1
|
Guarnizo ÁL, Marqués-Gálvez JE, Arenas F, Navarro-Ródenas A, Morte A. Morphological and molecular development of Terfezia claveryi ectendomycorrhizae exhibits three well-defined stages. MYCORRHIZA 2025; 35:31. [PMID: 40232537 PMCID: PMC12000269 DOI: 10.1007/s00572-025-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The normal development of mycorrhizal symbiosis is a dynamic process, requiring elaborately regulated interactions between plant roots and compatible fungi, mandatory for both partners´ survival. In the present study, we further elucidated the mycorrhizal development of the desert truffles Terfezia claveryi with the host plant Helianthemum almeriense as an ectendomycorrhizal symbiosis model under greenhouse conditions. To investigate this, we evaluated the morphology of mycorrhizal colonization, concomitantly with the dynamic expression of selected marker genes (6 fungal and 11 plant genes) measured every week until mycorrhiza maturation (three months). We were able to determine 3 main stages in the mycorrhization process, 1) pre-symbiosis stage where mycelium is growing in the soil with no direct interaction with roots, 2) early symbiosis stage when the fungus spreads along the roots intercellularly and plant-fungal signaling is proceeding, and 3) late symbiosis stage where the fungus consolidates and matures with intracellular hyphal colonization; this is characterized by the regulation of cell-wall remodeling processes.
Collapse
Affiliation(s)
- Ángel Luigi Guarnizo
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - José Eduardo Marqués-Gálvez
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Arenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
2
|
Feng W, Sun X, Yuan G, Ding G. Suillusbovinus sesquiterpenes stimulate root growth and ramification of host and non-host plants by coordinating plant auxin signaling pathways. IMA Fungus 2025; 16:e142356. [PMID: 40171249 PMCID: PMC11959287 DOI: 10.3897/imafungus.16.142356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Prior to physical contact, ectomycorrhizal (ECM) fungi can regulate plant root growth and ramification by emitting volatile organic compounds (VOCs). However, the underlying mechanisms of these VOC effects, as well as the key signaling molecules within the VOC blends, are largely unknown. Under sterile conditions, we studied the effects of the SuillusbovinusVOCs on the root growth of Pinusmassoniana or Arabidopsisthaliana before physical contact. Exogenously added auxin inhibitors and auxin-related mutants were used to explore the role of auxin in the promotion of plant root development by S.bovinusVOCs. S.bovinusVOCs stimulated host P.massoniana and non-host A.thaliana lateral root formation (LRF). Although these effects were independent of the host, they exhibited a symbiotic fungal-specific feature. Sesquiterpenes (SQTs) were the main S.bovinus VOC component that promoted LRF in plants. Two SQTs, α-humulene and β-cedrene, utilized different auxin pathways to promote plant root growth but did not affect the formation of an ECM symbiotic relationship between P.massoniana and S.bovinus. These findings enhance our understanding of the role played by SQTs in the signal recognition mechanism during the ECM presymbiotic stage and their role in promoting plant growth.
Collapse
Affiliation(s)
- Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Guiyun Yuan
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
3
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
4
|
Wu J, Liu S, Zhang H, Chen S, Si J, Liu L, Wang Y, Tan S, Du Y, Jin Z, Xie J, Zhang D. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nat Commun 2025; 16:1461. [PMID: 39920117 PMCID: PMC11805958 DOI: 10.1038/s41467-025-56226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Plant growth behavior is a function of genetic network architecture. The importance of root microbiome variation driving plant functional traits is increasingly recognized, but the genetic mechanisms governing this variation are less studied. Here, we collect roots and rhizosphere soils from nine Populus species belonging to four sections (Leuce, Aigeiros, Tacamahaca, and Turanga), generate metabolite and transcription data for roots and microbiota data for rhizospheres, and conduct comprehensive multi-omics analyses. We demonstrate that the roots of vigorous Leuce poplar enrich more Pseudomonas, compared with the poorly performing poplar. Moreover, we confirm that Pseudomonas is strongly associated with tricin and apigenin biosynthesis and identify that gene GLABRA3 (GL3) is critical for tricin secretion. The elevated tricin secretion via constitutive transcription of PopGL3 and Chalcone synthase (PopCHS4) can drive Pseudomonas colonization in the rhizosphere and further enhance poplar growth, nitrogen acquisition, and secondary root development in nitrogen-poor soil. This study reveals that plant-metabolite-microbe regulation patterns contribute to the poplar fitness and thoroughly decodes the key regulatory mechanisms of tricin, and provides insights into the interactions of the plant's key metabolites with its transcriptome and rhizosphere microbes.
Collapse
Affiliation(s)
- Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Haoyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Sisi Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Jingna Si
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Lin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Yue Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Shuxian Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Yuxin Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China.
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China.
| |
Collapse
|
5
|
Liu X, Yu K, Liu H, Phillips RP, He P, Liang X, Tang W, Terrer C, Novick KA, Bakpa EP, Zhao M, Gao X, Jin Y, Wen Y, Ye Q. Contrasting drought tolerance traits of woody plants is associated with mycorrhizal types at the global scale. THE NEW PHYTOLOGIST 2024; 244:2024-2035. [PMID: 39238117 DOI: 10.1111/nph.20097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well-known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized. We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors. Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought-tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought-tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species. Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.
Collapse
Affiliation(s)
- Xiaorong Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Kailiang Yu
- Department of Ecology & Evolutionary Biology and High Meadows Environmental Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Richard P Phillips
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - César Terrer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Emily P Bakpa
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Min Zhao
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Xinbo Gao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| | - Yi Jin
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Yin Wen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou, 510650, China
| |
Collapse
|
6
|
Li R, Shi W, Zhang P, Ma J, Zou R, Zhang X, Kohler A, Martin FM, Zhang F. The poplar SWEET1c glucose transporter plays a key role in the ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 244:2518-2535. [PMID: 39434237 DOI: 10.1111/nph.20183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
The mutualistic interaction between ectomycorrhizal fungi and trees is characterized by the coordinated exchange of soil nutrients with soluble sugars. Despite the importance of this process, the precise mechanism by which sugars are transported from host roots to colonizing hyphae remains unclear. This study aimed to identify the specific membrane transporters responsible for the unloading of sugars at the symbiotic interface, with a focus on the role of the root Sugars Will Eventually Be Exported Transporter (SWEET) uniporters. Our study used RNA sequencing and quantitative PCR to identify PtaSWEET gene expression in Populus tremula × alba-Laccaria bicolor ectomycorrhizal root tips. Our results suggest that symbiosis-induced PtaSWEET1c is primarily responsible for transporting glucose and sucrose, as demonstrated by the yeast assays. Moreover, we used a promoter-YFP reporter to confirm the localization of the PtaSWEET1c expression in cortical cells of ectomycorrhizal rootlets, supporting its major role in supplying glucose at the symbiotic interface. Furthermore, our observations confirmed the localization of PtaSWEET1c-GFP in the plasma membrane. The inactivation of PtaSWEET1c reduced ectomycorrhizal root formation and 13C translocation to ectomycorrhizal roots. Our findings highlight the crucial role of PtaSWEET1c in facilitating glucose and sucrose transport at the symbiotic interface of Populus-L. bicolor symbiosis.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Wensheng Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Pan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Jianan Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Rong Zou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Xinyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
| | - Annegret Kohler
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| | - Francis M Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 73000, Lanzhou, China
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
7
|
Vishwakarma K, Buckley S, Plett JM, Lundberg-Felten J, Jämtgård S, Plett KL. Pisolithus microcarpus isolates with contrasting abilities to colonise Eucalyptus grandis exhibit significant differences in metabolic signalling. Fungal Biol 2024; 128:2157-2166. [PMID: 39384285 DOI: 10.1016/j.funbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Biotic factors in fungal exudates impact plant-fungal symbioses establishment. Mutualistic ectomycorrhizal fungi play various ecological roles in forest soils by interacting with trees. Despite progress in understanding secreted fungal signals, dynamics of signal production in situ before or during direct host root contact remain unclear. We need to better understand how variability in intra-species fungal signaling at these stages impacts symbiosis with host tissues. Using the ECM model Pisolithus microcarpus, we selected two isolates (Si9 and Si14) with different abilities to colonize Eucalyptus grandis roots. Hypothesizing that distinct early signalling and metabolite profiles between these isolates would influence colonization and symbiosis, we used microdialysis to non-destructively collect secreted metabolites from either the fungus, host, or both, capturing the dynamic interplay of pre-symbiotic signalling over 48 hours. Our findings revealed significant differences in metabolite profiles between Si9 and Si14, grown alone or with a host root. Si9, with lower colonization efficiency than Si14, secreted a more diverse range of compounds, including lipids, oligopeptides, and carboxylic acids. In contrast, Si14's secretions, similar to the host's, included more aminoglycosides. This study emphasizes the importance of intra-specific metabolomic diversity in ectomycorrhizal fungi, suggesting that early metabolite secretion is crucial for establishing successful mutualistic relationships.
Collapse
Affiliation(s)
- Kanchan Vishwakarma
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Scott Buckley
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Judith Lundberg-Felten
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden.
| | - Krista L Plett
- NSW Department of Primary Industries and Regional Development, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| |
Collapse
|
8
|
Zhao H, Sun N, Xu J, Li Y, Lin X, Sun C, Zhu Y. Pseudomonas chlororaphis subsp. aurantiaca Stimulates Lateral Root Development by Integrating Auxin and Reactive Oxygen Species Signaling in Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23776-23789. [PMID: 39415482 DOI: 10.1021/acs.jafc.4c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote lateral root formation, while the underlying mechanisms are not fully understood. Here, we found that Pseudomonas chlororaphis subsp. aurantiaca inoculation enhanced auxin accumulation in lateral root primordia (LRP). Upon reaching LRPs, auxin activated the AUXIN RESPONSE FACTOR 7 and 19 (ARF7/19) and promoted lateral root formation in Arabidopsis. Moreover, we found that reactive oxygen species (ROS) is required for auxin-dependent lateral root emergence, and P. chlororaphis upregulated the expression of RESPIRATORY BURST OXIDASE D and F (RBOHD/F), leading to the accumulation of ROS in LRP. Although scavenging ROS or rbohd/f mutants exhibited decreased lateral roots after P. chlororaphis inoculation, the bacteria-triggered auxin signals were not altered. Conversely, the application of auxin or mutants defective in auxin signaling disturbed P. chlororaphis-derived ROS accumulation in lateral roots. Collectively, these results suggest that ARF7/19-dependent auxin signaling activates RBOHD/F to produce ROS, coordinately facilitating lateral root development after P. chlororaphis treatment.
Collapse
Affiliation(s)
- Hongcheng Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongguan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Wang D, Lin H, Shan Y, Song J, Zhang DD, Dai XF, Han D, Chen JY. The potential of Burkholderia gladioli KRS027 in plant growth promotion and biocontrol against Verticillium dahliae revealed by dual transcriptome of pathogen and host. Microbiol Res 2024; 287:127836. [PMID: 39018831 DOI: 10.1016/j.micres.2024.127836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Verticillium dahliae is a destructive, soil-borne pathogen that causes significant losses on numerous important dicots. Recently, beneficial microbes inhabiting the rhizosphere have been exploited and used to control plant diseases. In the present study, Burkholderia gladioli KRS027 demonstrated excellent inhibitory effects against Verticillium wilt in cotton seedlings. Plant growth and development was promoted by affecting the biosynthesis and signaling pathways of brassinosteroids (BRs), gibberellins (GAs), and auxins, consequently promoting stem elongation, shoot apical meristem, and root apical tissue division in cotton. Furthermore, based on the host transcriptional response to V. dahliae infection, it was found that KRS027 modulates the plants to maintain cell homeostasis and respond to other pathogen stress. Moreover, KRS027 induced disruption of V. dahliae cellular structures, as evidenced by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Based on the comparative transcriptomic analysis between KRS027 treated and control group of V. dahliae, KRS027 induced substantial alterations in the transcriptome, particularly affecting genes encoding secreted proteins, small cysteine-rich proteins (SCRPs), and protein kinases. In addition, KRS027 suppressed the growth of different clonal lineages of V. dahliae strains through metabolites, and volatile organic compounds (VOCs) released by KRS027 inhibited melanin biosynthesis and microsclerotia development. These findings provide valuable insights into an alternative biocontrol strategy for Verticillium wilt, demonstrating that the antagonistic bacterium KRS027 holds promise as a biocontrol agent for promoting plant growth and managing disease occurrence.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Haiping Lin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yujia Shan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jian Song
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan-Dan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiao-Feng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081, China.
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
10
|
Gou H, Lu S, Guo L, Che L, Li M, Zeng B, Yang J, Chen B, Mao J. Evolution of PIN gene family between monocotyledons and dicotyledons and VvPIN1 negatively regulates freezing tolerance in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14464. [PMID: 39157882 DOI: 10.1111/ppl.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
The PIN-FORMED (PIN) proteins mediate the auxin flow throughout the plant and have been identified in many species. However, evolution differences in the PIN gene families have not been systematically analyzed, and their functions under abiotic stresses in grape are largely unexplored. In this study, 373 PIN genes were identified from 25 species and divided into 3 subgroups. Physicochemical properties analysis indicated that most of the PIN proteins were unstable alkaline hydrophobic proteins in nature. The synteny analysis showed that the PINs contained strong gene duplication. Motif composition revealed that PIN gene sequence differences between monocotyledons and dicotyledons were due to evolutionary-induced base loss, and the loss was more common in dicotyledonous. Meanwhile, the codon usage bias showed that the PINs showed stronger codon preference in monocotyledons, monocotyledons biased towards C3s and G3s, and dicotyledons biased towards A3s and T3s. In addition, the VvPIN1 can interact with VvCSN5. Significantly, under freezing treatment, the ion leakage,O 2 · - $$ \left({O}_2^{\cdotp -}\right) $$ , H2O2, and malondialdehyde (MDA) were obviously increased, while the proline (Pro) content, peroxidase (POD) activity, and glutathione (GSH) content were decreased in VvPIN1-overexpressing Arabidopsis compared to the wild type (WT). And quantitative real-time PCR (qRT-PCR) showed that AtICE1, AtICE2, AtCBF1, AtCBF2, and AtCBF3 were down-regulated in overexpression lines. These results demonstrated that VvPIN1 negatively regulated the freezing tolerance in transgenic Arabidopsis. Collectively, this study provides a novel insight into the evolution and a basis for further studies on the biological functions of PIN genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Baozhen Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Juanbo Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, People's Republic of China
| |
Collapse
|
11
|
Shi L, Wang Z, Chen JH, Qiu H, Liu WD, Zhang XY, Martin FM, Zhao MW. LbSakA-mediated phosphorylation of the scaffolding protein LbNoxR in the ectomycorrhizal basidiomycete Laccaria bicolor regulates NADPH oxidase activity, ROS accumulation and symbiosis development. THE NEW PHYTOLOGIST 2024; 243:381-397. [PMID: 38741469 DOI: 10.1111/nph.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ju Hong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Dong Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Yan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
12
|
Herol L, Avidar M, Yirmiahu S, Zach YY, Klein T, Shemesh H, Livne-Luzon S. Context-dependent benefits of forest soil addition on Aleppo pine seedling performance under drought and grass competition. MYCORRHIZA 2024; 34:217-227. [PMID: 38762648 PMCID: PMC11166812 DOI: 10.1007/s00572-024-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.
Collapse
Affiliation(s)
- Lior Herol
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Mor Avidar
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Shahar Yirmiahu
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Yair Yehoshua Zach
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Shemesh
- Department of Environmental Sciences, Tel-Hai College, Qiryat Shemona, Israel
| | - Stav Livne-Luzon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Mishra S, Duarte GT, Horemans N, Ruytinx J, Gudkov D, Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171567. [PMID: 38460702 DOI: 10.1016/j.scitotenv.2024.171567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia
| | - Gustavo Turqueto Duarte
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Nele Horemans
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Joske Ruytinx
- Department of Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia.
| |
Collapse
|
14
|
Plett JM, Wojtalewicz D, Plett KL, Collin S, Kohler A, Jacob C, Martin F. Sesquiterpenes of the ectomycorrhizal fungus Pisolithus microcarpus alter root growth and promote host colonization. MYCORRHIZA 2024; 34:69-84. [PMID: 38441669 PMCID: PMC10998793 DOI: 10.1007/s00572-024-01137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| | - Dominika Wojtalewicz
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Sabrina Collin
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | | | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
15
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
16
|
Du LD, Guan ZJ, Liu YH, Zhu HD, Sun Q, Hu DG, Sun CH. The BTB/TAZ domain-containing protein CmBT1-mediated CmANR1 ubiquitination negatively regulates root development in chrysanthemum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:285-299. [PMID: 38314502 DOI: 10.1111/jipb.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
Roots are fundamental for plants to adapt to variable environmental conditions. The development of a robust root system is orchestrated by numerous genetic determinants and, among them, the MADS-box gene ANR1 has garnered substantial attention. Prior research has demonstrated that, in chrysanthemum, CmANR1 positively regulates root system development. Nevertheless, the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified. In this study, we successfully identified bric-a-brac, tramtrack and broad (BTB) and transcription adapter putative zinc finger (TAZ) domain protein CmBT1 as the interacting partner of CmANR1 through a yeast-two-hybrid (Y2H) screening library. Furthermore, we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays. Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum. In both in vitro and in vivo assays, it was evident that CmBT1 mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway. This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2, which was crucial for root development in chrysanthemum. Genetic analysis suggested that CmBT1 modulated root development, at least in part, by regulating the level of CmANR1 protein. Collectively, these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination, thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.
Collapse
Affiliation(s)
- Lian-Da Du
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Zhang-Ji Guan
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yan-Hong Liu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hui-Dong Zhu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Quan Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Da-Gang Hu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Cui-Hui Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
17
|
Becklin KM, Viele BM, Coleman HD. Nutrient conditions mediate mycorrhizal effects on biomass production and cell wall chemistry in poplar. TREE PHYSIOLOGY 2023; 43:1571-1583. [PMID: 37166359 DOI: 10.1093/treephys/tpad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Large-scale biofuel production from lignocellulosic feedstock is limited by the financial and environmental costs associated with growing and processing lignocellulosic material and the resilience of these plants to environmental stress. Symbiotic associations with arbuscular (AM) and ectomycorrhizal (EM) fungi represent a potential strategy for expanding feedstock production while reducing nutrient inputs. Comparing AM and EM effects on wood production and chemical composition is a necessary step in developing biofuel feedstocks. Here, we assessed the productivity, biomass allocation and secondary cell wall (SCW) composition of greenhouse-grown Populus tremuloidesMichx. inoculated with either AM or EM fungi. Given the long-term goal of reducing nutrient inputs for biofuel production, we further tested the effects of nutrient availability and nitrogen:phosphorus stoichiometry on mycorrhizal responses. Associations with both AM and EM fungi increased plant biomass by 14-74% depending on the nutrient conditions but had minimal effects on SCW composition. Mycorrhizal plants, especially those inoculated with EM fungi, also allocated a greater portion of their biomass to roots, which could be beneficial in the field where plants are likely to experience both water and nutrient stress. Leaf nutrient content was weakly but positively correlated with wood production in mycorrhizal plants. Surprisingly, phosphorus played a larger role in EM plants compared with AM plants. Relative nitrogen and phosphorus availability were correlated with shifts in SCW composition. For AM associations, the benefit of increased wood biomass may be partially offset by increased lignin content, a trait that affects downstream processing of lignocellulosic tissue for biofuels. By comparing AM and EM effects on the productivity and chemical composition of lignocellulosic tissue, this work links broad functional diversity in mycorrhizal associations to key biofuel traits and highlights the importance of considering both biotic and abiotic factors when developing strategies for sustainable biofuel production.
Collapse
Affiliation(s)
- Katie M Becklin
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Bethanie M Viele
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, USA
| |
Collapse
|
18
|
Xie XG, Lu WL, Feng KM, Zheng CJ, Yang Y, Jia M, Wu YS, Shi YZ, Han T, Qin LP. Mechanisms of Epichloë bromicola to Promote Plant Growth and Its Potential Application for Coix lacryma-jobi L. Cultivation. Curr Microbiol 2023; 80:306. [PMID: 37501023 DOI: 10.1007/s00284-023-03411-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC-MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.
Collapse
Affiliation(s)
- Xing-Guang Xie
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Wei-Lan Lu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kun-Miao Feng
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Cheng-Jian Zheng
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Yang Yang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Min Jia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yi-Sang Wu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yan-Zhang Shi
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Vigneaud J, Kohler A, Sow MD, Delaunay A, Fauchery L, Guinet F, Daviaud C, Barry KW, Keymanesh K, Johnson J, Singan V, Grigoriev I, Fichot R, Conde D, Perales M, Tost J, Martin FM, Allona I, Strauss SH, Veneault-Fourrey C, Maury S. DNA hypomethylation of the host tree impairs interaction with mutualistic ectomycorrhizal fungus. THE NEW PHYTOLOGIST 2023; 238:2561-2577. [PMID: 36807327 DOI: 10.1111/nph.18734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 05/19/2023]
Abstract
Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.
Collapse
Affiliation(s)
- Julien Vigneaud
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Annegret Kohler
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Mamadou Dia Sow
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Laure Fauchery
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Frederic Guinet
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91000, France
| | - Kerrie W Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91000, France
| | - Francis M Martin
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Claire Veneault-Fourrey
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54280, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orleans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
20
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
21
|
Cabrera-Ariza AM, Silva-Flores P, González-Ortega M, Acevedo-Tapia M, Cartes-Rodríguez E, Palfner G, Ramos P, Santelices-Moya RE. Early Effects of Mycorrhizal Fungal Inoculum and Fertilizer on Morphological and Physiological Variables of Nursery-Grown Nothofagus alessandrii Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1521. [PMID: 37050147 PMCID: PMC10096678 DOI: 10.3390/plants12071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Nothofagus alessandrii (ruil) is an endangered relict species, endemic to the Mediterranean area of Chile, and one of the most threatened trees in the country. Its natural distribution area has been greatly reduced by the effect of human activities; the remaining fragments are mostly intervened and highly deteriorated as a habitat and refuge for the associated biodiversity. In order to produce healthy and resistant nursery plants for recovery and restoration of N. alessandrii forests, this study evaluates the early effects of mycorrhizal fungal inoculum (MFI) combined with fertilization on the cultivation of seedlings. The experiment was established under a completely randomized design with a factorial arrangement of the mycorrhizal factors (M0 = without mycorrhizal, M1 = Thelephora sp. and M2 = Hebeloma sp.) and fertilization (F1 = standard fertilization and F2 = intensive fertilization), with three replicates of each combination, for each type of plant (P1 = plants from one season and P2 = plants from two seasons). Each experimental unit corresponded to a group of 20 plants, with 720 plants in the test. The results indicate that application of fertilizer and MFI significantly affects some growth and photosynthesis parameters of ruil plants in one and two seasons. The morphological parameters obtained in the study show shoot height values ranging between 67 and 91 cm for P1 and between 96 and 111 cm for P2; while, for shoot diameter, values ranged between 7.91 and 8.24 mm for P1 and between 10.91 and 11.49 mm for P2. Although formation of fully developed mycorrhizal roots was not observed during the assay period, we conclude that inoculation of mycorrhizal fungi combined with fertilization could be an efficient strategy to produce a quality plant, in addition to maintaining a high photosynthetic capacity and, therefore, a higher percentage of survival in the field.
Collapse
Affiliation(s)
- Antonio M. Cabrera-Ariza
- Centro de Investigación y Estudios Avanzados del Maule, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
- Centro de Desarrollo del Secano Interior, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| | - Patricia Silva-Flores
- Centro de Investigación y Estudios Avanzados del Maule, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
- Centro de Desarrollo del Secano Interior, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| | - Marta González-Ortega
- Centro Tecnológico de la Planta Forestal, Instituto Forestal Sede Biobío, Camino a Coronel Km 7.5, San Pedro de la Paz 4130000, Chile
| | - Manuel Acevedo-Tapia
- Centro Tecnológico de la Planta Forestal, Instituto Forestal Sede Biobío, Camino a Coronel Km 7.5, San Pedro de la Paz 4130000, Chile
| | - Eduardo Cartes-Rodríguez
- Centro Tecnológico de la Planta Forestal, Instituto Forestal Sede Biobío, Camino a Coronel Km 7.5, San Pedro de la Paz 4130000, Chile
| | - Götz Palfner
- Laboratorio de Micología y Micorriza, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile
| | - Patricio Ramos
- Centro de Investigación y Estudios Avanzados del Maule, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
- Centro de Desarrollo del Secano Interior, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Rómulo E. Santelices-Moya
- Centro de Desarrollo del Secano Interior, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3460000, Chile
| |
Collapse
|
22
|
Yu H, Gao D, Khashi u Rahman M, Chen S, Wu F. L-phenylalanine in potato onion ( Allium cepa var. aggregatum G. Don) root exudates mediates neighbor detection and trigger physio-morphological root responses of tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1056629. [PMID: 36875620 PMCID: PMC9981155 DOI: 10.3389/fpls.2023.1056629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTERACTION Despite numerous recent insights into neighbor detection and belowground plant communication mediated by root exudates, less is known about the specificity and nature of substances within root exudates and the mechanism by which they may act belowground in root-root interactions. METHODS Here, we used a coculture experiment to study the root length density (RLD) of tomato (Solanum lycopersicum L.) grown with potato onion (Allium cepa var. aggregatum G. Don) cultivars with growth-promoting (S-potato onion) or no growth-promoting (N-potato onion) effects. RESULTS AND DISCUSSION Tomato plants grown with growth-promoting potato onion or its root exudates increased root distribution and length density oppositely and grew their roots away as compared to when grown with potato onion of no growth-promoting potential, its root exudates, and control (tomato monoculture/distilled water treatment). Root exudates profiling of two potato onion cultivars by UPLC-Q-TOF/MS showed that L-phenylalanine was only found in root exudates of S-potato onion. The role of L-phenylalanine was further confirmed in a box experiment in which it altered tomato root distribution and forced the roots grow away. In vitro trial revealed that tomato seedlings root exposed to L-phenylalanine changed the auxin distribution, decreased the concentration of amyloplasts in columella cells of roots, and changed the root deviation angle to grow away from the addition side. These results suggest that L-phenylalanine in S-potato onion root exudates may act as an "active compound" and trigger physio-morphological changes in neighboring tomato roots.
Collapse
Affiliation(s)
- Hongjie Yu
- Institute of Agricultural Economy and Scientific Information, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Muhammad Khashi u Rahman
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Shaocan Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch. Sci Rep 2023; 13:1354. [PMID: 36693928 PMCID: PMC9873909 DOI: 10.1038/s41598-023-27779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid larch is the main timber and afforestation tree species in Northeast China. To solve the problem of rooting difficulties in larch cutting propagation, enzyme activity determination and transcriptome sequencing were carried out on the rooting tissues at five timepoints after cutting. peroxidase (POD), indole acetic acid oxidase (IAAO) and polyphenol oxidase (PPO) play important roles in the larch rooting process after cutting. A total of 101.20 Gb of clean data was obtained by transcriptome sequencing, and 43,246 unigenes were obtained after further screening and assembly. According to GO analysis and KEGG enrichment analysis, we think that plant hormones play an important role in the rooting process of larch stem cuttings. in the plant hormone signal transduction pathway, a larch gene c141104.graph_c0 that is homologous to the Arabidopsis AUX1 was found to be significantly up-regulated. We suggest that AUX1 may promote IAA transport in larch, thus affecting adventitious root development. According to the results of POD, PPO IAAO indexes and GO analysis, we think s1 and s2 periods may be important periods in the rooting process of larch stem cuttings, so we built a gene regulatory network, a total of 14genes, including LBD, NAC, AP2/ERF, bHLH and etc., may be important in different stages of cutting propagation. As the rooting rate after cutting inhibits the development of larch clone propagation, identifying the genes that regulate rooting could help us to preliminarily understand the molecular mechanism of adventitious root formation and select a better treatment method for cutting propagation.
Collapse
|
24
|
Chowdhury J, Ferdous J, Lihavainen J, Albrectsen BR, Lundberg-Felten J. Fluorogenic properties of 4-dimethylaminocinnamaldehyde (DMACA) enable high resolution imaging of cell-wall-bound proanthocyanidins in plant root tissues. FRONTIERS IN PLANT SCIENCE 2023; 13:1060804. [PMID: 36726681 PMCID: PMC9884812 DOI: 10.3389/fpls.2022.1060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Proanthocyanidins (PAs) are polymeric phenolic compounds found in plants and used in many industrial applications. Despite strong evidence of herbivore and pathogen resistance-related properties of PAs, their in planta function is not fully understood. Determining the location and dynamics of PAs in plant tissues and cellular compartments is crucial to understand their mode of action. Such an approach requires microscopic localization with fluorescent dyes that specifically bind to PAs. Such dyes have hitherto been lacking. Here, we show that 4-dimethylaminocinnamaldehyde (DMACA) can be used as a PA-specific fluorescent dye that allows localization of PAs at high resolution in cell walls and inside cells using confocal microscopy, revealing features of previously unreported wall-bound PAs. We demonstrate several novel usages of DMACA as a fluorophore by taking advantage of its double staining compatibility with other fluorescent dyes. We illustrate the use of the dye alone and its co-localization with cell wall polymers in different Populus root tissues. The easy-to-use fluorescent staining method, together with its high photostability and compatibility with other fluorogenic dyes, makes DMACA a valuable tool for uncovering the biological function of PAs at a cellular level in plant tissues. DMACA can also be used in other plant tissues than roots, however care needs to be taken when tissues contain compounds that autofluoresce in the red spectral region which can be confounded with the PA-specific DMACA signal.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jannatul Ferdous
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jenna Lihavainen
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | - Judith Lundberg-Felten
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
25
|
Feng W, Sun X, Ding G. Morphological and Transcriptional Characteristics of the Symbiotic Interaction between Pinus massoniana and Suillus bovinus. J Fungi (Basel) 2022; 8:1162. [PMID: 36354929 PMCID: PMC9699607 DOI: 10.3390/jof8111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed information regarding the establishment of ECM symbioses. We investigated the morphological and transcriptional changes that occur during the establishment of the Pinus massoniana-Suillus bovinus ECM. S. bovinus promoted the growth of P. massoniana via the release of volatile organic compounds and exudates during the pre-symbiotic stage. Exudate-induced effects showed host plant specificity. At seven days post-inoculation (dpi), the mycelium started to penetrate P. massoniana roots. At 28 dpi, the Hartig net and mantle formed. At the pre-symbiotic stage, most differentially expressed genes in P. massoniana roots were mapped to the biosynthesis of secondary metabolites, signal transduction, and carbohydrate metabolism. At the symbiotic stage, S. bovinus colonization induced the reprogramming of pathways involved in genetic information processing in P. massoniana, particularly at the Hartig net and mantle formation stage. Phenylpropanoid biosynthesis was present at all stages and was regulated via S. bovinus colonization. Enzyme inhibitor tests suggested that hydroxycinnamoyl-CoA shikimate/quinate transferase is involved in the development of the Hartig net. Our findings outline the mechanism involved in the P. massoniana-S. bovinus ECM. Further studies are needed to clarify the role of phenylpropanoid biosynthesis in ECM formation.
Collapse
Affiliation(s)
- Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
26
|
Xu L, Niu X, Li X, Zheng Y, Feng H, Fu Q, Zhou Y. Effects of nitrogen addition and root fungal inoculation on the seedling growth and rhizosphere soil microbial community of Pinus tabulaeformis. Front Microbiol 2022; 13:1013023. [PMID: 36338078 PMCID: PMC9626767 DOI: 10.3389/fmicb.2022.1013023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Nitrogen (N) availability is significant in different ecosystems, but the response of forest plant-microbial symbionts to global N deposition remains largely unexplored. In this study, the effects of different N concentration levels on four types of fungi, Suillus granulatus (Sg), Pisolithus tinctorius (Pt), Pleotrichocladium opacum (Po), and Pseudopyrenochaeta sp. (Ps), isolated from the roots of Pinus tabulaeformis were investigated in vitro. Then, the effects of the fungi on the growth performance, nutrient uptake, and rhizosphere soil microbial community structure of P. tabulaeformis under different N addition conditions (0, 40, and 80 kg hm−2 year−1) were examined. The biomass and phytohormone contents of the Sg, Pt and Po strains increased with increasing N concentration, while those of the Ps strain first increased and then decreased. All four fungal strains could effectively colonize the plant roots and form a strain-dependent symbiosis with P. tabulaeformis. Although the effects depended on the fungal species, the growth and root development of inoculated seedlings were higher than those of uninoculated seedlings under N deficiency and normal N supply conditions. However, these positive effects disappeared and even became negative under high N supply conditions. The inoculation of the four fungal strains also showed significant positive effects on the shoot and root nutrient contents of P. tabulaeformis. Fungal inoculation significantly increased different microbial groups and the total soil microorganisms but decreased the microbial diversity under N deficiency stress. In summary, exogenous symbiotic fungal inoculations could increase the growth performance of P. tabulaeformis under N deficiency and normal N supply conditions, but the effects were negative under excessive N addition.
Collapse
Affiliation(s)
- Lingjie Xu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaoyun Niu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xia Li
- School of Life Sciences, Hebei University, Baoding, China
| | - Yanyan Zheng
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Hualei Feng
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Qiang Fu
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Yong Zhou
- Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
- *Correspondence: Yong Zhou,
| |
Collapse
|
27
|
Afifa, Hussain N, Baqar Z, Mumtaz M, El-Sappah AH, Show PL, Iqbal HM, Varjani S, Bilal M. Bioprospecting fungal-derived value-added bioproducts for sustainable pharmaceutical applications. SUSTAINABLE CHEMISTRY AND PHARMACY 2022; 29:100755. [DOI: 10.1016/j.scp.2022.100755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
28
|
Chowdhury J, Kemppainen M, Delhomme N, Shutava I, Zhou J, Takahashi J, Pardo AG, Lundberg‐Felten J. Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides. THE NEW PHYTOLOGIST 2022; 236:639-655. [PMID: 35794841 PMCID: PMC9796311 DOI: 10.1111/nph.18358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Minna Kemppainen
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Iryna Shutava
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Jingjing Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Alejandro G. Pardo
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
29
|
Plett JM, Sabotič J, Vogt E, Snijders F, Kohler A, Nielsen UN, Künzler M, Martin F, Veneault-Fourrey C. Mycorrhiza-induced mycocypins of Laccaria bicolor are potent protease inhibitors with nematotoxic and collembola antifeedant activity. Environ Microbiol 2022; 24:4607-4622. [PMID: 35818672 DOI: 10.1111/1462-2920.16115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Fungivory of mycorrhizal hyphae has a significant impact on fungal fitness and, by extension, on nutrient transfer between fungi and host plants in natural ecosystems. Mycorrhizal fungi have therefore evolved an arsenal of chemical compounds that are hypothesized to protect the hyphal tissues from being eaten, such as the protease inhibitors mycocypins. The genome of the ectomycorrhizal fungus Laccaria bicolor has an unusually high number of mycocypin-encoding genes. We have characterized the evolution of this class of proteins, identified those induced by symbiosis with a host plant and characterized the biochemical properties of two upregulated L. bicolor mycocypins. More than half of L. bicolor mycocypin-encoding genes are differentially expressed during symbiosis or fruiting body formation. We show that two L. bicolor mycocypins that are strongly induced during symbiosis are cysteine protease inhibitors and exhibit similar but distinct localization in fungal tissues at different developmental stages and during interaction with a host plant. Moreover, we show that these L. bicolor mycocypins have toxic and feeding deterrent effect on nematodes and collembolans, respectively. Therefore, L. bicolor mycocypins may be part of a mechanism by which this species deters grazing by different members of the soil food web.
Collapse
Affiliation(s)
- Jonathan M Plett
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Vogt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Fridtjof Snijders
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| |
Collapse
|
30
|
Schreider K, Boy J, Sauheitl L, Figueiredo AF, Andrino A, Guggenberger G. Designing a Robust and Versatile System to Investigate Nutrient Exchange in, and Partitioning by, Mycorrhiza ( Populus x canesces x Paxillus involutus) Under Axenic or Greenhouse Conditions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:907563. [PMID: 37746230 PMCID: PMC10512296 DOI: 10.3389/ffunb.2022.907563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
Phosphorus (P) bioavailability affects plant nutrition. P can be present in soils in different chemical forms that are not available for direct plant uptake and have to be acquired by different mechanisms, representing different resource niches. These mechanisms, of which many seem to be attributed to mycorrhiza, likely influence the diversity and stability of plant communities in natural ecosystems, as they also might help to overcome a future shortage of P supply in agro-ecosystems. In order to understand the mechanisms of P acquisition, the associated carbon costs, and the resource partitioning by mycorrhizal fungi, the ecosystem situation has to be mimicked in smaller scaled experiments. Here, different experimental setups are evaluated using plantlets of Populus x canescens and its functional ectomycorrhizal (ECM) fungus Paxillus involututs strain MAJ. To investigate resource partitioning involving mycorrhizae, the protocols of this study describe preparation of an in vitro and a rhizotrone culture systems for studies under axenic conditions as well as a mesocosm culture system for greenhouse conditions. We also describe the construction of separate compartments containing nutrients and excluding plant roots as well as the progress that has been made in in vitro propagation of plant and ECM fungal material. The practical experience made in our study shows that the in vitro culture system is prone to desiccation and its construction and maintenance are more time consuming and complicated. In contrast, with the axenic rhizotrone culture system and the mesocosms we have created more robust and very versatile systems that are also suitable for greenhouse conditions.
Collapse
Affiliation(s)
| | - Jens Boy
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | - Leopold Sauheitl
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | | | - Alberto Andrino
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
31
|
Chot E, Reddy MS. Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Front Microbiol 2022; 13:855473. [PMID: 35418968 PMCID: PMC8996229 DOI: 10.3389/fmicb.2022.855473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2022] Open
Abstract
Soil heavy metal (HM) pollution, which arises from natural and anthropogenic sources, is a prime threat to the environment due to its accumulative property and non-biodegradability. Ectomycorrhizal (ECM) symbiosis is highly efficient in conferring enhanced metal tolerance to their host plants, enabling their regeneration on metal-contaminated lands for bioremediation programs. Numerous reports are available regarding ECM fungal potential to colonize metal-contaminated lands and various defense mechanisms of ECM fungi and plants against HM stress separately. To utilize ECM–plant symbiosis successfully for bioremediation of metal-contaminated lands, understanding the fundamental regulatory mechanisms through which ECM symbiosis develops an enhanced metal tolerance in their host plants has prime importance. As this field is highly understudied, the present review emphasizes how plant’s various defense systems and their nutrient dynamics with soil are affected by ECM fungal symbiosis under metal stress, ultimately leading to their host plants ameliorated tolerance and growth. Overall, we conclude that ECM symbiosis improves the plant growth and tolerance against metal stress by (i) preventing their roots direct exposure to toxic soil HMs, (ii) improving plant antioxidant activity and intracellular metal sequestration potential, and (iii) altering plant nutrient uptake from the soil in such a way to enhance their tolerance against metal stress. In some cases, ECM symbiosis promotes HM accumulation in metal stressed plants simultaneous to improved growth under the HM dilution effect.
Collapse
Affiliation(s)
- Eetika Chot
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
32
|
Chen X, Chen J, Liao D, Ye H, Li C, Luo Z, Yan A, Zhao Q, Xie K, Li Y, Wang D, Chen J, Chen A, Xu G. Auxin-mediated regulation of arbuscular mycorrhizal symbiosis: A role of SlGH3.4 in tomato. PLANT, CELL & ENVIRONMENT 2022; 45:955-968. [PMID: 34713922 DOI: 10.1111/pce.14210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Most land plants can establish symbiosis with arbuscular mycorrhizal (AM) fungi to increase fitness to environmental challenges. The development of AM symbiosis is controlled by intricate procedures involving all phytohormones. However, the mechanisms underlying the auxin-mediated regulation of AM symbiosis remains largely unknown. Here, we report that AM colonisation promotes auxin response and indole-3-acetic acid (IAA) accumulation, but downregulates IAA biosynthesis genes in tomato (Solanum lycopersicum). External IAA application modulates the AM symbiosis by promoting arbuscule formation at low concentrations but repressing it at high concentrations. An AM-induced GH3 gene, SlGH3.4, encoding a putative IAA-amido synthetase, negatively regulates mycorrhization via maintaining cellular auxin homoeostasis. Loss of SlGH3.4 function increased free IAA content and arbuscule incidence, while constitutively overexpressing SlGH3.4 in either tomato or rice resulted in decreased IAA content, total colonisation level and arbuscule abundance in mycorrhizal roots. Several auxin-inducible expansin genes involved in AM formation or resistance to pathogen infection were upregulated in slgh3.4 mycorrhizal roots but downregulated in the SlGH3.4-overexpressing plants. Taken together, our results highlight a positive correlation between the endogenous IAA content and mycorrhization level, particularly arbuscule incidence, and suggest that the SlGH3.4-mediated auxin homoeostasis and regulation of expansin genes is involved in finely tuning the AM development.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jiadong Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Dehua Liao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hanghang Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cai Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenzhen Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anning Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingchun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiting Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Zhang F, Labourel A, Haon M, Kemppainen M, Da Silva Machado E, Brouilly N, Veneault-Fourrey C, Kohler A, Rosso MN, Pardo A, Henrissat B, Berrin JG, Martin F. The ectomycorrhizal basidiomycete Laccaria bicolor releases a GH28 polygalacturonase that plays a key role in symbiosis establishment. THE NEW PHYTOLOGIST 2022; 233:2534-2547. [PMID: 34942023 DOI: 10.1111/nph.17940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 05/23/2023]
Abstract
In ectomycorrhiza, root penetration and colonization of the intercellular space by symbiotic hyphae is thought to rely on the mechanical force that results from hyphal tip growth, enhanced by the activity of secreted cell-wall-degrading enzymes. Here, we characterize the biochemical properties of the symbiosis-induced polygalacturonase LbGH28A from the ectomycorrhizal fungus Laccaria bicolor. The transcriptional regulation of LbGH28A was measured by quantitative PCR (qPCR). The biological relevance of LbGH28A was confirmed by generating RNA interference (RNAi)-silenced LbGH28A mutants. We localized the LbGH28A protein by immunofluorescence confocal and immunogold cytochemical microscopy in poplar ectomycorrhizal roots. Quantitative PCR confirmed the induced expression of LbGH28A during ectomycorrhiza formation. Laccaria bicolor RNAi mutants have a lower ability to establish ectomycorrhiza, confirming the key role of this enzyme in symbiosis. The purified recombinant LbGH28A has its highest activity towards pectin and polygalacturonic acid. In situ localization of LbGH28A indicates that this endopolygalacturonase is located in both fungal and plant cell walls at the symbiotic hyphal front. These findings suggest that the symbiosis-induced pectinase LbGH28A is involved in the Hartig net formation and is an important determinant for successful symbiotic colonization.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Grassland Agro-Ecosystems & Institute of Innovation Ecology, Lanzhou University, Lanzhou, 73000, China
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | - Aurore Labourel
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Mireille Haon
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Emilie Da Silva Machado
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | | | - Claire Veneault-Fourrey
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | - Annegret Kohler
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
| | - Marie-Noëlle Rosso
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Alejandro Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Bernard Henrissat
- CNRS, UMR 7257 & Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, 13009, Marseille, France
- INRAE, USC 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Jean-Guy Berrin
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France
| | - Francis Martin
- UMR 'Interactions Arbres/Microorganismes', Université de Lorraine, INRAE, INRAE Grand Est - Nancy, 54280, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 152000, Beijing, China
| |
Collapse
|
34
|
Li Y, Shao J, Fu Y, Chen Y, Wang H, Xu Z, Feng H, Xun W, Liu Y, Zhang N, Shen Q, Xuan W, Zhang R. The volatile cedrene from Trichoderma guizhouense modulates Arabidopsis root development through auxin transport and signalling. PLANT, CELL & ENVIRONMENT 2022; 45:969-984. [PMID: 34800291 DOI: 10.1111/pce.14230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Rhizosphere microorganisms interact with plant roots by producing chemical signals that regulate root development. However, the distinct bioactive compounds and signal transduction pathways remain to be identified. Here, we showed that sesquiterpenes are the main volatile compounds produced by plant-beneficial Trichoderma guizhouense NJAU4742. Inhibition of sesquiterpene biosynthesis eliminated the promoting effect of this strain on root growth, indicating its involvement in plant-fungus cross-kingdom signalling. Sesquiterpene component analysis identified cedrene, a highly abundant sesquiterpene in strain NJAU4742, to stimulate plant growth and root development. Genetic analysis and auxin transport inhibition showed that the TIR1 and AFB2 auxin receptors, IAA14 auxin-responsive protein, and ARF7 and ARF19 transcription factors affected the response of lateral roots to cedrene. Moreover, the AUX1 auxin influx carrier and PIN2 efflux carrier were also found to be indispensable for cedrene-induced lateral root formation. Confocal imaging showed that cedrene affected the expression of pPIN2:PIN2:GFP and pPIN3:PIN3:GFP, which might be related to the effect of cedrene on root morphology. These results suggested that a novel sesquiterpene molecule from plant-beneficial T. guizhouense regulates plant root development through the transport and signalling of auxin.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Hongzhe Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
36
|
Hill RA, Wong-Bajracharya J, Anwar S, Coles D, Wang M, Lipzen A, Ng V, Grigoriev IV, Martin F, Anderson IC, Cazzonelli CI, Jeffries T, Plett KL, Plett JM. Abscisic acid supports colonization of Eucalyptus grandis roots by the mutualistic ectomycorrhizal fungus Pisolithus microcarpus. THE NEW PHYTOLOGIST 2022; 233:966-982. [PMID: 34699614 DOI: 10.1111/nph.17825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The pathways regulated in ectomycorrhizal (EcM) plant hosts during the establishment of symbiosis are not as well understood when compared to the functional stages of this mutualistic interaction. Our study used the EcM host Eucalyptus grandis to elucidate symbiosis-regulated pathways across the three phases of this interaction. Using a combination of RNA sequencing and metabolomics we studied both stage-specific and core responses of E. grandis during colonization by Pisolithus microcarpus. Using exogenous manipulation of the abscisic acid (ABA), we studied the role of this pathway during symbiosis establishment. Despite the mutualistic nature of this symbiosis, a large number of disease signalling TIR-NBS-LRR genes were induced. The transcriptional regulation in E. grandis was found to be dynamic across colonization with a small core of genes consistently regulated at all stages. Genes associated to the carotenoid/ABA pathway were found within this core and ABA concentrations increased during fungal integration into the root. Supplementation of ABA led to improved accommodation of P. microcarpus into E. grandis roots. The carotenoid pathway is a core response of an EcM host to its symbiont and highlights the need to understand the role of the stress hormone ABA in controlling host-EcM fungal interactions.
Collapse
Affiliation(s)
- Richard A Hill
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Sidra Anwar
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Donovin Coles
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Université de Lorraine, 54280, Champenoux, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Thomas Jeffries
- School of Science, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
37
|
A Transcriptomic Atlas of the Ectomycorrhizal Fungus Laccaria bicolor. Microorganisms 2021; 9:microorganisms9122612. [PMID: 34946213 PMCID: PMC8708209 DOI: 10.3390/microorganisms9122612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023] Open
Abstract
Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients. Eventually, basidiocarps develop to assure last stages of sexual reproduction. The aim of this study is to understand how an EcM fungus uses its gene set to support functional differentiation and development of specialized morphological structures. We examined the transcriptomes of Laccaria bicolor under a series of experimental setups, including the growth with Populus tremula x alba at different developmental stages, basidiocarps and free-living mycelium, under various conditions of N, P and C supply. In particular, N supply induced global transcriptional changes, whereas responses to P supply seemed to be independent from it. Symbiosis development with poplar is characterized by transcriptional waves. Basidiocarp development shares transcriptional signatures with other basidiomycetes. Overlaps in transcriptional responses of L. bicolor hyphae to a host plant and N/C supply next to co-regulation of genes in basidiocarps and mature mycorrhiza were detected. Few genes are induced in a single condition only, but functional and morphological differentiation rather involves fine tuning of larger gene sets. Overall, this transcriptomic atlas builds a reference to study the function and stability of EcM symbiosis in distinct conditions using L. bicolor as a model and indicates both similarities and differences with other ectomycorrhizal fungi, allowing researchers to distinguish conserved processes such as basidiocarp development from nutrient homeostasis.
Collapse
|
38
|
Qiao Z, Yates TB, Shrestha HK, Engle NL, Flanagan A, Morrell‐Falvey JL, Sun Y, Tschaplinski TJ, Abraham PE, Labbé J, Wang Z, Hettich RL, Tuskan GA, Muchero W, Chen J. Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptor-like kinase. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2454-2468. [PMID: 34272801 PMCID: PMC8633507 DOI: 10.1111/pbi.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 05/22/2023]
Abstract
Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Timothy B. Yates
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleTNUSA
| | - Him K. Shrestha
- Genome Science and TechnologyUniversity of TennesseeKnoxvilleTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Yali Sun
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Paul E. Abraham
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jessy Labbé
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Robert L. Hettich
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
39
|
Dong F, Wang Y, Tang M. Effects of Laccaria bicolor on Gene Expression of Populus trichocarpa Root under Poplar Canker Stress. J Fungi (Basel) 2021; 7:jof7121024. [PMID: 34947006 PMCID: PMC8703858 DOI: 10.3390/jof7121024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Poplars can be harmed by poplar canker. Inoculation with mycorrhizal fungi can improve the resistance of poplars to canker, but the molecular mechanism is still unclear. In this study, an aseptic inoculation system of L. bicolor-P. trichocarpa-B. dothidea was constructed, and transcriptome analysis was performed to investigate regulation by L. bicolor of the expression of genes in the roots of P. trichocarpa during the onset of B. dothidea infection, and a total of 3022 differentially expressed genes (DEGs) were identified. Weighted correlation network analysis (WGCNA) was performed on these DEGs, and 661 genes' expressions were considered to be affected by inoculation with L. bicolor and B. dothidea. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these 661 DEGs were involved in multiple pathways such as signal transduction, reactive oxygen metabolism, and plant-pathogen interaction. Inoculation with L. bicolor changed the gene expression pattern of the roots, evidencing its involvement in the disease resistance response of P. trichocarpa. This research reveals the mechanism of L. bicolor in inducing resistance to canker of P. trichocarpa at the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.
Collapse
Affiliation(s)
- Fengxin Dong
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (F.D.); (Y.W.)
| | - Yihan Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (F.D.); (Y.W.)
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (F.D.); (Y.W.)
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-1370-922-9152
| |
Collapse
|
40
|
Effect of an Ectomycorrhizal Fungus on the Growth of Castanea henryi Seedlings and the Seasonal Variation of Root Tips’ Structure and Physiology. FORESTS 2021. [DOI: 10.3390/f12121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Castanea henryi is a ubiquitous hardwood chestnut species in southern China and is important both ecologically and economically. It is mainly cultivated for nut production, just like other chestnut species. However, the establishment of C. henryi seedlings in a new orchard has proven to be difficult because few seedlings survive transplanting due to the incompatibility of their coarse root architecture with nutrient-depleted red acid soils in southern China. Root architecture can be profoundly modified and nutrient can be stress alleviated due to the association of roots with ectomycorrhizal (ECM) fungi. Boletus edulis is an ECM fungus with edible and medicinal fruiting bodies. However, its impact on plant growth varies with the plant species it is associated with. In order to elucidate the role of B. edulis in C. henryi afforestation, we evaluated growth parameters and soil enzymatic activities, as well as seasonal variations in physiology and structure of ECM root tips. Growth responses and soil enzymatic activities were measured 6 months after inoculation. The physiological characteristics of root tips were also compared at various seasons throughout the year. B. edulis colonization of C. henryi roots was successful at a 60% colonization rate. Height, base diameter, and biomass (especially the underground part) of inoculated seedlings (JG) were higher than those of uninoculated seedlings (CK). JG had higher root total length, root surface area, root volume, root average diameter, and number of root tips than CK. Additionally, JG exhibited higher total nitrogen and phosphorus content. Abnormal mantle and Harting net were observed in winter. No matter the season, ECM tips had higher antioxidant enzyme activities, root activities, soluble protein content, and lower malondialdehyde compared to non-ECM tips (nE) and those without ECM tips (woE), and there were no differences between nE and woE. It is important to understand the growth of the host plant in response to ECM and that the seasonal variation of ECM root tips is important when growing high-quality C. henryi seedlings, due to the crucial role of B. edulis in improving seedling initial survival rate.
Collapse
|
41
|
Dong F, Wang Y, Tang M. Study on the molecular mechanism of Laccaria bicolor helping Populus trichocarpa to resist the infection of Botryosphaeria dothidea. J Appl Microbiol 2021; 132:2220-2233. [PMID: 34779092 DOI: 10.1111/jam.15359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS This study explored the specific molecular mechanism of Laccaria bicolor to help Populus trichocarpa resist infection by Botryosphaeria dothidea. METHODS AND RESULTS Transcriptome technology was used to sequence P. trichocarpa under disease stress, and a total of 6379 differentially expressed genes (DEGs) were identified. A total of 536 new DEGs were induced by L. bicolor during the infection of B. dothidea. L. bicolor helps to prevent and alleviate the infection of B. dothidea by regulating related genes in the cell wall pathway, signal transduction pathway, disease-resistant protein synthesis pathway and antioxidant enzyme synthesis pathway of P. trichocarpa. CONCLUSION The inoculation of L. bicolor can regulate the expression of genes in the cell wall pathway and enhance the physical defense capabilities of plants. Under disease stress conditions, L. bicolor can regulate signal transduction pathways, disease-resistant related pathways and reactive oxygen species (ROS) clearance pathways to help P. trichocarpa alleviate the disease. SIGNIFICANCE AND IMPACT OF THE STUDY The research reveals the mechanism of L. bicolor inducing resistance to canker of P. trichocarpa from the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.
Collapse
Affiliation(s)
- Fengxin Dong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yihan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.,Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Reuter R, Ferlian O, Tarkka M, Eisenhauer N, Pritsch K, Simon J. Tree species rather than type of mycorrhizal association drive inorganic and organic nitrogen acquisition in tree-tree interactions. TREE PHYSIOLOGY 2021; 41:2096-2108. [PMID: 33929538 DOI: 10.1093/treephys/tpab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species' mycorrhizal association, but their uptake rather depended on the competitor, indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that the inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.
Collapse
Affiliation(s)
- Robert Reuter
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Mika Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 5, Halle 06120, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, HelmholtzZentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstraße 1, Oberschleiβheim 85764, Germany
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
43
|
Liao HL, Bonito G, Hameed K, Wu SH, Chen KH, Labbé J, Schadt CW, Tuskan GA, Martin F, Kuo A, Barry K, Grigoriev IV, Vilgalys R. Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Front Microbiol 2021; 12:680267. [PMID: 34803937 PMCID: PMC8601753 DOI: 10.3389/fmicb.2021.680267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor's microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.
Collapse
Affiliation(s)
- Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Department of Biology, Duke University, Durham, NC, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Khalid Hameed
- Department of Biology, Duke University, Durham, NC, United States
| | - Steven H. Wu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ko-Hsuan Chen
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Invaio Sciences, Cambridge, MA, United States
| | | | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Francis Martin
- University of Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Champenoux, France
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
44
|
Novel Microdialysis Technique Reveals a Dramatic Shift in Metabolite Secretion during the Early Stages of the Interaction between the Ectomycorrhizal Fungus Pisolithus microcarpus and Its Host Eucalyptus grandis. Microorganisms 2021; 9:microorganisms9091817. [PMID: 34576712 PMCID: PMC8465077 DOI: 10.3390/microorganisms9091817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
The colonisation of tree roots by ectomycorrhizal (ECM) fungi is the result of numerous signalling exchanges between organisms, many of which occur before physical contact. However, information is lacking about these exchanges and the compounds that are secreted by each organism before contact. This is in part due to a lack of low disturbance sampling methods with sufficient temporal and spatial resolution to capture these exchanges. Using a novel in situ microdialysis approach, we sampled metabolites released from Eucalyptus grandis and Pisolithus microcarpus independently and during indirect contact over a 48-h time-course using UPLC-MS. A total of 560 and 1530 molecular features (MFs; ESI- and ESI+ respectively) were identified with significant differential abundance from control treatments. We observed that indirect contact between organisms altered the secretion of MFs to produce a distinct metabolomic profile compared to either organism independently. Many of these MFs were produced within the first hour of contact and included several phenylpropanoids, fatty acids and organic acids. These findings show that the secreted metabolome, particularly of the ECM fungus, can rapidly shift during the early stages of pre-symbiotic contact and highlight the importance of observing these early interactions in greater detail. We present microdialysis as a useful tool for examining plant–fungal signalling with high temporal resolution and with minimal experimental disturbance.
Collapse
|
45
|
Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, White JF. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol 2021; 131:2161-2177. [PMID: 33893707 DOI: 10.1111/jam.15111] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Plants associate with communities of microbes (bacteria and fungi) that play critical roles in plant development, nutrient acquisition and oxidative stress tolerance. The major share of plant microbiota is endophytes which inhabit plant tissues and help them in various capacities. In this article, we have reviewed what is presently known with regard to how endophytic microbes interact with plants to modulate root development, branching, root hair formation and their implications in overall plant development. Endophytic microbes link the interactions of plants, rhizospheric microbes and soil to promote nutrient solubilization and further vectoring these nutrients to the plant roots making the soil-plant-microbe continuum. Further, plant roots internalize microbes and oxidatively extract nutrients from microbes in the rhizophagy cycle. The oxidative interactions between endophytes and plants result in the acquisition of nutrients by plants and are also instrumental in oxidative stress tolerance of plants. It is evident that plants actively cultivate microbes internally, on surfaces and in soils to acquire nutrients, modulate development and improve health. Understanding this continuum could be of greater significance in connecting endophytes with the hidden half of the plant that can also be harnessed in applied terms to enhance nutrient acquisition through the development of favourable root system architecture for sustainable production under stress conditions.
Collapse
Affiliation(s)
- S K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P K Sahu
- National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - K Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - G Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S K Gond
- Botany Section, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - R N Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - J F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
46
|
Carr EC, Harris SD, Herr JR, Riekhof WR. Lichens and biofilms: Common collective growth imparts similar developmental strategies. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Jahn L, Hofmann U, Ludwig-Müller J. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant. Int J Mol Sci 2021; 22:2651. [PMID: 33800748 PMCID: PMC7961953 DOI: 10.3390/ijms22052651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.
Collapse
Affiliation(s)
| | | | - Jutta Ludwig-Müller
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany; (L.J.); (U.H.)
| |
Collapse
|
48
|
Abdulsalam O, Wagner K, Wirth S, Kunert M, David A, Kallenbach M, Boland W, Kothe E, Krause K. Phytohormones and volatile organic compounds, like geosmin, in the ectomycorrhiza of Tricholoma vaccinum and Norway spruce (Picea abies). MYCORRHIZA 2021; 31:173-188. [PMID: 33210234 PMCID: PMC7910269 DOI: 10.1007/s00572-020-01005-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/11/2020] [Indexed: 05/29/2023]
Abstract
The ectomycorrhizospheric habitat contains a diverse pool of organisms, including the host plant, mycorrhizal fungi, and other rhizospheric microorganisms. Different signaling molecules may influence the ectomycorrhizal symbiosis. Here, we investigated the potential of the basidiomycete Tricholoma vaccinum to produce communication molecules for the interaction with its coniferous host, Norway spruce (Picea abies). We focused on the production of volatile organic compounds and phytohormones in axenic T. vaccinum cultures, identified the potential biosynthesis genes, and investigated their expression by RNA-Seq analyses. T. vaccinum released volatiles not usually associated with fungi, like limonene and β-barbatene, and geosmin. Using stable isotope labeling, the biosynthesis of geosmin was elucidated. The geosmin biosynthesis gene ges1 of T. vaccinum was identified, and up-regulation was scored during mycorrhiza, while a different regulation was seen with mycorrhizosphere bacteria. The fungus also released the volatile phytohormone ethylene and excreted salicylic and abscisic acid as well as jasmonates into the medium. The tree excreted the auxin, indole-3-acetic acid, and its biosynthesis intermediate, indole-3-acetamide, as well as salicylic acid with its root exudates. These compounds could be shown for the first time in exudates as well as in soil of a natural ectomycorrhizospheric habitat. The effects of phytohormones present in the mycorrhizosphere on hyphal branching of T. vaccinum were assessed. Salicylic and abscisic acid changed hyphal branching in a concentration-dependent manner. Since extensive branching is important for mycorrhiza establishment, a well-balanced level of mycorrhizospheric phytohormones is necessary. The regulation thus can be expected to contribute to an interkingdom language.
Collapse
Affiliation(s)
- Oluwatosin Abdulsalam
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katharina Wagner
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Sophia Wirth
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Maritta Kunert
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Anja David
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Mario Kallenbach
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany.
| |
Collapse
|
49
|
Fracchia F, Mangeot-Peter L, Jacquot L, Martin F, Veneault-Fourrey C, Deveau A. Colonization of Naive Roots from Populus tremula × alba Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Appl Environ Microbiol 2021; 87:e02541-20. [PMID: 33452025 PMCID: PMC8105020 DOI: 10.1128/aem.02541-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Through their roots, trees interact with a highly complex community of microorganisms belonging to various trophic guilds and contributing to tree nutrition, development, and protection against stresses. Tree roots select for specific microbial species from the bulk soil communities. The root microbiome formation is a dynamic process, but little is known on how the different microorganisms colonize the roots and how the selection occurs. To decipher whether the final composition of the root microbiome is the product of several waves of colonization by different guilds of microorganisms, we planted sterile rooted cuttings of gray poplar obtained from plantlets propagated in axenic conditions in natural poplar stand soil. We analyzed the root microbiome at different time points between 2 and 50 days of culture by combining high-throughput Illumina MiSeq sequencing of the fungal ribosomal DNA internal transcribed spacer and bacterial 16S rRNA amplicons with confocal laser scanning microscopy observations. The microbial colonization of poplar roots took place in three stages, but bacteria and fungi had different dynamics. Root bacterial communities were clearly different from those in the soil after 2 days of culture. In contrast, if fungi were also already colonizing roots after 2 days, the initial communities were very close to that in the soil and were dominated by saprotrophs. They were slowly replaced by endophytes and ectomycorhizal fungi. The replacement of the most abundant fungal and bacterial community members observed in poplar roots over time suggest potential competition effect between microorganisms and/or a selection by the host.IMPORTANCE The tree root microbiome is composed of a very diverse set of bacterial and fungal communities. These microorganisms have a profound impact on tree growth, development, and protection against different types of stress. They mainly originate from the bulk soil and colonize the root system, which provides a unique nutrient-rich environment for a diverse assemblage of microbial communities. In order to better understand how the tree root microbiome is shaped over time, we observed the composition of root-associated microbial communities of naive plantlets of poplar transferred in natural soil. The composition of the final root microbiome relies on a series of colonization stages characterized by the dominance of different fungal guilds and bacterial community members over time. Our observations suggest an early stabilization of bacterial communities, whereas fungal communities are established following a more gradual pattern.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - L Jacquot
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - F Martin
- Université de Lorraine, INRAE, IAM, Nancy, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, China
| | | | - A Deveau
- Université de Lorraine, INRAE, IAM, Nancy, France
| |
Collapse
|
50
|
Qin L, Tian P, Cui Q, Hu S, Jian W, Xie C, Yang X, Shen H. Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:644597. [PMID: 33936131 PMCID: PMC8079787 DOI: 10.3389/fpls.2021.644597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.
Collapse
Affiliation(s)
- Lijun Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Peidong Tian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qunyao Cui
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuping Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wei Jian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xingyong Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Xingyong Yang,
| | - Hong Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- College of Resources and Environment Science, Southwest University, Chongqing, China
- Hong Shen,
| |
Collapse
|