1
|
Urquiza-García U, Molina N, Halliday KJ, Millar AJ. Abundant clock proteins point to missing molecular regulation in the plant circadian clock. Mol Syst Biol 2025; 21:361-389. [PMID: 39979593 PMCID: PMC11965494 DOI: 10.1038/s44320-025-00086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 02/22/2025] Open
Abstract
Understanding the biochemistry behind whole-organism traits such as flowering time is a longstanding challenge, where mathematical models are critical. Very few models of plant gene circuits use the absolute units required for comparison to biochemical data. We refactor two detailed models of the plant circadian clock from relative to absolute units. Using absolute RNA quantification, a simple model predicted abundant clock protein levels in Arabidopsis thaliana, up to 100,000 proteins per cell. NanoLUC reporter protein fusions validated the predicted levels of clock proteins in vivo. Recalibrating the detailed models to these protein levels estimated their DNA-binding dissociation constants (Kd). We estimate the same Kd from multiple results in vitro, extending the method to any promoter sequence. The detailed models simulated the Kd range estimated from LUX DNA-binding in vitro but departed from the data for CCA1 binding, pointing to further circadian mechanisms. Our analytical and experimental methods should transfer to understand other plant gene regulatory networks, potentially including the natural sequence variation that contributes to evolutionary adaptation.
Collapse
Affiliation(s)
- Uriel Urquiza-García
- Centre for Engineering Biology and School of Biological Sciences, C. H. Waddington Building, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Nacho Molina
- Centre for Engineering Biology and School of Biological Sciences, C. H. Waddington Building, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS UMR 7104, INSERM U964, Université de Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Karen J Halliday
- School of Biological Sciences, Daniel Rutherford Building, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Andrew J Millar
- Centre for Engineering Biology and School of Biological Sciences, C. H. Waddington Building, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
2
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
3
|
Ikeda H, Uchikawa T, Kondo Y, Takahashi N, Shishikui T, Watahiki MK, Kubota A, Endo M. Circadian Clock Controls Root Hair Elongation through Long-Distance Communication. PLANT & CELL PHYSIOLOGY 2023; 64:1289-1300. [PMID: 37552691 DOI: 10.1093/pcp/pcad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Plants adapt to periodic environmental changes, such as day and night, by using circadian clocks. Cell division and elongation are primary steps to adjust plant development according to their environments. In Arabidopsis, hypocotyl elongation has been studied as a representative model to understand how the circadian clock regulates cell elongation. However, it remains unknown whether similar phenomena exist in other organs, such as roots, where circadian clocks regulate physiological responses. Here, we show that root hair elongation is controlled by both light and the circadian clock. By developing machine-learning models to automatically analyze the images of root hairs, we found that genes encoding major components of the central oscillator, such as TIMING OF CAB EXPRESSION1 (TOC1) or CIRCADIAN CLOCK ASSOCIATED1 (CCA1), regulate the rhythmicity of root hair length. The partial illumination of light to either shoots or roots suggested that light received in shoots is mainly responsible for the generation of root hair rhythmicity. Furthermore, grafting experiments between wild-type (WT) and toc1 plants demonstrated that TOC1 in shoots is responsible for the generation of root hair rhythmicity. Our results illustrate the combinational effects of long-distance signaling and the circadian clock on the regulation of root hair length.
Collapse
Affiliation(s)
- Hikari Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taiga Uchikawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012 Japan
| | - Takuma Shishikui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Masaaki K Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
4
|
Gao G, Chen M, Mo R, Li N, Xu Y, Lu Y. Linking New Alleles at the Oscillator Loci to Flowering and Expansion of Asian Rice. Genes (Basel) 2023; 14:2027. [PMID: 38002970 PMCID: PMC10671530 DOI: 10.3390/genes14112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The central oscillator is believed to be the key mechanism by which plants adapt to new environments. However, impacts from hybridization, the natural environment, and human selection have rarely been assessed on the oscillator of a crop. Here, from clearly identified alleles at oscillator loci (OsCCA1/LHY, OsPRR95, OsPRR37, OsPRR59, and OsPRR1) in ten diverse genomes of Oryza sativa, additional accessions, and functional analysis, we show that rice's oscillator was rebuilt primarily by new alleles from recombining parental sequences and subsequent 5' or/and coding mutations. New alleles may exhibit altered transcript levels from that of a parental allele and are transcribed variably among genetic backgrounds and natural environments in RIL lines. Plants carrying more expressed OsCCA1_a and less transcribed OsPRR1_e flower early in the paddy field. 5' mutations are instrumental in varied transcription, as shown by EMSA tests on one deletion at the 5' region of highly transcribed OsPRR1_a. Compared to relatively balanced mutations at oscillator loci of Arabidopsis thaliana, 5' mutations of OsPRR37 (and OsCCA1 to a less degree) were under negative selection while those of OsPRR1 alleles were under strong positive selection. Together, range expansion of Asian rice can be elucidated by human selection on OsPRR1 alleles via local flowering time-yield relationships.
Collapse
Affiliation(s)
- Guangtong Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoxian Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Mo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China; (G.G.); (M.C.); (N.L.); (Y.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
6
|
Yadav VK, Sawant SV, Yadav A, Jalmi SK, Kerkar S. Genome-wide analysis of long non-coding RNAs under diel light exhibits role in floral development and the circadian clock in Arabidopsis thaliana. Int J Biol Macromol 2022; 223:1693-1704. [PMID: 36257367 DOI: 10.1016/j.ijbiomac.2022.09.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
The circadian clock is regulated by signaling networks that enhance a plant's ability to coordinate internal events with the external environment. In this study, we examine the rhythmic expression of long non-coding RNAs (lncRNAs) using multiple transcriptomes of Arabidopsis thaliana in the diel light cycle and integrated this information to have a better understanding of the functions of lncRNAs in regulating the circadian clock. We identified 968, 1050, and 998 lncRNAs at 8 h light, 16 h light and 8 h dark conditions, respectively. Among these, 423, 486, and 417 lncRNAs were uniquely present at 8 h light, 16 h light, and 8 h dark, respectively, whereas 334 lncRNAs were common under the three conditions. The specificity of identified lncRNAs under different light conditions was verified using qRT-PCR. The identified lncRNAs were less GC-rich and expressed at a significantly lower level than the mRNAs of protein-coding genes. In addition, we identified enriched motifs in lncRNA transcribing regions that were associated with light-responsive genes (SORLREP and SORLIP), flower development (AGAMOUS), and circadian clock (CCA1) under all three light conditions. We identified 10 and 12 different lncRNAs targeting different miRNAs with perfect and interrupted complementarity (endogenous target mimic). These predicted lncRNA-interacting miRNAs govern the function of a set of genes involved in the developmental process, reproductive structure development, gene silencing and transcription regulation. We demonstrated that the lncRNA transcribing regions were enriched for epigenetic marks such as H3.3, H3K4me2, H3K4me3, H4K16ac, H3K36ac, H3K56ac and depleted for heterochromatic (H3K9me2 and H3K27me1) and repressive (H3K27me3) histone modifications. Further, we found that hypermethylated genomic regions negatively correlated with lncRNA transcribing regions. Overall, our study showed that lncRNAs expressed corresponding to the diel light cycle are implicated in regulating the circadian rhythm and governing the developmental stage-specific growth.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | | | - Amrita Yadav
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India
| |
Collapse
|
7
|
Okada M, Yang Z, Mas P. Circadian autonomy and rhythmic precision of the Arabidopsis female reproductive organ. Dev Cell 2022; 57:2168-2180.e4. [PMID: 36115345 DOI: 10.1016/j.devcel.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
The plant circadian clock regulates essential biological processes including flowering time or petal movement. However, little is known about how the clock functions in flowers. Here, we identified the circadian components and transcriptional networks contributing to the generation of rhythms in pistils, the female reproductive organ. When detached from the rest of the flower, pistils sustain highly precise rhythms, indicating organ-specific circadian autonomy. Analyses of clock mutants and chromatin immunoprecipitation assays showed distinct expression patterns and specific regulatory functions for clock activators and repressors in pistils. Genetic interaction studies also suggested a hierarchy of the repressing activities that provide robustness and precision to the pistil clock. Globally, the circadian function in pistils primarily governs responses to environmental stimuli and photosynthesis and controls pistil growth and seed weight and production. Understanding the circadian intricacies in reproductive organs may prove useful for optimizing plant reproduction and productivity.
Collapse
Affiliation(s)
- Masaaki Okada
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Zhiyuan Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Zhao L, Guo L, Lu X, Malik WA, Zhang Y, Wang J, Chen X, Wang S, Wang J, Wang D, Ye W. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol Res 2022; 55:27. [PMID: 35974357 PMCID: PMC9380331 DOI: 10.1186/s40659-022-00394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). Method From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. Result A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. Conclusion This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00394-2.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
9
|
Gong J, Tang Y, Liu Y, Sun R, Li Y, Ma J, Zhang S, Zhang F, Chen Z, Liao X, Sun H, Lu Z, Zhao C, Gao S. The Central Circadian Clock Protein TaCCA1 Regulates Seedling Growth and Spike Development in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:946213. [PMID: 35923880 PMCID: PMC9340162 DOI: 10.3389/fpls.2022.946213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 05/14/2023]
Abstract
The biological functions of the circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits, are poorly understood. In this study, we characterized the core clock gene CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns, which are positively regulated by rhythmic histone modifications including histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 9 acetylation (H3K9Ac), and histone H3 lysine 36 trimethylation (H3K36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike, and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing [DNA affinity purification and sequencing (DAP-seq)] indicated that TaCCA1 preferentially binds to sequences similarly to "evening elements" (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization, and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photosynthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.
Collapse
Affiliation(s)
- Jie Gong
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yimiao Tang
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongjie Liu
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Renwei Sun
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanhong Li
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinxiu Ma
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shengquan Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengting Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaobo Chen
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiangzheng Liao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Sun
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zefu Lu
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changping Zhao
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shiqing Gao
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
10
|
Jalal A, Sun J, Chen Y, Fan C, Liu J, Wang C. Evolutionary Analysis and Functional Identification of Clock-Associated PSEUDO-RESPONSE REGULATOR (PRRs) Genes in the Flowering Regulation of Roses. Int J Mol Sci 2022; 23:ijms23137335. [PMID: 35806340 PMCID: PMC9266954 DOI: 10.3390/ijms23137335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudo-response regulators (PRRs) are the important genes for flowering in roses. In this work, clock PRRs were genome-wide identified using Arabidopsis protein sequences as queries, and their evolutionary analyses were deliberated intensively in Rosaceae in correspondence with angiosperms species. To draw a comparative network and flow of clock PRRs in roses, a co-expression network of flowering pathway genes was drawn using a string database, and their functional analysis was studied by silencing using VIGS and protein-to-protein interaction. We revealed that the clock PRRs were significantly expanded in Rosaceae and were divided into three major clades, i.e., PRR5/9 (clade 1), PRR3/7 (clade 2), and TOC1/PRR1 (clade 3), based on their phylogeny. Within the clades, five clock PRRs were identified in Rosa chinensis. Clock PRRs had conserved RR domain and shared similar features, suggesting the duplication occurred during evolution. Divergence analysis indicated the role of duplication events in the expansion of clock PRRs. The diverse cis elements and interaction of clock PRRs with miRNAs suggested their role in plant development. Co-expression network analysis showed that the clock PRRs from Rosa chinensis had a strong association with flowering controlling genes. Further silencing of RcPRR1b and RcPRR5 in Rosa chinensis using VIGS led to earlier flowering, confirming them as negative flowering regulators. The protein-to-protein interactions between RcPRR1a/RcPRR5 and RcCO suggested that RcPRR1a/RcPRR5 may suppress flowering by interfering with the binding of RcCO to the promoter of RcFT. Collectively, these results provided an understanding of the evolutionary profiles as well as the functional role of clock PRRs in controlling flowering in roses.
Collapse
|
11
|
Kyung J, Jeon M, Jeong G, Shin Y, Seo E, Yu J, Kim H, Park CM, Hwang D, Lee I. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element. THE PLANT CELL 2022; 34:1020-1037. [PMID: 34931682 PMCID: PMC8894950 DOI: 10.1093/plcell/koab304] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/22/2021] [Indexed: 05/20/2023]
Abstract
Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yourae Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Eunjoo Seo
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihyeon Yu
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoyeun Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Author for correspondence:
| |
Collapse
|
12
|
Shim S, Lee HG, Park OS, Shin H, Lee K, Lee H, Huh JH, Seo PJ. Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis. Epigenetics 2022; 17:41-58. [PMID: 33406971 PMCID: PMC8812807 DOI: 10.1080/15592294.2021.1872927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Plant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step in vitro tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated. Here, we compared genome-wide DNA methylation profiles between leaf and callus tissues in Arabidopsis using whole-genome bisulphite-sequencing. Global distribution of DNA methylation showed that CHG methylation was increased, whereas CHH methylation was reduced especially around transposable element (TE) regions during the leaf-to-callus transition. We further analysed differentially expressed genes around differentially methylated TEs (DMTEs) during the leaf-to-callus transition and found that genes involved in cell cycle regulation were enriched and also constituted a coexpression gene network along with pluripotency regulators. In addition, a conserved DNA sequence analysis for upstream cis-elements led us to find a putative transcription factor associated with cell fate transition. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) was newly identified as a regulator of plant regeneration, and consistently, the cca1lhy mutant displayed altered phenotypes in callus proliferation. Overall, these results suggest that DNA methylation coordinates cell cycle regulation during callus formation, and CCA1 may act as a key upstream coordinator at least in part in the processes.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Ok-Sun Park
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Hosub Shin
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
| | - Kyounghee Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jin Hoe Huh
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Simple Nuclei Preparation and Co-immunoprecipitation Procedures for Studying Protein Abundance and Interactions in Plant Circadian Time Courses. Methods Mol Biol 2021. [PMID: 34674173 DOI: 10.1007/978-1-0716-1912-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The plant circadian clock regulates multiple developmental and physiological events that occur at specific times and seasons. As many of the currently known clock proteins and clock-associated regulators are transcription factors, analyzing molecular events in the nuclei is crucial. In addition, long-time course analyses of protein abundance and interactions are often required to assess the role of the circadian clock on clock-regulated phenomena. Here we introduce a simple procedure to prepare nuclear-enriched tissues, which we routinely use to study time-resolved accumulation changes in low-abundance nuclear proteins (i.e., transcription factors). In addition to measuring changes in abundance, investigating the protein-protein interaction dynamics at specific times of day or under certain environmental conditions is needed for plant chronobiology studies. Therefore, we also present our co-immunoprecipitation method for studying diurnal/circadian protein-protein interactions, tailored to nuclear-localized proteins in Arabidopsis and tobacco.
Collapse
|
14
|
Abstract
Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.
Collapse
Affiliation(s)
- Chris N Micklem
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CH3 0HE, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
15
|
Guo W, Wang W, Zhang W, Li W, Wang Y, Zhang S, Chang J, Ye Q, Gan J. Mechanisms of the enantioselective effects of phenoxyalkanoic acid herbicides DCPP and MCPP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147735. [PMID: 34029804 DOI: 10.1016/j.scitotenv.2021.147735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Phenoxyalkanoic acids (PAAs), synthetic indole-3-acetic acid (IAA) auxin mimics, are widely used as herbicides. Many PAAs are chiral molecules and show strong enantioselectivity in their herbicidal activity; however, there is a lack of understanding of mechanisms driving enantioselectivity. This study aimed to obtain a mechanistic understanding of PAA enantioselectivity using dichlorprop and mecoprop as model PAA compounds. Molecular docking, in vitro 3H-IAA binding assay, and surface plasmon resonance analysis showed that the R enantiomer was preferentially combined with TIR1-IAA7 (Transport Inhibitor Response1- Auxin-Responsive Protein IAA7) than the S enantiomer. In vivo tracking using 14C-PAAs showed a greater absorption of the R enantiomer by Arabidopsis thaliana, and further comparatively enhanced translocation of the R enantiomer to the nucleus where the auxin co-receptor is located. These observations imply that TIR1-IAA7 is a prior target for DCPP and MCPP, and that PAA enantioselectivity occurs because the R enantiomer has a stronger binding affinity for TIR1-IAA7 as well as a greater plant absorption and translocation capability than the S enantiomer. The improved understanding of PAA enantioselectivity is of great significance, as the knowledge may be used to design "green" molecules, such as R enantiomer enriched products, leading to improved plant management and environmental sustainability.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Department of Applied Bioscience, College of agriculture and biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Weiwei Zhang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Li
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yichen Wang
- Hangzhou Botanical Garden, No.1, Taoyuan, Xihu District, Hangzhou 310012, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianghai Chang
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Eggers R, Jammer A, Jha S, Kerschbaumer B, Lahham M, Strandback E, Toplak M, Wallner S, Winkler A, Macheroux P. The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 189:112822. [PMID: 34118767 DOI: 10.1016/j.phytochem.2021.112822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.
Collapse
Affiliation(s)
- Reinmar Eggers
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Alexandra Jammer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Bianca Kerschbaumer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Majd Lahham
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Emilia Strandback
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria.
| |
Collapse
|
17
|
Yuan L, Yu Y, Liu M, Song Y, Li H, Sun J, Wang Q, Xie Q, Wang L, Xu X. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. THE PLANT CELL 2021; 33:2602-2617. [PMID: 34164694 PMCID: PMC8408442 DOI: 10.1093/plcell/koab133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
The core plant circadian oscillator is composed of multiple interlocked transcriptional-translational feedback loops, which synchronize endogenous diel physiological rhythms to the cyclic changes of environmental cues. PSEUDO-RESPONSE REGULATORS (PRRs) have been identified as negative components in the circadian clock, though their underlying molecular mechanisms remain largely unknown. Here, we found that a subfamily of zinc finger transcription factors, B-box (BBX)-containing proteins, have a critical role in fine-tuning circadian rhythm. We demonstrated that overexpressing Arabidopsis thaliana BBX19 and BBX18 significantly lengthened the circadian period, while the null mutation of BBX19 accelerated the circadian speed. Moreover, BBX19 and BBX18, which are expressed during the day, physically interacted with PRR9, PRR7, and PRR5 in the nucleus in precise temporal ordering from dawn to dusk, consistent with the respective protein accumulation pattern of PRRs. Our transcriptomic and genetic analysis indicated that BBX19 and PRR9, PRR7, and PRR5 cooperatively inhibited the expression of morning-phased clock genes. PRR proteins affected BBX19 recruitment to the CCA1, LHY, and RVE8 promoters. Collectively, our findings show that BBX19 interacts with PRRs to orchestrate circadian rhythms, and suggest the indispensable role of transcriptional regulators in fine-tuning the circadian clock.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hongmin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junqiu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiao Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| |
Collapse
|
18
|
Yuan Y, Yang X, Feng M, Ding H, Khan MT, Zhang J, Zhang M. Genome-wide analysis of R2R3-MYB transcription factors family in the autopolyploid Saccharum spontaneum: an exploration of dominance expression and stress response. BMC Genomics 2021; 22:622. [PMID: 34404342 PMCID: PMC8371785 DOI: 10.1186/s12864-021-07689-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sugarcane (Saccharum) is the most critical sugar crop worldwide. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. RESULTS A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genomic sequence and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which RT-qPCR validated MYB43, MYB53, MYB65, MYB78, and MYB99. Allelic expression dominance analysis implied the differential expression of alleles might be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. CONCLUSIONS This is the first report on genome-wide analysis of the MYB gene family in sugarcane. SsMYBs probably played an essential role in stem development and the adaptation of various stress conditions. The results will provide detailed insights and rich resources to understand the functional diversity of MYB transcription factors and facilitate the breeding of essential traits in sugarcane.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Mengfan Feng
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Hongyan Ding
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | | | - Jisen Zhang
- Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
19
|
Hao P, Wu A, Chen P, Wang H, Ma L, Wei H, Yu S. GhLUX1 and GhELF3 Are Two Components of the Circadian Clock That Regulate Flowering Time of Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:691489. [PMID: 34434203 PMCID: PMC8380988 DOI: 10.3389/fpls.2021.691489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 05/30/2023]
Abstract
Photoperiod is an important external factor that regulates flowering time, the core mechanism of which lies in the circadian clock-controlled expression of FLOWERING LOCUS T (FT) and its upstream regulators. However, the roles of the circadian clock in regulating cotton flowering time are largely unknown. In this study, we cloned two circadian clock genes in cotton, GhLUX1 and GhELF3. The physicochemical and structural properties of their putative proteins could satisfy the prerequisites for the interaction between them, which was proved by yeast two-hybrid (Y2H) and Bimolecular Fluorescent Complimentary (BiFC) assays. Phylogenetic analysis of LUXs and ELF3s indicated that the origin of LUXs was earlier than that of ELF3s, but ELF3s were more divergent and might perform more diverse functions. GhLUX1, GhELF3, GhCOL1, and GhFT exhibited rhythmic expression and were differentially expressed in the early flowering and late-flowering cotton varieties under different photoperiod conditions. Both overexpression of GhLUX1 and overexpression of GhELF3 in Arabidopsis delayed flowering probably by changing the oscillation phases and amplitudes of the key genes in the photoperiodic flowering pathway. Both silencing of GhLUX1 and silencing of GhELF3 in cotton increased the expression of GhCOL1 and GhFT and resulted in early flowering. In summary, the circadian clock genes were involved in regulating cotton flowering time and could be the candidate targets for breeding early maturing cotton varieties.
Collapse
Affiliation(s)
- Pengbo Hao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Tian W, Wang R, Bo C, Yu Y, Zhang Y, Shin GI, Kim WY, Wang L. SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis. Nucleic Acids Res 2021; 49:3764-3780. [PMID: 33675668 PMCID: PMC8053106 DOI: 10.1093/nar/gkab128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Molecular bases of eukaryotic circadian clocks mainly rely on transcriptional-translational feedback loops (TTFLs), while epigenetic codes also play critical roles in fine-tuning circadian rhythms. However, unlike histone modification codes that play extensive and well-known roles in the regulation of circadian clocks, whether DNA methylation (5mC) can affect the circadian clock, and the associated underlying molecular mechanisms, remains largely unexplored in many organisms. Here we demonstrate that global genome DNA hypomethylation can significantly lengthen the circadian period of Arabidopsis. Transcriptomic and genetic evidence demonstrate that SUPPRESSOR OF drm1 drm2 cmt3 (SDC), encoding an F-box containing protein, is required for the DNA hypomethylation-tuned circadian clock. Moreover, SDC can physically interact with another F-box containing protein ZEITLUPE (ZTL) to diminish its accumulation. Genetic analysis further revealed that ZTL and its substrate TIMING OF CAB EXPRESSION 1 (TOC1) likely act downstream of DNA methyltransferases to control circadian rhythm. Together, our findings support the notion that DNA methylation is important to maintain proper circadian pace in Arabidopsis, and further established that SDC links DNA hypomethylation with a proteolytic cascade to assist in tuning the circadian clock.
Collapse
Affiliation(s)
- Wenwen Tian
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruyi Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
21
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
22
|
van Hoogdalem M, Shapulatov U, Sergeeva L, Busscher-Lange J, Schreuder M, Jamar D, van der Krol AR. A temperature regime that disrupts clock-controlled starch mobilization induces transient carbohydrate starvation, resulting in compact growth. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab075. [PMID: 33617638 DOI: 10.1093/jxb/erab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In nature plants are usually subjected to a light/temperature regime of warm day and cold night (referred to as +DIF). Compared to growth under +DIF, Arabidopsis plants show compact growth under the same photoperiod, but with an inverse temperature regime (cold day and warm night: -DIF). Here we show that -DIF differentially affects the phase and amplitude of core clock gene expression. Under -DIF the phase of the morning clock gene CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is delayed, similar to that of plants grown on low sucrose. Indeed, under -DIF carbohydrate (CHO) starvation marker genes are specifically upregulated at the End of the Night (EN) in Arabidopsis rosettes. However, only in inner-rosette tissue (small sink leaves and petioles of older leaves) sucrose levels are lower under -DIF compared to under +DIF, suggesting that sucrose in source leaf blades is not sensed for CHO status and that sucrose transport from source to sink may be impaired at EN. CHO-starvation under -DIF correlated with increased starch breakdown during the night and decreased starch accumulation during the day. Moreover, we demonstrate that different ways of inducing CHO-starvation all link to reduced growth of sink leaves. Practical implications for control of plant growth in horticulture are discussed.
Collapse
Affiliation(s)
- Mark van Hoogdalem
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Business Unit Greenhouse Horticulture, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Umidjon Shapulatov
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Department of Botany and Plant Physiology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Mariëlle Schreuder
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Diaan Jamar
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
23
|
Zhang S, Liu H, Yuan L, Li X, Wang L, Xu X, Xie Q. Recognition of CCA1 alternative protein isoforms during temperature acclimation. PLANT CELL REPORTS 2021; 40:421-432. [PMID: 33398474 DOI: 10.1007/s00299-020-02644-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/26/2020] [Indexed: 05/14/2023]
Abstract
CCA1α and CCA1β protein variants respond to environmental light and temperature cues, and higher temperature promotes CCA1β protein production and causes its retention detectable in the cytoplasm. CIRCADIAN CLOCK ASSOCIATED1 (CCA1), as the core transcription factor of circadian clock, is involved in the regulation of endogenous circadian rhythm in Arabidopsis. Previous studies have shown that CCA1 consists of two abundant splice variants, fully spliced CCA1α and intron-retaining CCA1β. CCA1β is believed to form a nonfunctional heterodimer with CCA1α and its closed-related homolog LHY. Many studies have established that CCA1β is a transcription product, while how CCA1β protein is produced and how two CCA1 isoforms respond to environmental cues have not been elucidated. In this study, we identified CCA1α and CCA1β protein variants under different photoperiods with warm or cold temperature cycles, respectively. Our results showed that CCA1 protein production is regulated by prolonged light exposure and warm temperature. The protein levels of CCA1α and CCA1β peak in the morning, but the detection of CCA1β is dependent on immunoprecipitation enrichment at 22 °C. Higher temperature of 37 °C promotes CCA1β protein production and causes its retention to be detectable in the cytoplasm. Overall, our results indicate that two splice variants of the CCA1 protein respond to environmental light and temperature signals and may, therefore, maintain the circadian rhythms and give individuals the ability to adapt to environment.
Collapse
Affiliation(s)
- Shijia Zhang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huili Liu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaojing Li
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lingbao Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
24
|
Peng H, Phung J, Zhai Y, Neff MM. Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis. PLANTA 2020; 252:48. [PMID: 32892254 DOI: 10.1007/s00425-020-03456-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomorphogenesis in Arabidopsis thaliana. ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2 promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid (BR)-inactivating cytochrome P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Assays using low light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 at the DNA-protein and protein-protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism. In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jessica Phung
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
25
|
Joanito I, Yan CCS, Chu JW, Wu SH, Hsu CP. Basal leakage in oscillation: Coupled transcriptional and translational control using feed-forward loops. PLoS Comput Biol 2020; 16:e1007740. [PMID: 32881861 PMCID: PMC7494099 DOI: 10.1371/journal.pcbi.1007740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/16/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
The circadian clock is a complex system that plays many important roles in most organisms. Previously, many mathematical models have been used to sharpen our understanding of the Arabidopsis clock, which brought to light the roles of each transcriptional and post-translational regulations. However, the presence of both regulations, instead of either transcription or post-translation, raised curiosity of whether the combination of these two regulations is important for the clock’s system. In this study, we built a series of simplified oscillators with different regulations to study the importance of post-translational regulation (specifically, 26S proteasome degradation) in the clock system. We found that a simple transcriptional-based oscillator can already generate sustained oscillation, but the oscillation can be easily destroyed in the presence of transcriptional leakage. Coupling post-translational control with transcriptional-based oscillator in a feed-forward loop will greatly improve the robustness of the oscillator in the presence of basal leakage. Using these general models, we were able to replicate the increased variability observed in the E3 ligase mutant for both plant and mammalian clocks. With this insight, we also predict a plausible regulator of several E3 ligase genes in the plant’s clock. Thus, our results provide insights into and the plausible importance in coupling transcription and post-translation controls in the clock system. For circadian clocks, several current models had successfully captured the essential dynamic behavior of the clock system mainly with transcriptional regulation. Previous studies have shown that the 26S proteasome degradation controls are important in maintaining the stability of circadian rhythms. However, how the loss-of-function or over-expression mutant of this targeted degradations lead to unstable oscillation is still unclear. In this work, we investigate the importance of coupled transcriptional and post-translational feedback loop in the circadian oscillator. With general models our study indicate that the unstable behavior of degradation mutants could be caused by the increase in the basal level of the clock genes. We found that coupling a non-linear degradation control into this transcriptional based oscillator using feed-forward loop improves the robustness of the oscillator. Using this finding, we further predict some plausible regulators of Arabidopsis’s E3 ligase protein such as COP1 and SINAT5. Hence, our results provide insights on the importance of coupling transcription and post-translation controls in the clock system.
Collapse
Affiliation(s)
- Ignasius Joanito
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu, Taiwan
| | | | - Jhih-Wei Chu
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Zhai Y, Peng H, Neff MM, Pappu HR. Emerging Molecular Links Between Plant Photomorphogenesis and Virus Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:920. [PMID: 32695129 PMCID: PMC7338571 DOI: 10.3389/fpls.2020.00920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/05/2020] [Indexed: 05/25/2023]
Abstract
Photomorphogenesis refers to photoreceptor-mediated morphological changes in plant development that are triggered by light. Multiple photoreceptors and transcription factors (TFs) are involved in the molecular regulation of photomorphogenesis. Likewise, light can also modulate the outcome of plant-virus interactions since both photosynthesis and many viral infection events occur in the chloroplast. Despite the apparent association between photosynthesis and virus infection, little is known about whether there are also interplays between photomorphogenesis and plant virus resistance. Recent research suggests that plant-virus interactions are potentially regulated by several photoreceptors and photomorphogenesis regulators, including phytochromes A and B (PHYA and PHYB), cryptochromes 2 (CRY2), phototropin 2 (PHOT2), the photomorphogenesis repressor constitutive photomorphogenesis 1 (COP1), the NAM, ATAF, and CUC (NAC)-family TF ATAF2, the Aux/IAA protein phytochrome-associated protein 1 (PAP1), the homeodomain-leucine zipper (HD-Zip) TF HAT1, and the core circadian clock component circadian clock associated 1 (CCA1). Particularly, the plant growth promoting brassinosteroid (BR) hormones play critical roles in integrating the regulatory pathways of plant photomorphogenesis and viral defense. Here, we summarize the current understanding of molecular mechanisms linking plant photomorphogenesis and defense against viruses, which represents an emerging interdisciplinary research topic in both molecular plant biology and virology.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Michael M. Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
27
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Peng H, Neff MM. CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:970-985. [PMID: 31639820 PMCID: PMC6977193 DOI: 10.1093/jxb/erz468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 10/15/2019] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid hormones regulating plant growth and development. Since BRs do not undergo transport among plant tissues, their metabolism is tightly regulated by transcription factors (TFs) and feedback loops. BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1) are two BR-inactivating cytochrome P450s identified in Arabidopsis thaliana. We previously found that a TF ATAF2 (ANAC081) suppresses BAS1 and SOB7 expression by binding to the Evening Element (EE) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)-binding site (CBS) on their promoters. Both the EE and CBS are known binding targets of the circadian regulatory protein CCA1. Here, we confirm that CCA1 binds the EE and CBS motifs on BAS1 and SOB7 promoters, respectively. Elevated accumulations of BAS1 and SOB7 transcripts in the CCA1 null mutant cca1-1 indicate that CCA1 is a repressor of their expression. When compared with either cca1-1 or the ATAF2 null mutant ataf2-2, the cca1-1 ataf2-2 double mutant shows higher SOB7 transcript accumulations and a stronger BR-insensitive phenotype of hypocotyl elongation in white light. CCA1 interacts with ATAF2 at both DNA-protein and protein-protein levels. ATAF2, BAS1, and SOB7 are all circadian regulated with distinct expression patterns. These results demonstrate that CCA1 and ATAF2 differentially suppress BAS1- and SOB7-mediated BR inactivation.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Correspondence:
| |
Collapse
|
30
|
Dakhiya Y, Green RM. Thermal imaging as a noninvasive technique for analyzing circadian rhythms in plants. THE NEW PHYTOLOGIST 2019; 224:1685-1696. [PMID: 31411748 DOI: 10.1111/nph.16124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Endogenous (˜24 circadian) rhythms control an enormously diverse range of processes in plants and are, increasingly, the target of studies aimed at understanding plant performance. Although in the previous few decades most plant circadian research has focused on Arabidopsis, there is a pressing need for low-cost, high-throughput tools for analyzing rhythms in a wider variety of species. The present contribution investigates using circadian temperature oscillations as a novel marker for assaying plant circadian rhythms. A thermal imaging platform was set up to measure diel and circadian rhythms in different plant species, in wild-type and circadian mutant plants, and in leaves and flowers. Results from the thermal imaging technique were compared with those from other established circadian assay techniques. All of the dicot and monocot species examined showed robust circadian rhythms of leaf surface temperature; the effects of circadian mutations on thermocycles were similar to those reported using other techniques. In Petunia × atkinsiana plants circadian oscillations were observed in both leaves and flowers. Thermal imaging is an extremely useful technique for analyzing circadian rhythms in plants. It is predicted that the ability to make very high temporal resolution measurements may facilitate the discovery of novel aspects of circadian control.
Collapse
Affiliation(s)
- Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem, 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
31
|
Panter PE, Muranaka T, Cuitun-Coronado D, Graham CA, Yochikawa A, Kudoh H, Dodd AN. Circadian Regulation of the Plant Transcriptome Under Natural Conditions. Front Genet 2019; 10:1239. [PMID: 31850080 PMCID: PMC6895068 DOI: 10.3389/fgene.2019.01239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022] Open
Abstract
Circadian rhythms produce a biological measure of the time of day. In plants, circadian regulation forms an essential adaptation to the fluctuating environment. Most of our knowledge of the molecular aspects of circadian regulation in plants is derived from laboratory experiments that are performed under controlled conditions. However, it is emerging that the circadian clock has complex roles in the coordination of the transcriptome under natural conditions, in both naturally occurring populations of plants and in crop species. In this review, we consider recent insights into circadian regulation under natural conditions. We examine how circadian regulation is integrated with the acute responses of plants to the daily and seasonally fluctuating environment that also presents environmental stresses, in order to coordinate the transcriptome and dynamically adapt plants to their continuously changing environment.
Collapse
Affiliation(s)
- Paige E. Panter
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - David Cuitun-Coronado
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Calum A. Graham
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Aline Yochikawa
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
32
|
Ronald J, Davis SJ. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. PLANT, CELL & ENVIRONMENT 2019; 42:2871-2884. [PMID: 31369151 DOI: 10.1111/pce.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Circadian clocks provide organisms the ability to synchronize their internal physiological responses with the external environment. This process, termed entrainment, occurs through the perception of internal and external stimuli. As with other organisms, in plants, the perception of light is a critical for the entrainment and sustainment of circadian rhythms. Red, blue, far-red, and UV-B light are perceived by the oscillator through the activity of photoreceptors. Four classes of photoreceptors signal to the oscillator: phytochromes, cryptochromes, UVR8, and LOV-KELCH domain proteins. In most cases, these photoreceptors localize to the nucleus in response to light and can associate to subnuclear structures to initiate downstream signalling. In this review, we will highlight the recent advances made in understanding the mechanisms facilitating the nuclear and subnuclear localization of photoreceptors and the role these subnuclear bodies have in photoreceptor signalling, including to the oscillator. We will also highlight recent progress that has been made in understanding the regulation of the nuclear and subnuclear localization of components of the plant circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Seth J Davis
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
33
|
Zhai Y, Peng H, Neff MM, Pappu HR. Putative Auxin and Light Responsive Promoter Elements From the Tomato spotted wilt tospovirus Genome, When Expressed as cDNA, Are Functional in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:804. [PMID: 31316531 PMCID: PMC6611158 DOI: 10.3389/fpls.2019.00804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 05/31/2023]
Abstract
Members of the virus order Bunyavirales cause serious diseases in animals, humans and plants. Family Tospoviridae in this order contains only one genus Orthotospovirus, and members in this genus exclusively infect plants. Tomato spotted wilt tospovirus (TSWV) is considered one of the most economically important plants viruses. Little is known about the regulatory elements in the TSWV genome. Here we show that, when in the cDNA form, the 5'-upstream region of the TSWV-coded GN/GC gene (pGN/GC) possesses putative cis-regulatory elements, including an auxin responsive element (AuxRE) for binding of auxin response factors (ARFs), as well as a circadian clock-associated 1 (CCA1) protein binding site (CBS). Due to the lack of a reverse genetics system, we verified the functionality of these elements in Arabidopsis. pGN/GC showed light-suppressive promoter activity in transgenic Arabidopsis, and mutation in the CBS was sufficient to switch the activity to light inducible. Additionally, exogenous auxin treatments repressed the promoter activity of both wild type and CBS-mutated pGN/GC. Mutation in AuxRE in both promoters abolished their sensitivity to auxin. As transcriptional repressors, both CCA1 and ARF2 were able to bind to pGN/GC directly. To our knowledge, this is the first report that a 5'-terminal sequence of an RNA virus has light-and hormone-responsive promoter activities when expressed as cDNA in host plant's nuclear background. Our findings suggest new clues on the possible origin, evolution and function of the TSWV genomic sequence and its non-coding regions.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Michael M. Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
34
|
Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K. Role of circadian rhythm in plant system: An update from development to stress response. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 162:256-271. [DOI: 10.1016/j.envexpbot.2019.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
35
|
McClung CR. The Plant Circadian Oscillator. BIOLOGY 2019; 8:E14. [PMID: 30870980 PMCID: PMC6466001 DOI: 10.3390/biology8010014] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
It has been nearly 300 years since the first scientific demonstration of a self-sustaining circadian clock in plants. It has become clear that plants are richly rhythmic, and many aspects of plant biology, including photosynthetic light harvesting and carbon assimilation, resistance to abiotic stresses, pathogens, and pests, photoperiodic flower induction, petal movement, and floral fragrance emission, exhibit circadian rhythmicity in one or more plant species. Much experimental effort, primarily, but not exclusively in Arabidopsis thaliana, has been expended to characterize and understand the plant circadian oscillator, which has been revealed to be a highly complex network of interlocked transcriptional feedback loops. In addition, the plant circadian oscillator has employed a panoply of post-transcriptional regulatory mechanisms, including alternative splicing, adjustable rates of translation, and regulated protein activity and stability. This review focuses on our present understanding of the regulatory network that comprises the plant circadian oscillator. The complexity of this oscillatory network facilitates the maintenance of robust rhythmicity in response to environmental extremes and permits nuanced control of multiple clock outputs. Consistent with this view, the clock is emerging as a target of domestication and presents multiple targets for targeted breeding to improve crop performance.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
36
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
37
|
Yang P, Wang J, Huang FY, Yang S, Wu K. The Plant Circadian Clock and Chromatin Modifications. Genes (Basel) 2018; 9:genes9110561. [PMID: 30463332 PMCID: PMC6266252 DOI: 10.3390/genes9110561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The circadian clock is an endogenous timekeeping network that integrates environmental signals with internal cues to coordinate diverse physiological processes. The circadian function depends on the precise regulation of rhythmic gene expression at the core of the oscillators. In addition to the well-characterized transcriptional feedback regulation of several clock components, additional regulatory mechanisms, such as alternative splicing, regulation of protein stability, and chromatin modifications are beginning to emerge. In this review, we discuss recent findings in the regulation of the circadian clock function in Arabidopsis thaliana. The involvement of chromatin modifications in the regulation of the core circadian clock genes is also discussed.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianhao Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Fu-Yu Huang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan.
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
38
|
Song YH, Kubota A, Kwon MS, Covington MF, Lee N, Taagen ER, Laboy Cintrón D, Hwang DY, Akiyama R, Hodge SK, Huang H, Nguyen NH, Nusinow DA, Millar AJ, Shimizu KK, Imaizumi T. Molecular basis of flowering under natural long-day conditions in Arabidopsis. NATURE PLANTS 2018; 4:824-835. [PMID: 30250277 PMCID: PMC6195122 DOI: 10.1038/s41477-018-0253-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/16/2018] [Indexed: 05/18/2023]
Abstract
Plants sense light and temperature changes to regulate flowering time. Here, we show that expression of the Arabidopsis florigen gene, FLOWERING LOCUS T (FT), peaks in the morning during spring, a different pattern than we observe in the laboratory. Providing our laboratory growth conditions with a red/far-red light ratio similar to open-field conditions and daily temperature oscillation is sufficient to mimic the FT expression and flowering time in natural long days. Under the adjusted growth conditions, key light signalling components, such as phytochrome A and EARLY FLOWERING 3, play important roles in morning FT expression. These conditions stabilize CONSTANS protein, a major FT activator, in the morning, which is probably a critical mechanism for photoperiodic flowering in nature. Refining the parameters of our standard growth conditions to more precisely mimic plant responses in nature can provide a powerful method for improving our understanding of seasonal response.
Collapse
Affiliation(s)
- Young Hun Song
- Department of Biology, University of Washington, Seattle, WA, USA.
- Department of Life Sciences, Ajou University, Suwon, Korea.
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Michael S Kwon
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Ella R Taagen
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Dae Yeon Hwang
- Department of Life Sciences, Ajou University, Suwon, Korea
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Sarah K Hodge
- School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK
| | - He Huang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Nhu H Nguyen
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Andrew J Millar
- School of Biological Sciences and SynthSys, University of Edinburgh, Edinburgh, UK
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
39
|
Lee K, Seo PJ. The HAF2 protein shapes histone acetylation levels of PRR5 and LUX loci in Arabidopsis. PLANTA 2018; 248:513-518. [PMID: 29789923 DOI: 10.1007/s00425-018-2921-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/15/2018] [Indexed: 05/16/2023]
Abstract
The histone acetyltransferase HAF2 facilitates H3 acetylation deposition at the PRR5 and LUX promoters to contribute to robust circadian oscillation. The circadian clock ensures synchronization of endogenous rhythmic processes with environmental cycles. Multi-layered regulation underlies precise circadian oscillation, and epigenetic regulation is emerging as a crucial scheme for robust circadian maintenance. Here, we report that HISTONE ACETYLTRANSFERASE OF THE TAFII250 FAMILY 2 (HAF2) is involved in circadian homeostasis. The HAF2 gene is activated at midday, and its temporal expression is shaped by CIRCADIAN CLOCK-ASSOCIATED 1. The midday-activated HAF2 protein stimulates H3 acetylation (H3ac) deposition at the PRR5 and LUX loci, contributing to establishment of the raising phase. These results indicate that epigenetic waves in circadian networks underlie temporal compartmentalization of circadian components and stable maintenance of circadian oscillation.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
40
|
Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proc Natl Acad Sci U S A 2018; 115:7147-7152. [PMID: 29915068 DOI: 10.1073/pnas.1805524115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although circadian oscillators in diverse eukaryotes all depend on interlinked transcriptional feedback loops, specific components are not conserved across higher taxa. Moreover, the circadian network in the model plant Arabidopsis thaliana is notably more complex than those found in animals and fungi. Here, we combine mathematical modeling and experimental approaches to investigate the functions of two classes of Myb-like transcription factors that antagonistically regulate common target genes. Both CCA1/LHY- and RVE8-clade factors bind directly to the same cis-element, but the former proteins act primarily as repressors, while the latter act primarily as activators of gene expression. We find that simulation of either type of loss-of-function mutant recapitulates clock phenotypes previously reported in mutant plants, while simulated simultaneous loss of both type of factors largely rescues circadian phase at the expense of rhythmic amplitude. In accord with this prediction, we find that plants mutant for both activator- and repressor-type Mybs have near-normal circadian phase and period but reduced rhythmic amplitude. Although these mutants exhibit robust rhythms when grown at mild temperatures, they are largely arrhythmic at physiologically relevant but nonoptimal temperatures. LHY- and RVE8-type Mybs are found in separate clades across the land plant lineage and even in some unicellular green algae, suggesting that they both may have functioned in even the earliest arising plant circadian oscillators. Our data suggest that the complexity of the plant circadian network may have arisen to provide rhythmic robustness across the range of environmental extremes to which plants, as sessile organisms, are regularly subjected.
Collapse
|
41
|
Cai J, Li P, Luo X, Chang T, Li J, Zhao Y, Xu Y. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley. PLoS One 2018; 13:e0190559. [PMID: 29309420 PMCID: PMC5757941 DOI: 10.1371/journal.pone.0190559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/16/2017] [Indexed: 11/18/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes—ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)—were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis under tested stress conditions by the qRT-PCR method.
Collapse
Affiliation(s)
- Jing Cai
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
| | - Pengfei Li
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
| | - Xiao Luo
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
| | - Tianliang Chang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
| | - Jiaxing Li
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
| | - Yuwei Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
- * E-mail:
| | - Yao Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, China
- Life Sciences School of Northwest University, Xi’an, China
- Key Laboratory of Resource Biology and Biotechnology in western China (Ministry of Education), Xi’an, China
| |
Collapse
|
42
|
Sosa Alderete LG, Guido ME, Agostini E, Mas P. Identification and characterization of key circadian clock genes of tobacco hairy roots: putative regulatory role in xenobiotic metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1597-1608. [PMID: 29098590 DOI: 10.1007/s11356-017-0579-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/24/2017] [Indexed: 05/24/2023]
Abstract
The circadian clock is an endogenous system that allows organisms to daily adapt and optimize their physiology and metabolism. We studied the key circadian clock gene (CCG) orthologs in Nicotiana tabacum seedlings and in hairy root cultures (HRC). Putative genes involved in the metabolism of xenobiotic compounds (MXC) were selected and their expression profiles were also analyzed. Seedlings and HRC displayed similar diurnal variations in the expression profiles for the CCG examined under control conditions (CC). MXC-related genes also showed daily fluctuations with specific peaks of expression. However, when HRC were under phenol treatment (PT), the expression patterns of the clock and MXC-related genes were significantly affected. In 2-week-old HRC, PT downregulated the expression of NtLHY, NtTOC1, and NtPRR9 while NtFKF1 and NtGI genes were upregulated by phenol. In 3-week-old HRC, PT also downregulated the expression of all CCG analyzed and NtTOC1 was the most affected. Following PT, the expression of the MXC-related genes was upregulated or displayed an anti-phasic expression profile compared to the expression under CC. Our studies thus provide a glimpse of the circadian expression of clock genes in tobacco and the use of HRC as a convenient system to study plant responses to xenobiotic stresses.
Collapse
Affiliation(s)
- Lucas G Sosa Alderete
- Department of Molecular Biology, UNRC, Río Cuarto, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | | | - Elizabeth Agostini
- Department of Molecular Biology, UNRC, Río Cuarto, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
43
|
Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM. CIRCADIAN CLOCK ASSOCIATED1 ( CCA1) and the Circadian Control of Stomatal Aperture. PLANT PHYSIOLOGY 2017; 175:1864-1877. [PMID: 29084902 PMCID: PMC5717738 DOI: 10.1104/pp.17.01214] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 05/18/2023]
Abstract
The endogenous circadian (∼24 h) system allows plants to anticipate and adapt to daily environmental changes. Stomatal aperture is one of the many processes under circadian control; stomatal opening and closing occurs under constant conditions, even in the absence of environmental cues. To understand the significance of circadian-mediated anticipation in stomatal opening, we have generated SGC (specifically guard cell) Arabidopsis (Arabidopsis thaliana) plants in which the oscillator gene CIRCADIAN CLOCK ASSOCIATED1 (CCA1) was overexpressed under the control of the guard-cell-specific promoter, GC1. The SGC plants showed a loss of ability to open stomata in anticipation of daily dark-to-light changes and of circadian-mediated stomatal opening in constant light. We observed that under fully watered and mild drought conditions, SGC plants outperform wild type with larger leaf area and biomass. To investigate the molecular basis for circadian control of guard cell aperture, we used large-scale qRT-PCR to compare circadian oscillator gene expression in guard cells compared with the "average" whole-leaf oscillator and examined gene expression and stomatal aperture in several lines of plants with misexpressed CCA1 Our results show that the guard cell oscillator is different from the average plant oscillator. Moreover, the differences in guard cell oscillator function may be important for the correct regulation of photoperiod pathway genes that have previously been reported to control stomatal aperture. We conclude by showing that CONSTANS and FLOWERING LOCUS T, components of the photoperiod pathway that regulate flowering time, also control stomatal aperture in a daylength-dependent manner.
Collapse
Affiliation(s)
- Miriam Hassidim
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Adi Turjeman
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ekaterina Shor
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ariane Anidjar
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Keren Goldberg
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
44
|
Hansen LL, Imrie L, Le Bihan T, van den Burg HA, van Ooijen G. Sumoylation of the Plant Clock Transcription Factor CCA1 Suppresses DNA Binding. J Biol Rhythms 2017; 32:570-582. [PMID: 29172852 DOI: 10.1177/0748730417737695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In plants, the circadian clock regulates the expression of one-third of all transcripts and is crucial to virtually every aspect of metabolism and growth. We now establish sumoylation, a posttranslational protein modification, as a novel regulator of the key clock protein CCA1 in the model plant Arabidopsis. Dynamic sumoylation of CCA1 is observed in planta and confirmed in a heterologous expression system. To characterize how sumoylation might affect the activity of CCA1, we investigated the properties of CCA1 in a wild-type plant background in comparison with ots1 ots2, a mutant background showing increased overall levels of sumoylation. Neither the localization nor the stability of CCA1 was significantly affected. However, binding of CCA1 to a target promoter was significantly reduced in chromatin-immunoprecipitation experiments. In vitro experiments using recombinant protein revealed that reduced affinity to the cognate promoter element is a direct consequence of sumoylation of CCA1 that does not require any other factors. Combined, these results suggest sumoylation as a mechanism that tunes the DNA binding activity of the central plant clock transcription factor CCA1.
Collapse
Affiliation(s)
- Louise L Hansen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Lisa Imrie
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thierry Le Bihan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
45
|
Footitt S, Ölçer‐Footitt H, Hambidge AJ, Finch‐Savage WE. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. PLANT, CELL & ENVIRONMENT 2017; 40:1474-1486. [PMID: 28240777 PMCID: PMC5518234 DOI: 10.1111/pce.12940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 05/19/2023]
Abstract
Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised.
Collapse
Affiliation(s)
- Steven Footitt
- School of Life Sciences, Wellesbourne CampusUniversity of WarwickWarwickWarwickshireCV35 9EFUK
| | - Hülya Ölçer‐Footitt
- Department of Biology, Faculty of Arts and Sciences, Evliya Celebi CampusDumlupınar UniversityTR‐43100KütahyaTurkey
| | - Angela J. Hambidge
- School of Life Sciences, Wellesbourne CampusUniversity of WarwickWarwickWarwickshireCV35 9EFUK
| | - William E. Finch‐Savage
- School of Life Sciences, Wellesbourne CampusUniversity of WarwickWarwickWarwickshireCV35 9EFUK
| |
Collapse
|
46
|
Shor E, Paik I, Kangisser S, Green R, Huq E. PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis. THE NEW PHYTOLOGIST 2017; 215:217-228. [PMID: 28440582 PMCID: PMC5458605 DOI: 10.1111/nph.14579] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/15/2017] [Indexed: 05/18/2023]
Abstract
The circadian (c. 24 h) system has a central role in regulating the timing and coordination of photosynthesis, and in turn photosynthesis and photosynthetic products which are controlled by the circadian clock feedback to affect the circadian oscillator that generates rhythms. However, little is known about the mechanism(s) by which this feedback occurs. One group of likely candidates for signal transduction to the circadian clock are the PHYTOCHROME INTERACTING FACTOR (PIF) family of transcription factors which have been shown to be involved in numerous signaling pathways in Arabidopsis. Yet despite evidence that some PIF genes are under circadian control and bind promoter motifs present in circadian genes, until now PIFs have not been shown to affect the circadian system. Using a range of techniques, we have examined how circadian rhythms are affected in higher order pif mutants and the mechanisms by which PIFs regulate signaling to the circadian clock. We show that PIFs mediate metabolic signals to the circadian oscillator and that sucrose directly affects PIF binding to the promoters of key circadian oscillator genes in vivo that may entrain the oscillator. Our results provide a basis for understanding the mechanism for metabolic signaling to the circadian system in Arabidopsis.
Collapse
Affiliation(s)
- Ekaterina Shor
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem, 91904, Israel
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Shlomit Kangisser
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem, 91904, Israel
| | - Rachel Green
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem, 91904, Israel
- Corresponding authors: Rachel Green, Department of Plant and Environmental Sciences, Hebrew University, Jerusalem, Israel, Tel: + 972 6585391, Fax: +972 6584425, . Enamul Huq, University of Texas at Austin, Biological Laboratories 404/A6700, 205 W. 24 St., Austin, TX 78712. Tel: 512-471-9848, Fax: 512-232-3402,
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, U.S.A
- Corresponding authors: Rachel Green, Department of Plant and Environmental Sciences, Hebrew University, Jerusalem, Israel, Tel: + 972 6585391, Fax: +972 6584425, . Enamul Huq, University of Texas at Austin, Biological Laboratories 404/A6700, 205 W. 24 St., Austin, TX 78712. Tel: 512-471-9848, Fax: 512-232-3402,
| |
Collapse
|
47
|
Dakhiya Y, Hussien D, Fridman E, Kiflawi M, Green R. Correlations between Circadian Rhythms and Growth in Challenging Environments. PLANT PHYSIOLOGY 2017; 173:1724-1734. [PMID: 28153924 PMCID: PMC5338651 DOI: 10.1104/pp.17.00057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 05/25/2023]
Abstract
In plants, the circadian system controls a plethora of processes, many with agronomic importance, such as photosynthesis, photoprotection, stomatal opening, and photoperiodic development, as well as molecular processes, such as gene expression. It has been suggested that modifying circadian rhythms may be a means to manipulate crops to develop improved plants for agriculture. However, there is very little information on how the clock influences the performance of crop plants. We used a noninvasive, high-throughput technique, based on prompt chlorophyll fluorescence, to measure circadian rhythms and demonstrated that the technique works in a range of plants. Using fluorescence, we analyzed circadian rhythms in populations of wild barley (Hordeum vulgare ssp. spontaneum) from widely different ecogeographical locations in the Southern Levant part of the Fertile Crescent, an area with a high proportion of the total genetic variation of wild barley. Our results show that there is variability for circadian traits in the wild barley lines. We observed that circadian period lengths were correlated with temperature and aspect at the sites of origin of the plants, while the amplitudes of the rhythms were correlated with soil composition. Thus, different environmental parameters may exert selection on circadian rhythms.
Collapse
Affiliation(s)
- Yuri Dakhiya
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Eyal Fridman
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Moshe Kiflawi
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Rachel Green
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.);
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| |
Collapse
|
48
|
Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol 2016; 23:1061-1069. [PMID: 27922614 DOI: 10.1038/nsmb.3327] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Circadian clocks are endogenous timekeeping networks that allow organisms to align their physiology with their changing environment and to perform biological processes at the most relevant times of the day and year. Initial feedback-loop models of the oscillator have been enriched by emerging evidence highlighting the increasing variety of factors and mechanisms that contribute to the generation of rhythms. In this Review, we consider the two major input pathways that connect the circadian clock of the model plant Arabidopsis thaliana to its environment and discuss recent advances in understanding of how transcriptional, post-translational and post-transcriptional mechanisms contribute to clock function.
Collapse
|
49
|
Sanchez SE, Kay SA. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a027748. [PMID: 27663772 PMCID: PMC5131769 DOI: 10.1101/cshperspect.a027748] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| | - Steve A Kay
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| |
Collapse
|
50
|
Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S, Lee HC, Obermüller DM, Kahles A, Behr J, Sinz FH, Rätsch G, Wachter A. Alternative Splicing Substantially Diversifies the Transcriptome during Early Photomorphogenesis and Correlates with the Energy Availability in Arabidopsis. THE PLANT CELL 2016; 28:2715-2734. [PMID: 27803310 PMCID: PMC5155347 DOI: 10.1105/tpc.16.00508] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Abstract
Plants use light as source of energy and information to detect diurnal rhythms and seasonal changes. Sensing changing light conditions is critical to adjust plant metabolism and to initiate developmental transitions. Here, we analyzed transcriptome-wide alterations in gene expression and alternative splicing (AS) of etiolated seedlings undergoing photomorphogenesis upon exposure to blue, red, or white light. Our analysis revealed massive transcriptome reprogramming as reflected by differential expression of ∼20% of all genes and changes in several hundred AS events. For more than 60% of all regulated AS events, light promoted the production of a presumably protein-coding variant at the expense of an mRNA with nonsense-mediated decay-triggering features. Accordingly, AS of the putative splicing factor REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 BACKGROUND1, previously identified as a red light signaling component, was shifted to the functional variant under light. Downstream analyses of candidate AS events pointed at a role of photoreceptor signaling only in monochromatic but not in white light. Furthermore, we demonstrated similar AS changes upon light exposure and exogenous sugar supply, with a critical involvement of kinase signaling. We propose that AS is an integration point of signaling pathways that sense and transmit information regarding the energy availability in plants.
Collapse
Affiliation(s)
- Lisa Hartmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Drewe-Boß
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Theresa Wießner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Sascha Geue
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Dominik M Obermüller
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - André Kahles
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Jonas Behr
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Fabian H Sinz
- Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Gunnar Rätsch
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Computer Science, ETH Zürich, 8006 Zürich, Switzerland
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|