1
|
Goldberg-Cavalleri A, Franco-Ortega S, Brown S, Walker A, Rougemont B, Sinclair J, Brazier-Hicks M, Dale R, Onkokesung N, Edwards R. Functional Characterization of Cytochromes P450 Linked to Herbicide Detoxification and Selectivity in Winter Wheat and the Problem Competing Weed Blackgrass. ACS OMEGA 2025; 10:12270-12287. [PMID: 40191331 PMCID: PMC11966285 DOI: 10.1021/acsomega.4c11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
The selective chemical control of wild grasses in wheat is primarily determined by the relative rates of herbicide metabolism, with the superfamily of cytochromes P450 (CYPs) playing a major role in catalyzing phase 1 detoxification reactions. This selectivity is enhanced by herbicide safeners, which induce CYP expression in cereals, or challenged by the evolution of nontarget site resistance (NTSR) in weeds such as blackgrass. Using transcriptomics, proteomics, and functional expression in recombinant yeast, CYPs linked to safener treatment and NTSR have been characterized in wheat and blackgrass. Safener treatment resulted in the induction of 13 families of CYPs in wheat and 5 in blackgrass, with CYP71, CYP72, CYP76, and CYP81 members active toward selective herbicides in the crop. Based on their expression and functional activities, three inducible TaCYP81s were shown to have major roles in safening in wheat. In contrast, a single AmCYP81 that was enhanced by NTSR, but not by safening, was found to dominate herbicide detoxification in blackgrass.
Collapse
Affiliation(s)
- Alina Goldberg-Cavalleri
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Sara Franco-Ortega
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Stewart Brown
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Andrew Walker
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | | | - John Sinclair
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire, Warfield RG42 6EY, U.K.
| | | | - Richard Dale
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire, Warfield RG42 6EY, U.K.
| | - Nawaporn Onkokesung
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Robert Edwards
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
2
|
Landau OA, Jamison BV, Riechers DE. Transcriptomic analysis reveals cloquintocet-mexyl-inducible genes in hexaploid wheat (Triticum aestivum L.). PLoS One 2025; 20:e0319151. [PMID: 39965030 PMCID: PMC11835315 DOI: 10.1371/journal.pone.0319151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Identification and characterization of genes encoding herbicide-detoxifying enzymes is lacking in allohexaploid wheat (Triticum aestivum L.). Gene expression is frequently induced by herbicide safeners and implies the encoded enzymes serve a role in herbicide metabolism and detoxification. Cloquintocet-mexyl (CM) is a safener commonly utilized with halauxifen-methyl (HM), a synthetic auxin herbicide whose phytotoxic form is halauxifen acid (HA). Our first objective was to identify candidate HA-detoxifying genes via RNA-Seq by comparing untreated and CM-treated leaf tissue. On average, 81% of RNA-Seq library reads mapped uniquely to the reference genome and 76.4% of reads were mapped to a gene. Among the 103 significant differentially expressed genes (DEGs), functional annotations indicate the majority of DEGs encode proteins associated with herbicide or xenobiotic metabolism. This finding was further corroborated by gene ontology (GO) enrichment analysis, where several genes were assigned GO terms indicating oxidoreductase activity (34 genes) and transferase activity (45 genes). One of the significant DEGs is a member of the CYP81A subfamily of cytochrome P450s (CYPs; denoted as CYP81A-5A), which are of interest due to their ability to catalyze synthetic auxin detoxification. To investigate CYP expression induced by HM and/or CM, our second objective was to measure gene-specific expression of CYP81A-5A and its homoeologs (CYP81A-5B and CYP81A-5D) in untreated leaf tissue and leaf tissue treated with CM and HM over time using RT-qPCR. Relative to the reference gene (β-tubulin), basal CYP expression is high, expression among these CYPs varies over time, and expression for all CYPs is CM-inducible but not HM-inducible. Further analysis of CYP81A-5A, such as gene knock-out, overexpression experiments, or in vitro activity assays with purified enzyme are necessary to test the hypotheses that the encoded CYP detoxifies HA and that CM upregulates this reaction.
Collapse
Affiliation(s)
- Olivia A. Landau
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Brendan V. Jamison
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Li D, Liu Y, Xu L, Yu H, Kan Y, Liu R, Li G. Dichlormid protect wheat from fomesafen residual injury by increasing PPO expression and the photosynthesis characterize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117701. [PMID: 39793282 DOI: 10.1016/j.ecoenv.2025.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress. To explore its molecular mechanism, RNA-Seq was conducted to analysis transcript profiles between fomesafen and fomesafen+dichlormid treated wheat seedlings. The gene expression level was determined by qRT-PCR. Results showed that the up-regulated genes by dichlormid treatment were significantly enriched in pathways related to photosynthesis. The expression level of glutamyl-tRNA reductase (GTR), protoporphyrinogen IX oxidase (PPO, target of fomesafen), and magnesium chelatase (MAG) involved in chlorophyll biosynthesis was significantly up-regulated by dichlormid. And the expression level of genes in chlorophyll binding, energy biosynthesis, gibberellin biosynthesis and salicylic acid signal pathway was also validated to be significantly up-regulated by dichlormid. The detoxification enzyme activity of cytochrome P450 or glutathione S-transferase (GSTs), and their gene expression level was found to show no significant difference between fomesafen and fomesafen+dichlormid treatment. The antioxidant enzyme activity of peroxidase, superoxide, and the content malondialdehyde content was decreased by dichlormid, while the reduced glutathione content was increased by dichlormid significantly. The metabolism of fomesafen was further validated to be not influenced by dichlormid. These results suggested that dichlormid acted by increasing the expression of fomesafen target and photosynthesis related genes to alleviate fomesafen injury to wheat, but not accelerating fomesafen metabolism.
Collapse
Affiliation(s)
- Dongzhi Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yilin Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Li Xu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hao Yu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yunchao Kan
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China.
| | - Guangling Li
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
4
|
Chu H, Gouda M, He Y, Li X, Li Y, Zhao Y, Zhang X, Liu Y. Developing fluorescence hyperspectral imaging methods for non-invasive detection of herbicide safeners action mechanism and effectiveness. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109309. [PMID: 39577163 DOI: 10.1016/j.plaphy.2024.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Herbicide safeners are considered key agents for plant protection that reduce the harmful impacts of herbicides on crops and the environment in general, but traditional evaluation methods for their effectiveness are time-consuming and labor-intensive. In this study, a rapid and non-destructive method was proposed using chlorophyll fluorescence and hyperspectral imaging that combined with machine learning models. Besides, chemometric analysis was utilized to reveal the action mechanism between the wheat crop (Triticum aestivum L.) understudy and the herbicide isoproturon (ISO) and safener gibberellin acid (GA3). The results showed that ISO caused oxidative stress and disrupted the photosynthesis mechanism in wheat by hindering the electron transport pathway from primary acceptor quinone to secondary acceptor. Meanwhile, GA3 stimulated wheat to synthesize more glutathione (GSH) that accelerated the herbicide action metabolism. It's worth noting that excessive GA3 has decreased significantly the GSH and photosynthetic pigment concentrations, while the malondialdehyde concentration was significantly (p < 0.05) increased. Additionally, competitive adaptive reweighted sampling proved the best performance when combined with partial least squares regression for predicting the phytochemical concentrations that characterized the effectiveness of GA3. In conclusion, the novelty of the current study came from the accurate real-time tracking method for GA3 action mechanism and its effectiveness on ISO toxicity. Where, that model holds great value for reducing the traditional methods' limitations in safener developments.
Collapse
Affiliation(s)
- Hangjian Chu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Li
- Zhejiang Society for Agricultural Machinery, Hangzhou, 310003, China
| | - Yiying Zhao
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaobin Zhang
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yufei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Sun L, Zhang C, Xu H, Su W, Xue F, Leng Q, Niu Y, Lu C, Wu R. Efficacy and mechanism of cyprosulfamide in alleviating the phytotoxicity of clomazone residue on maize seedling. FRONTIERS IN PLANT SCIENCE 2024; 15:1512055. [PMID: 39759224 PMCID: PMC11695230 DOI: 10.3389/fpls.2024.1512055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Introduction The residues of clomazone (Clo) can lead to phytotoxic symptoms such as foliar bleaching, reduced plant height, and decreased maize yields. Herbicide safener represent one of the most economically efficient strategies for mitigating herbicide-induced damage. Methods In this study, various seed treatments were implemented, including the immersion of maize seeds in water (CK), immersion in Cyprosulfamide (CSA), soil supplemented with clomazone (ClO) and CSA+ClO, evaluated physiological indicators, chlorophyll content, and qRT-PCR analyses of the maize plants were evaluated under the different treatments. Results and discussion The objective of this study was to investigate the impact of CSA on mitigating residual damage caused by Clo on maize and elucidate its mechanism. Compared to the CK, treatment with Clo resulted in significant inhibition of maize plant height, fresh weight, chlorophyll content, and carotenoid levels by 19.0%, 29.9%, 92.5%, and 86.3% respectively. On the other hand, under CSA+Clo treatment, milder inhibition was observed with reductions of only 9.4% in plant height and 7.2% in fresh weight, as well as decreases of 35.7% and 21.8% respectively in chlorophyll and carotenoid contents. The findings revealed that the application of CSA effectively mitigated the inhibitory effects of Clo residues on maize plant height, fresh weight, carotenoids and chlorophyll content. Additionally, the combination of CSA and Clo reduced MDA levels by 13.4%, increased SOD activity by 9.7% and GST activity by 26.7%, while elevating GSSG content by 31.3% compared to Clo alone, ultimately mitigating oxidative damage in maize plants. qRT-PCR analysis showed that the expression of five P450 genes (CYP72A5, CYP81A4, CYP81Q32, CYP81A9, CYP81A36), nine GST genes (GST30, GST31, GSTIV, GSTVI, GST21, GST7, GST37, GST25, IN2-1), and two UGT genes (UGT76C2, UGT83A1) significantly high increased by 6.74-, 10.27-, 4.98-, 10.56-, 25.67-, 16.70-, 46.92-,7.53-, 5.10-, 238.82-, 143.50-, 4.58-, 31.51-, 39.3-, 4.20-, 10.47-fold after CSA+Clo treatment compared to that in the Clo treatment. The pre-treatment of CSA led to the upregulation of five P450 genes, nine GST genes, and two UGT genes, which may be associated with the metabolism of Clo in maize. Overall, this study suggests that CSA could be effectively mitigates Clo residual damage by up-regulating detoxification-related genes, enhancing chlorophyll content and activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Lanlan Sun
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Chen Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Hongle Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Wangcang Su
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Fei Xue
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Qiuli Leng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Yujia Niu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| | - Renhai Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou, China
- Henan Key Laboratory of Agricultural Pest Monitoring and Control, Zhengzhou, China
- Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, Zhengzhou, China
| |
Collapse
|
6
|
Torra J, Alcántara-de la Cruz R, de Figueiredo MRA, Gaines TA, Jugulam M, Merotto A, Palma-Bautista C, Rojano-Delgado AM, Riechers DE. Metabolism of 2,4-D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. PEST MANAGEMENT SCIENCE 2024; 80:6041-6052. [PMID: 39132883 DOI: 10.1002/ps.8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs. This review explores 2,4-D tolerance in crops and evolved resistance in weeds, emphasizing an in-depth understanding of 2,4-D metabolic detoxification. Nine confirmed 2,4-D-resistant weed species, driven by rapid metabolism, highlight cytochrome P450 monooxygenases in Phase I and glycosyltransferases in Phase II as key enzymes. Resistance to 2,4-D may also involve impaired translocation associated with mutations in auxin/indole-3-acetic acid (Aux/IAA) co-receptor genes. Moreover, temperature variations affect 2,4-D efficacy, with high temperatures increasing herbicide metabolism rates and reducing weed control, while drought stress did not affect 2,4-D efficacy. Research on 2,4-D resistance has primarily focused on non-target-site resistance (NTSR) mechanisms, including 2,4-D metabolic detoxification, with limited exploration of the inheritance and genetic basis underlying these traits. Resistance to 2,4-D in weeds is typically governed by a single gene, either dominant or incompletely dominant, raising questions about gain-of-function or loss-of-function mutations that confer resistance. Future research should unravel the physiological and molecular-genetic basis of 2,4-D NTSR, exploring potential cross-resistance patterns and assessing fitness costs that may affect future evolution of auxin-resistant weeds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Torra
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - Agrotecnio CERCA Center, Lleida, Spain
| | | | | | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Dean E Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Simonsen D, Livania V, Cwiertny DM, Samuelson RJ, Sivey JD, Lehmler HJ. A systematic review of herbicide safener toxicity. Crit Rev Toxicol 2024; 54:805-855. [PMID: 39351770 DOI: 10.1080/10408444.2024.2391431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 12/24/2024]
Abstract
Herbicide safeners are agrochemicals added to herbicide formulations to protect crops from herbicide damage without reducing the effectiveness of the herbicide against weeds. While safeners are typically structurally similar to their co-formulated herbicides, they are classified as "inert" in the United States, meaning they are not held to the same regulatory standards as the herbicides. This review systematically examines the toxicity of safeners, which is important given their large-scale global use and potential for exposure to wildlife, livestock, and humans. A systematic review of peer-reviewed literature identified only seven studies examining safener toxicity. Regulatory toxicity data, compiled from the European Chemicals Agency (ECHA) database, included data for 9 of the 18 commercial safeners. Most safeners have low acute ecotoxicity and mammalian toxicity; however, chronic effects and the underlying mechanism are less clear. Benoxacor showed enantioselective metabolism and depletion by drug-metabolizing enzymes. In conclusion, despite the widespread use of safeners, significant knowledge gaps exist regarding their toxicity. More research is needed to fully characterize the potential risks of safeners to human health and the environment. Regulatory agencies should consider reclassifying safeners as active ingredients to ensure adequate toxicity testing and risk assessment.
Collapse
Affiliation(s)
- Derek Simonsen
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Vanessa Livania
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
| | - David M Cwiertny
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa, USA
| | | | - John D Sivey
- Department of Chemistry, Towson University, Towson, Maryland, USA
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa, USA
- IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Haugrud NH, Friskop A, Ikley JT. Herbicide safener isoxadifen-ethyl associated with increased Goss's wilt severity in corn (Zea mays). PEST MANAGEMENT SCIENCE 2024; 80:4516-4522. [PMID: 38717312 DOI: 10.1002/ps.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Goss's bacterial wilt and leaf blight (Goss's wilt), caused by the bacterium Clavibacter nebraskensis, is a corn disease that has been a top ten yield-reducing disease in North America in the past 15 years. Isoxadifen-ethyl is an herbicide safener that effectively increases cytochrome P450 activity in corn which enhances a plant's metabolism of herbicide molecules. Recent research found a potential link between isoxadifen-ethyl and increased Goss's wilt severity. RESULTS The application of isoxadifen-ethyl increased (P = 0.014-0.046) area under disease progress curve (AUDPC) by 19%, 7%, and 9% at three environments, independent of accompanying herbicide or herbicide application timing. However, no significant differences in incidence of systemic wilt or corn grain yield occurred among treatments at any environment. CONCLUSION These data provide evidence for an association between isoxadifen-ethyl safener and Goss's wilt in corn. The reason for this association is unknown, but the safener may affect plant or pathogen physiological mechanisms. While the increased disease severity did not result in decreased grain yield in these experiments, an increase in pathogen inoculum due to higher disease severity could influence Goss' wilt epidemics in future years. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nathan H Haugrud
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Andrew Friskop
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Joseph T Ikley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
9
|
Peng J, Gao S, Bi JH, Shi J, Jia L, Pang QF, Zhao DM, Fu Y, Ye F. Design, Synthesis, and Biological Evaluation of Novel Purine Derivatives as Herbicide Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598318 DOI: 10.1021/acs.jafc.3c08138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Mesosulfuron-methyl, an inhibitor of acetolactate synthase (ALS), has been extensively used in wheats. However, it can damage wheat (Triticum aestivum) and even lead to crop death. Herbicide safeners selectively shield crops from such damage without compromising weed control. To mitigate the phytotoxicity of mesosulfuron-methyl in crops, several purine derivatives were developed based on active substructure splicing. The synthesized title compounds underwent thorough characterization using infrared spectroscopy, 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. We evaluated chlorophyll and glutathione contents as well as various enzyme activities to evaluate the safer activity of these compounds. Compounds III-3 and III-7 exhibited superior activity compared with the safener mefenpyr-diethyl. Molecular structure analysis, along with predictions of absorption, distribution, metabolism, excretion, and toxicity, indicated that compound III-7 shared pharmacokinetic traits with the commercial safener mefenpyr-diethyl. Molecular docking simulations revealed that compound III-7 competitively bound to the ALS active site with mesosulfuron-methyl, elucidating the protective mechanism of the safeners. Overall, this study highlights purine derivatives as potential candidates for novel safener development.
Collapse
Affiliation(s)
- Jie Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jing-Hu Bi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Qi-Fan Pang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dong-Mei Zhao
- School of Food Engineering, East University of Heilongjiang, Harbin 150076, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Sun L, Ma R, Xu H, Su W, Xue F, Wu R, Lu C. Protective mechanisms of neral as a plant-derived safener against fenoxaprop-p-ethyl injury in rice. PEST MANAGEMENT SCIENCE 2024; 80:1249-1257. [PMID: 37940406 DOI: 10.1002/ps.7854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The use of herbicide safeners effectively minimises crop damage while maintaining the full efficacy of herbicides. The present study aimed to assess the potential protective effects of neral (NR) as a safener, in order to mitigate injury caused by fenoxaprop-p-ethyl (FE) on rice. RESULTS The alleviating effect of NR was similar to that of the safener isoxadifen-ethyl (IE). The root elongation of rice was significantly promoted under the FE + NR and FE + IE treatments, as compared to the FE treatment. The transcriptome analysis further suggested that the effects of NR treatment on plant metabolic pathways differed from those of IE treatment. In total, 895 and 47 up-differentially expressed genes induced by NR (NR-inducible genes) and IE (IE-inducible genes) were identified. NR-inducible genes were mainly enriched in phytohormone synthesis and signalling response, including 'response to brassinosteroid', 'response to jasmonic acid', 'response to ethylene', 'brassinosteroid metabolic process', 'brassinosteroid biosynthesis' and 'plant hormone signal transduction'. In contrast, IE-inducible genes were predominantly enriched in glutathione metabolism. The activity of glutathione S-transferase was found to be increased after IE treatment, whereas no significant increase was observed following NR treatment. Moreover, several transcription factor genes, such as those encoding AP2/ERF-ERF and (basic helix-loop-helix) bHLH were found to be significantly induced by NR treatment. CONCLUSION This is the first report of the utilisation of NR as an herbicide safener. The results of this study suggest the toxicity of FE to rice is mitigated by NR through a distinct mechanism compared to IE. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ronghui Ma
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
11
|
Zhao Y, Ye F, Fu Y. Herbicide Safeners: From Molecular Structure Design to Safener Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2451-2466. [PMID: 38276871 DOI: 10.1021/acs.jafc.3c08923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herbicide safeners, highly effective antidotes, find widespread application in fields for alleviating the phytotoxicity of herbicides to crops. Designing new herbicide safeners remains a notable issue in pesticide research. This review focuses on discussing and summarizing the structure-activity relationships, molecular structures, physicochemical properties, and molecular docking of herbicide safeners in order to explore how different structures affect the safener activities of target compounds. It also provides insights into the application prospects of computer-aided drug design for designing and synthesizing new safeners in the future.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Pingarron-Cardenas G, Onkokesung N, Goldberg-Cavalleri A, Lange G, Dittgen J, Edwards R. Selective herbicide safening in dicot plants: a case study in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 14:1335764. [PMID: 38288413 PMCID: PMC10822893 DOI: 10.3389/fpls.2023.1335764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Safeners are agrochemicals co-applied with herbicides that facilitate selective control of weeds by protecting monocot crops from chemical injury through enhancing the expression of detoxifying enzymes such as glutathione transferases (GSTs). Even though the application of safeners causes the induction of genes encoding GSTs in model dicots such as Arabidopsis thaliana, safeners do not protect broadleaf crops from herbicide injury. In this study, we proposed that the localized induction of Arabidopsis GSTs and the fundamental differences in their detoxifying activity between dicot and monocot species, underpin the failure of safeners to protect Arabidopsis from herbicide toxicity. Using the herbicide safener, isoxadifen-ethyl, we showed that three tau (U) family GSTs namely AtGSTU7, AtGSTU19 and AtGSTU24 were induced with different magnitude by isoxadifen treatment in root and rosette tissues. The higher magnitude of inducibility of these AtGSTUs in the root tissues coincided with the enhanced metabolism of flufenacet, a herbicide that is active in root tissue, protecting Arabidopsis plants from chemical injury. Assay of the recombinant enzyme activities and the significant reduction in flufenacet metabolism determined in the T-DNA insertion mutant of AtGSTU7 (gstu7) in Arabidopsis plants identified an important function for AtGSTU7 protein in flufenacet detoxification. In-silico structural modeling of AtGSTU7, suggested the unique high activity of this enzyme toward flufenacet was due to a less constrained active site compared to AtGSTU19 and AtGSTU24. We demonstrate here that it is possible to induce herbicide detoxification in dicotyledonous plants by safener treatment, albeit with this activity being restricted to very specific combinations of herbicide chemistry, and the localized induction of enzymes with specific detoxifying activities.
Collapse
Affiliation(s)
- Gabriela Pingarron-Cardenas
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Nawaporn Onkokesung
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Alina Goldberg-Cavalleri
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gudrun Lange
- Bayer Aktiengesellschaft (AG), Crop Science Division, Computational Life Sciences, Frankfurt, Germany
| | - Jan Dittgen
- Bayer Aktiengesellschaft (AG), Crop Science Division, Weed Control Research, Frankfurt, Germany
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
13
|
Shi Y, Wang J, Wang Z, Jiao Z, Du Q, Jia X, Niu J, Du R, Ji G, Duan P, Lv P, Cao J. Integrating transcriptome and physiological analyses to elucidate the molecular responses of sorghum to fluxofenim and metolachlor herbicide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105692. [PMID: 38072547 DOI: 10.1016/j.pestbp.2023.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
The extensive use of herbicides has raised concerns about crop damage, necessitating the development of effective herbicide safeners. Fluxofenim has emerged as a promising herbicide safener; however, it's underlying mechanism remains unclear. Here, we screened two inbred lines 407B and HYZ to investigate the detoxication of fluxofenim in mitigating metolachlor damage in sorghum. Metolachlor inhibited seedling growth in both 407B and HYZ, while, fluxofenim could significantly restore the growth of 407B, but not effectively complement the growth of HYZ. Fluxofenim significantly increased the activities of glutathione-S-transferase (GST) to decrease metolachlor residue in 407B, but not in HYZ. This implys that fluxofenim may reduce metolachlor toxicity by regulating its metabolism. Furthermore, metolachlor suppressed AUX-related and JA-related genes expression, while up-regulated the expression of SA-related genes. Fluxofenim also restored the expression of AUX-related and JA-related genes inhibited by metolachlor and further increased expression of SA-related genes. Moreover, we noted a significant increase in the content of trans-zeatin O-glucoside (tZOG) and Gibberellin1 (GA1) after the fluxofenim treatment. In conclusion, fluxofenim may reduce the injury of herbicide by affecting herbicide metabolism and regulating hormone signaling pathway.
Collapse
Affiliation(s)
- Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Qi Du
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Xinyue Jia
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Jingtian Niu
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Ruiheng Du
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Guisu Ji
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Pengwei Duan
- Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050000, China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China.
| | - Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Canella Vieira C, Zhou J, Jarquin D, Zhou J, Diers B, Riechers DE, Nguyen HT, Shannon G. Genetic architecture of soybean tolerance to off-target dicamba. FRONTIERS IN PLANT SCIENCE 2023; 14:1230068. [PMID: 37877091 PMCID: PMC10590897 DOI: 10.3389/fpls.2023.1230068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
The adoption of dicamba-tolerant (DT) soybean in the United States resulted in extensive off-target dicamba damage to non-DT vegetation across soybean-producing states. Although soybeans are highly sensitive to dicamba, the intensity of observed symptoms and yield losses are affected by the genetic background of genotypes. Thus, the objective of this study was to detect novel marker-trait associations and expand on previously identified genomic regions related to soybean response to off-target dicamba. A total of 551 non-DT advanced breeding lines derived from 232 unique bi-parental populations were phenotyped for off-target dicamba across nine environments for three years. Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K BeadChip. Filtered SNPs were included as predictors in Random Forest (RF) and Support Vector Machine (SVM) models in a forward stepwise selection loop to identify the combination of SNPs yielding the highest classification accuracy. Both RF and SVM models yielded high classification accuracies (0.76 and 0.79, respectively) with minor extreme misclassifications (observed tolerant predicted as susceptible, and vice-versa). Eight genomic regions associated with off-target dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2], 8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of tolerance is complex, high classification accuracies were obtained when including the major effect SNP identified on chromosome 6 as the sole predictor. In addition, candidate genes with annotated functions associated with phases II (conjugation of hydroxylated herbicides to endogenous sugar molecules) and III (transportation of herbicide conjugates into the vacuole) of herbicide detoxification in plants were co-localized with significant markers within each genomic region. Genomic prediction models, as reported in this study, can greatly facilitate the identification of genotypes with superior tolerance to off-target dicamba.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Sun L, Yang M, Su W, Xu H, Xue F, Lu C, Wu R. Transcriptomic analysis of maize uncovers putative genes involved in metabolic detoxification under four safeners treatment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105465. [PMID: 37532342 DOI: 10.1016/j.pestbp.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
Isoxadifen-ethyl (IDF) and cyprosulfamide (CSA) can effectively protect maize from nicosulfuron (NIC) injury, while mefenpyr-diethyl (MPR) and fenchlorazole-ethyl (FCO) did not. Their chemical diversity and requirement to use them in combination with the corresponding herbicides suggest that their elicitation of gene expression are complex and whether it is associated with the safening activity remains elusive. In this study, our first objective was to determine whether or not the ability of four safeners to enhance the metabolic rate of nicosulfuron. It was found that nicosulfuron degradation in maize was accelerated by IDF and CSA, but not by FCO and MPR. Transcriptomic analysis showed that the number of genes induced by IDF and CSA were larger than that induced by FCO and MPR. Overall, 34 genes associated with detoxification were identified, including glutathione S-transferase (GST), cytochrome P450 (CYP450), UDP-glucosyltransferase (UGT), transporter and serine. Moreover, 14 detoxification genes were screened for further verification by real-time PCR in two maize inbred lines. Two maize inbred lines exhibited high expression levels of four genes (GST31, GST39, AGXT2 and ADH) after IDF treatment. GST6, GST19, MATE, SCPL18 and UF3GT were specifically up-regulated in telerant maize inbred line under IDF and IDF + NIC treatments. Seven genes, namely GST31, GST6, GST19, UF3GT, MATE, ADH and SCPL18, are induced by IDF and CSA to play a vital role in regulating the detoxification process of NIC. Accordingly, the GST activity in maize was accelerated by IDF and CSA, but not by FCO and MPR. This result is consistent with transcriptome and metabolic data.These results indicate that the mitigation of NIC damage is associated with enhanced herbicide metabolism. IDF and CSA were more effective in protecting maize from NIC injury due to their ability to enhance the detoxification of specific types of herbicides, compared to FCO and MPR. The chemical specificity of four safeners is attributed to the up-regulated genes related to the detoxification pathway.
Collapse
Affiliation(s)
- Lanlan Sun
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Muhan Yang
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Wangcang Su
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Hongle Xu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Fei Xue
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Chuantao Lu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Renhai Wu
- Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China.
| |
Collapse
|
16
|
Ye BW, Zhao LX, Wang ZW, Shi J, Leng XY, Gao S, Fu Y, Ye F. Design, Synthesis, and Bioactivity of Novel Ester-Substituted Cyclohexenone Derivatives as Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37017396 DOI: 10.1021/acs.jafc.2c07979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tembotrione, a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, has been widely used in many types of plants. Tembotrione has been reported for its likelihood of causing injury and plant death to certain corn hybrids. Safeners are co-applied with herbicides to protect certain crops without compromising weed control efficacy. Alternatively, herbicide safeners may effectively improve herbicide selectivity. To address tembotrione-induced Zea mays injury, a series of novel ester-substituted cyclohexenone derivatives were designed using the fragment splicing method. In total, 35 title compounds were synthesized via acylation reactions. All the compounds were characterized using infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. The configuration of compound II-15 was confirmed using single-crystal X-ray diffraction. The bioactivity assay proved that tembotrione phytotoxicity to maize could be reduced by most title compounds. In particular, compound II-14 exhibited the highest activity against tembotrione. The molecular structure comparisons as well as absorption, distribution, metabolism, excretion, and toxicity predictions demonstrated that compound II-14 exhibited pharmacokinetic properties similar to those of the commercial safener isoxadifen-ethyl. The molecular docking model indicated that compound II-14 could prevent tembotrione from reaching or acting with Z. mays HPPD (PDB: 1SP8). Molecular dynamics simulations showed that compound II-14 maintained satisfactory stability with Z. mays HPPD. This research revealed that ester-substituted cyclohexenone derivatives can be developed as potential candidates for discovering novel herbicide safeners in the future.
Collapse
Affiliation(s)
- Bo-Wen Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Wei Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Zhao Y, Ye F, Fu Y. Research Progress on the Action Mechanism of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3639-3650. [PMID: 36794646 DOI: 10.1021/acs.jafc.2c08815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herbicide safeners are agricultural chemicals that protect crops from herbicide injury and improve the safety of herbicides and the effectiveness of weed control. Safeners induce and enhance the tolerance of crops to herbicides through the synergism of multiple mechanisms. The principal mechanism is that the metabolic rate of the herbicide in the crop is accelerated by safeners, resulting in the damaging concentration at the site of action being reduced. We focused on discussing and summarizing the multiple mechanisms of safeners to protect crops in this review. It is also emphasized how safeners alleviate herbicide phytotoxicity to crops by regulating the detoxification process and conducting perspectives on future research on the action mechanism of safeners at the molecular level.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Manan A, Roytrakul S, Charoenlappanit S, Poolpak T, Ounjai P, Kruatrachue M, Yang KM, Pokethitiyook P. Glyphosate metabolism in Tetrahymena thermophila: A shotgun proteomic analysis approach. ENVIRONMENTAL TOXICOLOGY 2023; 38:867-882. [PMID: 36602419 DOI: 10.1002/tox.23735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/11/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides in the world. However, because of its overuse and resistance to degradation, high levels of glyphosate residues in the environment are reported. Therefore, this study aimed to investigate the effects of glyphosate on proteomic aspects of Tetrahymena thermophila and their uses as bioindicators of freshwater ecosystem. First, an acute toxicity test was performed to determine the median inhibition concentration (IC50 ). The toxicity test results showed that glyphosate inhibited the growth (proliferation) of T. thermophila. The 96 h-IC50 value of glyphosate was 171 mg L-1 . No visible changes in aggregation behavior and cell morphology were observed under glyphosate exposure. In addition, the effects of low and high dose glyphosate concentrations (77.5 mg L-1 , 171 mg L-1 ) on the proteomic changes of T. thermophila was investigated using a label-free shotgun proteomic approach. A total of 3191 proteins were identified, 2791 proteins were expressed in the control, 2651 proteins were expressed in 77.5 mg L-1 glyphosates, and 3012 proteins were expressed in 171 mg L-1 glyphosates. Under glyphosate exposure at both low and high dose glyphosate, 400 unique proteins were upregulated. The majority of these proteins was classified as proteins associated with oxidative stress response and intracellular transport indicating the shifts in the internal metabolism. Proteomics revealed that the glyphosate metabolism by T. thermophila is a multi-step process involving several enzymes, which can be divided into four phases, including modification (phase I), conjugation (phase II), transport (phase III), and degradation (phase IV). The accumulation of various biochemical reactions contributes to overall glyphosate resistance. With the proteomics approach, we have found that T. thermophila was equipped with glyphosate detoxification and degradation mechanisms.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
19
|
Casey A, Dolan L. Genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLoS One 2023; 18:e0273594. [PMID: 36800395 PMCID: PMC9937507 DOI: 10.1371/journal.pone.0273594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenases and glutathione S-transferases (GST) are enzymes that catalyse chemical modifications of a range of organic compounds. Herbicide resistance has been associated with higher levels of CYP and GST gene expression in some herbicide-resistant weed populations compared to sensitive populations of the same species. By comparing the protein sequences of 9 representative species of the Archaeplastida-the lineage which includes red algae, glaucophyte algae, chlorophyte algae, and streptophytes-and generating phylogenetic trees, we identified the CYP and GST proteins that existed in the common ancestor of the Archaeplastida. All CYP clans and all but one land plant GST classes present in land plants evolved before the divergence of streptophyte algae and land plants from their last common ancestor. We also demonstrate that there are more genes encoding CYP and GST proteins in land plants than in algae. The larger numbers of genes among land plants largely results from gene duplications in CYP clans 71, 72, and 85 and in the GST phi and tau classes [1,2]. Enzymes that either metabolise herbicides or confer herbicide resistance belong to CYP clans 71 and 72 and the GST phi and tau classes. Most CYP proteins that have been shown to confer herbicide resistance are members of the CYP81 family from clan 71. These results demonstrate that the clan and class diversity in extant plant CYP and GST proteins had evolved before the divergence of land plants and streptophyte algae from a last common ancestor estimated to be between 515 and 474 million years ago. Then, early in embryophyte evolution during the Palaeozoic, gene duplication in four of the twelve CYP clans, and in two of the fourteen GST classes, led to the large numbers of CYP and GST proteins found in extant land plants. It is among the genes of CYP clans 71 and 72 and GST classes phi and tau that alleles conferring herbicide resistance evolved in the last fifty years.
Collapse
Affiliation(s)
- Alexandra Casey
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Canella Vieira C, Jarquin D, do Nascimento EF, Lee D, Zhou J, Smothers S, Zhou J, Diers B, Riechers DE, Xu D, Shannon G, Chen P, Nguyen HT. Identification of genomic regions associated with soybean responses to off-target dicamba exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:1090072. [PMID: 36570921 PMCID: PMC9780662 DOI: 10.3389/fpls.2022.1090072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The widespread adoption of genetically modified (GM) dicamba-tolerant (DT) soybean was followed by numerous reports of off-target dicamba damage and yield losses across most soybean-producing states. In this study, a subset of the USDA Soybean Germplasm Collection consisting of 382 genetically diverse soybean accessions originating from 15 countries was used to identify genomic regions associated with soybean response to off-target dicamba exposure. Accessions were genotyped with the SoySNP50K BeadChip and visually screened for damage in environments with prolonged exposure to off-target dicamba. Two models were implemented to detect significant marker-trait associations: the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) and a model that allows the inclusion of population structure in interaction with the environment (G×E) to account for variable patterns of genotype responses in different environments. Most accessions (84%) showed a moderate response, either moderately tolerant or moderately susceptible, with approximately 8% showing tolerance and susceptibility. No differences in off-target dicamba damage were observed across maturity groups and centers of origin. Both models identified significant associations in regions of chromosomes 10 and 19. The BLINK model identified additional significant marker-trait associations on chromosomes 11, 14, and 18, while the G×E model identified another significant marker-trait association on chromosome 15. The significant SNPs identified by both models are located within candidate genes possessing annotated functions involving different phases of herbicide detoxification in plants. These results entertain the possibility of developing non-GM soybean cultivars with improved tolerance to off-target dicamba exposure and potentially other synthetic auxin herbicides. Identification of genetic sources of tolerance and genomic regions conferring higher tolerance to off-target dicamba may sustain and improve the production of other non-DT herbicide soybean production systems, including the growing niche markets of organic and conventional soybean.
Collapse
Affiliation(s)
- Caio Canella Vieira
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Emanuel Ferrari do Nascimento
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Dongho Lee
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jing Zhou
- Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Scotty Smothers
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Jianfeng Zhou
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brian Diers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Grover Shannon
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Pengyin Chen
- Fisher Delta Research, Extension, and Education Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO, United States
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Faizan M, Tonny SH, Afzal S, Farooqui Z, Alam P, Ahmed SM, Yu F, Hayat S. β-Cyclocitral: Emerging Bioactive Compound in Plants. Molecules 2022; 27:molecules27206845. [PMID: 36296438 PMCID: PMC9608612 DOI: 10.3390/molecules27206845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - S Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Fangyuan Yu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
22
|
Gaafar RM, Osman MEAH, Abo-Shady AM, Almohisen IAA, Badawy GA, El-Nagar MMF, Ismail GA. Role of Antioxidant Enzymes and Glutathione S-Transferase in Bromoxynil Herbicide Stress Tolerance in Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202679. [PMID: 36297703 PMCID: PMC9607508 DOI: 10.3390/plants11202679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Numerous pesticides and herbicides used in excess cause oxidative stress in plants. These chemicals protect plants from weeds and pests, but they also have very negative side effects, making them common abiotic stressors. One of the most significant nutritional crops in the world is the wheat plant. Conditions of herbicide stress have a negative impact on the plant's phonological phases and metabolic pathways. Plants primarily make an effort to adjust to the environment and develop oxidative homeostasis, which supports stress tolerance. METHODS When controlling broadleaf weeds that emerge after cereal crop plants have been planted, bromoxynil is frequently used as a selective-contact herbicide. This study looked at the effects of the cyanobacteria Arthrospira platensis and Nostoc muscorum aqueous extracts, tryptophan, and bromoxynil (Bh) alone or in combination on wheat plant growth parameters. Both tryptophan and cyanobacterial extract were used as chemical and natural safeners against Bh application. The antioxidant activity and transcriptome studies using qRT-PCR were assayed after 24, 48, 72, 96 h, and 15 days from Bh application in the vegetation stage of wheat plants (55 days old). RESULTS In comparison with plants treated with Bh, wheat plants treated with cyanobacteria and tryptophan showed improvements in all growth parameters. Following application of Bh, wheat plants showed reduced glutathione content, as well as reduced antioxidant enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-s-transferase. The combination of different treatments and Bh caused alleviation of the harmful effect induced by Bh on the measured parameters. Additionally, the expression of glutathione synthase and glutathione peroxidase, in addition to those of three genes (Zeta, Tau, and Lambda) of the GST gene family, was significantly upregulated when using Bh alone or in combination with different treatments, particularly after 24 h of treatment. CONCLUSION The current study suggests using cyanobacterial extracts, particularly the A. platensis extract, for the development of an antioxidant defense system against herbicide toxicity, which would improve the metabolic response of developed wheat plants.
Collapse
Affiliation(s)
- Reda M. Gaafar
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Atef M. Abo-Shady
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ibrahim A. A. Almohisen
- Department of Biology, Faculty of Science and Humanities, Shaqra University, Quwayiyah 11971, Saudi Arabia
| | - Ghada Ahmed Badawy
- Department of Biology, University College of Umluj, Umluj Branch Tabuk University, Tabuk 71491, Saudi Arabia
- Department of Botany, Faculty of Science, El-Fayoum University, Fayoum 63514, Egypt
| | | | - Gehan A. Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
23
|
Jia L, Zhao LX, Sun F, Peng J, Wang JY, Leng XY, Gao S, Fu Y, Ye F. Diazabicyclo derivatives as safeners protect cotton from injury caused by flumioxazin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105185. [PMID: 36127047 DOI: 10.1016/j.pestbp.2022.105185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Flumioxazin, a protoporphyrinogen oxidase (PPO; EC 1.3.3.4) inhibitor, has been used in soybean, cotton, grapes, and many other crops to control broad leaf weeds. Unfortunately, it can cause damage to cotton. To ameliorate phytotoxicity of flumioxazin to cotton, this work assessed the protective effects of diazabicyclo derivatives as potential safeners in cotton. A bioactivity assay proved that the phytotoxicity of flumioxazin on cotton was alleviated by some of the compounds. In particular, the activity of glutathione S-transferases (GSTs) was significantly enhanced by Compound 32, which showed good safening activity against flumioxazin injury. The physicochemical properties and absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions proved that the pharmacokinetic properties of Compound 32 are similar to those of the commercial safener BAS 145138. The present work demonstrated that diazabicyclo derivatives are potentially efficacious as herbicide safeners, meriting further investigation.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fang Sun
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jie Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Yu Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
24
|
Shan Q, Liu M, Li R, Shi Q, Li Y, Gong B. γ-Aminobutyric acid (GABA) improves pesticide detoxification in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155404. [PMID: 35469890 DOI: 10.1016/j.scitotenv.2022.155404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
It is important to ensure food safety to study the technology and mechanism of pesticide residues degradation in crops. Though γ-aminobutyric acid (GABA) has been widely reported to involve in plant stress resistance, whether exogenous application or endogenous regulation of GABA by gene-editing technology can promote the pesticide detoxification is not clear in plants. Using tomato and chlorothalonil (CHT) as research models, we discovered that exogenous application of GABA or endogenous elevation of GABA by knockout of pyruvate-dependent GABA transaminase promoted both CHT metabolism and plant stress tolerance to CHT. This is closely related to the active adaptation of GABA to CHT stress by regulating the plant GABA shunt pathway and polyamine pathway. The transcriptome data revealed 17 target genes that may be closely related to the involvement of GABA in CHT metabolism, including 4 peroxidases, 5 glycosyltransferases, 4 glutathione S-transferases, and 4 ABC transporters. In addition, the glutathione detoxification pathway and antioxidative enzyme also actively participated in the GABA-induced CHT detoxification process, which played an important role in relieving CHT stress. As a result, GABA significantly increased the photosynthetic capacity of tomato leaves under CHT stress. While studying photosynthesis, we unexpectedly found that GABA promotes stomatal closure in terms of decreased stomatal conductance and stomatal diameter. This result implies that GABA can reduce CHT absorption by regulating stomatal movement in leaves. Together, we provided a novel viewpoint that foliar application of GABA or metabolic engineering of GABA is an effective approach to reduce the risk of pesticide contamination in crop production.
Collapse
Affiliation(s)
- Qing Shan
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Minghui Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Rui Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Biao Gong
- State Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
25
|
Lanasa S, Niedzwiecki M, Reber KP, East A, Sivey JD, Salice CJ. Comparative Toxicity of Herbicide Active Ingredients, Safener Additives, and Commercial Formulations to the Nontarget Alga Raphidocelis Subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1466-1476. [PMID: 35262227 DOI: 10.1002/etc.5327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Chloroacetanilide herbicides are used worldwide to control weeds that affect crops such as corn, soybeans, and cotton. These herbicides are frequently paired with a "safener," which prevents herbicidal damage to the crop without diminishing weed control. Formulated herbicide products that include safeners and other ingredients are infrequently assessed for toxicity. Our goal was to understand the potential toxicity of safeners and herbicide + safener formulations relative to the toxicity of associated active ingredients. We quantified the concentration of safeners in commercially available formulations and tested effects on nontarget algae, Raphidocelis subcapitata, when exposed to individual herbicide active ingredients, safeners, and commercial formulations. The median effective concentrations (EC50s) causing 50% reduction in population growth for the herbicide active ingredients S-metolachlor and acetochlor were 0.046 and 0.003 ppm, respectively. The safeners benoxacor, AD-67, furilazole, and dichlormid were all substantially less toxic than the herbicides and were not toxic at environmentally relevant concentrations. The commercial formulations Dual II Magnum®, Me-Too-Lachlor II®, Harness®, and Surpass EC® all resulted in EC50 values that fell within the 95% confidence interval of the associated active ingredient herbicide. Interestingly, a significant increase in cell size was observed when algae were exposed to all the formulations, herbicides (acetochlor and S-metolachlor), and safener (dichlormid). The safener furilazole caused a significant decrease in cell size, whereas benoxacor and AD-67 had no observed effect on algae cell size. Significant algae cell size effects all occurred at or above the EC50 concentrations for each chemical, suggesting that other morphological effects may be occurring. Importantly, safeners in commercial formulations appeared not to impact toxicity to R. subcapitata compared with the active ingredient alone. Environ Toxicol Chem 2022;41:1466-1476. © 2022 SETAC.
Collapse
Affiliation(s)
- Sarah Lanasa
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| | - Mark Niedzwiecki
- Department of Chemistry, Towson University, Towson, Maryland, USA
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland, USA
| | - Andrew East
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| | - John D Sivey
- Department of Chemistry, Towson University, Towson, Maryland, USA
| | - Christopher J Salice
- Environmental Science and Studies Program, Towson University, Towson, Maryland, USA
| |
Collapse
|
26
|
Kubicki M, Giannakopoulos G, Lamshöft M, Dittgen J. Spatially Resolved Investigation of Herbicide-Safener Interaction in Maize ( Zea mays L.) by MALDI-Imaging Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6368-6376. [PMID: 35583469 DOI: 10.1021/acs.jafc.2c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monitoring agrochemical distribution within plant tissues delivers significant insights into the adsorption, distribution, metabolism, and elimination of agrochemicals. Detection and imaging of the safener cyprosulfamide (CSA) and the herbicide thiencarbazone-methyl (TCM) after micro-droplet application on the surface of maize leaves (Zea mays L.) have been achieved using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The agrochemicals were deposited onto the adaxial surface of maize leaves on growing plants, and their uptake, distribution, and metabolism were investigated at four timepoints (3 h, 24 h, 4 days, and 7 days) to assess the influence of CSA treatment on TCM metabolism. MALDI MSI visualized significant changes for the metabolism of TCM after 24 h. Although TCM metabolism was detected neither in the control without the safener nor in the approach with CSA on the second leaf, the co-application on the same leaf showed significant metabolism of the herbicide by detecting the metabolite N-demethylated TCM. These findings suggest that safener protection against herbicide injury is a rapid process in which CSA and TCM need to be present in the same tissues. This study showcases the use of MALDI MSI to visualize and analyze indirect interactions of two substances in planta.
Collapse
Affiliation(s)
- Michael Kubicki
- Crop Science Division, Environmental Safety─Metabolism & Kinetics, Bayer AG, 40789 Monheim am Rhein, Germany
| | - George Giannakopoulos
- Crop Protection Group, School of Natural and Environmental Sciences, Newcastle University, NE1 7RU Newcastle Upon Tyne, U.K
| | - Marc Lamshöft
- Crop Science Division, Environmental Safety─Metabolism & Kinetics, Bayer AG, 40789 Monheim am Rhein, Germany
| | - Jan Dittgen
- Crop Science Division, Weed Control Research, Bayer AG, 65926 Frankfurt, Germany
| |
Collapse
|
27
|
Brazier-Hicks M, Franco-Ortega S, Watson P, Rougemont B, Cohn J, Dale R, Hawkes TR, Goldberg-Cavalleri A, Onkokesung N, Edwards R. Characterization of Cytochrome P450s with Key Roles in Determining Herbicide Selectivity in Maize. ACS OMEGA 2022; 7:17416-17431. [PMID: 35647462 PMCID: PMC9134415 DOI: 10.1021/acsomega.2c01705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 06/08/2023]
Abstract
Safeners such as metcamifen and benoxacor are widely used in maize to enhance the selectivity of herbicides through the induction of key detoxifying enzymes, notably cytochrome P450 monooxygenases (CYPs). Using a combination of transcriptomics, proteomics, and functional assays, the safener-inducible CYPs responsible for herbicide metabolism in this globally important crop have been identified. A total of 18 CYPs belonging to clans 71, 72, 74, and 86 were safener-induced, with the respective enzymes expressed in yeast and screened for activity toward thiadiazine (bentazon), sulfonylurea (nicosulfuron), and triketone (mesotrione and tembotrione) chemistries. Herbicide metabolism was largely restricted to family CYP81A members from clan 71, notably CYP81A9, CYP81A16, and CYP81A2. Quantitative transcriptomics and proteomics showed that CYP81A9/CYP81A16 were dominant enzymes in safener-treated field maize, whereas only CYP81A9 was determined in sweet corn. The relationship between CYP81A sequence and activities were investigated by splicing CYP81A2 and CP81A9 together as a series of recombinant chimeras. CYP81A9 showed wide ranging activities toward the three herbicide chemistries, while CYP81A2 uniquely hydroxylated bentazon in multiple positions. The plasticity in substrate specificity of CYP81A9 toward multiple herbicides resided in the second quartile of its N terminal half. Further phylogenetic analysis of CYP81A9 showed that the maize enzyme was related to other CYP81As linked to agrochemical metabolism in cereals and wild grasses, suggesting this clan 71 CYP has a unique function in determining herbicide selectivity in arable crops.
Collapse
Affiliation(s)
- Melissa Brazier-Hicks
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Sara Franco-Ortega
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Philip Watson
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | | | - Jonathan Cohn
- Syngenta
Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, Durham, North Carolina 27709-2257, United States
| | - Richard Dale
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Tim R. Hawkes
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Alina Goldberg-Cavalleri
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Nawaporn Onkokesung
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Robert Edwards
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
28
|
Jia L, Jin XY, Zhao LX, Fu Y, Ye F. Research Progress in the Design and Synthesis of Herbicide Safeners: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5499-5515. [PMID: 35473317 DOI: 10.1021/acs.jafc.2c01565] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detoxification plays an important role in herbicide action. Herbicide safeners selectively protect crops from herbicide injury without reducing the herbicidal efficiency against the target weeds. With the large-scale use of herbicides, herbicide safeners have been widely used in sorghum, wheat, rice, corn, and other crops. In recent years, an increasing number of unexpected new herbicide safeners have been designed. The varieties, structural characteristics, uses, and synthetic routes of commercial herbicide safeners are reviewed in this paper. The design ideas and structural characteristics of novel herbicide safeners are summarized, which provide a basis for the design of bioactive molecules as new herbicide safeners in the future.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xin-Yu Jin
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
29
|
Zhao Y, Li W, Sun L, Xu H, Su W, Xue F, Wu R, Lu C. Transcriptome analysis and the identification of genes involved in the metabolic pathways of fenoxaprop-P-ethyl in rice treated with isoxadifen-ethyl hydrolysate. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105057. [PMID: 35430061 DOI: 10.1016/j.pestbp.2022.105057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Fenoxaprop-P-ethyl (FE) is a highly effective weed control agent for rice fields, but it causes phytotoxicity in crops. A whole-plant bioassay has revealed that isoxadifen-ethyl hydrolysate (IH) can significantly improve the tolerance of rice to FE, but the molecular mechanisms underlying this phenomenon are still unclear. In this study, we performed RNA-Seq analysis using rice seedlings treated with FE and IH to determine the IH-regulated candidate genes involved in metabolic resistance to FE. We also analyzed spatiotemporal expression using quantitative reverse transcription polymerase chain reaction to reveal the expression patterns of these genes under different treatments. The results showed that genes encoding metabolic enzymes, such as cytochrome P450 monooxygenases, glutathione-s-transferases, UDP-glycosyltransferase, carboxylesterase, and ATP-binding cassette transporter, were influenced by the application of IH. Most of these genes were upregulated, and their products were involved in various stages of FE metabolism. Tolerance to FE was primarily mediated by CarE15, CYP86A1, GSTU6, GST4, UGT13248, UGT79, and ABCC4, all of which played a vital role in regulating the detoxification process of FE. Our findings elucidated the protective mechanisms of IH, which can help alleviate the phytotoxic effects of FE and expand its potential for application in agriculture.
Collapse
Affiliation(s)
- Yaning Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China; Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqing Li
- Henan Agricultural University, Zhengzhou 450002, China
| | - Lanlan Sun
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China
| | - Hongle Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China
| | - Wangcang Su
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China
| | - Fei Xue
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China
| | - Renhai Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China.
| | - Chuantao Lu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China
| |
Collapse
|
30
|
Giraldo Acosta M, Cano A, Hernández-Ruiz J, Arnao MB. Melatonin as a Possible Natural Safener in Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070890. [PMID: 35406870 PMCID: PMC9003551 DOI: 10.3390/plants11070890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
Melatonin is a well-known animal hormone with relevant and multiple cellular and hormonal roles. Its discovery in plants in 1995 has led to a great diversity of molecular and physiological studies that have been showing its multiple actions also in plants. Its roles as a biostimulator and modulator agent of responses to abiotic and biotic stresses have been widely studied. This review raises the possible use of melatonin as a natural safener in herbicide treatments. Existing studies have shown excellent co-acting qualities between both the following agents: herbicide and melatonin. The presence of melatonin reduces the damage caused by the herbicide in the crop and enhances the stress antioxidant response of plants. In this area, a similar role is suggested in the co-action between fungicides and melatonin, where a synergistic response has been demonstrated in some cases. The possible reduction in the fungicide doses is proposed as an eco-friendly advance in the use of these pesticides in certain crops. Finally, future research and applied actions of melatonin on these pest control agents are suggested.
Collapse
|
31
|
Almeida ARRP, Pinheiro BDA, Lobo Ferreira AIMC, Monte MJS. Thermodynamic Stability of Fenclorim and Clopyralid. Molecules 2021; 27:39. [PMID: 35011279 PMCID: PMC8746602 DOI: 10.3390/molecules27010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds.
Collapse
Affiliation(s)
- Ana R. R. P. Almeida
- Centro de Investigação em Química (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal; (B.D.A.P.); (A.I.M.C.L.F.)
| | | | | | - Manuel J. S. Monte
- Centro de Investigação em Química (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal; (B.D.A.P.); (A.I.M.C.L.F.)
| |
Collapse
|
32
|
Strom SA, Hager AG, Concepcion JCT, Seiter NJ, Davis AS, Morris JA, Kaundun SS, Riechers DE. Metabolic Pathways for S-Metolachlor Detoxification Differ Between Tolerant Corn and Multiple-Resistant Waterhemp. PLANT & CELL PHYSIOLOGY 2021; 62:1770-1785. [PMID: 34453831 PMCID: PMC8664635 DOI: 10.1093/pcp/pcab132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 05/04/2023]
Abstract
Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.
Collapse
Affiliation(s)
| | - Aaron G Hager
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Nicholas J Seiter
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Adam S Davis
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - James A Morris
- Jealott’s Hill International Research Centre, Syngenta UK Ltd, Bracknell, Berkshire RG42, UK
| | - Shiv S Kaundun
- Jealott’s Hill International Research Centre, Syngenta UK Ltd, Bracknell, Berkshire RG42, UK
| | | |
Collapse
|
33
|
Gonsiorkiewicz Rigon CA, Cutti L, Angonese PS, Sulzbach E, Markus C, Gaines TA, Merotto A. The safener isoxadifen does not increase herbicide resistance evolution in recurrent selection with fenoxaprop. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111097. [PMID: 34763850 DOI: 10.1016/j.plantsci.2021.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Safeners are chemical compounds used to improve selectivity and safety of herbicides in crops by activating genes that enhance herbicide metabolic detoxification. The genes activated by safeners in crops are similar to the genes causing herbicide resistance through increased metabolism in weeds. This work investigated the effect of the safener isoxadifen-ethyl (IS) in combination with fenoxaprop-p-ethyl (FE) on the evolution of herbicide resistance in Echinochloa crus-galli under recurrent selection. Reduced susceptibility was observed in the progeny after recurrent selection with both FE alone and with FE + IS for two generations (G2) compared to the parental population (G0). The resistance index found in G2 after FE + IS selection was similar as when FE was used alone, demonstrating that the safener did not increase the rate or magnitude of herbicide resistance evolution. G2 progeny selected with FE alone and the combination of FE + IS had increased survival to herbicides from other mechanisms of action relative to the parental G0 population. One biotype of G2 progeny had increased constitutive expression of glutathione-S-transferase (GST1) after recurrent selection with FE + IS. G2 progeny had increased expression of two P450 genes (CYP71AK2 and CYP72A122) following treatment with FE, while G2 progeny had increased expression of five P450 genes (CYP71AK2, CYP72A258, CYP81A12, CYP81A14 and CYP81A21) after treatment with FE + IS. Repeated selection with low doses of FE with or without the safener IS decreased E. crus-galli control and showed potential for cross-resistance evolution. Addition of safener did not further decrease herbicide sensitivity in second generation progeny; however, the recurrent use of safener in combination with FE resulted in safener-induced increased expression of several CYP genes. This is the first report using safener as an additional factor to study herbicide resistance evolution in weeds under experimental recurrent selection.
Collapse
Affiliation(s)
| | - Luan Cutti
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| | - Paula Sinigaglia Angonese
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| | - Estéfani Sulzbach
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| | - Catarine Markus
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| |
Collapse
|
34
|
Concepcion JCT, Kaundun SS, Morris JA, Hutchings S, Strom SA, Lygin AV, Riechers DE. Resistance to a nonselective 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide via novel reduction-dehydration-glutathione conjugation in Amaranthus tuberculatus. THE NEW PHYTOLOGIST 2021; 232:2089-2105. [PMID: 34480751 PMCID: PMC9292532 DOI: 10.1111/nph.17708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 05/06/2023]
Abstract
Metabolic resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides is a threat in controlling waterhemp (Amaranthus tuberculatus) in the USA. We investigated resistance mechanisms to syncarpic acid-3 (SA3), a nonselective, noncommercial HPPD-inhibiting herbicide metabolically robust to Phase I oxidation, in multiple-herbicide-resistant (MHR) waterhemp populations (SIR and NEB) and HPPD inhibitor-sensitive populations (ACR and SEN). Dose-response experiments with SA3 provided ED50 -based resistant : sensitive ratios of at least 18-fold. Metabolism experiments quantifying parent SA3 remaining in excised leaves during a time course indicated MHR populations displayed faster rates of SA3 metabolism compared to HPPD inhibitor-sensitive populations. SA3 metabolites were identified via LC-MS-based untargeted metabolomics in whole plants. A Phase I metabolite, likely generated by cytochrome P450-mediated alkyl hydroxylation, was detected but was not associated with resistance. A Phase I metabolite consistent with ketone reduction followed by water elimination was detected, creating a putative α,β-unsaturated carbonyl resembling a Michael acceptor site. A Phase II glutathione-SA3 conjugate was associated with resistance. Our results revealed a novel reduction-dehydration-GSH conjugation detoxification mechanism. SA3 metabolism in MHR waterhemp is thus atypical compared to commercial HPPD-inhibiting herbicides. This previously uncharacterized detoxification mechanism presents a unique opportunity for future biorational design by blocking known sites of herbicide metabolism in weeds.
Collapse
Affiliation(s)
| | - Shiv S. Kaundun
- Herbicide BioscienceSyngentaJealott’s Hill International Research CentreBracknell,RG42 6EYUK
| | - James A. Morris
- Herbicide BioscienceSyngentaJealott’s Hill International Research CentreBracknell,RG42 6EYUK
| | - Sarah‐Jane Hutchings
- Herbicide BioscienceSyngentaJealott’s Hill International Research CentreBracknell,RG42 6EYUK
| | - Seth A. Strom
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Anatoli V. Lygin
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Dean E. Riechers
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
35
|
Zhang JJ, Yang H. Metabolism and detoxification of pesticides in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148034. [PMID: 34111793 DOI: 10.1016/j.scitotenv.2021.148034] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Pesticides make indispensable contributions to agricultural productivity. However, the residues after their excessive use may be harmful to crop production, food safety and human health. Although the ability of plants (especially crops) to accumulate and metabolize pesticides has been intensively investigated, data describing the chemical and metabolic processes in plants are limited. Understanding how pesticides are metabolized is a key step toward developing cleaner crops with minimal pesticides in crops, creating new green pesticides (or safeners), and building up the engineered plants for environmental remediation. In this review, we describe the recently discovered mechanistic insights into pesticide metabolic pathways, and development of improved plant genotypes that break down pesticides more effectively. We highlight the identification of biological features and functions of major pesticide-metabolized enzymes such as laccases, glycosyltransferases, methyltransferases and ATP binding cassette (ABC) transporters, and discuss their chemical reactions involved in diverse pathways including the formation of pesticide S-conjugates. The recent findings for some signal molecules (phytohomormes) like salicylic acid, jasmonic acid and brassinosteroids involved in metabolism and detoxification of pesticides are summarized. In particular, the emerging research on the epigenetic mechanisms such DNA methylation and histone modification for pesticide metabolism is emphasized. The review would broaden our understanding of the regulatory networks of the pesticide metabolic pathways in higher plants.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Yang C, Lim W, Song G. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109103. [PMID: 34129918 DOI: 10.1016/j.cbpc.2021.109103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Excessively used pesticides in agricultural areas are spilled into aquatic environments, wherein they are suspended or sedimented. Owing to climate change, herbicides are the fastest growing sector of the pesticide industry and are detected in surface water, groundwater, and sediments near agricultural areas. In freshwater, organisms, including mussels, snails, frogs, and fish, are exposed to various types and concentrations of herbicides. Invertebrates are sensitive to herbicide exposure because their defense systems are incomplete. At the top of the food chain in freshwater ecosystems, fish show high bioaccumulation of herbicides. Herbicide exposure causes reproductive toxicity and population declines in freshwater organisms and further contamination of fish used for consumption poses a risk to human health. In addition, it is important to understand how environmental factors are physiologically processed and assess their impacts on reproductive parameters, such as gonadosomatic index and steroid hormone levels. Zebrafish is a good model for examining the effects of herbicides such as atrazine and glyphosate on embryonic development in freshwater fish. This review describes the occurrence and role of herbicides in freshwater environments and their potential implications for the reproduction and embryonic development of freshwater organisms.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Yuan L, Ma G, Geng Y, Liu X, Wang H, Li J, Song S, Pan W, Hun Z. Seed dressing with mefenpyr-diethyl as a safener for mesosulfuron-methyl application in wheat: The evaluation and mechanisms. PLoS One 2021; 16:e0256884. [PMID: 34460856 PMCID: PMC8405001 DOI: 10.1371/journal.pone.0256884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Mesosulfuron-methyl is always applied by foliar spraying in combination with the safener mefenpyr-diethyl to avoid phytotoxicity on wheat (Triticum aestivum L.) cultivars. However, it was observed that the tolerance of Tausch's goatgrass (Aegilops tauschii Coss.) to mesosulfuron-methyl significantly increased in the presence of mefenpyr-diethyl by performing bioassay. This confirmed phenomenon may lead to overuse of mesosulfuron-methyl and weed resistance evolution in field conditions. Therefore, we tested the effect of wheat seed dressing with mefenpyr-diethyl as a possible alternative and disclosed the underlying mechanisms by herbicide dissipation study, enzymatic analysis and transcriptome profiling. The results suggest that increase of ALS activity, enhancement of metabolic processes, and other stress responses are crucial for the regulation of herbicide detoxification induced by mefenpyr-diethyl. Additionally, transcription factors such as AP2/ERF-ERF, bHLH, NAC, and MYB, and protein kinase such as RLK-Pelle_DLSV might play vital regulatory roles. The current study has important implications for mesosulfuron-methyl application in wheat field to control Tausch's goatgrass and provides a comprehensive understanding of the protective effect of mefenpyr-diethyl.
Collapse
Affiliation(s)
- Libing Yuan
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Guangyuan Ma
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Yaling Geng
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Xiaomin Liu
- Cereal and Oil Crops Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hua Wang
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Jian Li
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Shanshan Song
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Wenliang Pan
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Zhiying Hun
- Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Plant Protection Institute, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| |
Collapse
|
38
|
Zhang J, Guo T, Xiao Q, Wang P, Tian H. Effect of 4-chloro-2-methylphenoxy acetic acid on tomato gene expression and rhizosphere bacterial communities under inoculation with phosphate-solubilizing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125767. [PMID: 33845264 DOI: 10.1016/j.jhazmat.2021.125767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The herbicide 4-chloro-2-methylphenoxy acetic acid (MCPA) is widely used to control the spread of broad-leaved weeds in agricultural soils, though it remains unclear how tomato plants cope with the phytotoxic effects of MCPA at the molecular level. In this study, RNA-seq and Illumina MiSeq were used to sequence bacterial communities in tomato rhizosphere soils treated with MCPA and the phosphate-solubilizing bacterial strain N3. The results showed that MCPA induced abnormal growth of lateral roots in tomato seedlings and reduced uptake of the nutrients N, P, and K as well as the hormone (ABA and GA3) levels. Inoculation with strain N3 increased nutrient uptake by roots and increased levels of the hormones ABA, ZEA, and JA in tomato seedlings and also increased the abundance of the phyla Proteobacteria and Gemmatimonadetes in soil under MCPA treatment. GO functional groups in which differentially expressed genes (DEGs) are involved included DNA binding transcription factor activity, transcriptional regulator activity, enzyme inhibitor activity, and cell wall biogenesis. The highest numbers of DEGs are annotated to ribosome, photosynthesis, and carbon metabolism categories. Our findings provide valuable information for the application of strain N3, which is beneficial for reducing the toxic effect of MCPA on vegetable plants.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China.
| | - Tingting Guo
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Qingqing Xiao
- School of Biology, Food and Environment, Hefei University, 230601 Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| |
Collapse
|
39
|
Jia L, Gao S, Zhang YY, Zhao LX, Fu Y, Ye F. Fragmenlt Recombination Design, Synthesis, and Safener Activity of Novel Ester-Substituted Pyrazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8366-8379. [PMID: 34310139 DOI: 10.1021/acs.jafc.1c02221] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenoxaprop-p-ethyl (FE), a type of acetyl-CoA carboxylase (ACCase) inhibitor, has been extensively applied to a variety of crop plants. It can cause damage to wheat (Triticum aestivum) even resulting in the death of the crop. On the prerequisite of not reducing herbicidal efficiency on target weed species, herbicide safeners selectively protect crops from herbicide injury. Based on fragment splicing, a series of novel substituted pyrazole derivatives was designed to ultimately address the phytotoxicity to wheat caused by FE. The title compounds were synthesized in a one-pot way and characterized via infrared spectroscopy, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and high-resolution mass spectrometry. The bioactivity assay proved that the FE phytotoxicity to wheat could be reduced by most of the title compounds. The molecular docking model indicated that compound IV-21 prevented fenoxaprop acid (FA) from reaching or acting with ACCase. The absorption, distribution, metabolism, excretion, and toxicity predictions demonstrated that compound IV-21 exhibited superior pharmacokinetic properties to the commercialized safener mefenpyr-diethyl. The current work revealed that a series of newly substituted pyrazole derivatives presented strong herbicide safener activity in wheat. This may serve as a potential candidate structure to contribute to the further protection of wheat from herbicide injury.
Collapse
Affiliation(s)
- Ling Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuan-Yuan Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
40
|
Bassi R, Dall'Osto L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:47-76. [PMID: 34143647 DOI: 10.1146/annurev-arplant-071720-015522] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Light is essential for photosynthesis. Nevertheless, its intensity widely changes depending on time of day, weather, season, and localization of individual leaves within canopies. This variability means that light collected by the light-harvesting system is often in excess with respect to photon fluence or spectral quality in the context of the capacity of photosynthetic metabolism to use ATP and reductants produced from the light reactions. Absorption of excess light can lead to increased production of excited, highly reactive intermediates, which expose photosynthetic organisms to serious risks of oxidative damage. Prevention and management of such stress are performed by photoprotective mechanisms, which operate by cutting down light absorption, limiting the generation of redox-active molecules, or scavenging reactive oxygen species that are released despite the operation of preventive mechanisms. Here, we describe the major physiological and molecular mechanisms of photoprotection involved in the harmless removal of the excess light energy absorbed by green algae and land plants. In vivo analyses of mutants targeting photosynthetic components and the enhanced resolution of spectroscopic techniques have highlighted specific mechanisms protecting the photosynthetic apparatus from overexcitation. Recent findings unveil a network of multiple interacting elements, the reaction times of which vary from a millisecond to weeks, that continuously maintain photosynthetic organisms within the narrow safety range between efficient light harvesting and photoprotection.
Collapse
Affiliation(s)
- Roberto Bassi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Luca Dall'Osto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
41
|
Hu L, Huang Y, Ding B, Cai R, Bai L. Selective Action Mechanism of Fenclorim on Rice and Echinochloa crusgalli Is Associated with the Inducibility of Detoxifying Enzyme Activities and Antioxidative Defense. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5830-5839. [PMID: 34011154 DOI: 10.1021/acs.jafc.1c00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fenclorim (Fen) is a safener developed for pretilachlor (Pre) that can protect rice from injury caused by Pre but does not lower the weed control effects of Pre. Unfortunately, the mechanism of selective action of Fen between rice and weeds, such as Echinochloa crusgalli (barnyard grass), has not been clarified. In this study, the differences in physiology, biochemistry, and gene transcription between rice and E. crusgalli response to Fen were compared. Comparing the protection effects of Fen on plant growth, it was found that Fen significantly protected rice from Pre, but did not protect E. crusgalli. The detection of malondialdehyde (MDA) content and activities of antioxidant enzymes showed that Pre induced significant oxidative damage both in rice and E. crusgalli; however, Fen reduced oxidative damage in rice but not in E. crusgalli. Transcriptome analysis revealed that Fen induced more genes related to herbicide metabolism in rice than in E. crusgalli, especially the glutathione-S-transferase (GST) genes, with six upregulated in rice but no genes upregulated in E. crusgalli. Accordingly, the GST activity analysis showed that Fen increased the activity of rice instead of E. crusgalli. These results indicate that the elevation of detoxifying enzyme activities and antioxidative defense may be the mechanism of selective action of Fen in rice but not in E. crusgalli.
Collapse
Affiliation(s)
- Lifeng Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yajie Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Bowen Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Ruwen Cai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
42
|
Wang ZW, Zhao LX, Ma P, Ye T, Fu Y, Ye F. Fragments recombination, design, synthesis, safener activity and CoMFA model of novel substituted dichloroacetylphenyl sulfonamide derivatives. PEST MANAGEMENT SCIENCE 2021; 77:1724-1738. [PMID: 33236407 DOI: 10.1002/ps.6193] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Isoxaflutole (IXF), as a kind of 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, has been widely used in many kinds of plants. IXF can cause injury in corn including leaf and stem bleaching, plant height reduction or stunting, and reduced crop stand. Safeners are co-applied with herbicides to protect crops without compromising weed control efficacy. With the ultimate goal of addressing Zea mays injury caused by IXF, a series of novel substituted dichloroacetylphenyl sulfonamide derivatives was designed on the basis of scaffold hopping and active substructure splicing. RESULTS A total of 35 compounds were synthesized via acylation reactions. All the compounds were characterized by infrared (IR), proton and carbon-13 nuclear magnetic resonance (1 H-NMR and 13 C-NMR), and high-resolution mass spectrometry (HRMS). The configuration of compound II-1 was confirmed by single crystal X-ray diffraction. The bioassay results showed that all the title compounds displayed remarkable protection against IXF via improved content of carotenoid. Especially compound II-1 which possessed better glutathione transferases (GSTs) activity and carotenoid content than the contrast safener cyprosulfamide (CSA). All the satisfied parameters suggested that the Comparative Molecular Field Analysis (CoMFA) model was reliable and stable [with a cross-validated coefficient (q2 ) = 0.527, r2 = 0.995, r2 pred = 0.931]. The molecular docking simulation indicated that the compound II-1 and CSA could compete with diketonitrile (DKN) at the active site of HPPD, which is a hydrolyzed product of IXF in plants, causing the herbicide to be ineffective. CONCLUSIONS The present work revealed that the compound II-1 deserves further attention as the candidate structure of safeners. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zi-Wei Wang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Peng Ma
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Tong Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
43
|
Meyer GW, Bahamon Naranjo MA, Widhalm JR. Convergent evolution of plant specialized 1,4-naphthoquinones: metabolism, trafficking, and resistance to their allelopathic effects. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:167-176. [PMID: 33258472 PMCID: PMC7853596 DOI: 10.1093/jxb/eraa462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/03/2020] [Indexed: 05/08/2023]
Abstract
Plant 1,4-naphthoquinones encompass a class of specialized metabolites known to mediate numerous plant-biotic interactions. This class of compounds also presents a remarkable case of convergent evolution. The 1,4-naphthoquinones are synthesized by species belonging to nearly 20 disparate orders spread throughout vascular plants, and their production occurs via one of four known biochemically distinct pathways. Recent developments from large-scale biology and genetic studies corroborate the existence of multiple pathways to synthesize plant 1,4-naphthoquinones and indicate that extraordinary events of metabolic innovation and links to respiratory and photosynthetic quinone metabolism probably contributed to their independent evolution. Moreover, because many 1,4-naphthoquinones are excreted into the rhizosphere and they are highly reactive in biological systems, plants that synthesize these compounds also needed to independently evolve strategies to deploy them and to resist their effects. In this review, we highlight new progress made in understanding specialized 1,4-naphthoquinone biosynthesis and trafficking with a focus on how these discoveries have shed light on the convergent evolution and diversification of this class of compounds in plants. We also discuss how emerging themes in metabolism-based herbicide resistance may provide clues to mechanisms plants employ to tolerate allelopathic 1,4-naphthoquinones.
Collapse
Affiliation(s)
- George W Meyer
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Maria A Bahamon Naranjo
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Correspondence:
| |
Collapse
|
44
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
45
|
Ma B, Suo Y, Zhang J, Xing N, Gao Z, Lin X, Zheng L, Wang Y. Glutaredoxin like protein (RtGRL1) regulates H 2O 2 and Na + accumulation by maintaining the glutathione pool during abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:135-147. [PMID: 33360237 DOI: 10.1016/j.plaphy.2020.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Reaumuria trigyna, an endangered recretohalophyte, is a small archaic wild shrub endemic to arid and semiarid plateau regions of Inner Mongolia, China. Based on salt-related transcriptomic data, we isolated a GRX family gene, glutaredoxin like protein (RtGRL1), from R. trigyna that is associated with the removal of active oxygen and regulation of redox status. RtGRL1 encodes a plasma membrane and chloroplast-localized protein induced by salt, cold, drought stress, ABA, and H2O2. In Arabidopsis thaliana, ectopically expressed RtGRL1 positively regulated biomass accumulation, chlorophyll content, germination rate, and primary root length under salt and drought stress. Overexpression of RtGRL1 induced expression of genes related to antioxidant enzymes and proline biosynthesis, thus increasing glutathione biosynthesis, glutathione-dependent detoxification of reactive oxygen species (ROS), and proline content under stress. Changes in RtGRL1 expression consistently affected glutathione/oxidizedglutathione and ascorbate/dehydroascorbate ratios and H2O2 concentrations. Furthermore, RtGRL1 promoted several GSH biosynthesis gene transcripts, decreased leaf Na+ content, and maintained lower Na+/K+ ratios in transgenic A. thaliana compared to wild type plants. These results suggest a critical link between RtGRL1 and ROS modulation, and contribute to a better understanding of the mechanisms governing plant responses to drought and salt stress.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yafei Suo
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ningning Xing
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ziqi Gao
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Xiaofei Lin
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, And College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| |
Collapse
|
46
|
Rangani G, Noguera M, Salas-Perez R, Benedetti L, Roma-Burgos N. Mechanism of Resistance to S-metolachlor in Palmer amaranth. FRONTIERS IN PLANT SCIENCE 2021; 12:652581. [PMID: 33777086 PMCID: PMC7994610 DOI: 10.3389/fpls.2021.652581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 05/13/2023]
Abstract
Herbicides are major tools for effective weed management. The evolution of resistance to herbicides in weedy species, especially contributed by non-target-site-based resistance (NTSR) is a worrisome issue in crop production globally. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) is one of the extremely difficult weeds in southern US crop production. In this study, we present the level and molecular basis of resistance to the chloroacetamide herbicide, S-metolachlor, in six field-evolved A. palmeri populations that had survivors at the recommended field-dose (1.1 kg ai ha-1). These samples were collected in 2014 and 2015. The level of resistance was determined in dose-response assays. The effective dose for 50% control (ED50) of the susceptible population was 27 g ai ha-1, whereas the ED50 of the resistant populations ranged from 88 to 785 g ai ha-1. Therefore, A. palmeri resistance to S-metolachlor evolved in Arkansas as early as 2014. Metabolic-inhibitor and molecular assays indicated NTSR in these populations, mainly driven by GSTs. To understand the mechanism of resistance, selected candidate genes were analyzed in leaves and roots of survivors (with 1 × S-metolachlor). Expression analysis of the candidate genes showed that the primary site of S-metolachlor detoxification in A. palmeri is in the roots. Two GST genes, ApGSTU19 and ApGSTF8 were constitutively highly expressed in roots of all plants across all resistant populations tested. The expression of both GSTs increased further in survivors after treatment with S-metolachlor. The induction level of ApGSTF2 and ApGSTF2like by S-metolachlor differed among resistant populations. Overall, higher expression of ApGSTU19, ApGSTF8, ApGSTF2, and ApGSTF2like, which would lead to higher GST activity in roots, was strongly associated with the resistant phenotype. Phylogenetic relationship and analysis of substrate binding site of candidate genes suggested functional similarities with known metolachlor-detoxifying GSTs, effecting metabolic resistance to S-metolachlor in A. palmeri. Resistance is achieved by elevated baseline expression of these genes and further induction by S-metolachlor in resistant plants.
Collapse
Affiliation(s)
- Gulab Rangani
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Matheus Noguera
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Reiofeli Salas-Perez
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Lariza Benedetti
- Crop Protection Graduate Program (Programa de Pós-Graduação em Fitossanidade), Federal University of Pelotas (Universidade Federal de Pelotas), Pelotas, Brazil
| | - Nilda Roma-Burgos
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nilda Roma-Burgos
| |
Collapse
|
47
|
Bianchi L, Perissato SM, Anunciato VM, Dias RC, Gomes DM, Carbonari CA, Velini ED. Stimulation action of mefenpyr-diethyl on soybean, wheat, and signal grass plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:163-167. [PMID: 33284719 DOI: 10.1080/03601234.2020.1853459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mefenpyr-diethyl is a safener used for protection of cereal plants under applications of ACCase and ALS inhibitor herbicides. Current studies are describing safeners using a new approach, relating these products to stimulation action on plants. The objective of this work was to evaluate the stimulation action of mefenpyr-diethyl on soybean, wheat, and signal grass plants. The experiment was conducted in a greenhouse, under a completely randomized design, with four replications, in two seasons. Mefenpyr-diethyl (50 g a.i. ha-1) was applied on soybean plants (at V4 stage), and wheat and signal grass plants (both with 15 cm height). The variables evaluated were plant height, dry matter, and lipid content of the three species, and number of tillers of wheat and signal grass plants. The application of mefenpyr-diethyl in the first season increased the number of tillers of wheat and height of soybean plants. The soybean presented 24 and 14% more dry matter than the control in the first and second season, respectively, and 0.5% more lipid content in plants treated with mefenpyr-diethyl. These results show the stimulation action of mefenpyr-diethyl on wheat and soybean plants, denoting its potential for growth promotion and indicating the need for studies with this approach. No effect was found for the signal grass plants.
Collapse
Affiliation(s)
- Leandro Bianchi
- Department of Plant Protection, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Samara M Perissato
- Department of Agriculture, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Vitor M Anunciato
- Department of Plant Protection, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Roque C Dias
- Department of Plant Protection, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Diego Munhoz Gomes
- Department of Agriculture, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Caio A Carbonari
- Department of Plant Production and Breeding, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Edivaldo D Velini
- Department of Plant Production and Breeding, São Paulo State University, Botucatu, São Paulo, Brazil
| |
Collapse
|
48
|
House MA, Swanton CJ, Lukens LN. The neonicotinoid insecticide thiamethoxam enhances expression of stress-response genes in Zea mays in an environmentally specific pattern. Genome 2020; 64:567-579. [PMID: 33242262 DOI: 10.1139/gen-2020-0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that thiamethoxam (TMX), a neonicotinoid insecticide, can affect plant responses to environmental stressors, such as neighboring weeds. The molecular mechanisms behind both stable and environmentally specific responses to TMX likely involve genes related to defense and stress responses. We investigated the effect of a TMX seed treatment on global gene expression in maize coleoptiles both under normal conditions and under low ratio red to far-red (R:FR) light stress induced by the presence of neighboring plants. The neighboring plant treatment upregulated genes involved in biotic and abiotic stress responses and affected specific photosynthesis and cell-growth related genes. Low R:FR light may enhance maize resistance to herbivores and pathogens. TMX appears to compromise resistance. The TMX treatment stably repressed many genes that encode proteins involved in biotic stress responses, as well as cell-growth genes. Notably, TMX effects on many genes' expression were conditional on the environment. In response to low R:FR, plants treated with TMX engage genes in the JA pathway, as well as other stress-related response pathways. Neighboring weeds may condition TMX-treated plants to become more stress tolerant.
Collapse
Affiliation(s)
- Megan A House
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Clarence J Swanton
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Lewis N Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
49
|
D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. MOLECULAR PLANT 2020; 13:1545-1555. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Plants often encounter light intensities exceeding the capacity of photosynthesis (excessive light) mainly due to biotic and abiotic factors, which lower CO2 fixation and reduce light energy sinks. Under excessive light, the photosynthetic electron transport chain generates damaging molecules, hence leading to photooxidative stress and eventually to cell death. In this review, we summarize the mechanisms linking the excessive absorption of light energy in chloroplasts to programmed cell death in plant leaves. We highlight the importance of reactive carbonyl species generated by lipid photooxidation, their detoxification, and the integrating role of the endoplasmic reticulum in the adoption of phototolerance or cell-death pathways. Finally, we invite the scientific community to standardize the conditions of excessive light treatments.
Collapse
Affiliation(s)
- Stefano D'Alessandro
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| | - Inès Beaugelin
- Singapore-CEA Alliance for Research in Circular Economy (SCARCE), School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Republic of Singapore
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS, UMR7265, BIAM, Institute of Biosciences and Biotechnologies of Aix Marseille, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
50
|
Havaux M. β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:35-41. [PMID: 32738580 DOI: 10.1016/j.plaphy.2020.07.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/16/2023]
Abstract
β-cyclocitral is a volatile short-chain apocarotenoid generated by enzymatic or non-enzymatic oxidation of the carotenoid β-carotene. β-cyclocitral has recently emerged as a new bioactive compound in various organisms ranging from plants and cyanobacteria to fungi and animals. In vascular plants, β-cyclocitral and its direct oxidation product, β-cyclocitric acid, are stress signals that accumulate under unfavorable environmental conditions such as drought or high light. Both compounds regulate nuclear gene expression through several signaling pathways, leading to stress acclimation. In cyanobacteria, β-cyclocitral functions as an inhibitor of competing microalgae and as a repellent against grazers. As a volatile compound, this apocarotenoid plays also an important role in intra-species and inter-species communication. This review summarizes recent findings on the multiple roles of β-cyclocitral and of some of its derivatives.
Collapse
Affiliation(s)
- Michel Havaux
- Aix-Marseille University, CNRS UMR7265, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|