1
|
Wiczkowski W, Saniewski M, Marasek-Ciołakowska A, Góraj-Koniarska J, Mitrus J, Horbowicz M. Exposure to Light of the Abaxial versus Adaxial Side of Detached Kalanchoë blossfeldiana Leaves Affects Anthocyanin Content and Composition Differently. Int J Mol Sci 2024; 25:2875. [PMID: 38474120 DOI: 10.3390/ijms25052875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The accumulation and composition of anthocyanins in leaves of Kalanchoë blossfeldiana, detached and kept for five days under natural light conditions, were investigated. The presence of fifteen derivatives of cyanidin, petunidin, and delphinidin was found. Changes in the content of each anthocyanin in the leaves before and after exposure to light on the abaxial (naturally upper) and adaxial (naturally lower) sides of the leaves were compared. When the adaxial side was exposed to light, the anthocyanin contents of the leaves did not change. In contrast, when the abaxial side of detached leaves was exposed to light, there was enhanced accumulation of delphinidin-rhamnoside-glucoside, cyanidin-rhamnoside-glucoside, cyanidin-glucoside-glucoside, and two unknown derivatives of petunidin and delphinidin. Application of methyl jasmonate (JA-Me) on the abaxial side exposed to light inhibited the accumulation of these anthocyanins. This effect could probably be due to the presence of these anthocyanins in the epidermal cells of K. blossfeldiana leaves and was visible in the microscopic view of its cross-section. These anthocyanins were directly exposed to JA-Me, leading to inhibition of their formation and/or accumulation. The lack of significant effects of JA-Me on anthocyanin mono- and tri-glycosides may indicate that they are mainly present in the mesophyll tissue of the leaf.
Collapse
Affiliation(s)
- Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marian Saniewski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | | | - Justyna Góraj-Koniarska
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Joanna Mitrus
- Institute of Biological Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Song N, Wu J. Synergistic induction of phytoalexins in Nicotiana attenuata by jasmonate and ethylene signaling mediated by NaWRKY70. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1063-1080. [PMID: 37870145 PMCID: PMC10837013 DOI: 10.1093/jxb/erad415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/21/2023] [Indexed: 10/24/2023]
Abstract
Production of the phytoalexins scopoletin and scopolin is regulated by jasmonate (JA) and ethylene signaling in Nicotiana species in response to Alternaria alternata, the necrotrophic fungal pathogen that causes brown spot disease. However, how these two signaling pathways are coordinated to control this process remains unclear. In this study, we found that the levels of these two phytoalexins and transcripts of their key enzyme gene, feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), were synergistically induced in Nicotiana attenuata by co-treatment with methyl jasmonate (MeJA) and ethephon. By combination of RNA sequencing and virus-induced gene silencing, we identified a WRKY transcription factor, NaWRKY70, which had a similar expression pattern to NaF6'H1 and was responsible for A. alternata-induced NaF6'H1 expression. Further evidence from stable transformed plants with RNA interference, knock out and overexpression of NaWRKY70 demonstrated that it is a key player in the synergistic induction of phytoalexins and plant resistance to A. alternata. Electrophoretic mobility shift, chromatin immunoprecipitation-quantitative PCR, and dual-luciferase assays revealed that NaWRKY70 can bind directly to the NaF6'H1 promoter and activate its expression. Furthermore, the key regulator of the ethylene pathway, NaEIN3-like1, can directly bind to the NaWRKY70 promoter and activate its expression. Meanwhile, NaMYC2s, important JA pathway transcription factors, also indirectly regulate the expression of NaWRKY70 and NaF6'H1 to control scopoletin and scopolin production. Our data reveal that these phytoalexins are synergistically induced by JA and ethylene signaling during A. alternata infection, which is largely mediated by NaWRKY70, thus providing new insights into the defense responses against A. alternata in Nicotiana species.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
3
|
Barneto JA, Sardoy PM, Pagano EA, Zavala JA. Lipoxygenases regulate digestive enzyme inhibitor activities in developing seeds of field-grown soybean against the southern green stink bug ( Nezara viridula). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP22192. [PMID: 38220246 DOI: 10.1071/fp22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .
Collapse
Affiliation(s)
- Jésica A Barneto
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina
| | - Pedro M Sardoy
- Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina; and Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Zoología Agrícola, Buenos Aires, Argentina
| | - Eduardo A Pagano
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; and Instituto Nacional de Biociencias Agrícolas y Ambientales (INBA)-CONICET, Buenos Aires, Argentina; and Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Zoología Agrícola, Buenos Aires, Argentina
| |
Collapse
|
4
|
Li C, Czyż EA, Halitschke R, Baldwin IT, Schaepman ME, Schuman MC. Evaluating potential of leaf reflectance spectra to monitor plant genetic variation. PLANT METHODS 2023; 19:108. [PMID: 37833725 PMCID: PMC10576306 DOI: 10.1186/s13007-023-01089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Remote sensing of vegetation by spectroscopy is increasingly used to characterize trait distributions in plant communities. How leaves interact with electromagnetic radiation is determined by their structure and contents of pigments, water, and abundant dry matter constituents like lignins, phenolics, and proteins. High-resolution ("hyperspectral") spectroscopy can characterize trait variation at finer scales, and may help to reveal underlying genetic variation-information important for assessing the potential of populations to adapt to global change. Here, we use a set of 360 inbred genotypes of the wild coyote tobacco Nicotiana attenuata: wild accessions, recombinant inbred lines (RILs), and transgenic lines (TLs) with targeted changes to gene expression, to dissect genetic versus non-genetic influences on variation in leaf spectra across three experiments. We calculated leaf reflectance from hand-held field spectroradiometer measurements covering visible to short-wave infrared wavelengths of electromagnetic radiation (400-2500 nm) using a standard radiation source and backgrounds, resulting in a small and quantifiable measurement uncertainty. Plants were grown in more controlled (glasshouse) or more natural (field) environments, and leaves were measured both on- and off-plant with the measurement set-up thus also in more to less controlled environmental conditions. Entire spectra varied across genotypes and environments. We found that the greatest variance in leaf reflectance was explained by between-experiment and non-genetic between-sample differences, with subtler and more specific variation distinguishing groups of genotypes. The visible spectral region was most variable, distinguishing experimental settings as well as groups of genotypes within experiments, whereas parts of the short-wave infrared may vary more specifically with genotype. Overall, more genetically variable plant populations also showed more varied leaf spectra. We highlight key considerations for the application of field spectroscopy to assess genetic variation in plant populations.
Collapse
Affiliation(s)
- Cheng Li
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Ewa A Czyż
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Michael E Schaepman
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Meredith C Schuman
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Chemistry, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Ray R, Halitschke R, Gase K, Leddy SM, Schuman MC, Rodde N, Baldwin IT. A persistent major mutation in canonical jasmonate signaling is embedded in an herbivory-elicited gene network. Proc Natl Acad Sci U S A 2023; 120:e2308500120. [PMID: 37607232 PMCID: PMC10466192 DOI: 10.1073/pnas.2308500120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.
Collapse
Affiliation(s)
- Rishav Ray
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14850
| | - Meredith C. Schuman
- Department of Geography, University of Zurich, 8006Zurich, Switzerland
- Department of Chemistry, University of Zurich, 8006Zurich, Switzerland
| | - Nathalie Rodde
- Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Centre National de Resources Génomiques Végétales, French Plant Genomic Resource Center, Castanet TolosanF-31326, France
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745Jena, Germany
| |
Collapse
|
6
|
Fugate KK, Finger FL, Lafta AM, Dogramaci M, Khan MFR. Wounding rapidly alters transcription factor expression, hormonal signaling, and phenolic compound metabolism in harvested sugarbeet roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1070247. [PMID: 36684748 PMCID: PMC9853395 DOI: 10.3389/fpls.2022.1070247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Injuries sustained by sugarbeet (Beta vulgaris L.) roots during harvest and postharvest operations seriously reduce the yield of white sugar produced from stored roots. Although wound healing is critically important to reduce losses, knowledge of these processes is limited for this crop as well as for roots in other species. To better understand the metabolic signals and changes that occur in wounded roots, dynamic changes in gene expression were determined by RNA sequencing and the activity of products from key genes identified in this analysis were determined in the 0.25 to 24 h following injury. Nearly five thousand differentially expressed genes that contribute to a wide range of cellular and molecular functions were identified in wounded roots. Highly upregulated genes included transcription factor genes, as well as genes involved in ethylene and jasmonic acid (JA) biosynthesis and signaling and phenolic compound biosynthesis and polymerization. Enzyme activities for key genes in ethylene and phenolic compound biosynthesis and polymerization also increased due to wounding. Results indicate that wounding causes a major reallocation of metabolism in sugarbeet taproots. Although both ethylene and JA are likely involved in triggering wound responses, the greater and more sustained upregulation of ethylene biosynthesis and signaling genes relative to those of JA, suggest a preeminence of ethylene signaling in wounded sugarbeet roots. Changes in gene expression and enzymes involved in phenolic compound metabolism additionally indicate that barriers synthesized to seal off wounds, such as suberin or lignin, are initiated within the first 24 h after injury.
Collapse
Affiliation(s)
- Karen K. Fugate
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Fernando L. Finger
- Departamento de Agronomia, Universidade Federal de Viҫosa, Viҫosa, Brazil
| | - Abbas M. Lafta
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Munevver Dogramaci
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Mohamed F. R. Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- University of Minnesota Extension Service, St. Paul, MN, United States
| |
Collapse
|
7
|
Chickpea Roots Undergoing Colonisation by Phytophthora medicaginis Exhibit Opposing Jasmonic Acid and Salicylic Acid Accumulation and Signalling Profiles to Leaf Hemibiotrophic Models. Microorganisms 2022; 10:microorganisms10020343. [PMID: 35208798 PMCID: PMC8874544 DOI: 10.3390/microorganisms10020343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hemibiotrophic pathogens cause significant losses within agriculture, threatening the sustainability of food systems globally. These microbes colonise plant tissues in three phases: a biotrophic phase followed by a biotrophic-to-necrotrophic switch phase and ending with necrotrophy. Each of these phases is characterized by both common and discrete host transcriptional responses. Plant hormones play an important role in these phases, with foliar models showing that salicylic acid accumulates during the biotrophic phase and jasmonic acid/ethylene responses occur during the necrotrophic phase. The appropriateness of this model to plant roots has been challenged in recent years. The need to understand root responses to hemibiotrophic pathogens of agronomic importance necessitates further research. In this study, using the root hemibiotroph Phytophthora medicaginis, we define the duration of each phase of pathogenesis in Cicer arietinum (chickpea) roots. Using transcriptional profiling, we demonstrate that susceptible chickpea roots display some similarities in response to disease progression as previously documented in leaf plant–pathogen hemibiotrophic interactions. However, our transcriptomic results also show that chickpea roots do not conform to the phytohormone responses typically found in leaf colonisation by hemibiotrophs. We found that quantified levels of salicylic acid concentrations in root tissues decreased significantly during biotrophy while jasmonic acid concentrations were significantly induced. This study demonstrated that a wider spectrum of plant species should be investigated in the future to understand the physiological changes in plants during colonisation by soil-borne hemibiotrophic pathogens before we can better manage these economically important microbes.
Collapse
|
8
|
Li X, Zhang J, Lin S, Xing Y, Zhang X, Ye M, Chang Y, Guo H, Sun X. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. PLANT, CELL & ENVIRONMENT 2022; 45:496-511. [PMID: 34719788 DOI: 10.1111/pce.14216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is an economically important, perennial woody plant rich in catechins. Although catechins have been reported to play an important role in plant defences against microbes, their roles in the defence of tea plants against herbivores remain unknown. In this study, we allowed the larvae of Ectropis grisescens, a leaf-feeding pest, to feed on the plants, and alternatively, we wounded the plants and then treated them with E. grisescens oral secretions (WOS). Both approaches triggered jasmonic acid-, ethylene- and auxin-mediated signalling pathways; as a result, plants accumulated three catechin compounds: (+)-catechin, epicatechin and epigallocatechin. Not only was the mass of E. grisescens larvae fed on plants previously infested with E. grisescens or treated with WOS significantly lower than that of larvae fed on controls, but also artificial diet supplemented with epicatechin, (+)-catechin or epigallocatechin gallate reduced larval growth rates. In addition, the exogenous application of jasmonic acid, ethylene or auxin induced the biosynthesis of the three catechins, which, in turn, enhanced the resistance of tea plants to E. grisescens, leading to the coordination of the three signalling pathways. Our results suggest that the three catechins play an important role in the defences of tea plants against E. grisescens.
Collapse
Affiliation(s)
- Xiwang Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Songbo Lin
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuxian Xing
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xin Zhang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Meng Ye
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yali Chang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huawei Guo
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Xiaoling Sun
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
9
|
Poretsky E, Ruiz M, Ahmadian N, Steinbrenner AD, Dressano K, Schmelz EA, Huffaker A. Comparative analyses of responses to exogenous and endogenous antiherbivore elicitors enable a forward genetics approach to identify maize gene candidates mediating sensitivity to herbivore-associated molecular patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1295-1316. [PMID: 34564909 DOI: 10.1111/tpj.15510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.
Collapse
Affiliation(s)
- Elly Poretsky
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Ruiz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nazanin Ahmadian
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Keini Dressano
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric A Schmelz
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alisa Huffaker
- Division of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Joo Y, Kim H, Kang M, Lee G, Choung S, Kaur H, Oh S, Choi JW, Ralph J, Baldwin IT, Kim SG. Pith-specific lignification in Nicotiana attenuata as a defense against a stem-boring herbivore. THE NEW PHYTOLOGIST 2021; 232:332-344. [PMID: 34171146 DOI: 10.1111/nph.17583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Plants have developed tissue-specific defense strategies in response to various herbivores with different feeding habits. Although defense responses to leaf-chewing insects have been well studied, little is known about stem-specific responses, particularly in the pith, to stem-boring herbivores. To understand the stem-specific defense, we first conducted a comparative transcriptomic analysis of the wild tobacco Nicotiana attenuata before and after attack by the leaf-chewing herbivore Manduca sexta and the stem borer Trichobaris mucorea. When the stem-boring herbivore attacked, lignin-associated genes were upregulated specifically in the inner parenchymal cells of the stem, the pith; lignin also accumulated highly in the attacked pith. Silencing the lignin biosynthetic gene cinnamyl alcohol dehydrogenase enhanced the performance of the stem-boring herbivore but had no effect on the growth of the leaf-chewing herbivore. Two-dimensional nuclear magnetic resonance results revealed that lignified pith contains feruloyltyramine as an unusual lignin component in the cell wall, as a response against stem-boring herbivore attack. Pith-specific lignification induced by the stem-boring herbivore was modulated by both jasmonate and ethylene signaling. These results suggest that lignin provides a stem-specific inducible barrier, protecting plants against stem-boring insects.
Collapse
Affiliation(s)
- Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
- Department of Biology, Chungbuk National University, Cheongju, 28644, Korea
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
| | - Moonyoung Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| | - Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| | - Sungjun Choung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| | - Harleen Kaur
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Shinyoung Oh
- Graduate School of International Agricultural Technology, Seoul National University, Pyoeng-Chang, 25354, Korea
| | - Jun Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyoeng-Chang, 25354, Korea
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Ave., Madison, WI, 53726, USA
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Korea
| |
Collapse
|
11
|
Figon F, Baldwin IT, Gaquerel E. Ethylene is a local modulator of jasmonate-dependent phenolamide accumulation during Manduca sexta herbivory in Nicotiana attenuata. PLANT, CELL & ENVIRONMENT 2021; 44:964-981. [PMID: 33215737 DOI: 10.1111/pce.13955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Rapid reconfigurations of interconnected phytohormone signalling networks allow plants to tune their physiology to constantly varying ecological conditions. During insect herbivory, most of the induced changes in defence-related leaf metabolites are controlled by jasmonate (JA) signalling, which, in the wild tobacco Nicotiana attenuata, recruits MYB8, a transcription factor controlling the accumulation of phenolic-polyamine conjugates (phenolamides). In this and other plant species, herbivory also locally triggers ethylene (ET) production but the outcome of the JA-ET cross-talk at the level of secondary metabolism regulation has remained only superficially investigated. Here, we analysed local and systemic herbivory-induced changes by mass spectrometry-based metabolomics in leaves of transgenic plants impaired in JA, ET and MYB8 signalling. Parsing deregulations in this factorial data-set identified a network of JA/MYB8-dependent phenolamides for which impairment of ET signalling attenuated their accumulation only in locally damaged leaves. Further experiments revealed that ET, albeit biochemically interrelated to polyamine metabolism via the intermediate S-adenosylmethionine, does not alter the free polyamine levels, but instead significantly modulates phenolamide levels with marginal modulations of transcript levels. The work identifies ET as a local modulator of phenolamide accumulations and provides a metabolomics data-platform with which to mine associations among herbivory-induced signalling and specialized metabolites in N. attenuata.
Collapse
Affiliation(s)
- Florent Figon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Master BioSciences, ENS de Lyon, UCB Lyon 1, Université de Lyon, Lyon, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Chen K, Guo B, Yu C, Chen P, Chen J, Gao G, Wang X, Zhu A. Comparative Transcriptome Analysis Provides New Insights into the Molecular Regulatory Mechanism of Adventitious Root Formation in Ramie ( Boehmeria nivea L.). PLANTS 2021; 10:plants10010160. [PMID: 33467608 PMCID: PMC7830346 DOI: 10.3390/plants10010160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The occurrence of adventitious roots is necessary for the survival of cuttings. In this study, comparative transcriptome analysis between two ramie (Boehmeria nivea L.) varieties with different adventitious root (AR) patterns was performed by mRNA-Seq before rooting (control, CK) and 10 days water-induced adventitious rooting (treatment, T) to reveal the regulatory mechanism of rooting. Characterization of the two ramie cultivars, Zhongzhu No 2 (Z2) and Huazhu No 4 (H4), indicated that Z2 had a high adventitious rooting rate but H4 had a low rooting rate. Twelve cDNA libraries of the two varieties were constructed, and a total of 26,723 genes were expressed. In the non-water culture condition, the number of the distinctive genes in H4 was 2.7 times of that in Z2, while in the water culture condition, the number of the distinctive genes in Z2 was nearly 2 times of that in H4. A total of 4411 and 5195 differentially expressed genes (DEGs) were identified in the comparison of H4CK vs. H4T and Z2CK vs. Z2T, respectively. After the water culture, more DEGs were upregulated in Z2, but more DEGs were downregulated in H4. Gene ontology (GO) functional analysis of the DEGs indicated that the polysaccharide metabolic process, carbohydrate metabolic process, cellular carbohydrate metabolic process, cell wall macromolecule metabolic process, and photosystem GO terms were distinctively significantly enriched in H4. Simultaneously, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that photosynthesis, photosynthesis antenna proteins, and starch and sucrose metabolism pathways were distinctively significantly enriched in H4. Moreover, KEGG analysis showed that jasmonic acid (JA) could interact with ethylene to regulate the occurrence and number of AR in Z2. This study reveals the transcriptomic divergence of two ramie varieties with high and low adventitious rooting rates, and provides insights into the molecular regulatory mechanism of AR formation in ramie.
Collapse
|
13
|
A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proc Natl Acad Sci U S A 2019; 116:23345-23356. [PMID: 31662474 DOI: 10.1073/pnas.1911758116] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical stimuli, such as wind, rain, and touch affect plant development, growth, pest resistance, and ultimately reproductive success. Using water spray to simulate rain, we demonstrate that jasmonic acid (JA) signaling plays a key role in early gene-expression changes, well before it leads to developmental changes in flowering and plant architecture. The JA-activated transcription factors MYC2/MYC3/MYC4 modulate transiently induced expression of 266 genes, most of which peak within 30 min, and control 52% of genes induced >100-fold. Chromatin immunoprecipitation-sequencing analysis indicates that MYC2 dynamically binds >1,300 promoters and trans-activation assays show that MYC2 activates these promoters. By mining our multiomic datasets, we identified a core MYC2/MYC3/MYC4-dependent "regulon" of 82 genes containing many previously unknown MYC2 targets, including transcription factors bHLH19 and ERF109 bHLH19 can in turn directly activate the ORA47 promoter, indicating that MYC2/MYC3/MYC4 initiate a hierarchical network of downstream transcription factors. Finally, we also reveal that rapid water spray-induced accumulation of JA and JA-isoleucine is directly controlled by MYC2/MYC3/MYC4 through a positive amplification loop that regulates JA-biosynthesis genes.
Collapse
|
14
|
Mesa JM, Juvik JA, Paige KN. Individual and interactive effects of herbivory on plant fitness: endopolyploidy as a driver of genetic variation in tolerance and resistance. Oecologia 2019; 190:847-856. [DOI: 10.1007/s00442-019-04458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
15
|
Bacht M, Tarkka MT, López IF, Bönn M, Brandl R, Buscot F, Feldhahn L, Grams TEE, Herrmann S, Schädler M. Tree Response to Herbivory Is Affected by Endogenous Rhythmic Growth and Attenuated by Cotreatment With a Mycorrhizal Fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:770-781. [PMID: 30753106 DOI: 10.1094/mpmi-10-18-0290-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Herbivores and mycorrhizal fungi interactively influence growth, resource utilization, and plant defense responses. We studied these interactions in a tritrophic system comprising Quercus robur, the herbivore Lymantria dispar, and the ectomycorrhizal fungus Piloderma croceum under controlled laboratory conditions at the levels of gene expression and carbon and nitrogen (C/N) allocation. Taking advantage of the endogenous rhythmic growth displayed by oak, we thereby compared gene transcript abundances and resource shifts during shoot growth with those during the alternating root growth flushes. During root flush, herbivore feeding on oak leaves led to an increased expression of genes related to plant growth and enriched gene ontology terms related to cell wall, DNA replication, and defense. C/N-allocation analyses indicated an increased export of resources from aboveground plant parts to belowground. Accordingly, the expression of genes related to the transport of carbohydrates increased upon herbivore attack in leaves during the root flush stage. Inoculation with an ectomycorrhizal fungus attenuated these effects but, instead, caused an increased expression of genes related to the production of volatile organic compounds. We conclude that oak defense response against herbivory is strong in root flush at the transcriptomic level but this response is strongly inhibited by inoculation with ectomycorrhizal fungi and it is extremely weak at shoot flush.
Collapse
Affiliation(s)
- Michael Bacht
- 1 Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - Mika T Tarkka
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Iván Fernández López
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Markus Bönn
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Roland Brandl
- 1 Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, 35032, Marburg, Germany
| | - François Buscot
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lasse Feldhahn
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Thorsten E E Grams
- 4 Ecophysiology of Plants, Technical University Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Sylvie Herrmann
- 2 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| | - Martin Schädler
- 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- 5 Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
16
|
Rashed A, Olsen N, Wallis CM, Paetzold L, Woodell L, Rashidi M, Workneh F, Rush CM. Postharvest Development of 'Candidatus Liberibacter solanacearum' in Late-Season Infected Potato Tubers under Commercial Storage Conditions. PLANT DISEASE 2018; 102:561-568. [PMID: 30673495 DOI: 10.1094/pdis-05-17-0619-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zebra chip (ZC) disease of potato is associated with the putative pathogen 'Candidatus Liberibacter solanacearum', which is transmitted by the potato psyllid Bactericera cockerelli (Hem., Triozidae). The present study was initiated to investigate 'Ca. L. solanacearum' development during and following typical commercial storage practices. Using bacteriliferous psyllids, Russet Norkotah potato tubers were infested in field cages 14, 10, and 4 days before harvest. Changes in 'Ca. L. solanacearum' detection rate, 'Ca. L. solanacearum' titer, and concentrations of phenolic compounds were documented throughout storage. 'Ca. L. solanacearum' titer continued to increase during storage. Although significant increases in the frequency of 'Ca. L. solanacearum' detection were observed in all infestation treatments, the impact of 'Ca. L. solanacearum' infection on tuber quality remained comparatively low in plants infected 4 days before harvest, because the majority of the tubers remained asymptomatic. Minimizing storage and retail chain movement durations would help to limit 'Ca. L. solanacearum' impact on tuber quality in tubers infected 14 and 10 days before harvest. This study also demonstrated that 'Ca. L. solanacearum' can relocate from a newly infected leaf to a tuber in as little as 4 days. Psyllid management is recommended until at least 4 days before green harvest, when psyllid pressure is high in fields in which tubers are destined for commercial storage.
Collapse
Affiliation(s)
- Arash Rashed
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center, Aberdeen 83210
| | - Nora Olsen
- Department of Plant Sciences, University of Idaho, Kimberly R&E Center, Kimberly 83341
| | - Christopher M Wallis
- United States Department of Agriculture-Agricultural Research Service San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648
| | - Li Paetzold
- Texas A&M AgriLife Research and Extension Center, Amarillo 79106
| | - Lynn Woodell
- Department of Plant Sciences, University of Idaho, Kimberly R&E Center
| | - Mahnaz Rashidi
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Aberdeen R&E Center
| | | | | |
Collapse
|
17
|
Si T, Wang X, Zhao C, Huang M, Cai J, Zhou Q, Dai T, Jiang D. The Role of Hydrogen Peroxide in Mediating the Mechanical Wounding-Induced Freezing Tolerance in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:327. [PMID: 29593774 PMCID: PMC5861560 DOI: 10.3389/fpls.2018.00327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Systemic wound response (SWR), a well-characterized systemic signaling response, plays crucial roles in plant defense responses. Progress in understanding of the SWR in abiotic stress has also been aided by the researchers. However, the function of SWR in freezing stress remains elusive. In this study, we showed that local mild mechanical wounding enhanced freezing tolerance in newly occurred systemic leaves of wheat plants (Triticum aestivum L.). Wounding significantly increased the maximal photochemical efficiency of photosystem II, net photosynthetic rate, and the activities of the antioxidant enzymes under freezing stress. Wounding also alleviated freezing-induced chlorophyll decomposition, electrolyte leakage, water lose, and membrane peroxidation. In addition, wounding-induced freezing stress mitigation was closely associated with the ratio between reduced glutathione (GSH) and oxidized glutathione (GSSG), and the ratio between ascorbate (AsA) and dehydroascorbate (DHA), as well as the contents of total soluble sugars and free amino acids. Importantly, pharmacological study showed that wounding-induced freezing tolerance was substantially arrested by pretreatment of wheat leaves with the scavenger of hydrogen peroxide (H2O2) or the inhibitor of NADPH oxidase (RBOH). These results support the hypothesis that local mechanical wounding-induced SWR in newly occurred leaves is largely attributed to RBOH-dependent H2O2 production, which may subsequently induce freezing tolerance in wheat plants. This mechanism may have a potential application to reduce the yield losses of wheat under late spring freezing conditions. Highlights: In our previous research, we found that local mechanical wounding could induce freezing tolerance in the upper systemic leaves of wheat plants. Surprisingly, in this paper, we further demonstrated that local mechanical wounding could also increase freezing resistance in newly occurred leaves of wheat plants. RBOH mediated H2O2 and ascorbate-glutathione cycle participate in this systemic wound response.
Collapse
Affiliation(s)
- Tong Si
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Chunzhao Zhao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jian Cai, Dong Jiang,
| |
Collapse
|
18
|
Huang SC, Chu SJ, Guo YM, Ji YJ, Hu DQ, Cheng J, Lu GH, Yang RW, Tang CY, Qi JL, Yang YH. Novel mechanisms for organic acid-mediated aluminium tolerance in roots and leaves of two contrasting soybean genotypes. AOB PLANTS 2017; 9:plx064. [PMID: 29302304 PMCID: PMC5739043 DOI: 10.1093/aobpla/plx064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Aluminium (Al) toxicity is one of the most important limiting factors for crop yield in acidic soils. However, the mechanisms that confer Al tolerance still remain largely unknown. To understand the molecular mechanism that confers different tolerance to Al, we performed global transcriptome analysis to the roots and leaves of two contrasting soybean genotypes, BX10 (Al-tolerant) and BD2 (Al-sensitive) under 0 and 50 μM Al3+ treatments, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the expression levels of the genes involved in lipid/carbohydrate metabolism and jasmonic acid (JA)-mediated signalling pathway were highly induced in the roots and leaves of both soybean genotypes. The gene encoding enzymes, including pyruvate kinase, phosphoenolpyruvate carboxylase, ATP-citrate lyase and glutamate-oxaloacetate transaminase 2, associated with organic acid metabolism were differentially expressed in the BX10 roots. In addition, the genes involved in citrate transport were differentially expressed. Among these genes, FRD3b was down-regulated only in BD2, whereas the other two multidrug and toxic compound extrusion genes were up-regulated in both soybean genotypes. These findings confirmed that BX10 roots secreted more citrate than BD2 to withstand Al stress. The gene encoding enzymes or regulators, such as lipoxygenase, 12-oxophytodienoate reductase, acyl-CoA oxidase and jasmonate ZIM-domain proteins, involved in JA biosynthesis and signalling were preferentially induced in BD2 leaves. This finding suggests that the JA defence response was activated, possibly weakening the growth of aerial parts because of excessive resource consumption and ATP biosynthesis deficiency. Our results suggest that the Al sensitivity in some soybean varieties could be attributed to the low level of citrate metabolism and exudation in the roots and the high level of JA-mediated defence response in the leaves.
Collapse
Affiliation(s)
- Shou-Cheng Huang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Anhui Science and Technology University, Fengyang, China
| | - Shu-Juan Chu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Yu-Min Guo
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Ya-Jing Ji
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Dong-Qing Hu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Jing Cheng
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Gui-Hua Lu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Rong-Wu Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Yi Tang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Jin-Liang Qi
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Yong-Hua Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Avramova Z. The jasmonic acid-signalling and abscisic acid-signalling pathways cross talk during one, but not repeated, dehydration stress: a non-specific 'panicky' or a meaningful response? PLANT, CELL & ENVIRONMENT 2017; 40:1704-1710. [PMID: 28447364 DOI: 10.1111/pce.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Experiencing diverse and recurring biotic and abiotic stresses throughout life, plants have evolved mechanisms to respond, survive and, eventually, adapt to changing habitats. The initial response to drought involves a large number of genes that are involved also in response to other stresses. According to current models, this initial response is non-specific, becoming stress-specific only at later time points. The question, then, is whether non-specific activation of various stress-signalling systems leading to the expression of numerous stress-regulated genes is a false-alarm (panicky) response or whether it has biologically relevant consequences for the plant. Here, it is argued that the initial activation of genes associated other stresses reflects an important event during which stress-specific mechanisms are generated to prevent subsequent activation of non-drought signalling pathways. How plants discriminate between a first and a repeated dehydration stress and how repression of non-drought specific genes is achieved will be discussed on the example of jasmonic acid-associated Arabidopsis genes activated by a first, but not subsequent, dehydration stresses. Revealing how expression of various biotic/abiotic stress responding genes is prevented under recurring drought spells may be critical for our understanding of how plants respond to dynamically changing environments.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
20
|
He L, Li C, Liu R. Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. MYCORRHIZA 2017; 27:525-535. [PMID: 28424944 DOI: 10.1007/s00572-017-0771-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/23/2017] [Indexed: 05/25/2023]
Abstract
Peanut (Arachis hypogaea Linn. cv: Luhua 11) and tomato (Lycopersicon esculentum Mill. cv: Zhongshu 4) were inoculated with arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae BEG167 (Fm), Rhizophagus intraradices BEG141 (Ri), and Glomus versiforme Berch (Gv), and/or Spodoptera exigua (S. exigua) under greenhouse conditions. Results indicated that feeding by S. exigua had little influence on colonization of peanut plants by AMF, but improved colonization of tomato by Fm and Gv. Feeding by S. exigua had little influence on leaf net photosynthetic rate, transpiration rate, and stomatal conductance of nonmycorrhizal peanut plants but significantly improved net photosynthetic rate and transpiration rate of mycorrhizal plants of both hosts. AMF with or without S. exigua inoculation improved host plant photosynthetic characteristics, growth, and hormone status. Fm showed maximum beneficial effects, followed by Gv. The concentrations and ratios of phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), and jasmonic acid (JA) in the leaves of the host plants were changed due to the interaction between AMF and S. exigua. Generally, AMF with or without S. exigua inoculation increased the concentrations of GA, ZR, and JA and the ratios of IAA/ABA, GA/ABA, ZR/ABA, and IAA + GA + ZR/ABA, while feeding by S. exigua on nonmycorrhizal plants showed the opposite effect. The concentration of JA in the leaves of peanut and tomato inoculated with Fm or Fm + S. exigua was 1.9 and 1.9 times and 2.5 and 2.7 times, respectively, greater than that of the controls inoculated with neither. There was a negative correlation between the JA concentration and the survival percentage of S. exigua larva. We conclude that indirect interactions between AMF and insect herbivores changed the photosynthetic and hormone characteristics, and ratios of phytohormones, thereby revealing mechanisms of belowground-aboveground interactions.
Collapse
Affiliation(s)
- Lei He
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Changyou Li
- Center for Advanced Invertebrate Cell Culture and Cell Engineering, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Runjin Liu
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
21
|
Meza-Canales ID, Meldau S, Zavala JA, Baldwin IT. Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception. PLANT, CELL & ENVIRONMENT 2017; 40:1039-1056. [PMID: 27925291 DOI: 10.1111/pce.12874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 05/24/2023]
Abstract
Herbivory-induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (AC ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1-5 ribulose-1,5-bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12-oxo-phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen-activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen-activated protein kinase 4 in CO2 -mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid-mediated defence responses, also elicit 12-oxo-phytodienoic acid-mediated changes in stomatal conductance and AC , an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack.
Collapse
Affiliation(s)
- Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Meldau
- KWS SAAT AG, Molecular Physiology, Einbeck, Niedersachsen, Germany
| | - Jorge A Zavala
- Facultad de Agronomía, Cátedra de Bioquímica - INBA/CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
22
|
Ajigboye OO, Lu C, Murchie EH, Schlatter C, Swart G, Ray RV. Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:49-61. [PMID: 28364804 DOI: 10.1016/j.pestbp.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 06/07/2023]
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides have been shown to increase PSII efficiency and photosynthesis under drought stress in the absence of disease to enhance the biomass and yield of winter wheat. However, the molecular mechanism of improved photosynthetic efficiency observed in SDHI-treated wheat has not been previously elucidated. Here we used a combination of chlorophyll fluorescence, gas exchange and gene expression analysis, to aid our understanding of the basis of the physiological responses of wheat seedlings under drought conditions to sedaxane, a novel SDHI seed treatment. We show that sedaxane increased the efficiency of PSII photochemistry, reduced non-photochemical quenching and improved the photosynthesis and biomass in wheat correlating with systemic changes in the expression of genes involved in defense, chlorophyll synthesis and cell wall modification. We applied a coexpression network-based approach using differentially expressed genes of leaves, roots and pregerminated seeds from our wheat array datasets to identify the most important hub genes, with top ranked correlation (higher gene association value and z-score) involved in cell wall expansion and strengthening, wax and pigment biosynthesis and defense. The results indicate that sedaxane confers tolerant responses of wheat plants grown under drought conditions by redirecting metabolites from defense/stress responses towards growth and adaptive development.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Chungui Lu
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | | - Gina Swart
- Syngenta Crop Protection, Schwarzwaldallee 215, 4058 Basel, Switzerland
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
23
|
Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 2017; 7:44729. [PMID: 28300183 PMCID: PMC5353604 DOI: 10.1038/srep44729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/14/2017] [Indexed: 11/24/2022] Open
Abstract
Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ −1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea.
Collapse
|
24
|
Dugé de Bernonville T, Carqueijeiro I, Lanoue A, Lafontaine F, Sánchez Bel P, Liesecke F, Musset K, Oudin A, Glévarec G, Pichon O, Besseau S, Clastre M, St-Pierre B, Flors V, Maury S, Huguet E, O'Connor SE, Courdavault V. Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Sci Rep 2017; 7:40453. [PMID: 28094274 PMCID: PMC5240345 DOI: 10.1038/srep40453] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Plants deploy distinct secondary metabolisms to cope with environment pressure and to face bio-aggressors notably through the production of biologically active alkaloids. This metabolism-type is particularly elaborated in Catharanthus roseus that synthesizes more than a hundred different monoterpene indole alkaloids (MIAs). While the characterization of their biosynthetic pathway now reaches completion, still little is known about the role of MIAs during biotic attacks. As a consequence, we developed a new plant/herbivore interaction system by challenging C. roseus leaves with Manduca sexta larvae. Transcriptomic and metabolic analyses demonstrated that C. roseus respond to folivory by both local and systemic processes relying on the activation of specific gene sets and biosynthesis of distinct MIAs following jasmonate production. While a huge local accumulation of strictosidine was monitored in attacked leaves that could repel caterpillars through its protein reticulation properties, newly developed leaves displayed an increased biosynthesis of the toxic strictosidine-derived MIAs, vindoline and catharanthine, produced by up-regulation of MIA biosynthetic genes. In this context, leaf consumption resulted in a rapid death of caterpillars that could be linked to the MIA dimerization observed in intestinal tracts. Furthermore, this study also highlights the overall transcriptomic control of the plant defense processes occurring during herbivory.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Inês Carqueijeiro
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Florent Lafontaine
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Spain
| | - Franziska Liesecke
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Audrey Oudin
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Gaëlle Glévarec
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Olivier Pichon
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Benoit St-Pierre
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Victor Flors
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Spain
| | - Stéphane Maury
- Université d'Orléans, CoST, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA 1207, USC1328 INRA, Orléans, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Sarah E O'Connor
- The John Innes Centre, Department of Biological Chemistry, Norwich NR4 7UH, United Kingdom
| | - Vincent Courdavault
- Université François-Rabelais de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| |
Collapse
|
25
|
Zhou W, Brockmöller T, Ling Z, Omdahl A, Baldwin IT, Xu S. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana. eLife 2016; 5:e19531. [PMID: 27813478 PMCID: PMC5115867 DOI: 10.7554/elife.19531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants.
Collapse
Affiliation(s)
- Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Brockmöller
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zhihao Ling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ashton Omdahl
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Brigham Young University, Provo, United States
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
26
|
Machado RAR, Robert CAM, Arce CCM, Ferrieri AP, Xu S, Jimenez-Aleman GH, Baldwin IT, Erb M. Auxin Is Rapidly Induced by Herbivore Attack and Regulates a Subset of Systemic, Jasmonate-Dependent Defenses. PLANT PHYSIOLOGY 2016; 172:521-32. [PMID: 27485882 PMCID: PMC5074610 DOI: 10.1104/pp.16.00940] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Plant responses to herbivore attack are regulated by phytohormonal networks. To date, the role of the auxin indole-3-acetic acid (IAA) in this context is not well understood. We quantified and manipulated the spatiotemporal patterns of IAA accumulation in herbivore-attacked Nicotiana attenuata plants to unravel its role in the regulation of plant secondary metabolism. We found that IAA is strongly, rapidly, and specifically induced by herbivore attack. IAA is elicited by herbivore oral secretions and fatty acid conjugate elicitors and is accompanied by a rapid transcriptional increase of auxin biosynthetic YUCCA-like genes. IAA accumulation starts 30 to 60 s after local induction and peaks within 5 min after induction, thereby preceding the jasmonate (JA) burst. IAA accumulation does not require JA signaling and spreads rapidly from the wound site to systemic tissues. Complementation and transport inhibition experiments reveal that IAA is required for the herbivore-specific, JA-dependent accumulation of anthocyanins and phenolamides in the stems. In contrast, IAA does not affect the accumulation of nicotine or 7-hydroxygeranyllinalool diterpene glycosides in the same tissue. Taken together, our results uncover IAA as a rapid and specific signal that regulates a subset of systemic, JA-dependent secondary metabolites in herbivore-attacked plants.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Christelle A M Robert
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Carla C M Arce
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Abigail P Ferrieri
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Guillermo H Jimenez-Aleman
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| | - Matthias Erb
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (R.A.R.M., C.A.M.R., C.C.M.A., A.P.F., S.X., G.H.J.-A., I.T.B., M.E.);Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (R.A.R.M., C.A.M.R., C.C.M.A., M.E.); andDepartamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil (C.C.M.A.)
| |
Collapse
|
27
|
Nguyen D, Rieu I, Mariani C, van Dam NM. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. PLANT MOLECULAR BIOLOGY 2016; 91:727-40. [PMID: 27095445 PMCID: PMC4932144 DOI: 10.1007/s11103-016-0481-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/09/2016] [Indexed: 05/18/2023]
Abstract
Adaptive plant responses to specific abiotic stresses or biotic agents are fine-tuned by a network of hormonal signaling cascades, including abscisic acid (ABA), ethylene, jasmonic acid (JA) and salicylic acid. Moreover, hormonal cross-talk modulates plant responses to abiotic stresses and defenses against insect herbivores when they occur simultaneously. How such interactions affect plant responses under multiple stresses, however, is less understood, even though this may frequently occur in natural environments. Here, we review our current knowledge on how hormonal signaling regulates abiotic stress responses and defenses against insects, and discuss the few recent studies that attempted to dissect hormonal interactions occurring under simultaneous abiotic stress and herbivory. Based on this we hypothesize that drought stress enhances insect resistance due to synergistic interactions between JA and ABA signaling. Responses to flooding or waterlogging involve ethylene signaling, which likely reduces plant resistance to chewing herbivores due to its negative cross-talk with JA. However, the outcome of interactions between biotic and abiotic stress signaling is often plant and/or insect species-dependent and cannot simply be predicted based on general knowledge on the involvement of signaling pathways in single stress responses. More experimental data on non-model plant and insect species are needed to reveal general patterns and better understand the molecular mechanisms allowing plants to optimize their responses in complex environments.
Collapse
Affiliation(s)
- Duy Nguyen
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Ivo Rieu
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Celestina Mariani
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500 GL, Nijmegen, The Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany.
| |
Collapse
|
28
|
Machado RAR, McClure M, Hervé MR, Baldwin IT, Erb M. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. eLife 2016; 5:e13720. [PMID: 27352734 PMCID: PMC4927296 DOI: 10.7554/elife.13720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Endogenous jasmonates are important regulators of plant defenses. If and how they enable plants to maintain their reproductive output when facing community-level herbivory under natural conditions, however, remains unknown. We demonstrate that jasmonate-deficient Nicotiana attenuata plants suffer more damage by arthropod and vertebrate herbivores than jasmonate-producing plants in nature. However, only damage by vertebrate herbivores translates into a significant reduction in flower production. Vertebrate stem peeling has the strongest negative impact on plant flower production. Stems are defended by jasmonate-dependent nicotine, and the native cottontail rabbit Sylvilagus nuttallii avoids jasmonate-producing N. attenuata shoots because of their high levels of nicotine. Thus, endogenous jasmonates enable plants to resist different types of herbivores in nature, and jasmonate-dependent defenses are important for plants to maintain their reproductive potential when facing vertebrate herbivory. Ecological and evolutionary models on plant defense signaling should aim at integrating arthropod and vertebrate herbivory at the community level.
Collapse
Affiliation(s)
- Ricardo AR Machado
- Root-Herbivore Interactions Group, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Mark McClure
- School of the Environment, Washington State University, Washington, United States
| | - Maxime R Hervé
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Institut de Génétique, Environment et Protection des Plantes, Le Rheu, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, Dicke M. Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:891-906. [PMID: 26603653 PMCID: PMC4734589 DOI: 10.1104/pp.15.01780] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 05/03/2023]
Abstract
Plants respond to herbivory with the induction of resistance, mediated by distinct phytohormonal signaling pathways and their interactions. Phloem feeders are known to induce plant resistance via the salicylic acid pathway, whereas biting-chewing herbivores induce plant resistance mainly via the jasmonate pathway. Here, we show that a specialist caterpillar (biting-chewing herbivore) and a specialist aphid (phloem feeder) differentially induce resistance against Pieris brassicae caterpillars in Arabidopsis (Arabidopsis thaliana) plants. Caterpillar feeding induces resistance through the jasmonate signaling pathway that is associated with the induction of kaempferol 3,7-dirhamnoside, whereas aphid feeding induces resistance via a novel mechanism involving sinapoyl malate. The role of sinapoyl malate is confirmed through the use of a mutant compromised in the biosynthesis of this compound. Caterpillar-induced resistance is associated with a lower cost in terms of plant growth reduction than aphid-induced resistance. A strong constitutive resistance against P. brassicae caterpillars in combination with a strong growth attenuation in plants of a transfer DNA (T-DNA) insertion mutant of WRKY70 (wrky70) suggest that the WRKY70 transcription factor, a regulator of downstream responses mediated by jasmonate-salicylic acid signaling cross talk, is involved in the negative regulation of caterpillar resistance and in the tradeoff between growth and defense. In conclusion, different mechanisms of herbivore-induced resistance come with different costs, and a functional WRKY70 transcription factor is required for the induction of low-cost resistance.
Collapse
Affiliation(s)
- Nawaporn Onkokesung
- Laboratory of Entomology, Wageningen University, 6700AA Wageningen, The Netherlands (N.O., M.D.);Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.R.);Keygene, 6708OW, Wageningen, The Netherlands (A.v.D.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands (A.v.D., R.C.S.)
| | - Michael Reichelt
- Laboratory of Entomology, Wageningen University, 6700AA Wageningen, The Netherlands (N.O., M.D.);Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.R.);Keygene, 6708OW, Wageningen, The Netherlands (A.v.D.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands (A.v.D., R.C.S.)
| | - Arjen van Doorn
- Laboratory of Entomology, Wageningen University, 6700AA Wageningen, The Netherlands (N.O., M.D.);Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.R.);Keygene, 6708OW, Wageningen, The Netherlands (A.v.D.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands (A.v.D., R.C.S.)
| | - Robert C Schuurink
- Laboratory of Entomology, Wageningen University, 6700AA Wageningen, The Netherlands (N.O., M.D.);Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.R.);Keygene, 6708OW, Wageningen, The Netherlands (A.v.D.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands (A.v.D., R.C.S.)
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700AA Wageningen, The Netherlands (N.O., M.D.);Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.R.);Keygene, 6708OW, Wageningen, The Netherlands (A.v.D.); andPlant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands (A.v.D., R.C.S.)
| |
Collapse
|
30
|
Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC PLANT BIOLOGY 2015; 15:128. [PMID: 26017568 PMCID: PMC4446944 DOI: 10.1186/s12870-015-0526-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants produce a group of aldoxime metabolites that are well known as volatiles and as intermediates in cyanogenic glycoside and glucosinolate biosynthesis in particular plant families. Recently it has been demonstrated that aldoximes can also accumulate as part of direct plant defense in poplar. Cytochrome P450 enzymes of the CYP79 family were shown to be responsible for the formation of aldoximes from their amino acid precursors. RESULTS Here we describe the identification and characterization of maize CYP79A61 which was heterologously expressed in yeast and Nicotiana benthamiana and shown to catalyze the formation of (E/Z)-phenylacetaldoxime and (E/Z)-indole-3-acetaldoxime from L-phenylalanine and L-tryptophan, respectively. Simulated herbivory on maize leaves resulted in an increased CYP79A61 transcript accumulation and in elevated levels of L-phenylalanine and (E/Z)-phenylacetaldoxime. Although L-tryptophan levels were also increased after the treatment, (E/Z)-indole-3-acetaldoxime could not be detected in the damaged leaves. However, simulated herbivory caused a significant increase in auxin concentration. CONCLUSIONS Our data suggest that CYP79A61 might contribute to the formation of (E/Z)-phenylacetaldoxime in maize. Since aldoximes have been described as toxic compounds for insect herbivores and pathogens, the increased accumulation of (E/Z)-phenylacetaldoxime after simulated herbivory indicates that this compound plays a role in plant defense. In addition, it is conceivable that (E/Z)-indole-3-acetaldoxime produced by recombinant CYP79A61 could be further converted into the plant hormone indole-3-acetic acid after herbivore feeding in maize.
Collapse
Affiliation(s)
- Sandra Irmisch
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Philipp Zeltner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Vinzenz Handrick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.
| |
Collapse
|
31
|
Lim CW, Han SW, Hwang IS, Kim DS, Hwang BK, Lee SC. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2015; 56:930-42. [PMID: 25657344 DOI: 10.1093/pcp/pcv020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 05/04/2023]
Abstract
In plants, lipoxygenases (LOXs) are involved in various physiological processes, including defense responses to biotic and abiotic stresses. Our previous study had shown that the pepper 9-LOX gene, CaLOX1, plays a crucial role in cell death due to pathogen infection. Here, the function of CaLOX1 in response to osmotic, drought and high salinity stress was examined using CaLOX1-overexpressing (CaLOX1-OX) Arabidopsis plants. Changes in the temporal expression pattern of the CaLOX1 gene were observed when pepper leaves were treated with drought and high salinity, but not when treated with ABA, the primary hormone in response to drought stress. During seed germination and seedling development, CaLOX1-OX plants were more tolerant to ABA, mannitol and high salinity than wild-type plants. In contrast, expression of the ABA-responsive marker genes RAB18 and RD29B was higher in CaLOX1-OX Arabidopsis plants than in wild-type plants. In response to high salinity, CaLOX1-OX plants exhibited enhanced tolerance, compared with the wild type, which was accompanied by decreased accumulation of H2O2 and high levels of RD20, RD29A, RD29B and P5CS gene expression. Similarly, CaLOX1-OX plants were also more tolerant than wild-type plants to severe drought stress. H2O2 production and the relative increase in lipid peroxidation were lower, and the expression of COR15A, DREB2A, RD20, RD29A and RD29B was higher in CaLOX1-OX plants, relative to wild-type plants. Taken together, our results indicate that CaLOX1 plays a crucial role in plant stress responses by modulating the expression of ABA- and stress-responsive marker genes, lipid peroxidation and H2O2 production.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Republic of Korea These author contributed equally to this work
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 456-756, Republic of Korea These author contributed equally to this work
| | - In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea Present address: Department of Agricultural Biotechnology, National Academy of Agricultural Science & Technology, Rural Development Administration, Jeonju 560-500, Republic of Korea
| | - Dae Sung Kim
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea Present address: The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
32
|
Rashed A, Workneh F, Paetzold L, Rush CM. Emergence of 'Candidatus Liberibacter solanacearum'-Infected Seed Potato in Relation to the Time of Infection. PLANT DISEASE 2015; 99:274-280. [PMID: 30699564 DOI: 10.1094/pdis-04-14-0421-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zebra chip (ZC) is a disease of potato, putatively caused by the vectorborne bacterium 'Candidatus Liberibacter solanacearum'. Although ZC has been a major concern due its significant negative impact on both potato yield and quality, its effect on seed potato sprouting has been the subject of recent evaluations. The present study was conducted to determine whether variation in emergence is affected by the infection duration of 'Ca. L. solanacearum'-infected seed potato prior to harvest. Furthermore, changes in pathogen detectability and titer levels in late-season-infected plants also were evaluated during and after cold storage. The rate of ZC-affected seed potato emergence following cold storage was not affected by the time of infection in the field, and the majority of ZC-infected tubers failed to sprout. Time to "seedling" emergence also was significantly longer in seed potato from plants infected ≥2 weeks before harvest. The small percentage of plants that emerged from ZC-affected seed potato produced stunted, nonvigorous plants that often died after a few weeks. The rate of successful 'Ca. L. solanacearum' detection increased during cold storage, suggesting a continued 'Ca. L. solanacearum'-tuber interaction postharvest. After tubers were removed from cold storage and held at room temperature, 'Ca. L. solanacearum' titer started to increase. Although none of the tubers from plants infected 1 week before harvest exhibited any disease symptoms or tested positive for 'Ca. L. solanacearum' at harvest, up to 38% of these tubers tested positive following placement at room temperature after cold storage. Results of this study suggest that the role of seedborne ZC in disease epidemiology is likely to be insignificant. Furthermore, the findings of this study emphasized the importance of continued control measures until at least a week before harvest, and highlighted the need for improved methods of 'Ca. L. solanacearum' detection at harvest, especially in tubers infected late in the season.
Collapse
Affiliation(s)
- Arash Rashed
- University of Idaho, Aberdeen R&E Center, Aberdeen 83210, and Texas A&M AgriLife Research and Extension Center, Amarillo 79109
| | - Fekede Workneh
- University of Idaho, Aberdeen R&E Center, Aberdeen 83210, and Texas A&M AgriLife Research and Extension Center, Amarillo 79109
| | - Li Paetzold
- Texas A&M AgriLife Research and Extension Center, Amarillo
| | - Charles M Rush
- Texas A&M AgriLife Research and Extension Center, Amarillo
| |
Collapse
|
33
|
Zebelo SA, Maffei ME. Role of early signalling events in plant-insect interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:435-48. [PMID: 25429000 DOI: 10.1093/jxb/eru480] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The response of plants to the stress caused by herbivores involves several different defence mechanisms. These responses begin at the plant cell plasma membrane, where insect herbivores interact physically by causing mechanical damage and chemically by introducing elicitors or by triggering plant-derived signalling molecules. The earliest plant responses to herbivore contact are represented by ion flux unbalances generated in the plant cell plasma membrane at the damaged site. Differences in the charge distribution generate plasma transmembrane potential (V m) variation, the first event, which eventually leads to the initiation of signal transduction pathways and gene expression. Calcium signalling and the generation of reactive oxygen and nitrogen species are early events closely related to V m variations. This review provides an update on recent developments and advances in plant early signalling in response to herbivory, with particular emphasis on the electrophysiological variations of the plasma membrane potential, calcium signalling, cation channel activity, production of reactive oxygen and nitrogen species, and formation of a systemically moving signal from wounded tissues. The roles of calcium-dependent protein kinases and calcineurin signalling are also discussed.
Collapse
Affiliation(s)
- Simon A Zebelo
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn 36849, AL, USA
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Via Quarello 15/A, Turin 10135, Italy
| |
Collapse
|
34
|
Song Y, Ci D, Tian M, Zhang D. Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses. PLANT MOLECULAR BIOLOGY 2014; 86:139-56. [PMID: 25002226 DOI: 10.1007/s11103-014-0218-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/15/2014] [Indexed: 05/21/2023]
Abstract
In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China,
| | | | | | | |
Collapse
|
35
|
Campbell SA, Halitschke R, Thaler JS, Kessler A. Plant mating systems affect adaptive plasticity in response to herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:481-490. [PMID: 24580720 DOI: 10.1111/tpj.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
The fitness consequences of mating system variation (e.g. inbreeding) have been studied for at least 200 years, yet the ecological consequences of this variation remain poorly understood. Most plants are capable of inbreeding, and also exhibit a remarkable suite of adaptive phenotypic responses to ecological stresses such as herbivory. We tested the consequences of experimental inbreeding on phenotypic plasticity in resistance and growth (tolerance) traits in Solanum carolinense (Solanaceae). Inbreeding reduced the ability of plants to up-regulate resistance traits following damage. Moreover, inbreeding disrupted growth trait responses to damage, indicating the presence of deleterious mutations at loci regulating growth under stress. Production of the phytohormones abscisic and indole acetic acid, and wounding-induced up-regulation of the defence signalling phytohormone jasmonic acid were all significantly reduced under inbreeding, indicating a phytohormonal basis for inbreeding effects on growth and defence trait regulation. We conclude that the plasticity of induced responses is negatively affected by inbreeding, with implications for fragmented populations facing mate limitation and stress as a consequence of environmental change.
Collapse
Affiliation(s)
- Stuart A Campbell
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
36
|
Rajendran S, Lin IW, Chen MJ, Chen CY, Yeh KW. Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato. BMC PLANT BIOLOGY 2014; 14:112. [PMID: 24774834 PMCID: PMC4108030 DOI: 10.1186/1471-2229-14-112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/14/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plants respond differently to mechanical wounding and herbivore attack, using distinct pathways for defense. The versatile sweet potato sporamin possesses multiple biological functions in response to stress. However, the regulation of sporamin gene expression that is activated upon mechanical damage or herbivore attack has not been well studied. RESULTS Biochemical analysis revealed that different patterns of Reactive oxygen species (ROS) and antioxidant mechanism exist between mechanical wounding (MW) and herbivore attack (HA) in the sweet potato leaf. Using LC-ESI-MS (Liquid chromatography electrospray ionization mass spectrometry analysis), only the endogenous JA (jasmonic acid) level was found to increase dramatically after MW in a time-dependent manner, whereas both endogenous JA and SA (salicylic acid) increase in parallel after HA. Through yeast one-hybrid screening, two transcription factors IbNAC1 (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC)) and IbWRKY1 were isolated, which interact with the sporamin promoter fragment of SWRE (sporamin wounding-responsive element) regulatory sequences. Exogenous application of MeJA (methyl jasmonate), SA and DIECA (diethyldithiocarbamic acid, JAs biosynthesis inhibitor) on sweet potato leaves was employed, and the results revealed that IbNAC1 mediated the expression of sporamin through a JA-dependent signaling pathway upon MW, whereas both IbNAC1 and IbWRKY1 coordinately regulated sporamin expression through JA- and SA-dependent pathways upon HA. Transcriptome analysis identified MYC2/4 and JAZ2/TIFY10A (jasmonate ZIM/tify-domain), the repressor and activator of JA and SA signaling among others, as the genes that play an intermediate role in the JA and SA pathways, and these results were further validated by qRT-PCR (quantitative real-time polymerase chain reaction). CONCLUSION This work has improved our understanding of the differential regulatory mechanism of sporamin expression. Our study illustrates that sweet potato sporamin expression is differentially induced upon abiotic MW and biotic HA that involves IbNAC1 and IbWRKY1 and is dependent on the JA and SA signaling pathways. Thus, we established a model to address the plant-wounding response upon physical and biotic damage.
Collapse
Affiliation(s)
| | - I-Winnie Lin
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Ju Chen
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Chien-Yu Chen
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
37
|
Tian D, Peiffer M, De Moraes CM, Felton GW. Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. PLANTA 2014; 239:577-89. [PMID: 24271004 DOI: 10.1007/s00425-013-1997-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/04/2013] [Indexed: 05/03/2023]
Abstract
Inducible defenses that provide enhanced resistance to insect attack are nearly universal in plants. The defense-signaling cascade is mediated by the synthesis, movement, and perception of jasmonate (JA) and the interaction of this signaling molecule with other plant hormones and messengers. To explore how the interaction of JA and ethylene influences induced defenses, we employed the never-ripe (Nr) tomato mutant, which exhibits a partial block in ethylene perception, and the defenseless (def1) mutant, which is deficient in JA biosynthesis. The defense gene proteinase inhibitor (PIN2) was used as marker to compare plant responses. The Nr mutant showed a normal wounding response with PIN2 induction, but the def1 mutant did not. As expected, methyl JA (MeJA) treatment restored the normal wound response in the def1 mutant. Exogenous application of MeJA increased resistance to Helicoverpa zea, induced defense gene expression, and increased glandular trichome density on systemic leaves. Exogenous application of ethephon, which penetrates tissues and decomposes to ethylene, resulted in increased H. zea growth and interfered with the wounding response. Ethephon treatment also increased salicylic acid in systemic leaves. These results indicate that while JA plays the main role in systemic induced defense, ethylene acts antagonistically in this system to regulate systemic defense.
Collapse
Affiliation(s)
- Donglan Tian
- Center for Chemical Ecology, Department of Entomology, Penn State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
38
|
Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, Baldwin IT, Erb M. Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. THE NEW PHYTOLOGIST 2013; 200:1234-46. [PMID: 23914830 DOI: 10.1111/nph.12438] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/23/2013] [Indexed: 05/22/2023]
Abstract
Herbivore attack leads to resource conflicts between plant defensive strategies. Photoassimilates are required for defensive compounds and carbon storage below ground and may therefore be depleted or enriched in the roots of herbivore-defoliated plants. The potential role of belowground tissues as mediators of induced tolerance-defense trade-offs is unknown. We evaluated signaling and carbohydrate dynamics in the roots of Nicotiana attenuata following Manduca sexta attack. Experimental and natural genetic variability was exploited to link the observed metabolite patterns to plant tolerance and resistance. Leaf-herbivore attack decreased sugar and starch concentrations in the roots and reduced regrowth from the rootstock and flower production in the glasshouse and the field. Leaf-derived jasmonates were identified as major regulators of this root-mediated resource-based trade-off: lower jasmonate levels were associated with decreased defense, increased carbohydrate levels and improved regrowth from the rootstock. Application and transport inhibition experiments, in combination with silencing of the sucrose non-fermenting (SNF) -related kinase GAL83, indicated that auxins may act as additional signals that regulate regrowth patterns. In conclusion, our study shows that the ability to mobilize defenses has a hidden resource-based cost below ground that constrains defoliation tolerance. Jasmonate- and auxin-dependent mechanisms may lead to divergent defensive plant strategies against herbivores in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany; Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Dinh ST, Baldwin IT, Galis I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. PLANT PHYSIOLOGY 2013; 162:2106-24. [PMID: 23784463 PMCID: PMC3729786 DOI: 10.1104/pp.113.221150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/17/2013] [Indexed: 05/03/2023]
Abstract
Nicotiana attenuata plants can distinguish the damage caused by herbivore feeding from other types of damage by perceiving herbivore-associated elicitors, such as the fatty acid-amino acid conjugates (FACs) in oral secretions (OS) of Manduca sexta larvae, which are introduced into wounds during feeding. However, the transduction of FAC signals into downstream plant defense responses is still not well established. We identified a novel FAC-regulated protein in N. attenuata (NaHER1; for herbivore elicitor regulated) and show that it is an indispensable part of the OS signal transduction pathway. N. attenuata plants silenced in the expression of NaHER1 by RNA interference (irHER1) were unable to amplify their defenses beyond basal, wound-induced levels in response to OS elicitation. M. sexta larvae performed 2-fold better when reared on irHER1 plants, which released less volatile organic compounds (indirect defense) and had strongly reduced levels of several direct defense metabolites, including trypsin proteinase inhibitors, 17-hydroxygeranyllinallool diterpene glycosides, and caffeoylputrescine, after real and/or simulated herbivore attack. In parallel to impaired jasmonate signaling and metabolism, irHER1 plants were more drought sensitive and showed reduced levels of abscisic acid (ABA) in the leaves, suggesting that silencing of NaHER1 interfered with ABA metabolism. Because treatment of irHER1 plants with ABA results in both the accumulation of significantly more ABA catabolites and the complete restoration of normal wild-type levels of OS-induced defense metabolites, we conclude that NaHER1 acts as a natural suppressor of ABA catabolism after herbivore attack, which, in turn, activates the full defense profile and resistance against herbivores.
Collapse
Affiliation(s)
- Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D–07745 Jena, Germany
| | | |
Collapse
|
40
|
Ullmann-Zeunert L, Stanton MA, Wielsch N, Bartram S, Hummert C, Svatoš A, Baldwin IT, Groten K. Quantification of growth-defense trade-offs in a common currency: nitrogen required for phenolamide biosynthesis is not derived from ribulose-1,5-bisphosphate carboxylase/oxygenase turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:417-429. [PMID: 23590461 PMCID: PMC4996319 DOI: 10.1111/tpj.12210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 05/20/2023]
Abstract
Induced defenses are thought to be economical: growth and fitness-limiting resources are only invested into defenses when needed. To date, this putative growth-defense trade-off has not been quantified in a common currency at the level of individual compounds. Here, a quantification method for ¹⁵N-labeled proteins enabled a direct comparison of nitrogen (N) allocation to proteins, specifically, ribulose-1,5-bisposphate carboxylase/oxygenase (RuBisCO), as proxy for growth, with that to small N-containing defense metabolites (nicotine and phenolamides), as proxies for defense after herbivory. After repeated simulated herbivory, total N decreased in the shoots of wild-type (WT) Nicotiana attenuata plants, but not in two transgenic lines impaired in jasmonate defense signaling (irLOX3) and phenolamide biosynthesis (irMYB8). N was reallocated among different compounds within elicited rosette leaves: in the WT, a strong decrease in total soluble protein (TSP) and RuBisCO was accompanied by an increase in defense metabolites, irLOX3 showed a similar, albeit attenuated, pattern, whereas irMYB8 rosette leaves were the least responsive to elicitation, with overall higher levels of RuBisCO. Induced defenses were higher in the older compared with the younger rosette leaves, supporting the hypothesis that tissue developmental stage influences defense investments. We propose that MYB8, probably by regulating the production of phenolamides, indirectly mediates protein pool sizes after herbivory. Although the decrease in absolute N invested in TSP and RuBisCO elicited by simulated herbivory was much larger than the N-requirements of nicotine and phenolamide biosynthesis, ¹⁵N flux studies revealed that N for phenolamide synthesis originates from recently assimilated N, rather than from RuBisCO turnover.
Collapse
Affiliation(s)
- Lynn Ullmann-Zeunert
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena
- Qiagen, Hilden
| | - Mariana A. Stanton
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena
| | | | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena
| | - Christian Hummert
- Systems Biology/Bioinformatics Research Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena
| | - Aleš Svatoš
- MS Group, Max Planck Institute for Chemical Ecology, Jena
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena
| |
Collapse
|
41
|
Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I. NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC PLANT BIOLOGY 2013; 13:73. [PMID: 23634896 PMCID: PMC3655906 DOI: 10.1186/1471-2229-13-73] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND To survive herbivore attack, plants have evolved potent mechanisms of mechanical or chemical defense that are either constitutively present or inducible after herbivore attack. Due to the costs of defense deployment, plants often regulate their biosynthesis using various transcription factors (TFs). MYC2 regulators belong to the bHLH family of transcription factors that are involved in many aspects of plant defense and development. In this study, we identified a novel MYC2 TF from N. attenuata and characterized its regulatory function using a combination of molecular, analytic and ecological methods. RESULTS The transcript and targeted metabolite analyses demonstrated that NaMYC2 is mainly involved in the regulation of the biosynthesis of nicotine and phenolamides in N. attenuata. In addition, using broadly-targeted metabolite analysis, we identified a number of other metabolite features that were regulated by NaMYC2, which, after full annotation, are expected to broaden our understanding of plant defense regulation. Unlike previous reports, the biosynthesis of jasmonates and some JA-/NaCOI1-dependent metabolites (e.g. HGL-DTGs) were not strongly regulated by NaMYC2, suggesting the involvement of other independent regulators. No significant differences were observed in the performance of M. sexta on MYC2-silenced plants, consistent with the well-known ability of this specialist insect to tolerate nicotine. CONCLUSION By regulating the biosynthesis of nicotine, NaMYC2 is likely to enhance plant resistance against non-adapted herbivores and contribute to plant fitness; however, multiple JA/NaCOI1-dependent mechanisms (perhaps involving other MYCs) that regulate separate defense responses are likely to exist in N. attenuata. The considerable variation observed amongst different plant families in the responses regulated by jasmonate signaling highlights the sophistication with which plants craft highly specific and fine-tuned responses against the herbivores that attack them.
Collapse
Affiliation(s)
- Melkamu G Woldemariam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Ivan Galis
- Present address: Institute of Plant Science and Resources, Okayama University, 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
42
|
Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS. Foliar herbivory triggers local and long distance defense responses in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:103-12. [PMID: 23265323 DOI: 10.1016/j.plantsci.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 05/09/2023]
Abstract
Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology Mississippi State University, MS, United States.
| | | | | | | | | |
Collapse
|
43
|
Ubeda-Tomás S, Beemster GTS, Bennett MJ. Hormonal regulation of root growth: integrating local activities into global behaviour. TRENDS IN PLANT SCIENCE 2012; 17:326-31. [PMID: 22401844 DOI: 10.1016/j.tplants.2012.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 05/04/2023]
Abstract
To date, plant researchers have probed the control of root growth by studying the roles of individual regulatory components or cellular processes. However, recent studies in the Arabidopsis (Arabidopsis thaliana) root have shown that different hormones control organ growth by regulating specific growth processes (cell proliferation, differentiation or expansion) in distinct tissues. We discuss key issues raised by these new insights and hypothesise that novel tissue-to-tissue signals exist to coordinate organ growth. We conclude by describing how multiscale models can help probe the interplay between the different scales at which hormones and their regulatory networks operate in different cells and tissues. Such approaches promise to generate new insights into the mechanisms that control root growth.
Collapse
Affiliation(s)
- Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | | |
Collapse
|
44
|
Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. TRENDS IN PLANT SCIENCE 2012; 17:250-9. [PMID: 22305233 PMCID: PMC3346861 DOI: 10.1016/j.tplants.2012.01.003] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant-insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene (ET), salicylic acid (SA), abscisic acid (ABA), auxin, cytokinins (CK), brassinosteroids (BR) and gibberellins (GB). The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores.
Collapse
Affiliation(s)
- Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany.
| | | | | |
Collapse
|
45
|
Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a Jasmonate Burst. J Chem Ecol 2012; 38:629-40. [DOI: 10.1007/s10886-012-0107-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/08/2012] [Accepted: 03/20/2012] [Indexed: 12/21/2022]
|
46
|
Onkokesung N, Gaquerel E, Kotkar H, Kaur H, Baldwin IT, Galis I. MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme A:polyamine transferases in Nicotiana attenuata. PLANT PHYSIOLOGY 2012; 158:389-407. [PMID: 22082505 PMCID: PMC3252090 DOI: 10.1104/pp.111.187229] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 05/18/2023]
Abstract
A large number of plants accumulate N-acylated polyamines (phenolamides [PAs]) in response to biotic and/or abiotic stress conditions. In the native tobacco (Nicotiana attenuata), the accumulation of two major PAs, caffeoylputrescine and dicaffeoylspermidine (DCS), after herbivore attack is known to be controlled by a key transcription factor, MYB8. Using a broadly targeted metabolomics approach, we show that a much larger spectrum of PAs composed of hydroxycinnamic acids and two polyamines, putrescine and spermidine, is regulated by this transcription factor. We cloned several novel MYB8-regulated genes, annotated as putative acyltransferases, and analyzed their function. One of the novel acyltransferases (AT1) is shown to encode a hydroxycinnamoyl-coenzyme A:putrescine acyltransferase responsible for caffeoylputrescine biosynthesis in tobacco. Another gene (acyltransferase DH29), specific for spermidine conjugation, mediates the initial acylation step in DCS formation. Although this enzyme was not able to perform the second acylation toward DCS biosynthesis, another acyltransferase gene, CV86, proposed to act on monoacylated spermidines, was isolated and partially characterized. The activation of MYB8 in response to herbivore attack and associated signals required the activity of LIPOXYGENASE3, a gene involved in jasmonic acid (JA) biosynthesis in N. attenuata. These new results allow us to reconstruct a complete branch in JA signaling that defends N. attenuata plants against herbivores: JA via MYB8's transcriptional control of AT1 and DH29 genes controls the entire branch of PA biosynthesis, which allows N. attenuata to mount a chemically diverse (and likely efficient) defense shield against herbivores.
Collapse
|
47
|
Meldau DG, Long HH, Baldwin IT. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature. FRONTIERS IN PLANT SCIENCE 2012; 3:112. [PMID: 22701461 PMCID: PMC3371617 DOI: 10.3389/fpls.2012.00112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/10/2012] [Indexed: 05/20/2023]
Abstract
Many plants have intimate relationships with soil microbes, which improve the plant's growth and fitness through a variety of mechanisms. Bacillus sp. isolates are natural root-associated bacteria, isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate B55, was found to have dramatic plant growth promotion (PGP) effects on wild type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype from which this bacterium was first isolated. B55 not only improves N. attenuata growth under in vitro, glasshouse, and field conditions, but it also "rescues" many of the deleterious phenotypes associated with ET insensitivity. Most notably, B55 dramatically increases the growth and survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first demonstration of a PGP effect in a native plant-microbe association under natural conditions. Our study demonstrates that this facultative mutualistic plant-microbe interaction should be viewed as part of the plant's extended phenotype. Possible modalities of recruitment and mechanisms of PGP are discussed.
Collapse
Affiliation(s)
- Dorothea G. Meldau
- Dorothea G. Meldau and Hoang H. Long have contributed equally to this work.
| | - Hoang H. Long
- Present address: Hoang H. Long, Institute of Agricultural Genetics, Pham Van Dong, Tu Liem, Hanoi, Vietnam.
| | - Ian T. Baldwin
- *Correspondence: Ian T. Baldwin, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07743 Jena, Germany. e-mail:
| |
Collapse
|
48
|
Yamada K, Hara-Nishimura I, Nishimura M. Unique defense strategy by the endoplasmic reticulum body in plants. PLANT & CELL PHYSIOLOGY 2011; 52:2039-49. [PMID: 22102697 DOI: 10.1093/pcp/pcr156] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | |
Collapse
|
49
|
Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q. The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5405-18. [PMID: 21865178 PMCID: PMC3223041 DOI: 10.1093/jxb/err217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Fragoso V, Goddard H, Baldwin IT, Kim SG. A simple and efficient micrografting method for stably transformed Nicotiana attenuata plants to examine shoot-root signaling. PLANT METHODS 2011; 7:34. [PMID: 22014154 PMCID: PMC3207920 DOI: 10.1186/1746-4811-7-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
To adjust their development to the environment, plants rely on specific signals that travel from shoot to root and vice versa. Here we describe an efficient micrografting protocol for Nicotiana attenuata, a useful tool for identifying these signals and understanding their functions. Additionally we analyzed transcript accumulation profiles of scions and rootstocks of grafts performed with wild-type and stably transformed N. attenuata. Our results are consistent with the source-to-sink movement of an sRNA silencing signal.
Collapse
Affiliation(s)
- Variluska Fragoso
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | | | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|