1
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
2
|
Do BH, Nguyen NH. H2A.Z removal mediates the activation of genes accounting for cell elongation under light and temperature stress. PLANT CELL REPORTS 2024; 43:286. [PMID: 39562374 DOI: 10.1007/s00299-024-03366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
KEY MESSAGE The histone variant H2A.Z is crucial for the expression of genes involved in cell elongation under elevated temperatures and shade. Its removal facilitates the activation of these genes, particularly through the activities of PHYTOCHROME INTERACTING FACTORs (PIFs) and the SWR1-related INOSITOL REQUIRING 80 (INO80) complex. Arabidopsis seedlings exhibit rapid elongation of hypocotyls and cotyledon petioles in response to environmental stresses, namely elevated temperatures and shade. These phenotypic alterations are regulated by various phytohormones, notably auxin. Under these stress conditions, auxin biosynthesis is swiftly induced in the cotyledons and transported to the hypocotyls, where it stimulates cell elongation. The histone variant H2A.Z plays a pivotal role in this regulatory mechanism. H2A.Z affects the transcription of numerous genes, particularly those activated by the mentioned environmental stresses. Recent studies highlighted that the eviction of H2A.Z from gene bodies is crucial for the activation of genes, especially auxin biosynthetic and responsive genes, under conditions of elevated temperature and shade. Additionally, experimental evidence suggests that PHYTOCHROME INTERACTING FACTORs (PIFs) can recruit the SWR1-related INOSITOL REQUIRING 80 (INO80) complex to remove H2A.Z from targeted loci, thereby activating gene transcription in response to these environmental stresses. This review provides a comprehensive overview of the regulatory role of H2A.Z, emphasizing how its eviction from gene loci is instrumental in the activation of stress-responsive genes under elevated temperature and shade conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Mishra S, Levengood H, Fan J, Zhang C. Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:3144. [PMID: 39599353 PMCID: PMC11597474 DOI: 10.3390/plants13223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment.
Collapse
Affiliation(s)
| | | | | | - Cankui Zhang
- Department of Agronomy and Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; (S.M.); (H.L.); (J.F.)
| |
Collapse
|
4
|
Miao R, Zhang Y, Liu X, Yuan Y, Zang W, Li Z, Yan X, Pang Q, Zhang A. Histone variant H2A.Z is required for plant salt response by regulating gene transcription. PLANT, CELL & ENVIRONMENT 2024; 47:2693-2709. [PMID: 38576334 DOI: 10.1111/pce.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
As a well-conserved histone variant, H2A.Z epigenetically regulates plant growth and development as well as the interaction with environmental factors. However, the role of H2A.Z in response to salt stress remains unclear, and whether nucleosomal H2A.Z occupancy work on the gene responsiveness upon salinity is obscure. Here, we elucidate the involvement of H2A.Z in salt response by analysing H2A.Z disorder plants with impaired or overloaded H2A.Z deposition. The salt tolerance is dramatically accompanied by H2A.Z deficiency and reacquired in H2A.Z OE lines. H2A.Z disorder changes the expression profiles of large-scale of salt responsive genes, announcing that H2A.Z is required for plant salt response. Genome-wide H2A.Z mapping shows that H2A.Z level is induced by salt condition across promoter, transcriptional start site (TSS) and transcription ending sites (-1 kb to +1 kb), the peaks preferentially enrich at promoter regions near TSS. We further show that H2A.Z deposition within TSS provides a direct role on transcriptional control, which has both repressive and activating effects, while it is found generally H2A.Z enrichment negatively correlate with gene expression level response to salt stress. This study shed light on the H2A.Z function in salt tolerance, highlighting the complex regulatory mechanisms of H2A.Z on transcriptional activity for yielding appropriate responses to particularly environmental stress.
Collapse
Affiliation(s)
- Rongqing Miao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xinxin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Zang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhiqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Saldierna Guzmán JP, Zander M, Willige BC. Chromatin Immunoprecipitation to Investigate H2A.Z Dynamics in Response to Environmental Changes. Methods Mol Biol 2024; 2795:169-182. [PMID: 38594538 DOI: 10.1007/978-1-0716-3814-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
DNA methylation and posttranslational modifications of histones instruct gene expression in eukaryotes. Besides canonical histones, histone variants also play a critical role in transcriptional regulation. One of the best studied histone variants in plants is H2A.Z whose removal from gene bodies correlates with increased transcriptional activity. The eviction of H2A.Z is regulated by environmental cues such as increased ambient temperatures, and current models suggest that H2A.Z functions as a transcriptional buffer preventing environmentally responsive genes from undesired activation. To monitor temperature-dependent H2A.Z dynamics, chromatin immunoprecipitation (ChIP) of H2A.Z-occupied DNA can be performed. The following protocol describes a quick and easy ChIP approach to study in vivo H2A.Z occupancy.
Collapse
Affiliation(s)
- J Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mark Zander
- Waksman Institute of Microbiology, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Björn C Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:585. [PMID: 37993808 PMCID: PMC10664615 DOI: 10.1186/s12870-023-04596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. RESULTS H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. CONCLUSIONS Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Present Address: Genomics and Child Health, Queen Mary University of London, London, UK.
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Present Address: DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
7
|
Wang Y, Wang F, Lu H, Lin R, Liu J, Liu Y, Xu J, Wu Y, Wang Z, Zhou M, Mo X, Wu Z, Shou H, Zheng S, Mao C. Rice chromatin protein OsHMGB1 is involved in phosphate homeostasis and plant growth by affecting chromatin accessibility. THE NEW PHYTOLOGIST 2023; 240:727-743. [PMID: 37553956 DOI: 10.1111/nph.19189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaming Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Yazhou District, Sanya, Hainan, 572024, China
| |
Collapse
|
8
|
Zhu J, Cao X, Deng X. Epigenetic and transcription factors synergistically promote the high temperature response in plants. Trends Biochem Sci 2023; 48:788-800. [PMID: 37393166 DOI: 10.1016/j.tibs.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.
Collapse
Affiliation(s)
- Jiaping Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Do BH, Hiep NT, Lao TD, Nguyen NH. Loss-of-Function Mutation of ACTIN-RELATED PROTEIN 6 (ARP6) Impairs Root Growth in Response to Salinity Stress. Mol Biotechnol 2023; 65:1414-1420. [PMID: 36627550 DOI: 10.1007/s12033-023-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
H2A.Z-containing nucleosomes have been found to function in various developmental programs in Arabidopsis (e.g., floral transition, warm ambient temperature, and drought stress responses). The SWI2/SNF2-Related 1 Chromatin Remodeling (SWR1) complex is known to control the deposition of H2A.Z, and it has been unraveled that ACTIN-RELATED PROTEIN 6 (ARP6) is one component of this SWR1 complex. Previous studies showed that the arp6 mutant exhibited some distinguished phenotypes such as early flowering, leaf serration, elongated hypocotyl, and reduced seed germination rate in response to osmotic stress. In this study, we aimed to investigate the changes of arp6 mutant when the plants were grown in salt stress condition. The phenotypic observation showed that the arp6 mutant was more sensitive to salt stress than the wild type. Upon salt stress condition, this mutant exhibited attenuated root phenotypes such as shorter primary root length and fewer lateral root numbers. The transcript levels of stress-responsive genes, ABA INSENSITIVE 1 (ABI1) and ABI2, were found to be impaired in the arp6 mutant in comparison with wild-type plants in response to salt stress. In addition, a meta-analysis of published data indicated a number of genes involved in auxin response were induced in arp6 mutant grown in non-stress condition. These imply that the loss of H2A.Z balance (in arp6 mutant) may lead to change stress and auxin responses resulting in alternative root morphogenesis upon both normal and salinity stress conditions.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thuan Duc Lao
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh, Vietnam.
| |
Collapse
|
10
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. RESEARCH SQUARE 2023:rs.3.rs-2974671. [PMID: 37333181 PMCID: PMC10275051 DOI: 10.21203/rs.3.rs-2974671/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. Results H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant seeds. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. Conclusions Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Alternatively, H2A.X may be involved in recruiting methyltransferases to those sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University
| |
Collapse
|
11
|
Yin C, Sun A, Zhou Y, Liu K, Wang P, Ye W, Fang Y. The dynamics of Arabidopsis H2A.Z on SMALL AUXIN UP RNAs regulates abscisic acid-auxin signaling crosstalk. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad131. [PMID: 37022978 DOI: 10.1093/jxb/erad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stresses, plant hormone ABA activates stress responses and restricts plant growth. However, the epigenetic regulation of the ABA signaling and ABA-auxin crosstalk are not well known. Here we report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has altered ABA signaling and stress performances. RNA-sequencing data showed that a majority of stress related genes are activated in h2a.z-kd. In addition, we revealed that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), which is involved in ABA-repressed SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhou
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjing Ye
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Radjacommare R, Lin SY, Usharani R, Lin WD, Jauh GY, Schmidt W, Fu H. The Arabidopsis Deubiquitylase OTU5 Suppresses Flowering by Histone Modification-Mediated Activation of the Major Flowering Repressors FLC, MAF4, and MAF5. Int J Mol Sci 2023; 24:ijms24076176. [PMID: 37047144 PMCID: PMC10093928 DOI: 10.3390/ijms24076176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.
Collapse
|
13
|
Liu Y, Wang J, Liu B, Xu ZY. Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2252-2274. [PMID: 36149776 DOI: 10.1111/jipb.13368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
14
|
Zhang Y, Wang LF, Han SY, Ren F, Liu WC. Sorting Nexin1 negatively modulates phosphate uptake by facilitating Phosphate Transporter1;1 degradation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:72-84. [PMID: 35436372 DOI: 10.1111/tpj.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
High-affinity phosphate (Pi) transporters (PHTs) PHT1;1 and PHT1;4 are necessary for plant root Pi uptake especially under Pi-deficient conditions, but how their protein stability is modulated remains elusive. Here, we identified a Ttransfer DNA insertion mutant of Sorting Nexin1 (SNX1), which had more Pi content and less anthocyanin accumulation than the wild type under deficient Pi. By contrast, the snx1-2 mutant displayed higher sensitivity to exogenous arsenate in terms of seed germination and root elongation, revealing higher Pi uptake rates. Further study showed that SNX1 could co-localize and interact with PHT1;1 and PHT1;4 in vesicles and at the plasma membrane. Genetic analysis showed that increased Pi content in the snx1-2 mutant under low Pi conditions could be extensively compromised by mutating PHT1;1 in the double mutant snx1-2 pht1;1, revealing that SNX1 is epistatic to PHT1;1. In addition, SNX1 negatively controls PHT1;1 protein stability; therefore, PHT1;1 protein abundance in the plasma membrane was increased in the snx1-2 mutant compared with the wild type under either sufficient or deficient Pi. Together, our study (i) identifies SNX1 as a key modulator of the plant response to low Pi and (ii) unravels its role in the modulation of PHT1;1 protein stability, PHT1;1 accumulation at the plasma membrane, and root Pi uptake.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shu-Yue Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
15
|
Zhang Y, Li TT, Wang LF, Guo JX, Lu KK, Song RF, Zuo JX, Chen HH, Liu WC. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:269-281. [PMID: 35506310 DOI: 10.1111/tpj.15791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
16
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
17
|
Gladman N, Hufnagel B, Regulski M, Liu Z, Wang X, Chougule K, Kochian L, Magalhães J, Ware D. Sorghum root epigenetic landscape during limiting phosphorus conditions. PLANT DIRECT 2022; 6:e393. [PMID: 35600998 PMCID: PMC9107021 DOI: 10.1002/pld3.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Efficient acquisition and use of available phosphorus from the soil is crucial for plant growth, development, and yield. With an ever-increasing acreage of croplands with suboptimal available soil phosphorus, genetic improvement of sorghum germplasm for enhanced phosphorus acquisition from soil is crucial to increasing agricultural output and reducing inputs, while confronted with a growing world population and uncertain climate. Sorghum bicolor is a globally important commodity for food, fodder, and forage. Known for robust tolerance to heat, drought, and other abiotic stresses, its capacity for optimal phosphorus use efficiency (PUE) is still being investigated for optimized root system architectures (RSA). Whilst a few RSA-influencing genes have been identified in sorghum and other grasses, the epigenetic impact on expression and tissue-specific activation of candidate PUE genes remains elusive. Here, we present transcriptomic, epigenetic, and regulatory network profiling of RSA modulation in the BTx623 sorghum background in response to limiting phosphorus (LP) conditions. We show that during LP, sorghum RSA is remodeled to increase root length and surface area, likely enhancing its ability to acquire P. Global DNA 5-methylcytosine and H3K4 and H3K27 trimethylation levels decrease in response to LP, while H3K4me3 peaks and DNA hypomethylated regions contain recognition motifs of numerous developmental and nutrient responsive transcription factors that display disparate expression patterns between different root tissues (primary root apex, elongation zone, and lateral root apex).
Collapse
Affiliation(s)
| | - Barbara Hufnagel
- Centre National de la Recherche ScientifiqueMontpellierLanguedoc‐RoussillonFrance
| | | | - Zhigang Liu
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonCanada
| | - Xiaofei Wang
- Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | | | - Leon Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonCanada
| | | | - Doreen Ware
- Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
- U.S. Department of Agriculture‐Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and HealthCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
18
|
Satheesh V, Tahir A, Li J, Lei M. Plant phosphate nutrition: sensing the stress. STRESS BIOLOGY 2022; 2:16. [PMID: 37676547 PMCID: PMC10441931 DOI: 10.1007/s44154-022-00039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 09/08/2023]
Abstract
Phosphorus (P) is obtained by plants as phosphate (Pi) from the soil and low Pi levels affects plant growth and development. Adaptation to low Pi condition entails sensing internal and external Pi levels and translating those signals to molecular and morphophysiological changes in the plant. In this review, we present findings related to local and systemin Pi sensing with focus the molecular mechanisms behind root system architectural changes and the impact of hormones and epigenetic mechanisms affecting those changes. We also present some of the recent advances in the Pi sensing and signaling mechanisms focusing on inositol pyrophosphate InsP8 and its interaction with SPX domain proteins to regulate the activity of the central regulator of the Pi starvation response, PHR.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602 China
| |
Collapse
|
19
|
Hibbert L, Taylor G. Improving phosphate use efficiency in the aquatic crop watercress (Nasturtium officinale). HORTICULTURE RESEARCH 2022; 9:uhac011. [PMID: 35147194 PMCID: PMC8969064 DOI: 10.1093/hr/uhac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Watercress is a nutrient-dense leafy green crop, traditionally grown in aquatic outdoor systems and increasingly seen as well-suited for indoor hydroponic systems. However, there is concern that this crop has a detrimental impact on the environment through direct phosphate additions causing environmental pollution. Phosphate-based fertilisers are supplied to enhanced crop yield, but their use may contribute to eutrophication of waterways downstream of traditional watercress farms. One option is to develop a more phosphate use efficient (PUE) crop. This review identifies the key traits for this aquatic crop (the ideotype), for future selection, marker development and breeding. Traits identified as important for PUE are (i) increased root surface area through prolific root branching and adventitious root formation, (ii) aerenchyma formation and root hair growth. Functional genomic traits for improved PUE are (iii) efficacious phosphate remobilisation and scavenging strategies and (iv) the use of alternative metabolic pathways. Key genomic targets for this aquatic crop are identified as: PHT phosphate transporter genes, global transcriptional regulators such as those of the SPX family and genes involved in galactolipid and sulfolipid biosynthesis such as MGD2/3, PECP1, PSR2, PLDζ1/2 and SQD2. Breeding for enhanced PUE in watercress will be accelerated by improved molecular genetic resources such as a full reference genome sequence that is currently in development.
Collapse
Affiliation(s)
- Lauren Hibbert
- School of Biological Sciences, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
- Department of Plant Sciences, UC Davis, Davis, CA, 95616, USA
| | - Gail Taylor
- School of Biological Sciences, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
- Department of Plant Sciences, UC Davis, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
21
|
Kumar S, Seem K, Kumar S, Vinod KK, Chinnusamy V, Mohapatra T. Pup1 QTL Regulates Gene Expression Through Epigenetic Modification of DNA Under Phosphate Starvation Stress in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:871890. [PMID: 35712593 PMCID: PMC9195100 DOI: 10.3389/fpls.2022.871890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Cytosine methylation, epigenetic DNA modification, is well known to regulate gene expression. Among the epigenetic modifications, 5-methylcytosine (5-mC) has been one of the extensively studied epigenetic changes responsible for regulating gene expression in animals and plants. Though a dramatic change in 5-mC content is observed at the genome level, the variation in gene expression is generally less than that it is expected. Only less is understood about the significance of 5-mC in gene regulation under P-starvation stress in plants. Using whole-genome bisulfite sequencing of a pair of rice [Pusa-44 and its near-isogenic line (NIL)-23 harboring Pup1 QTL] genotypes, we could decipher the role of Pup1 on DNA (de)methylation-mediated regulation of gene expression under P-starvation stress. We observed 13-15% of total cytosines to be methylated in the rice genome, which increased significantly under the stress. The number of differentially methylated regions (DMRs) for hypomethylation (6,068) was higher than those (5,279) for hypermethylated DMRs under the stress, particularly in root of NIL-23. Hypomethylation in CHH context caused upregulated expression of 489 genes in shoot and 382 genes in root of NIL-23 under the stress, wherein 387 genes in shoot and 240 genes in root were upregulated exclusively in NIL-23. Many of the genes for DNA methylation, a few for DNA demethylation, and RNA-directed DNA methylation were upregulated in root of NIL-23 under the stress. Methylation or demethylation of DNA in genic regions differentially affected gene expression. Correlation analysis for the distribution of DMRs and gene expression indicated the regulation of gene mainly through (de)methylation of promoter. Many of the P-responsive genes were hypomethylated or upregulated in roots of NIL-23 under the stress. Hypermethylation of gene body in CG, CHG, and CHH contexts caused up- or downregulated expression of transcription factors (TFs), P transporters, phosphoesterases, retrotransposon proteins, and other proteins. Our integrated transcriptome and methylome analyses revealed an important role of the Pup1 QTL in epigenetic regulation of the genes for transporters, TFs, phosphatases, carbohydrate metabolism, hormone-signaling, and chromatin architecture or epigenetic modifications in P-starvation tolerance. This provides insights into the molecular function of Pup1 in modulating gene expression through DNA (de)methylation, which might be useful in improving P-use efficiency or productivity of rice in P-deficient soil.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar ; ; orcid.org/0000-0002-7127-3079
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
22
|
Vélez-Bermúdez IC, Schmidt W. Chromatin enrichment for proteomics in plants (ChEP-P) implicates the histone reader ALFIN-LIKE 6 in jasmonate signalling. BMC Genomics 2021; 22:845. [PMID: 34809577 PMCID: PMC8609783 DOI: 10.1186/s12864-021-08160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Background Covalent modifications of core histones govern downstream DNA-templated processes such as transcription by altering chromatin structure and function. Previously, we reported that the plant homeodomain protein ALFIN-LIKE 6 (AL6), a bona fide histone reader that preferentially binds trimethylated lysin 4 on histone 3 (H3K4me3), is critical for recalibration of cellular phosphate (Pi) homeostasis and root hair elongation under Pi-deficient conditions. Results Here, we demonstrate that AL6 is also involved in the response of Arabidopsis seedlings to jasmonic acid (JA) during skotomorphogenesis, possibly by modulating chromatin dynamics that affect the transcriptional regulation of JA-responsive genes. Dark-grown al6 seedlings showed a compromised reduction in hypocotyl elongation upon exogenously supplied JA, a response that was calibrated by the availability of Pi in the growth medium. A comparison of protein profiles between wild-type and al6 mutant seedlings using a quantitative Chromatin Enrichment for Proteomics (ChEP) approach, that we modified for plant tissue and designated ChEP-P (ChEP in Plants), yielded a comprehensive suite of chromatin-associated proteins and candidates that may be causative for the mutant phenotype. Conclusions Altered abundance of proteins involved in chromatin organization in al6 seedlings suggests a role of AL6 in coordinating the deposition of histone variants upon perception of internal or environmental stimuli. Our study shows that ChEP-P is well suited to gain holistic insights into chromatin-related processes in plants. Data are available via ProteomeXchange with identifier PXD026541. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08160-6.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan. .,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
23
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Xue M, Zhang H, Zhao F, Zhao T, Li H, Jiang D. The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis. MOLECULAR PLANT 2021; 14:1799-1813. [PMID: 34242850 DOI: 10.1016/j.molp.2021.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Global warming poses a major threat to plant growth and crop production. In some plants, including Arabidopsis thaliana, elevated temperatures induce a series of morphological and developmental adjustments termed thermomorphogenesis, which facilitates plant cooling under high-temperature conditions. Plant thermal response is suppressed by histone variant H2A.Z. At warm temperatures, H2A.Z is evicted from nucleosomes at thermoresponsive genes, resulting in changes in their expression. However, the mechanisms that regulate H2A.Z eviction and subsequent transcriptional changes are largely unknown. Here, we show that the INO80 chromatin remodeling complex (INO80-C) promotes thermomorphogenesis and activates the expression of thermoresponsive and auxin-related genes. INO80-C associates with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a potent regulator of thermomorphogenesis, and mediates temperature-induced H2A.Z eviction at PIF4 targets. Moreover, INO80-C directly interacts with COMPASS-like and transcription elongation factors to promote active histone modification, histone H3 lysine 4 trimethylation, and RNA polymerase II elongation, leading to the thermal induction of transcription. Notably, the transcription elongation factors SPT4 and SPT5 are required for H2A.Z eviction at PIF4 targets, suggesting the cooperation of INO80-C and transcription elongation in H2A.Z removal. Taken together, these results suggest that the (PIF4)-(INO80-C)-(COMPASS-like)-(transcription elongator) module controls plant thermal response, thereby establishing a link between H2A.Z eviction and active transcription.
Collapse
Affiliation(s)
- Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Li D, Wang H, Wang M, Li G, Chen Z, Leiser WL, Weiß TM, Lu X, Wang M, Chen S, Chen F, Yuan L, Würschum T, Liu W. Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field. Int J Mol Sci 2021; 22:9311. [PMID: 34502218 PMCID: PMC8430673 DOI: 10.3390/ijms22179311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Phosphorus (P) deficiency is an important challenge the world faces while having to increase crop yields. It is therefore necessary to select maize (Zea may L.) genotypes with high phosphorus use efficiency (PUE). Here, we extensively analyzed the biomass, grain yield, and PUE-related traits of 359 maize inbred lines grown under both low-P and normal-P conditions. A significant decrease in grain yield per plant and biomass, an increase in PUE under low-P condition, as well as significant correlations between the two treatments were observed. In a genome-wide association study, 49, 53, and 48 candidate genes were identified for eleven traits under low-P, normal-P conditions, and in low-P tolerance index (phenotype under low-P divided by phenotype under normal-P condition) datasets, respectively. Several gene ontology pathways were enriched for the genes identified under low-P condition. In addition, seven key genes related to phosphate transporter or stress response were molecularly characterized. Further analyses uncovered the favorable haplotype for several core genes, which is less prevalent in modern lines but often enriched in a specific subpopulation. Collectively, our research provides progress in the genetic dissection and molecular characterization of PUE in maize.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Haoying Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Meng Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Guoliang Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Zhe Chen
- Key Laboratory of Plant-Soil Interaction, the Ministry of Education, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Z.C.); (F.C.); (L.Y.)
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (T.M.W.)
| | - Thea Mi Weiß
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany; (W.L.L.); (T.M.W.)
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Xiaohuan Lu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Wang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Shaojiang Chen
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| | - Fanjun Chen
- Key Laboratory of Plant-Soil Interaction, the Ministry of Education, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Z.C.); (F.C.); (L.Y.)
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, the Ministry of Education, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Z.C.); (F.C.); (L.Y.)
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany;
| | - Wenxin Liu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (D.L.); (H.W.); (M.W.); (G.L.); (X.L.); (M.W.); (S.C.)
| |
Collapse
|
26
|
Barragán-Rosillo AC, Peralta-Alvarez CA, Ojeda-Rivera JO, Arzate-Mejía RG, Recillas-Targa F, Herrera-Estrella L. Genome accessibility dynamics in response to phosphate limitation is controlled by the PHR1 family of transcription factors in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:e2107558118. [PMID: 34385324 PMCID: PMC8379931 DOI: 10.1073/pnas.2107558118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.
Collapse
Affiliation(s)
- Alfonso Carlos Barragán-Rosillo
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79430
| | - Carlos Alberto Peralta-Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Jonathan Odilón Ojeda-Rivera
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México
| | - Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Intituto Politecnico Nacional, 36500 Irapuato, Guanajuato, México;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79430
| |
Collapse
|
27
|
Fan X, Liu L, Qian K, Chen J, Zhang Y, Xie P, Xu M, Hu Z, Yan W, Wu Y, Xu G, Fan X. Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice. BMC PLANT BIOLOGY 2021; 21:211. [PMID: 33975546 PMCID: PMC8111971 DOI: 10.1186/s12870-021-02953-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nitrogen (N) is an important nutrient for plant growth, development, and agricultural production. Nitrogen stress could induce epigenetic changes in plants. In our research, overexpression of the OsNAR2.1 line was used as a testing target in rice plants with high nitrogen-use efficiency to study the changes of rice methylation and growth in respond of the endogenous and external nitrogen stress. RESULTS Our results showed that external N deficiency could decrease seed N content and plant growth of the overexpression line. During the filial growth, we found that the low parent seed nitrogen (LPSN) in the overexpression line could lead to a decrease in the filial seed nitrogen content, total plant nitrogen content, yield, and OsNAR2.1 expression (28, 35, 23, and 55%, respectively) compared with high parent seed nitrogen (HPSN) in high nitrogen external supply. However, such decreases were not observed in wild type. Furthermore, methylation sequencing results showed that LPSN caused massive gene methylation changes, which enriched in over 20 GO pathways in the filial overexpression line, and the expression of OsNAR2.1 in LPSN filial overexpression plants was significantly reduced compared to HPSN filial plants in high external N, which was not shown in wild type. CONCLUSIONS We suggest that the parent seed nitrogen content decreased induced DNA methylation changes at the epigenetic level and significantly decreased the expression of OsNAR2.1, resulting in a heritable phenotype of N deficiency over two generations of the overexpression line.
Collapse
Affiliation(s)
- Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laihua Liu
- Vazyme Biotech Co Ltd, Nanjing, 210033, China
| | - Kaiyun Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuyue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Man Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - WenKai Yan
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Wu
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Li A, Hu B, Chu C. Epigenetic regulation of nitrogen and phosphorus responses in plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153363. [PMID: 33508741 DOI: 10.1016/j.jplph.2021.153363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two of the most important nutrients for plant growth and crop yields. In the last decade, plenty of studies have revealed the genetic factors and their regulatory networks which are involved in N and/or P uptake and utilization in different model plant species, especially in Arabidopsis and rice. However, increasing evidences have shown that epigenetic regulation also plays a vital role in modulating plant responses to nutrient availability. In this review, we make a brief summary of epigenetic regulation including histone modifications, DNA methylation, and other chromatin structure alterations in tuning N and P responses. We also give an outlook for future research directions to comprehensively dissect the involvement of epigenetic regulation in modulating nutrient response in plants.
Collapse
Affiliation(s)
- Aifu Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, Battu AK, Nicora CD, Winkler TE, Reno LR, Fakra SC, Antipova O, Parkinson DY, Hall JR, Doty SL. Endophyte-Promoted Phosphorus Solubilization in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:567918. [PMID: 33193494 PMCID: PMC7609660 DOI: 10.3389/fpls.2020.567918] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/25/2020] [Indexed: 05/24/2023]
Abstract
Phosphorus is one of the essential nutrients for plant growth, but it may be relatively unavailable to plants because of its chemistry. In soil, the majority of phosphorus is present in the form of a phosphate, usually as metal complexes making it bound to minerals or organic matter. Therefore, inorganic phosphate solubilization is an important process of plant growth promotion by plant associated bacteria and fungi. Non-nodulating plant species have been shown to thrive in low-nutrient environments, in some instances by relying on plant associated microorganisms called endophytes. These microorganisms live within the plant and help supply nutrients for the plant. Despite their potential enormous environmental importance, there are a limited number of studies looking at the direct molecular impact of phosphate solubilizing endophytic bacteria on the host plant. In this work, we studied the impact of two endophyte strains of wild poplar (Populus trichocarpa) that solubilize phosphate. Using a combination of x-ray imaging, spectroscopy methods, and proteomics, we report direct evidence of endophyte-promoted phosphorus uptake in poplar. We found that the solubilized phosphate may react and become insoluble once inside plant tissue, suggesting that endophytes may aid in the re-release of phosphate. Using synchrotron x-ray fluorescence spectromicroscopy, we visualized the nutrient phosphorus inside poplar roots inoculated by the selected endophytes and found the phosphorus in both forms of organic and inorganic phosphates inside the root. Tomography-based root imaging revealed a markedly different root biomass and root architecture for poplar samples inoculated with the phosphate solubilizing bacteria strains. Proteomics characterization on poplar roots coupled with protein network analysis revealed novel proteins and metabolic pathways with possible involvement in endophyte enriched phosphorus uptake. These findings suggest an important role of endophytes for phosphorus acquisition and provide a deeper understanding of the critical symbiotic associations between poplar and the endophytic bacteria.
Collapse
Affiliation(s)
- Tamas Varga
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Andrew W. Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Morgan E. Barnes
- Environmental Systems Graduate Group, University of California, Merced, Merced, CA, United States
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Anil K. Battu
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D. Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tanya E. Winkler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Loren R. Reno
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sirine C. Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Dilworth Y. Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jackson R. Hall
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Sharon L. Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Wang L, Qiao H. Chromatin regulation in plant hormone and plant stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:164-170. [PMID: 33142261 PMCID: PMC8237520 DOI: 10.1016/j.pbi.2020.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
The gene expression is tightly regulated temporally and spatially to ensure the plant and animal proper development, function, growth, and survival under different environmental conditions. Chromatin regulation plays a central role in the gene expression by providing transcription factors and the transcription machinery with dynamic access to an otherwise tightly packaged genome. In this review, we will summarize recent progress in understanding the roles of chromatin regulation in the gene expression, and their contribution to the plant hormone and stress responses. We highlight the most recent publications within this topic and underline the roles of chromatin regulation in gene expression.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
31
|
NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nat Commun 2020; 11:2887. [PMID: 32513971 PMCID: PMC7280298 DOI: 10.1038/s41467-020-16691-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z. The histone variant H2A.Z is deposited by the SWR1 complex to replace H2A in Arabidopsis, but the mechanism of H2A.Z removal is unclear. Here, the authors show that NRP proteins can regulate gene expression by counteracting SWR1 and prevent excessive accumulation of H2A.Z.
Collapse
|
32
|
Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:563-580. [PMID: 31872527 DOI: 10.1111/jipb.12901] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/20/2020] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress-responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross-talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
33
|
Foroozani M, Zahraeifard S, Oh DH, Wang G, Dassanayake M, Smith AP. Low-Phosphate Chromatin Dynamics Predict a Cell Wall Remodeling Network in Rice Shoots. PLANT PHYSIOLOGY 2020; 182:1494-1509. [PMID: 31857425 PMCID: PMC7054884 DOI: 10.1104/pp.19.01153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient vital to fundamental metabolic processes. Plant-available P is low in most soils, making it a frequent limiter of growth. Declining P reserves for fertilizer production exacerbates this agricultural challenge. Plants modulate complex responses to fluctuating P levels via global transcriptional regulatory networks. Although chromatin structure plays a substantial role in controlling gene expression, the chromatin dynamics involved in regulating P homeostasis have not been determined. Here we define distinct chromatin states across the rice (Oryza sativa) genome by integrating multiple chromatin marks, including the H2A.Z histone variant, H3K4me3 modification, and nucleosome positioning. In response to P starvation, 40% of all protein-coding genes exhibit a transition from one chromatin state to another at their transcription start site. Several of these transitions are enriched in subsets of genes differentially expressed under P deficiency. The most prominent subset supports the presence of a coordinated signaling network that targets cell wall structure and is regulated in part via a decrease of H3K4me3 at transcription start sites. The P starvation-induced chromatin dynamics and correlated genes identified here will aid in enhancing P use efficiency in crop plants, benefitting global agriculture.
Collapse
Affiliation(s)
- Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Sara Zahraeifard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
34
|
Xu JM, Wang ZQ, Wang JY, Li PF, Jin JF, Chen WW, Fan W, Kochian LV, Zheng SJ, Yang JL. Low phosphate represses histone deacetylase complex1 to regulate root system architecture remodeling in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1732-1745. [PMID: 31608986 DOI: 10.1111/nph.16264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/04/2019] [Indexed: 05/21/2023]
Abstract
The mechanisms involved in the regulation of gene expression in response to phosphate (Pi) deficiency have been extensively studied, but their chromatin-level regulation remains poorly understood. We examined the role of histone acetylation in response to Pi deficiency by using the histone deacetylase complex1 (hdc1) mutant. Genes involved in root system architecture (RSA) remodeling were analyzed by quantitative real-time polymerase chain reaction (qPCR) and chromatin immunoprecipitation qPCR. We demonstrate that histone H3 acetylation increased under Pi deficiency, and the hdc1 mutant was hypersensitive to Pi deficiency, with primary root growth inhibition and increases in root hair number. Concomitantly, Pi deficiency repressed HDC1 protein abundances. Under Pi deficiency, hdc1 accumulated higher concentrations of Fe3+ in the root tips and had higher expression of genes involved in RSA remodeling, such as ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1), LOW PHOSPHATE ROOT1 (LPR1), and LPR2 compared with wild-type plants. Furthermore, Pi deficiency enriched the histone H3 acetylation of ALMT1 and LPR1. Finally, genetic evidence showed that LPR1/2 was epistatic to HDC1 in regulating RSA remodeling. Our results suggest a chromatin-level control of Pi starvation responses in which HDC1-mediated histone H3 deacetylation represses the transcriptional activation of genes involved in RSA remodeling in Arabidopsis.
Collapse
Affiliation(s)
- Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, 250100, China
| | - Zhan Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Fei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
35
|
Abstract
Uptake, assimilation, and recycling of nutrients are essential for optimal plant growth and development. A large number of studies have contributed significantly to highlight the major features that shape an efficient utilization of nutrients in plants, especially at the transcriptional level. However, only a few examples have explored the epigenetic mechanisms that are intrinsically associated to the transcriptional reprogramming events in response to nutritional fluctuations. In this review, we gather the chromatin-based mechanisms that have been described in response to variations of nutrients availability. At this time of genome and epigenome editing, such mechanisms could potentially represent new targets for crop improvement.
Collapse
Affiliation(s)
- David Séré
- BPMP, CNRS, INRA, SupAgro, University of Montpellier, Montpellier, France
| | - Antoine Martin
- BPMP, CNRS, INRA, SupAgro, University of Montpellier, Montpellier, France
- CONTACT Antoine Martin BPMP, CNRS, INRA, SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Wang T, Xing J, Liu Z, Zheng M, Yao Y, Hu Z, Peng H, Xin M, Zhou D, Ni Z. Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6337-6348. [PMID: 31401648 PMCID: PMC6859718 DOI: 10.1093/jxb/erz359] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 05/04/2023]
Abstract
Phosphate availability is becoming a limiting environmental factor that inhibits plant growth and development. Here, we demonstrated that mutation of the histone acetyltransferase GCN5 impaired phosphate starvation responses (PSRs) in Arabidopsis. Transcriptome analysis revealed that 888 GCN5-regulated candidate genes were potentially involved in responding to phosphate starvation. ChIP assay indicated that four genes, including a long non-coding RNA (lncRNA) At4, are direct targets of GCN5 in PSR regulation. In addition, GCN5-mediated H3K9/14 acetylation of At4 determined dynamic At4 expression. Consistent with the function of At4 in phosphate distribution, mutation of GCN5 impaired phosphate accumulation between shoots and roots under phosphate deficiency condition, whereas constitutive expression of At4 in gcn5 mutants partially restored phosphate relocation. Further evidence proved that GCN5 regulation of At4 influenced the miRNA miR399 and its target PHO2 mRNA level. Taken together, we propose that GCN5-mediated histone acetylation plays a crucial role in PSR regulation via the At4-miR399-PHO2 pathway and provides a new epigenetic mechanism for the regulation of lncRNA in plants.
Collapse
Affiliation(s)
- Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Jiewen Xing
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhenshan Liu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mei Zheng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Yingyin Yao
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhaorong Hu
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Huiru Peng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mingming Xin
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Daoxiu Zhou
- Institut of Plant Science Paris-Saclay, Université Paris sud, Orsay, France
| | - Zhongfu Ni
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Key Laboratory of Crop Genetic Improvement (Beijing Municipality), China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
37
|
Roles of the INO80 and SWR1 Chromatin Remodeling Complexes in Plants. Int J Mol Sci 2019; 20:ijms20184591. [PMID: 31533258 PMCID: PMC6770637 DOI: 10.3390/ijms20184591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.Z into nucleosomes, which is a critical step in eukaryotic gene regulation. Although SWR1-c has been identified in plants, plant INO80-c has not been successfully isolated and characterized. In this review, we will focus on the functions of the SWR1-c and putative INO80-c (SWR1/INO80-c) multi-subunits and multifunctional complexes in Arabidopsis thaliana. We will describe the subunit compositions of the SWR1/INO80-c and the recent findings from the standpoint of each subunit and discuss their involvement in regulating development and environmental responses in Arabidopsis.
Collapse
|
38
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
39
|
Sijacic P, Holder DH, Bajic M, Deal RB. Methyl-CpG-binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z-enriched regions in the Arabidopsis genome. PLoS Genet 2019; 15:e1008326. [PMID: 31381567 PMCID: PMC6695207 DOI: 10.1371/journal.pgen.1008326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 07/22/2019] [Indexed: 12/01/2022] Open
Abstract
The SWR1 chromatin remodeling complex, which deposits the histone variant H2A.Z into nucleosomes, has been well characterized in yeast and animals, but its composition in plants has remained uncertain. We used the conserved SWR1 subunit ACTIN RELATED PROTEIN 6 (ARP6) as bait in tandem affinity purification experiments to isolate associated proteins from Arabidopsis thaliana. We identified all 11 subunits found in yeast SWR1 and the homologous mammalian SRCAP complexes, demonstrating that this complex is conserved in plants. We also identified several additional proteins not previously associated with SWR1, including Methyl-CpG-BINDING DOMAIN 9 (MBD9) and three members of the Alfin1-like protein family, all of which have been shown to bind modified histone tails. Since mbd9 mutant plants were phenotypically similar to arp6 mutants, we explored a potential role for MBD9 in H2A.Z deposition. We found that MBD9 is required for proper H2A.Z incorporation at thousands of discrete sites, which represent a subset of the genomic regions normally enriched with H2A.Z. We also discovered that MBD9 preferentially interacts with acetylated histone H4 peptides, as well as those carrying mono- or dimethylated H3 lysine 4, or dimethylated H3 arginine 2 or 8. Considering that MBD9-dependent H2A.Z sites show a distinct histone modification profile, we propose that MBD9 recognizes particular nucleosome modifications via its PHD- and Bromo-domains and thereby guides SWR1 to these sites for H2A.Z deposition. Our data establish the SWR1 complex as being conserved across eukaryotes and suggest that MBD9 may be involved in targeting the complex to specific genomic sites through nucleosomal interactions. The finding that MBD9 does not appear to be a core subunit of the Arabidopsis SWR1 complex, along with the synergistic phenotype of arp6;mbd9 double mutants, suggests that MBD9 also has important roles beyond H2A.Z deposition. The histone H2A variant, H2A.Z, is found in all known eukaryotes and plays important roles in transcriptional regulation. H2A.Z is selectively incorporated into nucleosomes within many genes by the activity of a conserved ATP-dependent chromatin remodeling complex in yeast, insects, and mammals. Whether this complex exists in the same form in plants, and how the complex is targeted to specific genomic locations have remained open questions. In this study we demonstrate that plants do indeed utilize a complex analogous to those of fungi and animals to deposit H2A.Z, and we also identify several new proteins that interact with this complex. We found that one such interactor, Methyl-CpG-BINDING DOMAIN 9 (MBD9), is required for H2A.Z incorporation at thousands of genomic sites that share a distinct histone modification profile. The histone binding properties of MBD9 suggest that it may guide H2A.Z deposition to specific sites by interacting with modified nucleosomes and with the H2A.Z deposition complex. We hypothesize that this represents a general paradigm for the targeting of H2A.Z to specific sites.
Collapse
Affiliation(s)
- Paja Sijacic
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Dylan H. Holder
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Marko Bajic
- Department of Biology, Emory University, Atlanta, GA, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA, United States of America
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
40
|
Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition. Nat Commun 2019; 10:3352. [PMID: 31350403 PMCID: PMC6659704 DOI: 10.1038/s41467-019-11291-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 11/08/2022] Open
Abstract
Deposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here, we aim to identify interacting partners of a conserved Arabidopsis SWR1 subunit ACTIN-RELATED PROTEIN 6 (ARP6). We isolate nine predicted components and identify additional interactors implicated in histone acetylation and chromatin biology. One of the interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacts with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 is required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 is preferentially bound to nucleosome-depleted regions at the 5’ ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes. The SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation, but its composition remains largely uncharacterized in plants. Here, the authors report that methyl-CpG-binding domain 9 (MBD9) is a SWR1-C interacting protein required for histone H2A.Z deposition in Arabidopsis.
Collapse
|
41
|
Riaz S, Niaz Z, Khan S, Liu Y, Sui Z. Detection, characterization and expression dynamics of histone proteins in the dinoflagellate Alexandrium pacificum during growth regulation. HARMFUL ALGAE 2019; 87:101630. [PMID: 31349883 DOI: 10.1016/j.hal.2019.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Histones are the most abundant proteins associated with eukaryotic nuclear DNA. The exception is dinoflagellates, which have histone protein expression that is mostly reported to be below detectable levels. In this study, we investigated the presence of histone proteins and their functions in the dinoflagellate, Alexandrium pacificum. Histone protein sequences were analyzed, focusing on phylogenetic analysis and histone code. Histone expression was analyzed during the cell cycle and under nutritionally enhanced conditions using quantitative-PCR and western blots. Acid-soluble proteins were subjected to mass spectrometry analysis. To our knowledge, this is the first report of immunological detection of histone proteins (H2B and H4) in any dinoflagellate species. Absolute quantification of histone transcript in activily dividing cells revealed significant transcription in cells. The stable expression of histones during the cell cycle suggested that the histone genes in A. pacificum belonged to a replication-independent class and appeared to have a limited role in DNA packaging. The conservation of numerous post-translationally modified residues of multiple histone variants and differential expression of histones under nutritionally enhanced conditions suggested their functional significance in dinoflagellates. However, we detected histone H2B protein only via mass spectrometry. Histone-like protein was identified as most abundant acid-soluble protein of the cells.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, University of Central Punjab, Lahore, Pakistan
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
42
|
Gómez-Zambrano Á, Merini W, Calonje M. The repressive role of Arabidopsis H2A.Z in transcriptional regulation depends on AtBMI1 activity. Nat Commun 2019; 10:2828. [PMID: 31249301 PMCID: PMC6597585 DOI: 10.1038/s41467-019-10773-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/31/2019] [Indexed: 11/24/2022] Open
Abstract
H2A.Z variant has emerged as a critical player in regulating plant responses to environment; however, the mechanism by which H2A.Z mediates this regulation remains unclear. In Arabidopsis, H2A.Z has been proposed to have opposite effects on transcription depending on its localization within the gene. These opposite roles have been assigned by correlating gene expression and H2A.Z enrichment analyses but without considering the impact of possible H2A.Z post-translational modifications. Here, we show that H2A.Z can be monoubiquitinated by the PRC1 components AtBMI1A/B/C. The incorporation of this modification is required for H2A.Z-mediated transcriptional repression through a mechanism that does not require PRC2 activity. Our data suggest that the dual role of H2A.Z in regulating gene expression depends on the modification that it carries, while the levels of H2A.Z within genes depend on the transcriptional activity. Arabidopsis H2A.Z plays an important role in regulating gene expression in response to stressors; however, the underlying mechanism is still puzzling. Here, the authors show that monoubiquitination of H2A.Z by AtBMI1 is required for H2A.Z-mediated transcriptional repression.
Collapse
Affiliation(s)
- Ángeles Gómez-Zambrano
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Seville), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Wiam Merini
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Seville), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC-University of Seville), Avenida Américo Vespucio 49, 41092, Seville, Spain.
| |
Collapse
|
43
|
Crevillén P, Gómez-Zambrano Á, López JA, Vázquez J, Piñeiro M, Jarillo JA. Arabidopsis YAF9 histone readers modulate flowering time through NuA4-complex-dependent H4 and H2A.Z histone acetylation at FLC chromatin. THE NEW PHYTOLOGIST 2019; 222:1893-1908. [PMID: 30742710 DOI: 10.1111/nph.15737] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/02/2019] [Indexed: 05/27/2023]
Abstract
Posttranslational histone modifications and the dynamics of histone variant H2A.Z are key mechanisms underlying the floral transition. In yeast, SWR1-C and NuA4-C mediate the deposition of H2A.Z and the acetylation of histone H4, H2A and H2A.Z, respectively. Yaf9 is a subunit shared by both chromatin-remodeling complexes. The significance of the two Arabidopsis YAF9 homologues, YAF9A and YAF9B, is unknown. To get an insight into the role of Arabidopsis YAF9 proteins in plant developmental responses, we followed physiological, genetic, genomic, epigenetic, proteomics and cell biology approaches. Our data revealed that YAF9A and YAF9B are histone H3 readers with unequally redundant functions. Double mutant yaf9a yaf9b plants display pleiotropic developmental phenotypic alterations as well as misregulation of a wide variety of genes. We demonstrated that YAF9 proteins regulate flowering time by both FLC-dependent and independent mechanisms that work in parallel with SWR1-C. Interestingly, we show that YAF9A binds FLC chromatin and that YAF9 proteins regulate FLC expression by modulating the acetylation levels of H2A.Z and H4 but not H2A.Z deposition. Our work highlights the key role exerted by YAF9 homologues in the posttranslational modification of canonical histones and variants that regulate gene expression in plants to control development.
Collapse
Affiliation(s)
- Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Ángeles Gómez-Zambrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
44
|
Wang X, Ren Y, Li J, Wang Z, Xin Z, Lin T. Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance. Biol Res 2019; 52:14. [PMID: 30894225 PMCID: PMC6427858 DOI: 10.1186/s40659-019-0222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. Methods Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. Results In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. Conclusion These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.
Collapse
Affiliation(s)
- Xinbo Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jingjing Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China. .,Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
45
|
Parida AP, Sharma A, Sharma AK. AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. J Biosci 2019; 44:14. [PMID: 30837365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA methylation is an important epigenetic modification that governs transcriptional regulation. The methylation mark is read by a special class of proteins called methyl-CpG-binding domain proteins. The role of DNA methylation has been found in X-chromosome inactivation, genomic imprinting, transposon silencing, and self-incompatibility. Recently, remodeling of global DNA methylation was demonstrated in Arabidopsis during low phosphate availability. The present study reports that AtMBD4 gene of Arabidopsis negatively regulates phosphate starvation. The T-DNA insertion mutation at the AtMBD4 locus exhibited altered root architecture as compared to wild-type plants. Using microarray hybridization and analysis, an increased transcript accumulation of 242 genes was observed in the mutant. Many of these genes were related to phosphate transporters and transcription factors, involved in phosphate starvation response. Comparison of data of atmbd4 mutant with publicly available microarray data of phosphate starvation response indicated the role of AtMBD4 protein in phosphate starvation response. Further, promoter analysis of up-regulated genes suggested that cis-regulatory elements like MBS, W-box, and B1BS are more prominent in the promoters of up-regulated genes. Upon performing a methylation-specific PCR, a decreased DNA methylation in the promoter regions of up-regulated genes was observed. The accumulation of anthocyanin and inorganic phosphate in the atmbd4 mutant was found to be higher than the wild-type plant. Altered root morphology, up-regulation of phosphate starvation-induced genes in atmbd4 mutant suggests that AtMBD4 negatively regulates the phosphate starvation response.
Collapse
|
46
|
AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. J Biosci 2019. [DOI: 10.1007/s12038-018-9843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
48
|
Klages-Mundt NL, Kumar A, Zhang Y, Kapoor P, Shen X. The Nature of Actin-Family Proteins in Chromatin-Modifying Complexes. Front Genet 2018; 9:398. [PMID: 30319687 PMCID: PMC6167448 DOI: 10.3389/fgene.2018.00398] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023] Open
Abstract
Actin is not only one of the most abundant proteins in eukaryotic cells, but also one of the most versatile. In addition to its familiar involvement in enabling contraction and establishing cellular motility and scaffolding in the cytosol, actin has well-documented roles in a variety of processes within the confines of the nucleus, such as transcriptional regulation and DNA repair. Interestingly, monomeric actin as well as actin-related proteins (Arps) are found as stoichiometric subunits of a variety of chromatin remodeling complexes and histone acetyltransferases, raising the question of precisely what roles they serve in these contexts. Actin and Arps are present in unique combinations in chromatin modifiers, helping to establish structural integrity of the complex and enabling a wide range of functions, such as recruiting the complex to nucleosomes to facilitate chromatin remodeling and promoting ATPase activity of the catalytic subunit. Actin and Arps are also thought to help modulate chromatin dynamics and maintain higher-order chromatin structure. Moreover, the presence of actin and Arps in several chromatin modifiers is necessary for promoting genomic integrity and an effective DNA damage response. In this review, we discuss the involvement of actin and Arps in these nuclear complexes that control chromatin remodeling and histone modifications, while also considering avenues for future study to further shed light on their functional importance.
Collapse
Affiliation(s)
- Naeh L Klages-Mundt
- Science Park Research Division, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ashok Kumar
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Yuexuan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Prabodh Kapoor
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Xuetong Shen
- Science Park Research Division, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
49
|
Zahraeifard S, Foroozani M, Sepehri A, Oh DH, Wang G, Mangu V, Chen B, Baisakh N, Dassanayake M, Smith AP. Rice H2A.Z negatively regulates genes responsive to nutrient starvation but promotes expression of key housekeeping genes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4907-4919. [PMID: 29955860 PMCID: PMC6137989 DOI: 10.1093/jxb/ery244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/24/2018] [Indexed: 05/19/2023]
Abstract
The H2A.Z histone variant plays a role in the modulation of environmental responses, but the nature of the associated mechanisms remains enigmatic. We investigated global H2A.Z deposition and transcriptomic changes in rice (Oryza sativa) upon exposure to phosphate (Pi) deficiency and in response to RNAi knockdown of OsARP6, which encodes a key component of the H2A.Z exchange complex. Both Pi deficiency and OsARP6-knockdown resulted in similar, profound effects on global H2A.Z distribution. H2A.Z in the gene body of stress-responsive genes was negatively correlated with gene expression, and this was more apparent in response to Pi deficiency. In contrast, the role of H2A.Z at the transcription start site (TSS) was more context dependent, acting as a repressor of some stress-responsive genes, but an activator of some genes with housekeeping functions. This was especially evident upon OsARP6-knockdown, which resulted in down-regulation of a number of genes linked to chloroplast function that contained decreases in H2A.Z at the TSS. Consistently, OsARP6-RNAi plants exhibited lower chlorophyll content relative to the wild-type. Our results demonstrate that gene body-localized H2A.Z plays a prominent role in repressing stress-responsive genes under non-inductive conditions, whereas H2A.Z at the TSS functions as a positive or negative regulator of transcription.
Collapse
Affiliation(s)
- Sara Zahraeifard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Aliasghar Sepehri
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Venkata Mangu
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Bin Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
50
|
Gómez-Zambrano Á, Crevillén P, Franco-Zorrilla JM, López JA, Moreno-Romero J, Roszak P, Santos-González J, Jurado S, Vázquez J, Köhler C, Solano R, Piñeiro M, Jarillo JA. Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes. MOLECULAR PLANT 2018; 11:815-832. [PMID: 29604400 DOI: 10.1016/j.molp.2018.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 05/07/2023]
Abstract
Deposition of the H2A.Z histone variant by the SWR1 complex (SWR1-C) in regulatory regions of specific loci modulates transcription. Characterization of mutations in Arabidopsis thaliana homologs of yeast SWR1-C has revealed a role for H2A.Z exchange in a variety of developmental processes. Nevertheless, the exact composition of plant SWR1-C and how it is recruited to target genes remains to be established. Here we show that SWC4, the Arabidopsis homolog of yeast SANT domain protein Swc4/Eaf2, is a DNA-binding protein that interacts with SWR1-C subunits. We demonstrate that the swc4-1 knockout mutant is embryo-lethal, while SWC4 RNAi knockdown lines display pleiotropic phenotypic alterations in vegetative and reproductive traits, including acceleration of flowering time, indicating that SWC4 controls post-embryonic processes. Transcriptomic analyses and genome-wide profiling of H2A.Z indicate that SWC4 represses transcription of a number of genes, including the floral integrator FT and key transcription factors, mainly by modulating H2A.Z deposition. Interestingly, SWC4 silencing does not affect H2A.Z deposition at the FLC locus nor expression of this gene, a master regulator of flowering previously shown to be controlled by SWR1-C. Importantly, we find that SWC4 recognizes specific AT-rich DNA elements in the chromatin regions of target genes and that SWC4 silencing impairs SWR1-C binding at FT. Collectively, our data suggest that SWC4 regulates plant growth and development by aiding SWR1-C recruitment and modulating H2A.Z deposition.
Collapse
Affiliation(s)
- Ángeles Gómez-Zambrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José M Franco-Zorrilla
- Plant Molecular Genetics Department and Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Juan A López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Pawel Roszak
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Silvia Jurado
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75652, Sweden
| | - Roberto Solano
- Plant Molecular Genetics Department and Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|