1
|
Kang M, Choi Y, Kim H, Choi MS, Lee S, Hyun Y, Kim SG. Loss-of-function variants of CYP706A3 in two natural accessions of Arabidopsis thaliana increase floral sesquiterpene emission. BMC PLANT BIOLOGY 2025; 25:275. [PMID: 40025437 PMCID: PMC11874846 DOI: 10.1186/s12870-025-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The major floral scent compounds of Arabidopsis thaliana flowers are terpenes. Although A. thaliana is generally considered to be a self-pollinating plant, there are natural variation in terpene volatile emission from flowers. However, the genetic mechanisms underlying the natural variation in Arabidopsis floral scents remain limited. RESULTS Here, we screened 116 natural accessions of A. thaliana and observed a substantial variability in the levels of terpene emission across these accessions. A genome-wide association study (GWAS) uncovered a genomic region associated with the observed variability in myrcene, one of monoterpene compounds. We then performed high-throughput genetic mapping using two representative accessions: Col-0 and Fr-2, which emit low and large amounts of floral terpenes, respectively. Next-generation mapping and RNA sequencing analyses revealed that the natural premature stop codon of CYP706A3 of Fr-2, located at the 98th codon, confers high emission of sesquiterpene from flowers. We also found an independent mutation of CYP706A3 of Np-0 in different position, leading to increased sesquiterpene emission. Interestingly, the expression levels of defense-related genes in Fr-2 were lower than those in Col-0 flowers, which suggests that terpene volatiles are potentially linked to floral defense. CONCLUSIONS The natural variation in Arabidopsis floral scent emission was partially explained by one natural allele of CYP706A3. Since some natural accessions harboring a functional allele of CYP706A3 still emit the large amount of floral sesquiterpene, it is possible that rare variants located on other loci increase scent emission.
Collapse
Affiliation(s)
- Moonyoung Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyeonjin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min-Soo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seula Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Mamin M, Clancy MV, Flückiger G, Quijano-Medina T, Pérez-Niño B, Abdala-Roberts L, Turlings TCJ, Bustos-Segura C. Induction by caterpillars of stored and emitted volatiles in terpene chemotypes from populations of wild cotton (Gossypium hirsutum). BMC PLANT BIOLOGY 2025; 25:127. [PMID: 39885387 PMCID: PMC11781055 DOI: 10.1186/s12870-025-06088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Upland cotton (Gossypium hirsutum) plants constitutively store volatile terpenes in their leaves, which are steadily emitted at low levels. Herbivory leads to a greater release of these stored volatiles. Additionally, damaged plants increase the accumulation of volatile terpenes in their leaves and begin to synthesize and emit other terpenes and additional compounds. This has been well characterised for cultivated G. hirsutum, but little is known about volatile production in response to herbivory in wild populations. We investigated how damage by a generalist herbivore species, the beet armyworm (Spodoptera exigua), affects leaf-stored and emitted volatiles in wild G. hirsutum plants and compared the responses of two known chemotypes. Wild cotton plants were grown in a greenhouse from seeds collected from four distinct locations covering sixteen populations, along the Yucatan coast (Mexico), from where this cotton species originates. We assessed whether the differences in leaf terpene profiles between the two chemotypes persisted upon herbivory, in leaves and in headspace emissions, and whether these chemotypes also differed in the production and release of herbivory-induced volatiles. In addition to chemotypic variation, we further investigated intraspecific variation in the volatile response to herbivory among genotypes, populations, and the four geographic regions. RESULTS The difference between the two chemotypes persisted after herbivory in the stored volatile profile of induced leaves, as well as in the emissions from damaged plants. Therefore, wild cotton chemotypes may differ in their airborne interactions with their environment. The specific terpenes distinguishing these chemotypes showed a weak inducibility, raising questions about their functions. Herbivory triggered changes in stored and emitted volatiles similar to what is known for cultivated varieties of G. hirsutum. However, we report for the first time on the emission of volatile aldoximes by cotton plants, which were only detected in the headspace upon herbivory, and displayed chemotypic and interpopulation variation. Intraspecific variation was also observed in the induced emissions of nitriles and certain terpenes. Moreover, chemotypes differed in their induction of (E)-β-ocimene stored in the leaves. CONCLUSIONS This comprehensive insight into herbivore-induced volatiles of wild cotton reveals variation in production and emission among populations. A full understanding of their ecological role may help in the development of future pest-management strategies for cotton crops.
Collapse
Affiliation(s)
- Marine Mamin
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mary V Clancy
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Galien Flückiger
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Teresa Quijano-Medina
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Biiniza Pérez-Niño
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Ted C J Turlings
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Carlos Bustos-Segura
- Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
- Institute of Ecology and Environmental Sciences-Paris, INRAE, Sorbonne Université, CNRS, IRD, Université de Paris, UPEC, Route de St Cyr, Versailles, 78026, France.
| |
Collapse
|
3
|
Tang X, Zhang XJ, Pan JF, Guo K, Tan CL, Zhang QZ, Long LP, Ding RF, Niu XM, Liu Y, Li SH. Z/E configuration controlled by a Taxus sesquiterpene synthase facilitating the biosynthesis of (3Z,6E)-α-farnesene. PHYTOCHEMISTRY 2025; 229:114304. [PMID: 39424093 DOI: 10.1016/j.phytochem.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plant enzymes often present advantages in the synthesis of natural products with specific configurations. Farnesene is a pharmacologically active sesquiterpene with three natural Z/E configurations, among which the enzyme selectively responsible for the biosynthesis of (3Z,6E)-α-farnesene remains elusive. Herein, a sesquiterpene synthase TwSTPS1 biosynthesizing (3Z,6E)-α-farnesene as the major product was identified from Taxus wallichiana through genome mining. Utilizing molecular dynamics simulations and mutation analysis, the catalytic mechanism of TwSTPS1, especially Z/E configuration control, was explored. Moreover, the crucial residues associated with the specific catalytic activity of TwSTPS1 was elucidated through mutagenesis experiments. The findings contribute to our understanding of the Z/E configuration control by plant terpene synthases and also provide an alternative tool for manipulating (3Z,6E)-α-farnesene production using synthetic biology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xian-Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing-Feng Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui-Feng Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
4
|
Lv B, Teng D, Huang X, Liu X, Liu D, Khashaveh A, Pan H, Zhang Y. Functional characterization of a novel terpene synthase GaTPS1 involved in (E)-α-bergamotene biosynthesis in Gossypium arboreum. Int J Biol Macromol 2024; 281:136081. [PMID: 39357711 DOI: 10.1016/j.ijbiomac.2024.136081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Terpenoids in plants are mainly synthesized by terpene synthases (TPSs), which play an important role in plant-environment interactions. Gossypium arboreum is one of the important cotton cultivars with excellent pest resistance, however, the biosynthesis of most terpenoids in this plant remains unknown. In this study, we performed a comparative transcriptome analysis of leaves from intact and Helicoverpa armigera-infested cotton plants. The results showed that the H. armigera infestation mainly induced the JA signaling pathway, ten TPS genes were differentially expressed in G. arboreum leaves. Among them, a novel terpene synthase, GaTPS1, was heterologously expressed and functionally characterized in vitro. The enzymatic reaction indicated that recombinant GaTPS1 was primarily responsible for the production of (E)-α-bergamotene. Moreover, molecular docking and site-directed mutagenesis analysis demonstrated that two amino acid residues, A412L and Y535F, distinctly influenced the catalytic activities and product specificity of GaTPS1. The mutants GaTPS1-A412L and GaTPS1-Y535F resulted in a decrease in the proportion of products (E)-α-bergamotene and D-limonene, while an increase in the proportion of products (E)-β-farnesene, α-pinene and β-myrcene. Our findings provide valuable insights into understanding the molecular basis of terpenoid diversity in G. arboreum, with potential applications in plant metabolism regulation and the improvement of resistant cotton cultivars.
Collapse
Affiliation(s)
- Beibei Lv
- Institute of Cotton Research, Shanxi Agricultural University, YunCheng 044000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongsheng Pan
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Zhao Y, Cui G, Wang J, Ma Y, Han Y, Su P, Guo J, Zhang J, Huang L. Functional Identification of the Terpene Synthase Family Involved in Biosynthesis in Paeonia lactiflora. Molecules 2024; 29:4662. [PMID: 39407591 PMCID: PMC11478036 DOI: 10.3390/molecules29194662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
The root of Paeonia lactiflora pall. is a significant component of traditional Chinese medicine, with terpenoids and their glycosides, such as paeoniflorins, serving as key active ingredients known for their anti-inflammatory, hepatoprotective, and analgesic properties. By generating a transcriptome and functionally characterizing 32 terpene synthases (TPSs) from P. lactiflora, we successfully constructed 24 pESC-Trp-PlTPS expression vectors. Through expression in Saccharomyces cerevisiae engineered strains, we identified four mono-TPSs and five sesqui-TPSs that produce 18 compounds, including eight monoterpenes and ten sesquiterpenes in vitro. This includes a bifunctional enzyme (PlTPS22). Additionally, PlTPS21 was characterized as a pinene synthase with α-pinene as its main product. The expression pattern of PlTPS21 aligns closely with the accumulation patterns of paeoniflorins and α-pinene in the plant, suggesting that PlTPS21 is a key enzyme in the biosynthesis of paeoniflorin.
Collapse
Affiliation(s)
- Yufeng Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Yang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Luqi Huang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Dongzhimennei Nanxiao Street, Dongcheng District, Beijing 100700, China; (G.C.); (J.W.); (Y.M.); (Y.H.); (P.S.); (J.G.)
| |
Collapse
|
6
|
Wu J, Bu M, Zong Y, Tu Z, Cheng Y, Li H. Overexpression of the Liriodendron tulipifera TPS32 gene in tobacco enhances terpenoid compounds synthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1445103. [PMID: 39354939 PMCID: PMC11442295 DOI: 10.3389/fpls.2024.1445103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024]
Abstract
Liriodendron, a relic genus from the Magnoliaceae family, comprises two species, L. tulipifera and L. chinense. L. tulipifera is distinguished by its extensive natural distribution in Eastern North America. Conversely, L. chinense is nearing endangerment due to its low regeneration rate. A pivotal aspect in the difference of these species involves terpenoids, which play crucial roles in plant growth and attracting pollinators. However, the complex molecular mechanisms underlying terpenoid roles in Liriodendron are not well understood. Terpene Synthases (TPS) genes are widely reported to play a role in terpenoid biosynthesis, hence, this study centers on TPS genes in Liriodendron spp. Employing multiple bioinformatics methods, a differential expression gene in L. tulipifera, LtuTPS32, was discerned for further functional analysis. Subcellular localization results reveal the involvement of LtuTPS32 in chloroplast-associated processes, hence participate in terpenoid biosynthesis within chloroplasts. Heterologous transformation of the LtuTPS32 gene into tobacco significantly elevates the levels of common terpenoid compounds, including chlorophyll, gibberellin, and carotenoids. Collectively, these findings not only underscore the role of the LtuTPS32 gene in the biosynthesis of terpenoids but also lay a foundation for future research on interspecific differences in Liriodendron.
Collapse
Affiliation(s)
- Junpeng Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Manli Bu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yanli Cheng
- College of architecture, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Castillo-Pérez LJ, Ponce-Hernández A, Alonso-Castro AJ, Solano R, Fortanelli-Martínez J, Lagunez-Rivera L, Carranza-Álvarez C. Medicinal Orchids of Mexico: A Review. Pharmaceuticals (Basel) 2024; 17:907. [PMID: 39065757 PMCID: PMC11279439 DOI: 10.3390/ph17070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Some species of the Orchidaceae family are used in Mexican traditional medicine. However, there are no current and critical compilations of the medicinal uses and pharmacological effects of the members of the Orchidaceae family. This review provides a current, critical, and comprehensive analysis of the traditional medicinal uses, pharmacological reports, and active compounds isolated from Mexican orchids. A total of 62 Mexican orchids with medicinal potential have been recorded, of which 14 have scientific evidence. The remaining 48 plant species have ethnomedicinal information but have not been validated with scientific studies. These orchids are distributed in 14 states of the Mexican Republic, mainly in the southern region of Mexico. The most common pharmacological activities reported are anti-inflammatory, vasorelaxant, antinociceptive, antioxidant, spasmolytic, antihypertensive, and hallucinogenic activities. It is necessary to increase the number of pharmacological, phytochemical, and toxicological studies with medicinal orchids from Mexico because there are scientific studies on only 22.5% of these species. In further studies, it will be possible to evaluate the pharmacological effects of Mexican orchids in clinical trials. In addition, the mechanisms of action by which plant extracts and their active compounds exert medicinal effects remain to be studied. Plant extracts from orchids and their active compounds show promising antinociceptive and spasmolytic effects, respectively.
Collapse
Affiliation(s)
- Luis J. Castillo-Pérez
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| | - Amauri Ponce-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71230, Mexico; (R.S.); (L.L.-R.)
| | - Javier Fortanelli-Martínez
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71230, Mexico; (R.S.); (L.L.-R.)
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| |
Collapse
|
8
|
Woźniak NJ, Sartori K, Kappel C, Tran TC, Zhao L, Erban A, Gallinger J, Fehrle I, Jantzen F, Orsucci M, Ninkovic V, Rosa S, Lenhard M, Kopka J, Sicard A. Convergence and molecular evolution of floral fragrance after independent transitions to self-fertilization. Curr Biol 2024; 34:2702-2711.e6. [PMID: 38776901 DOI: 10.1016/j.cub.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of β-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.
Collapse
Affiliation(s)
- Natalia Joanna Woźniak
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Kevin Sartori
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Thi Chi Tran
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lihua Zhao
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jannicke Gallinger
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ines Fehrle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Friederike Jantzen
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
| |
Collapse
|
9
|
Dai J, Wang M, Yin H, Han X, Fan Y, Wei Y, Lin J, Liu J. Integrating GC-MS and comparative transcriptome analysis reveals that TsERF66 promotes the biosynthesis of caryophyllene in Toona sinensis tender leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1378418. [PMID: 38872893 PMCID: PMC11171135 DOI: 10.3389/fpls.2024.1378418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Introduction The strong aromatic characteristics of the tender leaves of Toona sinensis determine their quality and economic value. Methods and results Here, GC-MS analysis revealed that caryophyllene is a key volatile compound in the tender leaves of two different T. sinensis varieties, however, the transcriptional mechanisms controlling its gene expression are unknown. Comparative transcriptome analysis revealed significant enrichment of terpenoid synthesis pathway genes, suggesting that the regulation of terpenoid synthesis-related gene expression is an important factor leading to differences in aroma between the two varieties. Further analysis of expression levels and genetic evolution revealed that TsTPS18 is a caryophyllene synthase, which was confirmed by transient overexpression in T. sinensis and Nicotiana benthamiana leaves. Furthermore, we screened an AP2/ERF transcriptional factor ERF-IX member, TsERF66, for the potential regulation of caryophyllene synthesis. The TsERF66 had a similar expression trend to that of TsTPS18 and was highly expressed in high-aroma varieties and tender leaves. Exogenous spraying of MeJA also induced the expression of TsERF66 and TsTPS18 and promoted the biosynthesis of caryophyllene. Transient overexpression of TsERF66 in T. sinensis significantly promoted TsTPS18 expression and caryophyllene biosynthesis. Discussion Our results showed that TsERF66 promoted the expression of TsTPS18 and the biosynthesis of caryophyllene in T. sinensis leaves, providing a strategy for improving the aroma of tender leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
10
|
Kaur D, Schedl A, Lafleur C, Martinez Henao J, van Dam NM, Rivoal J, Bede JC. Arabidopsis Transcriptomics Reveals the Role of Lipoxygenase2 (AtLOX2) in Wound-Induced Responses. Int J Mol Sci 2024; 25:5898. [PMID: 38892085 PMCID: PMC11173247 DOI: 10.3390/ijms25115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4, AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory. In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis. As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally, 1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed stronger expression of genes associated with plant protection against insect herbivory. This study highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of AtLOX2 to this pathway and plant resistance against insects.
Collapse
Affiliation(s)
- Diljot Kaur
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Biomass Research Centre (DBFZ), Torgauer Straße 116, 04347 Leipzig, Germany
| | - Christine Lafleur
- Department of Animal Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Julian Martinez Henao
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 52, 04103 Leipzig, Germany (N.M.v.D.)
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyerweg-1, 14979 Großbeeren, Germany
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E., Montréal, QC H1X 2B2, Canada;
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21,111 rue Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (D.K.); (J.M.H.)
| |
Collapse
|
11
|
Chen F, Shi L, Hu J, Wang J, Li Z, Xiu Y, He B, Lin S, Liang D. Revelation of enzyme/transporter-mediated metabolic regulatory model for high-quality terpene accumulation in developing fruits of Lindera glauca. Int J Biol Macromol 2024; 264:130763. [PMID: 38467223 DOI: 10.1016/j.ijbiomac.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
12
|
Huang X, Liu X, Wang Q, Zhou Y, Deng S, He Q, Han H. Transcriptomic and targeted metabolome analyses revealed the regulatory mechanisms of the synthesis of bioactive compounds in Citrus grandis 'tomentosa'. PeerJ 2024; 12:e16881. [PMID: 38410798 PMCID: PMC10896087 DOI: 10.7717/peerj.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Exocarpium Citri Grandis is a popular Chinese herbal medicine prepared from Citrus grandis 'tomentosa', and it is rich in several bioactive compounds, including flavonoids, coumarins, and volatile oils. However, studies are yet to elucidate the mechanisms of synthesis and regulation of these active components. Therefore, the present study examined the profiles of flavonoids and volatile oil bioactive compounds in plant petals, fruits, and tender leaves, and then performed RNA sequencing on different tissues to identify putative genes involved in the synthesis of bioactive compounds. The results show that the naringin, naringenin, and coumarin contents of the fruitlets were significantly higher than those of the tender leaves and petals, whereas the tender leaves had significantly higher levels of rhoifolin and apigenin. A total of 49 volatile oils, of which 10 were mainly found in flowers, 15 were mainly found in fruits, and 18 were mainly found in leaves, were identified. RNA sequencing identified 9,942 genes that were differentially expressed in different tissues. Further analysis showed that 20, 15, and 74 differentially expressed genes were involved in regulating flavonoid synthesis, regulating coumarin synthesis, and synthesis and regulation of terpenoids, respectively. CHI1 (Cg7g005600) and 1,2Rhat gene (Cg1g023820) may be involved in the regulation of naringin synthesis in C. grandis fruits. The HDR (Cg8g006150) gene, HMGS gene (Cg5g009630) and GGPS (Cg1g003650) may be involved in the regulation and synthesis of volatile oils in C. grandis petals. Overall, the findings of the present study enhance our understanding of the regulatory mechanisms of secondary metabolites in C. grandis, which could promote the breeding of C. grandis with desired characteristics.
Collapse
Affiliation(s)
- Xinmin Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiaoli Liu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qi Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Yanqing Zhou
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Shiting Deng
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qinqin He
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
| | - Hanbing Han
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
13
|
Wang L, Lun X, Wu J, Wang Q, Tao J, Dou X, Zhang Z. Investigation of biogenic volatile organic compounds emissions in the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165877. [PMID: 37549697 DOI: 10.1016/j.scitotenv.2023.165877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), which are produced and emitted by plants, have significant chemical reactivity in the atmosphere and impacting climate change. Qinghai Province, a vital component of the plateau, has abundant vegetation resources, primarily grasslands and forests, yet BVOCs emissions and their impact on air quality remain understudied. In this study, the emissions rates and compositions of BVOCs from seven dominant vegetation types in Qinghai Province were sampled and analyzed using a closed-loop stripping dynamic headspace sampling approach combined with GC-MS, and the total emissions of BVOCs in Qinghai province in 2021 were estimated by using G95 model. At the same time, the emission characteristics of various vegetation types were also analyzed. The results showed that the emissions rates and compositions of BVOCs differed significantly among vegetation types, with monoterpenes being the dominant emission composition in coniferous forests, which accounted for >70 % of the total BVOCs emissions, while isoprene being the main composition in alpine meadow, accounting for 84.96 %. The emissions of three typical vegetation types, Picea asperata, alpine meadow and alpine steppe, were monitored daily, revealing significant diurnal and clear unimodal patterns. The study also found that the annual average BVOCs emissions from vegetation sources in Qinghai Province were estimated to be 1550.63 Gg yr-1, with isoprene contributing the highest proportion of emissions, accounting for 56.94 %. Grassland was the largest BVOCs emission source in Qinghai Province, with an annual average emission of 1438.52 Gg yr-1. Additionally, BVOCs emissions in Qinghai Province showed strong seasonal and daily variation patterns, with the highest emissions occurring in summer, with the peak in July. These findings provide the characteristics of BVOCs emissions from vegetation sources in the Tibetan Plateau, which will contribute to a better understanding of their impact on atmospheric chemistry and climate change.
Collapse
Affiliation(s)
- Luxi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Ju Wu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jinhua Tao
- State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China
| | - Xiaoyan Dou
- Qinghai Eco-Environment Monitoring Center, Xining 810007, China
| | - Zhijun Zhang
- Qinghai Eco-Environment Monitoring Center, Xining 810007, China
| |
Collapse
|
14
|
Chen X, Wang MY, Deng CH, Beatson RA, Templeton KR, Atkinson RG, Nieuwenhuizen NJ. The hops (Humulus lupulus) genome contains a mid-sized terpene synthase family that shows wide functional and allelic diversity. BMC PLANT BIOLOGY 2023; 23:280. [PMID: 37231379 DOI: 10.1186/s12870-023-04283-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene β-myrcene and the sesquiterpenes α-humulene and β-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. β-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.
Collapse
Affiliation(s)
- Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ron A Beatson
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
15
|
Kufs JE, Reimer C, Stallforth P, Hillmann F, Regestein L. The potential of amoeba-based processes for natural product syntheses. Curr Opin Biotechnol 2022; 77:102766. [PMID: 35944344 DOI: 10.1016/j.copbio.2022.102766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals.
Collapse
Affiliation(s)
- Johann E Kufs
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Pierre Stallforth
- Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
16
|
Qiao D, Tang M, Jin L, Mi X, Chen H, Zhu J, Liu S, Wei C. A monoterpene synthase gene cluster of tea plant (Camellia sinensis) potentially involved in constitutive and herbivore-induced terpene formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:1-13. [PMID: 35613521 DOI: 10.1016/j.plaphy.2022.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Monoterpenes and sesquiterpenes are the most abundant volatiles in tea plants and have dual functions in aroma quality formation and defense responses in tea plants. Terpene synthases (TPS) are the key enzymes for the synthesis of terpenes in plants; however, the functions of most of them in tea plants are still unknown. In this study, six putative terpene biosynthesis gene clusters were identified from the tea plant genome. Then we cloned three new TPS-b subfamily genes, CsTPS08, CsTPS10 and CsTPS58. In vitro enzyme assays showed that CsTPS08 and CsTPS58 are two multiple-product terpene synthases, with the former synthesizing linalool as the main product, and β-myrcene, α-phellandrene, α-terpinolene, D-limonene, cis-β-ocimene, trans-β-ocimene and (4E,6Z)-allo-ocimene as minor products are also detected, while the latter catalyzing the formation of α-pinene and D-limonene using GPP as the substrate. No product of CsTPS10 was detected in the prokaryotic expression system, but geraniol production was detected when transiently expressed in tobacco leaves. CsTPS08 and CsTPS10 are two functional members of a monoterpene synthase gene cluster, which were significantly induced during both Ectropis oblique feeding and fresh leaf spreading treatments, suggesting that they have dual functions involved in tea plant pest defense and tea aroma quality regulation. In addition, the differences in their expression levels in different tea plant cultivars provide a possibility for the subsequent screening of tea plant resources with a specific aroma flavor. Our results deepen the understanding of terpenoid synthesis in tea plants.
Collapse
Affiliation(s)
- Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Tea Research Institute, Guizhou Academy of Agricultural Sciences, 1 Jin'nong Road, Guiyang, Guizhou, 550006, China
| | - Mengsha Tang
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization / Anhui Provincial Laboratory of Tea Plant Biology and Utilization/ Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
17
|
Zhan X, Qian Y, Mao B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. Int J Mol Sci 2022; 23:ijms23126398. [PMID: 35742843 PMCID: PMC9223610 DOI: 10.3390/ijms23126398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/07/2022] Open
Abstract
Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the ‘terpenoid backbone biosynthesis’ pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Correspondence: (X.Z.); (B.M.)
| | - Yichun Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310000, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310000, China
- Correspondence: (X.Z.); (B.M.)
| |
Collapse
|
18
|
Onosato H, Fujimoto G, Higami T, Sakamoto T, Yamada A, Suzuki T, Ozawa R, Matsunaga S, Seki M, Ueda M, Sako K, Galis I, Arimura GI. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. PLANT PHYSIOLOGY 2022; 189:922-933. [PMID: 35201346 PMCID: PMC9157098 DOI: 10.1093/plphys/kiac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 05/11/2023]
Abstract
Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile β-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to β-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to β-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.
Collapse
Affiliation(s)
- Haruki Onosato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Genya Fujimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Tomota Higami
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Ayaka Yamada
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Minoru Ueda
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Gen-ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
- Author for correspondence:
| |
Collapse
|
19
|
Amasifuen Guerra CA, Patel K, Delprete PG, Spina AP, Grados J, Vásquez-Ocmín P, Gadea A, Rojas R, Guzmán J, Sauvain M. Patterns of Plumericin Concentration in Leaves of Himatanthus tarapotensis (Apocynaceae) and Its Interactions with Herbivory in the Peruvian Amazon. PLANTS (BASEL, SWITZERLAND) 2022; 11:1011. [PMID: 35448739 PMCID: PMC9027084 DOI: 10.3390/plants11081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
We explored the concentration patterns of the bioactive metabolite plumericin produced by Himatanthus tarapotensis (Apocynaceae) under different edaphic conditions and variations in rainfall intensity, as well as its potential role in the chemical defense against insect herbivores. Values of plumericin concentration from leaves were obtained by High-Performance Liquid Chromatography, and evaluated as a function of differences in soil types, variation of precipitation, and variation of the abundance of insect herbivores, using first a Repeated Measures Correlation (rmcorr) and then a Generalized Linear Mixed Model (GLMM) analysis. Plumericin concentration is highly variable among plants, but with a significantly higher concentration in plants growing on clay soil compared to that of the white-sand soil habitat (p < 0.001). Plumericin concentration is not affected by precipitation. The caterpillar of Isognathus leachii (Lepidoptera: Sphingidae) is the most conspicuous herbivore of H. tarapotensis, and its presence is continuous but not related to plumericin concentration, probably because of its capacity to elude the chemical defense of this plant. Nevertheless, our multivariate model revealed that plumericin concentration is related to the abundance of Hymenoptera (Formicidae), and this relationship is significantly influenced by the soil parameters of carbon percentage, clay percentage, and phosphorous percentage (p < 0.001). Plumericin is a mediating agent in the interaction between H. tarapotensis and its natural environment. Variation in plumericin concentration would be induced by the abundance of Hymenoptera (Formicidae), probably as a chemical response against these insects, and by differences in soil nutrient availability.
Collapse
Affiliation(s)
- Carlos A. Amasifuen Guerra
- Laboratorio Mixto Internacional de Química de la Vida, Institut de Recherche Pour le Développement (IRD), Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (P.V.-O.); (A.G.); (J.G.); (M.S.)
- Dirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Avenida La Molina N° 1981, La Molina, Lima 15024, Peru
| | - Kirti Patel
- Unidad de Investigación en Productos Naturales, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 439, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (K.P.); (R.R.)
| | - Piero G. Delprete
- AMAP, IRD, CNRS, CIRAD, INRA, Université de Montpellier, TA A51/PS2, CEDEX 5, 34398 Montpellier, France;
- AMAP, IRD, Herbier de Guyane, Cité Rebard, 97300 Cayenne, France
| | - Andréa P. Spina
- Rua Capitão Leônidas Marques 894, Curitiba 81540-470, Brazil;
| | - Juan Grados
- Departamento de Entomología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos (UNMSM), Av. Gral. Antonio Alvarez de Arenales 1256, Jesús María, Lima 15072, Peru;
| | - Pedro Vásquez-Ocmín
- Laboratorio Mixto Internacional de Química de la Vida, Institut de Recherche Pour le Développement (IRD), Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (P.V.-O.); (A.G.); (J.G.); (M.S.)
| | - Alice Gadea
- Laboratorio Mixto Internacional de Química de la Vida, Institut de Recherche Pour le Développement (IRD), Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (P.V.-O.); (A.G.); (J.G.); (M.S.)
- UMR 152 PHARMA-DEV, IRD, Université de Toulouse, CEDEX 9, 31062 Toulouse, France
| | - Rosario Rojas
- Unidad de Investigación en Productos Naturales, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 439, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (K.P.); (R.R.)
| | - Jesús Guzmán
- Laboratorio Mixto Internacional de Química de la Vida, Institut de Recherche Pour le Développement (IRD), Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (P.V.-O.); (A.G.); (J.G.); (M.S.)
- Laboratorio Centinela de Helicobacter pylori, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru
| | - Michel Sauvain
- Laboratorio Mixto Internacional de Química de la Vida, Institut de Recherche Pour le Développement (IRD), Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru; (P.V.-O.); (A.G.); (J.G.); (M.S.)
- UMR 152 PHARMA-DEV, IRD, Université de Toulouse, CEDEX 9, 31062 Toulouse, France
- Laboratorio Centinela de Helicobacter pylori, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia (UPCH), Avenida Honorio Delgado 430, Urb. Ingeniería, San Martín de Porres 34, Lima 15024, Peru
| |
Collapse
|
20
|
Bechen LL, Johnson MG, Broadhead GT, Levin RA, Overson RP, Jogesh T, Fant JB, Raguso RA, Skogen KA, Wickett NJ. Differential gene expression associated with a floral scent polymorphism in the evening primrose Oenothera harringtonii (Onagraceae). BMC Genomics 2022; 23:124. [PMID: 35151274 PMCID: PMC8840323 DOI: 10.1186/s12864-022-08370-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Plant volatiles play an important role in both plant-pollinator and plant-herbivore interactions. Intraspecific polymorphisms in volatile production are ubiquitous, but studies that explore underlying differential gene expression are rare. Oenothera harringtonii populations are polymorphic in floral emission of the monoterpene (R)-(−)-linalool; some plants emit (R)-(−)-linalool (linalool+ plants) while others do not (linalool- plants). However, the genes associated with differential production of this floral volatile in Oenothera are unknown. We used RNA-Seq to broadly characterize differential gene expression involved in (R)-(−)-linalool biosynthesis. To identify genes that may be associated with the polymorphism for this trait, we used RNA-Seq to compare gene expression in six different Oenothera harringtonii tissues from each of three linalool+ and linalool- plants. Results Three clusters of differentially expressed genes were enriched for terpene synthase activity: two were characterized by tissue-specific upregulation and one by upregulation only in plants with flowers that produce (R)-(−)-linalool. A molecular phylogeny of all terpene synthases identified two putative (R)-(−)-linalool synthase transcripts in Oenothera harringtonii, a single allele of which is found exclusively in linalool+ plants. Conclusions By using a naturally occurring polymorphism and comparing different tissues, we were able to identify candidate genes putatively involved in the biosynthesis of (R)-(−)-linalool. Expression of these genes in linalool- plants, while low, suggests a regulatory polymorphism, rather than a population-specific loss-of-function allele. Additional terpene biosynthesis-related genes that are up-regulated in plants that emit (R)-(−)-linalool may be associated with herbivore defense, suggesting a potential economy of scale between plant reproduction and defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08370-6.
Collapse
|
21
|
Wang X, Gao Y, Wu X, Wen X, Li D, Zhou H, Li Z, Liu B, Wei J, Chen F, Chen F, Zhang C, Zhang L, Xia Y. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2544-2560. [PMID: 34375461 PMCID: PMC8633516 DOI: 10.1111/pbi.13680] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/27/2021] [Indexed: 05/17/2023]
Abstract
Azalea belongs to Rhododendron, which is one of the largest genera of flowering plants and is well known for the diversity and beauty in its more than 1000 woody species. Rhododendron contains two distinct groups: the most high-altitude and a few low-altitude species; however, the former group is difficult to be domesticated for urban landscaping, and their evolution and adaptation are little known. Rhododendron ovatum has broad adaptation in low-altitude regions but possesses evergreen characteristics like high-altitude species, and it has floral fragrance that is deficient in most cultivars. Here we report the chromosome-level genome assembly of R. ovatum, which has a total length of 549 Mb with scaffold N50 of 41 Mb and contains 41 264 predicted genes. Genomic micro-evolutionary analysis of R. ovatum in comparison with two high-altitude Rhododendron species indicated that the expansion genes in R. ovatum were significantly enriched in defence responses, which may account for its adaptability in low altitudes. The R. ovatum genome contains much more terpene synthase genes (TPSs) compared with the species that lost floral fragrance. The subfamily b members of TPS are involved in the synthesis of sesquiterpenes as well as monoterpenes and play a major role in flora scent biosynthesis and defence responses. Tandem duplication is the primary force driving expansion of defence-responsive genes for extensive adaptability to the low-altitude environments. The R. ovatum genome provides insights into low-altitude adaptation and gain or loss of floral fragrance for Rhododendron species, which are valuable for alpine plant domestication and floral scent breeding.
Collapse
Affiliation(s)
- Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yuan Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of life scienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaopei Wu
- The Southwest China of Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianfen Wei
- Research & Development CenterHangzhou Landscaping IncorporatedHangzhouChina
| | - Fei Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Chengjun Zhang
- The Southwest China of Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
22
|
Mani V, Park S, Kim JA, Lee SI, Lee K. Metabolic Perturbation and Synthetic Biology Strategies for Plant Terpenoid Production-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:2179. [PMID: 34685985 PMCID: PMC8539415 DOI: 10.3390/plants10102179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Terpenoids represent one of the high-value groups of specialized metabolites with vast structural diversity. They exhibit versatile human benefits and have been successfully exploited in several sectors of day-to-day life applications, including cosmetics, foods, and pharmaceuticals. Historically, the potential use of terpenoids is challenging, and highly hampered by their bioavailability in their natural sources. Significant progress has been made in recent years to overcome such challenges by advancing the heterologous production platforms of hosts and metabolic engineering technologies. Herein, we summarize the latest developments associated with analytical platforms, metabolic engineering, and synthetic biology, with a focus on two terpenoid classes: monoterpenoids and sesquiterpenoids. Accumulated data showed that subcellular localization of both the precursor pool and the introduced enzymes were the crucial factors for increasing the production of targeted terpenoids in plants. We believe this timely review provides a glimpse of current state-of-the-art techniques/methodologies related to terpenoid engineering that would facilitate further improvements in terpenoids research.
Collapse
Affiliation(s)
| | | | | | | | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (V.M.); (S.P.); (J.A.K.); (S.I.L.)
| |
Collapse
|
23
|
Li DS, Hua J, Luo SH, Liu YC, Chen YG, Ling Y, Guo K, Liu Y, Li SH. An extremely promiscuous terpenoid synthase from the Lamiaceae plant Colquhounia coccinea var. mollis catalyzes the formation of sester-/di-/sesqui-/mono-terpenoids. PLANT COMMUNICATIONS 2021; 2:100233. [PMID: 34746763 PMCID: PMC8554039 DOI: 10.1016/j.xplc.2021.100233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Terpenoids are the largest class of natural products with complex structures and extensive bioactivities; their scaffolds are generated by diverse terpenoid synthases (TPSs) from a limited number of isoprenoid diphosphate precursors. Promiscuous TPSs play important roles in the evolution of terpenoid chemodiversity, but they remain largely unappreciated. Here, an extremely promiscuous terpenoid synthase (CcTPS1) of the TPS-b subfamily was cloned and functionally characterized from a leaf-specific transcriptome of the Lamiaceae plant Colquhounia coccinea var. mollis. CcTPS1 is the first sester-/di-/sesqui-/mono-TPS identified from the plant kingdom, accepting C25/C20/C15/C10 diphosphate substrates to generate a panel of sester-/di-/sesqui-/mono-terpenoids. Engineered Escherichia coli expressing CcTPS1 produced three previously unreported terpenoids (two sesterterpenoids and a diterpenoid) with rare cyclohexane-containing skeletons, along with four sesquiterpenoids and one monoterpenoid. Their structures were elucidated by extensive nuclear magnetic resonance spectroscopy. Nicotiana benthamiana transiently expressing CcTPS1 also produced the diterpenoid and sesquiterpenoids, demonstrating the enzyme's promiscuity in planta. Its highly leaf-specific expression pattern combined with detectable terpenoid products in leaves of C. coccinea var. mollis and N. benthamiana expressing CcTPS1 suggested that CcTPS1 was mainly responsible for diterpenoid and sesquiterpenoid biosynthesis in plants. CcTPS1 expression and the terpenoid products could be induced by methyl jasmonate, suggesting their possible role in plant-environment interaction. CcTPS1 was localized to the cytosol and may differ from mono-TPSs in subcellular compartmentalization and substrate tolerance. These findings will greatly aid our understanding of plant TPS evolution and terpenoid chemodiversity; they also highlight the enormous potential of transcriptome mining and heterologous expression for the exploration of unique enzymes and natural products hidden in plants.
Collapse
Affiliation(s)
- De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shengyang 110866, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shengyang 110866, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
24
|
Zhan X, Tong Y. Comparative transcriptomic profiling reveals the regulation of terpenoid biosynthesis in Sinocalycanthus chinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:477-484. [PMID: 34166974 DOI: 10.1016/j.plaphy.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Sinocalycanthus chinensis, a diploid (2n = 22) deciduous shrub, belongs to the Calycanthaceae family of magnoliids and is rich secondary metabolites, such as terpenoids. However, the regulation of terpenoid biosynthesis in S. chinensis is largely unknown. In this study, comparative transcriptome analyses were performed in the bark, branches, leaves, and flowers. KEGG enrichment analysis revealed that the terpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in the four tissues. Twelve terpenoid backbone biosynthesis-related genes were identified, and eight terpene synthases (TPSs) were reassembled based on independent transcriptomes from the four tissues. Phylogenetic analysis of the TPSs showed high sequence similarity between S. chinensis and Arabidopsis, and these TPSs were classified into three subfamilies. Moreover, 39 phytohormone response-related genes, including 5 abscisic acid (ABA) receptors, 25 auxin response factors, 3 gibberellin (GA) response genes, 5 ethylene response genes, and 1 jasmonic acid (JA) response gene were analyzed. Most phytohormone pathway-related genes were upregulated in the flowers and downregulated in the leaves. The endogenous indole acetic acid (IAA) content was higher in the flowers than in the other comparisons. Our results provide an opportunity to reveal the regulation of terpenoid biosynthesis in S. chinensis.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China.
| | - Yingpeng Tong
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
25
|
Kuga K, Ito K, Chen W, Wang P, Fowles J, Kumagai K. Secondary indoor air pollution and passive smoking associated with cannabis smoking using electric cigarette device-demonstrative in silico study. PLoS Comput Biol 2021; 17:e1009004. [PMID: 33983924 PMCID: PMC8148323 DOI: 10.1371/journal.pcbi.1009004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
With electronic (e)-liquids containing cannabis components easily available, many anecdotal examples of cannabis vaping using electronic cigarette devices have been reported. For electronic cigarette cannabis vaping, there are potential risks of secondary indoor air pollution from vapers. However, quantitative and accurate prediction of the inhalation and dermal exposure of a passive smoker in the same room is difficult to achieve due to the ethical constraints on subject experiments. The numerical method, i.e., in silico method, is a powerful tool to complement these experiments with real humans. In this study, we adopted a computer-simulated person that has been validated from multiple perspectives for prediction accuracy. We then conducted an in silico study to elucidate secondary indoor air pollution and passive smoking associated with cannabis vaping using an electronic cigarette device in an indoor environment. The aerosols exhaled by a cannabis vaper were confirmed to be a secondary emission source in an indoor environment; non-smokers were exposed to these aerosols via respiratory and dermal pathways. Tetrahydrocannabinol was used as a model chemical compound for the exposure study. Its uptake by the non-smoker through inhalation and dermal exposure under a worst-case scenario was estimated to be 5.9% and 2.6% of the exhaled quantity from an e-cigarette cannabis user, respectively. How can we best mitigate unintended passive smoking in an indoor environment? As marijuana tends to be legalized in more countries, there is an increasing number of cases of vaping cannabis using e-cigarette devices. E-cigarette vaping is presumed to cause relatively low levels of indoor air pollution due to the absence of a direct combustion process. In this study, we developed a numerical simulation model to quantitatively predict the impact of first- and second-hand cannabis vaping in an indoor environment. The study was conducted in response to vulnerable residents who are concerned regarding the deterioration of indoor air quality and informs policymakers of the potential risk of second-hand cannabis vaping exposure.
Collapse
Affiliation(s)
- Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka, Japan
- * E-mail:
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka, Japan
| | - Wenhao Chen
- Indoor Air Quality Program, Environmental Health Laboratory, California Department of Public Health, Richmond, California, United States of America
| | - Ping Wang
- Indoor Air Quality Program, Environmental Health Laboratory, California Department of Public Health, Richmond, California, United States of America
| | - Jeff Fowles
- Indoor Air Quality Program, Environmental Health Laboratory, California Department of Public Health, Richmond, California, United States of America
| | - Kazukiyo Kumagai
- Indoor Air Quality Program, Environmental Health Laboratory, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
26
|
Liu H, Liu Y, Cheng N, Zhang Y. De novo transcriptome assembly of transgenic tobacco ( Nicotiana tabacum NC89) with early senescence characteristic. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:237-249. [PMID: 33707866 PMCID: PMC7907299 DOI: 10.1007/s12298-021-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED The enzyme, α-farnesene synthase (AFS), which synthesizes α-farnesene, is the final enzyme in α-farnesene synthesis pathway. We overexpressed the α-farnesene synthase gene (previously cloned in our lab from apple peel) and ectopically expressed it in tobacco (Nicotiana tabacum NC89). Then, the transgenic plants showed an accelerated developmental process and bloomed about 7 weeks earlier than the control plants. We anticipate that de novo transcriptomic analyses of N. tabacum may provide useful information on isoprenoid biosynthesis, growth, and development. We generated 318,925,338 bp sequencing data using Illumina paired-end sequencing from the cDNA library of the apical buds of transgenic line and the wild-type line. We annotated and functionally classified the unigenes in a nucleotide and protein database. Differentially expressed unigenes may be involved in carbohydrate metabolism, nitrogen metabolism, transporter activity, hormone signal transduction, antioxidant systems and transcription regulator activity particularly related to senescence. Moreover, we analyzed eight genes related to terpenoid biosynthesis using qRT-PCR to study the changes in growth and development patterns in the transgenic plants. Our study shows that transgenic plants show premature senescence. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00953-z.
Collapse
Affiliation(s)
- Heng Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Yu Liu
- Qingdao Agricultural University, Qingdao, 266109 Shandong People’s Republic of China
| | - Nini Cheng
- Linyi University, Linyi, 276005 Shandong People’s Republic of China
| | - Yuanhu Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Dai Zong Street, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
27
|
Reichardt S, Budahn H, Lamprecht D, Riewe D, Ulrich D, Dunemann F, Kopertekh L. The carrot monoterpene synthase gene cluster on chromosome 4 harbours genes encoding flavour-associated sabinene synthases. HORTICULTURE RESEARCH 2020; 7:190. [PMID: 33328444 PMCID: PMC7705728 DOI: 10.1038/s41438-020-00412-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 05/03/2023]
Abstract
In plants, low molecular weight terpenes produced by terpene synthases (TPS) contribute to multiple ecologically and economically important traits. The present study investigates a carrot terpene synthase gene cluster on chromosome 4 associated with volatile monoterpene production. Two carrot mutants, yellow and cola, which are contrasting in the content of low molecular weight terpenes, were crossed to develop an F2 mapping population. The mapping analysis revealed overlapping QTLs on chromosome 4 for sabinene, α-thujene, α-terpinene, γ-terpinene, terpinen-4-ol and 4-carene. The genomic region of this locus includes a cluster of five terpene synthase genes (DcTPS04, DcTPS26, DcTPS27, DcTPS54 and DcTPS55). DcTPS04 and DcTPS54 displayed genotype- and tissue-specific variation in gene expression. Based on the QTL mapping results and the gene expression patterns, DcTPS04 and DcTPS54 were selected for functional characterization. In vitro enzyme assays showed that DcTPS54 is a single-product enzyme catalysing the formation of sabinene, whereas DcTPS04 is a multiple-product terpene synthase producing α-terpineol as a major product and four additional products including sabinene, β-limonene, β-pinene and myrcene. Furthermore, we developed a functional molecular marker that could discriminate carrot genotypes with different sabinene content in a set of 85 accessions.
Collapse
Affiliation(s)
- Sven Reichardt
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany.
| | - Holger Budahn
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Dominic Lamprecht
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - David Riewe
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Detlef Ulrich
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Frank Dunemann
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| | - Lilya Kopertekh
- Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484, Quedlinburg, Germany
| |
Collapse
|
28
|
Xu S, Kreitzer C, McGale E, Lackus ND, Guo H, Köllner TG, Schuman MC, Baldwin IT, Zhou W. Allelic differences of clustered terpene synthases contribute to correlated intraspecific variation of floral and herbivory-induced volatiles in a wild tobacco. THE NEW PHYTOLOGIST 2020; 228:1083-1096. [PMID: 32535930 DOI: 10.1111/nph.16739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Plant volatile emissions can recruit predators of herbivores for indirect defense and attract pollinators to aid in pollination. Although volatiles involved in defense and pollinator attraction are primarily emitted from leaves and flowers, respectively, they will co-evolve if their underlying genetic basis is intrinsically linked, due either to pleiotropy or to genetic linkage. However, direct evidence of co-evolving defense and floral traits is scarce. We characterized intraspecific variation of herbivory-induced plant volatiles (HIPVs), the key components of indirect defense against herbivores, and floral volatiles in wild tobacco Nicotiana attenuata. We found that variation of (E)-β-ocimene and (E)-α-bergamotene contributed to the correlated changes in HIPVs and floral volatiles among N. attenuata natural accessions. Intraspecific variations of (E)-β-ocimene and (E)-α-bergamotene emissions resulted from allelic variation of two genetically co-localized terpene synthase genes, NaTPS25 and NaTPS38, respectively. Analyzing haplotypes of NaTPS25 and NaTPS38 revealed that allelic variations of NaTPS25 and NaTPS38 resulted in correlated changes of (E)-β-ocimene and (E)-α-bergamotene emission in HIPVs and floral volatiles in N. attenuata. Together, these results provide evidence that pleiotropy and genetic linkage result in correlated changes in defenses and floral signals in natural populations, and the evolution of plant volatiles is probably under diffuse selection.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Christoph Kreitzer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Geography & Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Wenwu Zhou
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Pazarlar S, Cetinkaya N, Bor M, Kara RS. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6638-6654. [PMID: 32822478 DOI: 10.1093/jxb/eraa384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-acyl-homoserine lactones (AHLs), a well-described group of quorum sensing molecules, may modulate plant defense responses and plant growth. However, there is limited knowledge regarding the defense responses of non-model crops to AHLs and the mechanism of action responsible for the modulation of defense responses against microbial pathogens. In the present study, long-chain N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) was shown to have a distinct potential to prime cucumber for enhanced defense responses against the biotrophic oomycete pathogen Pseudoperonospora cubensis and the hemibiotrophic bacterium Pseudomonas syringae pv. lachrymans. We provide evidence that AHL-mediated enhanced defense against downy mildew disease is based on cell wall reinforcement by lignin and callose deposition, the activation of defense-related enzymes (peroxidase, β-1,3-glucanase, phenylalanine ammonia-lyase), and the accumulation of reactive oxygen species (hydrogen peroxide, superoxide) and phenolic compounds. Quantitative analysis of salicylic acid and jasmonic acid, and transcriptional analysis of several of genes associated with these phytohormones, revealed that defense priming with oxo-C14-HSL is commonly regulated by the salicylic acid signaling pathway. We also show that treatment with short- (N-hexanoyl-l-homoserine lactone) and medium-chain (N-3-oxo-decanoyl-l-homoserine lactone) AHLs promoted primary root elongation and modified root architecture, respectively, resulting in enhanced plant growth.
Collapse
Affiliation(s)
- Sercan Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Nedim Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Melike Bor
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Recep Serdar Kara
- Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
30
|
Ding G, Zhang S, Ma B, Liang J, Li H, Luo Y, He N. Origin and functional differentiation of (E)-β-ocimene synthases reflect the expansion of monoterpenes in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6571-6586. [PMID: 32720987 DOI: 10.1093/jxb/eraa353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The acquisition of new metabolic activities is a major force driving evolution. We explored, from the perspectives of gene family expansion and the evolutionary adaptability of proteins, how new functions have arisen in which terpene synthases diverged. Monoterpenoids are diverse natural compounds that can be divided into cyclic and acyclic skeleton forms according to their chemical structure. We demonstrate, through phylogenetic reconstructions and genome synteny analyses, that the (E)-β-ocimene synthases, which are acyclic monoterpene synthases (mTPSs), appear to have arisen several times in independent lineages during plant evolution. Bioinformatics analyses and classical mutation experiments identified four sites (I388, F420, S446, and F485) playing important roles in the neofunctionalization of mTPSs. Incubation of neryl diphosphate with Salvia officinalis 1,8-cineole synthase (SCS) and mutated proteins show that these four sites obstruct the isomerization of geranyl diphosphate. Quantum mechanical/molecular mechanical molecular dynamics simulations of models of SCS, SCSY420F/I446S, and SCSN338I/Y420F/I446S/L485F with (3R)-linalyl diphosphate suggest that mutations changed the configuration of the intermediate to obtain new activities. These results provide new perspectives on the evolution of mTPSs, explain the convergent evolution of (E)-β-ocimene synthases at the molecular level, and identify key residues to control the specificity of engineered mTPSs.
Collapse
Affiliation(s)
- Guangyu Ding
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jiubo Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Dhandapani S, Tjhang JG, Jang IC. Production of multiple terpenes of different chain lengths by subcellular targeting of multi-substrate terpene synthase in plants. Metab Eng 2020; 61:397-405. [PMID: 32795613 DOI: 10.1016/j.ymben.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
Multi-substrate terpene synthases (TPSs) are distinct from typical TPSs that react with a single substrate. Although in vitro activity of few multi-substrate TPSs have been reported, in vivo characterization has not been well investigated for most of them. Here, a new TPS from Cananga odorata, CoTPS5, belonging to TPS-f subfamily was functionally characterized in vitro as well as in vivo. CoTPS5 reacted with multiple prenyl-pyrophosphate substrates of various chain lengths as a multi-substrate TPS. It catalyzed the formation of (E)-β-ocimene, (E,E)-α-farnesene and α-springene from geranyl pyrophosphate, (E,E)-farnesyl pyrophosphate and geranylgeranyl pyrophosphate, respectively. Upon transient expression in Nicotiana benthamiana, CoTPS5 localized to cytosol and produced only (E,E)-α-farnesene. However, expression of plastid-targeted CoTPS5 in N. benthamiana resulted in biosynthesis of all three compounds, (E)-β-ocimene, (E,E)-α-farnesene and α-springene. Similarly, transgenic Arabidopsis plants overexpressing plastid-targeted CoTPS5 showed stable and sustainable production of (E)-β-ocimene, (E,E)-α-farnesene and α-springene. Moreover, their production did not affect the growth and development of transgenic Arabidopsis plants. Our results demonstrate that redirecting multi-substrate TPS to a different intracellular compartment could be an effective way to prove in vivo activity of multi-substrate TPSs and thereby allowing for the production of multiple terpenoids simultaneously in plants.
Collapse
Affiliation(s)
- Savitha Dhandapani
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Jessica Gambino Tjhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
32
|
Michael R, Ranjan A, Kumar RS, Pathak PK, Trivedi PK. Light-regulated expression of terpene synthase gene, AtTPS03, is controlled by the bZIP transcription factor, HY5, in Arabidopsis thaliana. Biochem Biophys Res Commun 2020; 529:437-443. [PMID: 32703448 DOI: 10.1016/j.bbrc.2020.05.222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
Abstract
The terpenoid pathway serves as an essential source of all isoprenoid precursors and metabolites that are of great pharmacological importance. The major enzymes for the synthesis of these diverse molecules is the terpene synthases (TPSs), which catalyse the final step of the synthesis of the important secondary products, the terpenes. Previous studies have reported that the various environmental factors, including light govern the synthesis of terpenoids. However, the molecular components and steps involved in the regulation of synthesis of these molecules have not been studied in detail. In this study, we report that the light regulates the expression of the members of terpene synthase gene family in Arabidopsis thaliana. We demonstrate that ELONGATED HYPOCOTYL (HY5), a basic leucine zipper transcription factor, plays a crucial role in light-mediated transcriptional regulation of terpene synthase, AtTPS03. Expression analysis using hy5-215 mutant and HY5 over-expression lines revealed that HY5 acts as a positive regulator of AtTPS03. Additionally, studies including AtTPS03 Promoter::reporter transgenic lines in wild-type and hy5-215, as well as electrophoretic mobility shift assay (EMSA), suggest an interaction of HY5 with the AtTPS03 promoter. Together, our analysis indicate the requirement for HY5 for light-mediated regulation of AtTPS03 for the terpenoid biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Rahul Michael
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avriti Ranjan
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar Kumar
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pranshu Kumar Pathak
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Ashaari NS, Ab. Rahim MH, Sabri S, Lai KS, Song AAL, Abdul Rahim R, Wan Abdullah WMAN, Ong Abdullah J. Functional characterization of a new terpene synthase from Plectranthus amboinicus. PLoS One 2020; 15:e0235416. [PMID: 32614884 PMCID: PMC7332032 DOI: 10.1371/journal.pone.0235416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60–70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.
Collapse
Affiliation(s)
- Nur Suhanawati Ashaari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Hairul Ab. Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab of Emirates
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
34
|
Mele MA, Kang HM, Lee YT, Islam MZ. Grape terpenoids: flavor importance, genetic regulation, and future potential. Crit Rev Food Sci Nutr 2020; 61:1429-1447. [PMID: 32401037 DOI: 10.1080/10408398.2020.1760203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Terpenes significantly affect the flavor and quality of grapes and wine. This review summarizes recent research on terpenoids with regard to grape wine. Although, the grapevine terpene synthase gene family is the largest identified, genetic modifications involving terpenes to improve wine flavor have received little attention. Key enzyme modulation alters metabolite production. Over the last decade, the heterologous manipulation of grape glycosidase has been used to alter terpenoids, and cytochrome P450s may affect terpene synthesis. Metabolic and genetic engineering can further modify terpenoid metabolism, while using transgenic grapevines (trait transfer to the plant) could yield more flavorful wine. We also discuss traits involved in wine aroma quality, and the strategies that can be used to improve grapevine breeding technology.
Collapse
Affiliation(s)
- Mahmuda Akter Mele
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Ho-Min Kang
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Young-Tack Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Mohammad Zahirul Islam
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
35
|
Abbas F, Ke Y, Zhou Y, Ashraf U, Li X, Yu Y, Yue Y, Ahmad KW, Yu R, Fan Y. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety 'Siberia'. PHYTOCHEMISTRY 2020; 173:112294. [PMID: 32058861 DOI: 10.1016/j.phytochem.2020.112294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Lilies are a commercially significant cut flower worldwide due not only to their elegant shape but also to their appealing scent. Among Lilium varieties, Lilium 'Siberia' is a cultivar that is prominent and highly favored by consumers due to its snowy white color and strong floral scent. Here, two terpene synthase genes (LoTPS2 and LoTPS4) that are responsible for floral scent production in Lilium 'Siberia' were cloned and functionally characterized. Recombinant LoTPS2 specifically catalyzed the formation of (E, E)-α-farnesene from FPP. Recombinant LoTPS4 is a multiproduct enzyme that produces D-limonene and β-myrcene as major volatile compounds and β-phellandrene, (+)-4-carene and 3-carene as minor products from GPP. Furthermore, LoTPS4 generates trans-α-bergamotene as a major product and di-epi-α-cedrene, α-cubebene and (E)-β-farnesene as minor compounds from FPP. Subcellular localization analysis using GFP fusion constructs revealed that LoTPS2 was localized in the cytosol, whereas LoTPS4 was localized in plastids. Real-time PCR analysis showed that LoTPS2 was highly expressed in the petals and sepals of the flower, while LoTPS4 was highly expressed in the filament of the flower. Moreover, mechanical wounding of flowers revealed that LoTPS2 showed a strong response to wounding via a rapid increase in its mRNA transcript level. Our results will assist scientists in exploring the molecular mechanisms of terpene biosynthesis in this species and will provide new insight into the biotechnological modification of the floral bouquet in Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kanwar Waqas Ahmad
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Wimberley J, Cahill J, Atamian HS. De novo Sequencing and Analysis of Salvia hispanica Tissue-Specific Transcriptome and Identification of Genes Involved in Terpenoid Biosynthesis. PLANTS 2020; 9:plants9030405. [PMID: 32213996 PMCID: PMC7154873 DOI: 10.3390/plants9030405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
Salvia hispanica (commonly known as chia) is gaining popularity worldwide as a healthy food supplement due to its low saturated fatty acid and high polyunsaturated fatty acid content, in addition to being rich in protein, fiber, and antioxidants. Chia leaves contain plethora of secondary metabolites with medicinal properties. In this study, we sequenced chia leaf and root transcriptomes using the Illumina platform. The short reads were assembled into contigs using the Trinity software and annotated against the Uniprot database. The reads were de novo assembled into 103,367 contigs, which represented 92.8% transcriptome completeness and a diverse set of Gene Ontology terms. Differential expression analysis identified 6151 and 8116 contigs significantly upregulated in the leaf and root tissues, respectively. In addition, we identified 30 contigs belonging to the Terpene synthase (TPS) family and demonstrated their evolutionary relationships to tomato TPS family members. Finally, we characterized the expression of S. hispanica TPS members in leaves subjected to abiotic stresses and hormone treatments. Abscisic acid had the most pronounced effect on the expression of the TPS genes tested in this study. Our work provides valuable community resources for future studies aimed at improving and utilizing the beneficial constituents of this emerging healthy food source.
Collapse
Affiliation(s)
- James Wimberley
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA;
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | | | - Hagop S. Atamian
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Biological Sciences Program, Chapman University, Orange, CA 92866, USA
- Correspondence: ; Tel.: +1-(714)-289-2023
| |
Collapse
|
37
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
38
|
On the Evolution and Functional Diversity of Terpene Synthases in the Pinus Species: A Review. J Mol Evol 2020; 88:253-283. [PMID: 32036402 DOI: 10.1007/s00239-020-09930-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
In the biosynthesis of terpenoids, the ample catalytic versatility of terpene synthases (TPS) allows the formation of thousands of different molecules. A steadily increasing number of sequenced plant genomes invariably show that the TPS gene family is medium to large in size, comprising from 30 to 100 functional members. In conifers, TPSs belonging to the gymnosperm-specific TPS-d subfamily produce a complex mixture of mono-, sesqui-, and diterpenoid specialized metabolites, which are found in volatile emissions and oleoresin secretions. Such substances are involved in the defence against pathogens and herbivores and can help to protect against abiotic stress. Oleoresin terpenoids can be also profitably used in a number of different fields, from traditional and modern medicine to fine chemicals, fragrances, and flavours, and, in the last years, in biorefinery too. In the present work, after summarizing the current views on the biosynthesis and biological functions of terpenoids, recent advances on the evolution and functional diversification of plant TPSs are reviewed, with a focus on gymnosperms. In such context, an extensive characterization and phylogeny of all the known TPSs from different Pinus species is reported, which, for such genus, can be seen as the first effort to explore the evolutionary history of the large family of TPS genes involved in specialized metabolism. Finally, an approach is described in which the phylogeny of TPSs in Pinus spp. has been exploited to isolate for the first time mono-TPS sequences from Pinus nigra subsp. laricio, an ecologically important endemic pine in the Mediterranean area.
Collapse
|
39
|
Moreira X, Abdala-Roberts L, Nell CS, Vázquez-González C, Pratt JD, Keefover-Ring K, Mooney KA. Sexual and genotypic variation in terpene quantitative and qualitative profiles in the dioecious shrub Baccharis salicifolia. Sci Rep 2019; 9:14655. [PMID: 31602001 PMCID: PMC6787053 DOI: 10.1038/s41598-019-51291-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/28/2019] [Indexed: 11/30/2022] Open
Abstract
Terpenoids are secondary metabolites produced in most plant tissues and are often considered toxic or repellent to plant enemies. Previous work has typically reported on intra-specific variation in terpene profiles, but the effects of plant sex, an important axis of genetic variation, have been less studied for chemical defences in general, and terpenes in particular. In a prior study, we found strong genetic variation (but not sexual dimorphism) in terpene amounts in leaves of the dioecious shrub Baccharis salicifolia. Here we build on these findings and provide a more in-depth analysis of terpene chemistry on these same plants from an experiment consisting of a common garden with male (N = 19) and female (N = 20) genotypes sourced from a single population. Our goal in the present study was to investigate quantitative and qualitative differences in terpene profiles associated with plant sex and genotypic variation. For this, we quantified leaf mono- and sesquiterpene amount, richness, and diversity (quantitative profile), as well as the composition of compounds (qualitative profile). We found no evidence of sexual dimorphism in monoterpene or sesquiterpene profiles. We did, however, find significant genotypic variation in amount, diversity, and composition of monoterpenes, but no effects on sesquiterpenes. These findings indicated that genotypic variation in terpene profiles largely surpassed variation due to sexual dimorphism for the studied population of this species.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Department of Tropical Ecology, Autonomous University of Yucatan, Apartado Postal 4-116, Itzimna. 97000, Merida, Yucatan, Mexico
| | - Colleen S Nell
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | | | - Jessica D Pratt
- University of California, Department of Ecology and Evolutionary Biology, Irvine, California, 92697, USA
| | - Ken Keefover-Ring
- University of Wisconsin-Madison, Departments of Botany and Geography, Madison, WI, 53705, USA
| | - Kailen A Mooney
- University of California, Department of Ecology and Evolutionary Biology, Irvine, California, 92697, USA.
| |
Collapse
|
40
|
Rutter MT, Murren CJ, Callahan HS, Bisner AM, Leebens-Mack J, Wolyniak MJ, Strand AE. Distributed phenomics with the unPAK project reveals the effects of mutations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:199-211. [PMID: 31155775 DOI: 10.1111/tpj.14427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.
Collapse
Affiliation(s)
- Matthew T Rutter
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Hilary S Callahan
- Department of Biology, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - April M Bisner
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, 120 Carlton St, Athens, GA, 30602, USA
| | | | - Allan E Strand
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| |
Collapse
|
41
|
Nawade B, Yahyaa M, Reuveny H, Shaltiel-Harpaz L, Eisenbach O, Faigenboim A, Bar-Yaakov I, Holland D, Ibdah M. Profiling of volatile terpenes from almond (Prunus dulcis) young fruits and characterization of seven terpene synthase genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110187. [PMID: 31481200 DOI: 10.1016/j.plantsci.2019.110187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Almond (Prunus dulcis) is an agricultural and economically important fruit tree from the Rosaceae family used in the food industry. The monoterpenes and sesquiterpenes perform important ecological functions such as insecticidal and antifeedant activities against various insects. The young fruits of the different almond varieties were found to produce considerable amounts of terpene volatiles, including linalool and geraniol. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, existing genome databases of the Rosaceae were screened for almond genes with significant sequence similarity to other plants TPSs. Bioinformatics analysis led to the identification of seven putative TPSs genes with complete open reading frames. We characterized the enzymes encoded by these seven complementary DNAs: the monoterpene synthases PdTPS1, PdTPS3, PdTPS5, and PdTPS6 belong to the TPS-b clade, which catalyzes the formation of β-phellandrene, geraniol, linalool, and farnesene, respectively. The sesquiterpene synthases PdTPS2 and PdTPS4, which belong to the TPS-a clade mainly catalyze the formation of bergamotene, while another sesquiterpene synthase, PdTPS7, from the TPS-g clade showed nerolidol synthase activity. The qRT-PCR analysis revealed that the various tissues of almond varieties showed differential transcription for all these PdTPSs genes.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Mosaab Yahyaa
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Haim Reuveny
- Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel
| | - Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel; Tel Hai college, Upper Galilee, 12210, Israel
| | - Ori Eisenbach
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Adi Faigenboim
- Institute of Plant Science, The Volcani Center, ARO, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Irit Bar-Yaakov
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Doron Holland
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
42
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
43
|
Abstract
Abstract
Terpenes or terpenoids are extracted or steam distilled for the recovery of the essential oils of specific fragrant plants. These steam distillates are used to create fine perfumes, to refine the flavor and the aroma of food and drinks, and to produce medicines from plants (phytopharmaca). In recent years, consumers have developed an increasing interest in natural products, as most of these terpenoids have been identified as high value chemicals in food, cosmetic, pharmaceutical, biotechnology, and industrial crops. Extensive chemical techniques and biological tests have led to the identification, biological characterization, and extraction of major components that are of wide interest, especially to the cosmetic and industrial recovery of selective terpenes. The current status of the knowledge of their general structure, functions, and bioactive properties and the methods for their separation are covered in this review.
Collapse
Affiliation(s)
- Ghada Ben Salha
- Chemical and Environmental Engineering Department , University of the Basque Country , Plaza Europa, 1 , 20018 Donostia-San Sebastián , Spain
- Laboratory Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , 2070 Marsa , Tunisia
- Faculty of Sciences of Tunisia , University of Tunisia El Manar, Farhat Hached University , Campus PB 94 – Rommana 1068 , Tunis , Tunisia
| | - Manef Abderrabba
- Laboratory Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , 2070 Marsa , Tunisia
| | - Jalel Labidi
- Chemical and Environmental Engineering Department , University of the Basque Country , Plaza Europa, 1 , 20018 Donostia-San Sebastián , Spain
| |
Collapse
|
44
|
Johnson SR, Bhat WW, Sadre R, Miller GP, Garcia AS, Hamberger B. Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution. THE NEW PHYTOLOGIST 2019; 223:323-335. [PMID: 30843212 PMCID: PMC6593445 DOI: 10.1111/nph.15778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these. We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS-a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS-a enzymes from Lamiaceae were cytosolic and reported to act on the 15-carbon farnesyl diphosphate. Plastidial TPS-a enzymes using the 20-carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family. All four new enzymes were found to be active on multiple prenyl-diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11-hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins. We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification.
Collapse
Affiliation(s)
- Sean R. Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Wajid Waheed Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| | - Radin Sadre
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Garret P. Miller
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Alekzander Sky Garcia
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
45
|
Panara F, Lopez L, Daddiego L, Fantini E, Facella P, Perrotta G. Comparative transcriptomics between high and low rubber producing Taraxacum kok-saghyz R. plants. BMC Genomics 2018; 19:875. [PMID: 30514210 PMCID: PMC6280347 DOI: 10.1186/s12864-018-5287-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/20/2018] [Indexed: 01/23/2023] Open
Abstract
Background Taraxacum kok-saghyz R. (Tks) is a promising alternative species to Hevea brasiliensis for production of high quality natural rubber (NR). A comparative transcriptome analysis of plants with differential production of NR will contribute to elucidate which genes are involved in the synthesis, regulation and accumulation of this natural polymer and could help to develop Tks into a rubber crop. Results We measured rubber content in the latex of 90 individual Tks plants from 9 accessions, observing a high degree of variability. We carried out de novo root transcriptome sequencing, assembly, annotation and comparison of gene expression of plants with the lower (LR plants) and the higher rubber content (HR plants). The transcriptome analysis also included one plant that did not expel latex, in principle depleted of latex transcripts. Moreover, the transcription of some genes well known to play a major role in rubber biosynthesis, was probed by qRT-PCR. Our analysis showed a high modulation of genes involved in the synthesis of NR between LR and HR plants, and evidenced that genes involved in sesquiterpenoids, monoterpenoids and phenylpropanoid biosynthesis are upregulated in LR plants. Conclusions Our results show that a higher amount of rubber in the latex in HR plants is positively correlated with high expression levels of a number of genes directly involved in rubber synthesis showing that NR production is highly controlled at transcriptional level. On the other hand, lower amounts of rubber in LR plants is related with higher expression of genes involved in the synthesis of other secondary metabolites that, we hypothesize, may compete towards NR biosynthesis. This dataset represents a fundamental genomic resource for the study of Tks and the comprehension of the synthesis of NR and other biochemically and pharmacologically relevant compounds in the Taraxacum genus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5287-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Panara
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Loredana Lopez
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Loretta Daddiego
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Elio Fantini
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| | - Paolo Facella
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy.
| | - Gaetano Perrotta
- Trisaia Research Center, ENEA, Italian National Agency for New Technologies Energy and Sustainable Economic Development, MT, 75026, Rotondella, Italy
| |
Collapse
|
46
|
Creyaufmüller FC, Chassignet I, Delb H, Dounavi A, Gailing O, Leinemann L, Kreuzwieser J, Teply-Szymanski J, Vornam B. Terpene Synthase Genes in Quercus robur - Gene Characterization, Expression and Resulting Terpenes Due to Cockchafer Feeding. FRONTIERS IN PLANT SCIENCE 2018; 9:1753. [PMID: 30559755 PMCID: PMC6287202 DOI: 10.3389/fpls.2018.01753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Root herbivory caused by larvae of the forest cockchafer (Melolontha hippocastani) enhances the impact of drought on trees, particularly in oak forest rejuvenations. In Germany, geographically distant oak stands show differences in infestation strength by the forest cockchafer. While in Southwestern Germany this insect causes severe damage, oak forests in northern Germany are rarely infested. It is known that root-released volatile organic compounds (VOCs) are perceived by soil herbivores, thus guiding the larvae toward the host roots. In this work, we exposed seedlings of two distant oak provenances to forest cockchafer larvae and studied their population genetic properties, their root-based VOC chemotypes, their attraction for larvae and terpene synthase gene expression. Based on nuclear and chloroplast marker analysis, we found both oak populations to be genetically highly variable while showing typical patterns of migration from different refugial regions. However, no clear association between genetic constitution of the different provenances and the abundance of cockchafer populations on site was observed. In contrast to observations in the field, bioassays revealed a preference of the larvae for the northeastern oak provenance. The behavior of larvae was most likely related to root-released volatile terpenes and benzenoids since their composition and quantity differed between oak populations. We assume repellent effects of these compounds because the populations attractive to insects showed low abundance of these compounds. Five different oak terpene synthase (TPS) genes were identified at the genomic level which can be responsible for biosynthesis of the released terpenes. TPS gene expression patterns in response to larval feeding revealed geographic variation rather than genotypic variation. Our results support the assumption that root-released VOC are influencing the perception of roots by herbivores.
Collapse
Affiliation(s)
| | - Isabelle Chassignet
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Horst Delb
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Aikaterini Dounavi
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| | - Ludger Leinemann
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Science, University of Freiburg, Freiburg, Germany
| | - Julia Teply-Szymanski
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Barbara Vornam
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| |
Collapse
|
47
|
Blerot B, Martinelli L, Prunier C, Saint-Marcoux D, Legrand S, Bony A, Sarrabère L, Gros F, Boyer N, Caissard JC, Baudino S, Jullien F. Functional Analysis of Four Terpene Synthases in Rose-Scented Pelargonium Cultivars ( Pelargonium × hybridum) and Evolution of Scent in the Pelargonium Genus. FRONTIERS IN PLANT SCIENCE 2018; 9:1435. [PMID: 30483274 PMCID: PMC6240891 DOI: 10.3389/fpls.2018.01435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 05/26/2023]
Abstract
Pelargonium genus contains about 280 species among which at least 30 species are odorant. Aromas produced by scented species are remarkably diverse such as rose, mint, lemon, nutmeg, ginger and many others scents. Amongst odorant species, rose-scented pelargoniums, also named pelargonium rosat, are the most famous hybrids for their production of essential oil (EO), widely used by perfume and cosmetic industries. Although EO composition has been extensively studied, the underlying biosynthetic pathways and their regulation, most notably of terpenes, are largely unknown. To gain a better understanding of the terpene metabolic pathways in pelargonium rosat, we generated a transcriptome dataset of pelargonium leaf and used a candidate gene approach to functionally characterise four terpene synthases (TPSs), including a geraniol synthase, a key enzyme responsible for the biosynthesis of the main rose-scented terpenes. We also report for the first time the characterisation of a novel sesquiterpene synthase catalysing the biosynthesis of 10-epi-γ-eudesmol. We found a strong correlation between expression of the four genes encoding the respective TPSs and accumulation of the corresponding products in several pelargonium cultivars and species. Finally, using publically available RNA-Seq data and de novo transcriptome assemblies, we inferred a maximum likelihood phylogeny from 270 pelargonium TPSs, including the four newly discovered enzymes, providing clues about TPS evolution in the Pelargonium genus. Notably, we show that, by contrast to other TPSs, geraniol synthases from the TPS-g subfamily conserved their molecular function throughout evolution.
Collapse
Affiliation(s)
- Bernard Blerot
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
- IFF-LMR Naturals, Grasse, France
| | - Laure Martinelli
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Cécile Prunier
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Denis Saint-Marcoux
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | | | - Aurélie Bony
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Loïc Sarrabère
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Florence Gros
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Nicolas Boyer
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| | - Frédéric Jullien
- Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France
| |
Collapse
|
48
|
He SM, Wang X, Yang SC, Dong Y, Zhao QM, Yang JL, Cong K, Zhang JJ, Zhang GH, Wang Y, Fan W. De novo Transcriptome Characterization of Rhodomyrtus tomentosa Leaves and Identification of Genes Involved in α/β-Pinene and β-Caryophyllene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1231. [PMID: 30197651 PMCID: PMC6117411 DOI: 10.3389/fpls.2018.01231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/03/2018] [Indexed: 06/01/2023]
Abstract
Plant-derived terpenes are effective in treating chronic dysentery, rheumatism, hepatitis, and hyperlipemia. Thus, understanding the molecular basis of terpene biosynthesis in some terpene-abundant Chinese medicinal plants is of great importance. Abundant in mono- and sesqui-terpenes, Rhodomyrtus tomentosa (Ait.) Hassk, an evergreen shrub belonging to the family Myrtaceae, is widely used as a traditional Chinese medicine. In this study, (+)-α-pinene and β-caryophyllene were detected to be the two major components in the leaves of R. tomentosa, in which (+)-α-pinene is higher in the young leaves than in the mature leaves, whereas the distribution of β-caryophyllene is opposite. Genome-wide transcriptome analysis of leaves identified 138 unigenes potentially involved in terpenoid biosynthesis. By integrating known biosynthetic pathways for terpenoids, 7 candidate genes encoding terpene synthase (RtTPS1-7) that potentially catalyze the last step in pinene and caryophyllene biosynthesis were further characterized. Sequence alignment analysis showed that RtTPS1, RtTPS3 and RtTPS4 do not contain typical N-terminal transit peptides (62-64aa), thus probably producing multiple isomers and enantiomers by terpenoid isomerization. Further enzyme activity in vitro confirmed that RtTPS1-4 mainly produce (+)-α-pinene and (+)-β-pinene, as well as small amounts of (-)-α-pinene and (-)-β-pinene with GPP, while RtTPS1 and RtTPS3 are also active with FPP, producing β-caryophyllene, along with a smaller amount of α-humulene. Our results deepen the understanding of molecular mechanisms of terpenes biosynthesis in Myrtaceae.
Collapse
Affiliation(s)
- Si-Mei He
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Xiao Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Sheng-Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Yang Dong
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming, China
| | - Qi-Ming Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jian-Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kun Cong
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Jia-Jin Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Guang-Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
49
|
Ferreira DA, Martins MCM, Cheavegatti-Gianotto A, Carneiro MS, Amadeu RR, Aricetti JA, Wolf LD, Hoffmann HP, de Abreu LGF, Caldana C. Metabolite Profiles of Sugarcane Culm Reveal the Relationship Among Metabolism and Axillary Bud Outgrowth in Genetically Related Sugarcane Commercial Cultivars. FRONTIERS IN PLANT SCIENCE 2018; 9:857. [PMID: 29988592 PMCID: PMC6027322 DOI: 10.3389/fpls.2018.00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/01/2018] [Indexed: 05/04/2023]
Abstract
Metabolic composition is known to exert influence on several important agronomic traits, and metabolomics, which represents the chemical composition in a cell, has long been recognized as a powerful tool for bridging phenotype-genotype interactions. In this work, sixteen truly representative sugarcane Brazilian varieties were selected to explore the metabolic networks in buds and culms, the tissues involved in the vegetative propagation of this species. Due to the fact that bud sprouting is a key trait determining crop establishment in the field, the sprouting potential among the genotypes was evaluated. The use of partial least square discriminant analysis indicated only mild differences on bud outgrowth potential under controlled environmental conditions. However, primary metabolite profiling provided information on the variability of metabolic features even under a narrow genetic background, typical for modern sugarcane cultivars. Metabolite-metabolite correlations within and between tissues revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background.
Collapse
Affiliation(s)
- Danilo A. Ferreira
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Genetics and Molecular Biology Graduate Program, University of Campinas, Campinas, Brazil
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Adriana Cheavegatti-Gianotto
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Monalisa S. Carneiro
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Rodrigo R. Amadeu
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Juliana A. Aricetti
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Lucia D. Wolf
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Hermann P. Hoffmann
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Luis G. F. de Abreu
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Max-Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| |
Collapse
|
50
|
Aljbory Z, Chen MS. Indirect plant defense against insect herbivores: a review. INSECT SCIENCE 2018; 25:2-23. [PMID: 28035791 DOI: 10.1111/1744-7917.12436] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore-associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore-associated elicitors include fatty acid-amino acid conjugates, sulfur-containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|