2;1 and cyp20-3 mutants, less induction of total SERAT activity and OAS levels but similar cysteine and glutathione concentrations. Expression analysis revealed no increase in mRNA of the chloroplast SERAT2;1 encoding SERAT2;1 gene but up to 4.4-fold elevated SERAT2;2 mRNA levels for the mitochondrial SERAT isoform. Thus, lack of chloroplast SERAT2;1 activity or its activation by CYP20-3 prevents the full growth response to high light conditions, but the enhanced demand for glutathione is likely mediated by synthesis of OAS in the mitochondria. In conclusion, cysteine synthesis in the chloroplast is important for performance but is dispensable for survival under long-term exposure to high light and can be partially complemented by cysteine synthesis in mitochondria.
Collapse
Affiliation(s)
- Anna Speiser
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Stefan Haberland
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Mutsumi Watanabe
- Molecular Plant Physiology, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Markus Wirtz
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Karl-Josef Dietz
- Plant Biochemistry and Physiology, University of BielefeldBielefeld, Germany
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource ScienceYokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba UniversityChiba, Japan
| | - Rüdiger Hell
- Plant Molecular Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: Rüdiger Hell, Plant Molecular Biology, Centre for Organismal Studies, Im Neuenheimer Feld 360, 69115 Heidelberg, Germany e-mail:
| |
Collapse
|
48
|
Koprivova A, Kopriva S. Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. FRONTIERS IN PLANT SCIENCE 2014; 5:589. [PMID: 25400653 PMCID: PMC4212615 DOI: 10.3389/fpls.2014.00589] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/10/2014] [Indexed: 05/19/2023]
Abstract
The pathway of sulfate assimilation, which provides plants with the essential nutrient sulfur, is tightly regulated and coordinated with the demand for reduced sulfur. The responses of metabolite concentrations, enzyme activities and mRNA levels to various signals and environmental conditions have been well described for the pathway. However, only little is known about the molecular mechanisms of this regulation. To date, nine transcription factors have been described to control transcription of genes of sulfate uptake and assimilation. In addition, other levels of regulation contribute to the control of sulfur metabolism. Post-transcriptional regulation has been shown for sulfate transporters, adenosine 5'phosphosulfate reductase, and cysteine synthase. Several genes of the pathway are targets of microRNA miR395. In addition, protein-protein interaction is increasingly found in the center of various regulatory circuits. On top of the mechanisms of regulation of single genes, we are starting to learn more about mechanisms of adaptation, due to analyses of natural variation. In this article, the summary of different mechanisms of regulation will be accompanied by identification of the major gaps in knowledge and proposition of possible ways of filling them.
Collapse
Affiliation(s)
| | - Stanislav Kopriva
- *Correspondence: Stanislav Kopriva, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany e-mail:
| |
Collapse
|
49
|
Yi H, Dey S, Kumaran S, Lee SG, Krishnan HB, Jez JM. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone. J Biol Chem 2013; 288:36463-72. [PMID: 24225955 PMCID: PMC3868759 DOI: 10.1074/jbc.m113.527143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Indexed: 01/03/2023] Open
Abstract
Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase. Formation of the cysteine regulatory complex (CRC) is a critical biochemical control feature in plant sulfur metabolism. Here we present the 1.75-3.0 Å resolution x-ray crystal structures of soybean (Glycine max) SAT (GmSAT) in apoenzyme, serine-bound, and CoA-bound forms. The GmSAT-serine and GmSAT-CoA structures provide new details on substrate interactions in the active site. The crystal structures and analysis of site-directed mutants suggest that His(169) and Asp(154) form a catalytic dyad for general base catalysis and that His(189) may stabilize the oxyanion reaction intermediate. Glu(177) helps to position Arg(203) and His(204) and the β1c-β2c loop for serine binding. A similar role for ionic interactions formed by Lys(230) is required for CoA binding. The GmSAT structures also identify Arg(253) as important for the enhanced catalytic efficiency of SAT in the CRC and suggest that movement of the residue may stabilize CoA binding in the macromolecular complex. Differences in the effect of cold on GmSAT activity in the isolated enzyme versus the enzyme in the CRC were also observed. A role for CRC formation as a molecular chaperone to maintain SAT activity in response to an environmental stress is proposed for this multienzyme complex in plants.
Collapse
Affiliation(s)
- Hankuil Yi
- From the Department of Biological Sciences, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon 305-764, Korea
| | - Sanghamitra Dey
- the Department of Biological Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Sangaralingam Kumaran
- the Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Soon Goo Lee
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Hari B. Krishnan
- the Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Department of Agronomy, University of Missouri, Columbia, Missouri 65211
| | - Joseph M. Jez
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| |
Collapse
|
50
|
Lee CP, Wirtz M, Hell R. Evidence for Several Cysteine Transport Mechanisms in the Mitochondrial Membranes of Arabidopsis thaliana. ACTA ACUST UNITED AC 2013; 55:64-73. [DOI: 10.1093/pcp/pct155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|