1
|
Du Y, Ye C, Han P, Sheng Y, Li F, Sun H, Zhang J, Li J. The molecular mechanism of transcription factor regulation of grain size in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112434. [PMID: 40023197 DOI: 10.1016/j.plantsci.2025.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Rice is a crucial food crop in China, and the continuous and stable improvement of rice yield is of great significance for ensuring national food security. Grain size in rice is closely related to thousand-grain weight, making it a key factor influencing yield. Identifying genes associated with grain size and elucidating their molecular mechanisms are essential for breeding high-yield, high-quality rice varieties. Transcription factors play a vital role in regulating plant growth and development, and many transcription factor families are crucial in controlling grain size in rice. Here, we review the mechanisms by which transcription factors regulate rice grain size, summarize and evaluate the regulatory mechanisms of transcription factors that have been discovered in recent decades to regulate rice grain size, construct two possible super networks composed of transcription factors as links to regulate rice grain size, and points out the application of transcription factors regulating grain size in rice breeding. This review will provide a roadmap for understanding the regulatory mechanisms of rice grain size and applying these genes to rice breeding using molecular breeding techniques.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| | - Chun Ye
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Peijie Han
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Yile Sheng
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Fei Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Hongzheng Sun
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Jing Zhang
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Junzhou Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Yan J, Yu J, Shen H, Zhou L, Chen Z, Fan X, Li Q, Zhang C, Liu Q, Huang L, Liu Q. Creating a Superior Wx Allele with Temperature-Responsive Amylose Regulation and a Novel Transcriptional Pattern in Rice via CRISPR/Cas9-Mediated Promoter Editing. Foods 2025; 14:1330. [PMID: 40282732 PMCID: PMC12026567 DOI: 10.3390/foods14081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
High quality stands as a pivotal competitive edge in the rice industry. Optimizing amylose content (AC) and the physicochemical properties of endosperm starch by regulating the Wx gene is crucial for enhancing rice grain quality. In this study, we created a novel Wxb-d25 allele by deleting a 25 bp segment (-26 to -2) within the Wx core promoter using CRISPR/Cas9. Compared with the wild type and the previously reported Wxb-i1, Wxb-d25 exhibited no significant changes in agronomic traits. However, its grains displayed temperature-dependent variations in AC and altered transparency and viscosity characteristics, holding the potential to synergistically improve both the eating and cooking quality (ECQ) and appearance quality (AQ) of rice. Further studies demonstrated that this promoter modification, by partially disrupting the transcription initiator, significantly downregulated the original Wx-01 transcript and generated a novel Wx transcript (ONT.7395.1) in Wxb-d25 grains. Despite its low expression abundance, the ONT.7395.1 transcript could be completely processed into mature Wx mRNA. The combined effects of the dual transcripts resulted in significantly increased Wx gene expression and AC in Wxb-d25 grains under conventional cultivation conditions. These findings provide a genetic resource and a theoretical foundation for utilizing the Wxb-d25 allele to improve rice grain quality.
Collapse
Affiliation(s)
- Jiali Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jiawen Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Huimin Shen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Lihui Zhou
- Jiangsu High Quality Rice Research and Development Center, Jiangsu Key Laboratory for Agro-Biology, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhuanzhuan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China
| | - Qing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China
| |
Collapse
|
3
|
Li W, Guo X, Yao W, Li K, Zheng Q, Yu Y, Zhang Z, Wang Y, Yao W, Wu J, Hu H, Hu L, Zhang L, Li X, Dong Y, Li Y. Comparative transcriptomic analysis of heterotic maize development during kernel filling. PLANT MOLECULAR BIOLOGY 2025; 115:53. [PMID: 40172718 DOI: 10.1007/s11103-025-01584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Heterosis, characterized by enhanced performance of a hybrid relative to its parental lines, has been a fundament of plant breeding strategies. Despite the application of heterosis, its molecular mechanisms remain elusive. Here, we focused on the maize heterotic hybrid Yudan132, which showed enhanced agronomic traits compared to its parental lines, including ear and kernel size, kernel weight, and overall yield. Notably, Yudan132 showed increased accumulation of storage substances, characterized by starch, protein contents and grain-filling rates, all of which collectively contribute to the augmented kernel weight. Through gene expression profiling, we identified differentially expressed genes (DEGs) in Yudan132 and its parental lines across four distinct kernel developmental stages (12, 20, 28, and 40 days after pollination). These DEGs displayed both additive and non-additive expression patterns, each contributing to heterosis in maize kernels. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis highlighted their involvement in metabolic pathways, biosynthesis of secondary metabolites, carbon metabolism, starch and sucrose metabolism processes. Within these pathways, the enriched DEGs predominantly associated with the gene categories of peroxidase, cytochrome P450, ketoacyl-CoA synthase, and phospholipase D. Furthermore, we identified the transcription factor bZIP88 among the DEGs, which was involved in the regulation of seed size and weight in transgenic Arabidopsis. These results suggested a potential role for bZIP88 in modulating kernel development, thereby further implicating the involvement of the identified DEGs in the molecular mechanisms of heterosis. These findings provide the genetic role of heterosis in kernel and the molecular mechanism regulating kernel development.
Collapse
Affiliation(s)
- Wenyu Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Xiangkun Guo
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Wen Yao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Keke Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Qi Zheng
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Yongbiao Yu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Zhiwei Zhang
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Yan Wang
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Weigang Yao
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Ju Wu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Huan Hu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Lingwei Hu
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Long Zhang
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Xinyu Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China
| | - Yongbin Dong
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China.
| | - Yuling Li
- The State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou, China.
| |
Collapse
|
4
|
Liu B, Meng S, Yang J, Wu J, Peng Y, Zhang J, Ye N. Carbohydrate flow during grain filling: Phytohormonal regulation and genetic control in rice (Oryza sativa). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1086-1104. [PMID: 40192007 PMCID: PMC12016746 DOI: 10.1111/jipb.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Both the filling and development of grain are key processes determining agriculture production and reproductive growth in rice. The processes of grain filling and endosperm development are crucial for the accumulation of major storage compounds in rice grains. This requires extensive remobilization of carbon reserves from source to sink and the precise regulation of sucrose-to-starch conversion. Both the developmental sequence of the panicle and environmental signals influence the carbon flow between the leaves, leaf sheath, stem, and spikelets during grain filling. This, in turn, affects endosperm development and the production of storage compounds. In this review, we synthesize recent insight into grain development in rice, focusing on the dynamic changes in phytohormones and how their homeostasis integrates developmental and environmental cues to control grain filling in the developing panicle. We also highlight recent advances in the genetic control of carbohydrate remobilization and the transcriptional regulatory networks governing carbohydrate metabolism and grain development in rice. The asynchronous initiation and imbalance in grain filling limit the full yield potential of cereal crops. The "superior/inferior spikelets" serve as a model system for understanding the regulatory mechanisms underlying grain filling and development. Systematic research on carbohydrate flow and phytohormone crosstalk could enhance our understanding of optimizing yield production in cereal crops. Additionally, a thorough analysis of key genetic regulatory mechanisms can offer a genetic foundation and targets for precisely adjusting grain filling traits, ultimately aiding in the development of high-yield crop varieties.
Collapse
Affiliation(s)
- Bohan Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Shuan Meng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhou225009China
| | - Jun Wu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Yan Peng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianhua Zhang
- Department of BiologyHong Kong Baptist UniversityHong Kong999077China
- School of Life Sciences and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong Kong999077China
| | - Nenghui Ye
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| |
Collapse
|
5
|
Liu S, Wu J, Mawia AM, Wei X, Cao R, Jiao G, Wu Y, Zhang J, Xie L, Sheng Z, Hu S, Li S, Lv Y, Lu F, Chen Y, Fiaz S, Tabassum J, Du Z, Gao F, Ren G, Shao G, Hu P, Tang S. A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation-mediated auxin biosynthesis signalling pathway in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1021-1038. [PMID: 39726220 PMCID: PMC11933829 DOI: 10.1111/pbi.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes. However, studies on genetic functions of MYB in rice yield and quality are rarely to be reported. Here, we investigated a nucleus-localized transcription factor OsMYB73 which is preferentially expressed in the early developing pericarp and endosperm. We generated targeted mutagenesis of OsMYB73 in rice, and the mutants had longer grains with obvious white-belly chalky endosperm appearance phenotype. The mutants displayed various changes in starch physicochemical characteristics and lipid components. Transcriptome sequencing analysis showed that OsMYB73 was chiefly involved in cell wall development and starch metabolism. OsMYB73 mutation affects the expression of genes related to grain size, starch and lipid biosynthesis and auxin biosynthesis. Moreover, inactivation of OsMYB73 triggers broad changes in secondary metabolites. We speculate that rice OsMYB73 and OsNF-YB1 play synergistic pivotal role in simultaneously as transcription activators to regulate grain filling and storage compounds accumulation to affect endosperm development and grain chalkiness through binding OsISA2, OsLTPL36 and OsYUC11. The study provides important germplasm resources and theoretical basis for genetic improvement of rice yield and quality. In addition, we enriches the potential biological functions of rice MYB family transcription factors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
- Environment‐friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Tianfu Seed Industry Innovation (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Research Institute (Sichuan Provincial Germplasm Center)Sichuan Academy of Agricultural SciencesChengduChina
| | - Jiamin Wu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Ruijie Cao
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Guiai Jiao
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Yawen Wu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Jian Zhang
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Lihong Xie
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Shikai Hu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Sanfeng Li
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Yusong Lv
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Feifei Lu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Yujuan Chen
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Sajid Fiaz
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Zhimin Du
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Fangyuan Gao
- Environment‐friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Tianfu Seed Industry Innovation (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Research Institute (Sichuan Provincial Germplasm Center)Sichuan Academy of Agricultural SciencesChengduChina
| | - Guangjun Ren
- Environment‐friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Tianfu Seed Industry Innovation (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Research Institute (Sichuan Provincial Germplasm Center)Sichuan Academy of Agricultural SciencesChengduChina
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Peisong Hu
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China‐IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
6
|
Nguyen DK, Nguyen TP, Lin CC, Ly TT, Li YR, Chang CH, Nguyen VA, Trinh NN, Huang HJ. Transcriptome analysis reveals the role of microbial volatile 3-methyl-1-butanol-induced salt stress tolerance in rice (Oryza sativa L.) seedlings through antioxidant defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109830. [PMID: 40157146 DOI: 10.1016/j.plaphy.2025.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Microorganisms produce volatile organic compounds (VOCs) that have biological impacts on plants; however, it is unknown how these molecules participate in plants' responses to abiotic stress. This study aimed to determine the potential benefit of 3-methyl-1-butanol (3 MB), a microbial VOC, in helping rice (Oryza sativa) seedlings suffering from salinity stress. Our study revealed that rice seedlings primed with microbial volatile 3 MB for 12 h before exposure to salinity stress could decrease reactive oxygen species (ROS) generation and cell damage in rice roots. Additionally, antioxidant systems such as peroxidase (POD) isozymes 4 and 5 and catalase 1 (CAT1) increased after treatment with 3 MB + NaCl. The microbial volatile 3 MB fumigation also raised the proline content and activated the proline-related genes under 3 MB + NaCl treatment. To further elucidate the molecular mechanisms by which 3 MB assists rice in tolerating salinity stress, transcriptomic analysis was used to investigate the genome-wide gene expressions. Totally, 287 up-regulated differentially expressed genes (DEGs) were found. They are associated with phytohormone regulation, transcription factors, redox signaling, and defense responses. Through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MapMan enrichment results of DEGs revealed that 3 MB could activate antioxidant systems, jasmonic acid (JA) pathway, and starch biosynthesis to generate more ATP, thus building a line of defense in response to salinity stress. This study provides valuation information indicating that microbial volatile 3 MB vapor can enhance salt stress tolerance in rice seedlings and clarify its underlying mechanism.
Collapse
Affiliation(s)
- Diem-Kieu Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Cheng Lin
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Thach-Thao Ly
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Yi-Rong Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Van-Anh Nguyen
- Intellectual Property Office of Vietnam, Thanh Xuan District, Ha Noi, Viet Nam
| | - Ngoc-Nam Trinh
- Industrial University of Ho Chi Minh City, Go Vap District, Ho Chi Minh, Viet Nam
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan.
| |
Collapse
|
7
|
Li R, Wu MW, Liu J, Xu X, Bao Y, Liu CM. NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29. FRONTIERS IN PLANT SCIENCE 2025; 16:1563065. [PMID: 40171481 PMCID: PMC11958719 DOI: 10.3389/fpls.2025.1563065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 04/03/2025]
Abstract
Introduction Grain filling is a crucial stage of the rice endosperm development. During this process, the endosperm accumulates abundant storage products such as starch and proteins, which determine both the yield and quality of the grain. Methods Here, we analyzed the expression of NAC25 transcription factor via qRT-PCR and histochemical GUS assays, and obtained its mutants by CRISPR/Cas9-based gene editing in ZH11. Results and discussion The results showed that NAC25 was expressed specifically in developing rice endosperm, and knockout of NAC25 led to delayed degeneration of cytoplasmic membrane integrity, reduced starch accumulation and chalky starchy endosperm. We showed that NAC25 interacted with MADS29, a MADS family transcription factor whose mutant also showed defective grain filling. These results provide novel insight into the transcriptional regulation of rice grain filling.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xintong Xu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun-Ming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Oiestad AJ, Blake NK, Tillett BJ, O’Sullivan ST, Cook JP, Giroux MJ. Plant Productivity and Leaf Starch During Grain Fill Is Linked to QTL Containing Flowering Locus T1 ( FT1) in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:512. [PMID: 40006771 PMCID: PMC11858846 DOI: 10.3390/plants14040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Shifts in the environment due to climate change necessitate breeding efforts aimed at adapting wheat to longer, warmer growing seasons. In this study, 21 modern wheat (Triticum aestivum L.) cultivars and 29 landraces were screened for flag leaf starch levels, with the goal of identifying a genetic marker for targeted breeding. The landrace PI 61693 was identified as having exceptionally high flag leaf starch values. Yield trials were carried out in a Berkut × PI 61693 recombinant inbred line (RIL) population and a negative correlation was observed between leaf starch, flowering time, and yield. Genetic mapping identified a Quantitative Trait Loci (QTL) explaining 22-34% variation for leaf starch, flowering time, biomass, and seed yield. The starch synthase TraesCS7D02G117800 (wSsI-1) is located in this region, which possibly accounts for leaf starch variation in this population; also within this QTL is TraesCS7D02G111600 (FT-D1). Sequencing of FT-D1 identified a single base pair deletion in the 3rd exon of the Berkut allele. This indel has recently been shown to significantly impact flowering time and productivity, and likely led to significant variation in flowering date and yield in this population. Here, we illustrate how allelic selection of FT-D1 within breeding programs may aid in adapting wheat to changing environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Bioscience Building, Bozeman, MT 59717-3150, USA; (A.J.O.); (N.K.B.); (B.J.T.); (S.T.O.); (J.P.C.)
| |
Collapse
|
9
|
Wang Y, Long T, Hu X, Qin A, Zhang R, Gao L, Fan X, Hu Y, Wang M, Huang Y, Li Y. ZmEREB25 transcription factor mediates transactivation of core starch synthetic genes in maize endosperm via interaction with ZmARF27. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109360. [PMID: 39622111 DOI: 10.1016/j.plaphy.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 02/05/2025]
Abstract
Starch, as the primary storage material in maize endosperm, is essential in determining yield and quality. Although the starch biosynthetic pathway in maize has been well-documented, the transcriptional network underlying endosperm starch synthesis remains elusive. Through a comprehensive co-expression analysis, we screened an endosperm-preferential AP2/ERF transcription factor ZmEREB25, which exhibited a strong correlation with the expression pattern of starch biosynthetic genes in maize endosperm. ZmEREB25 enhanced the promoter activities of the core starch biosynthetic genes, namely Sh2, SSIIIa and SSI, through specific binding to the GCCGAC-containing elements present in their promoters. Given that ZmEREB25 lacked the transactivation capacity, we further identified an ARF transcription factor, ZmARF27, that interacted with ZmEREB25 to coordinately transactivate the promoters of Sh2, SSIIIa and SSI genes via direct binding to these promoters. Our present study demonstrated that the ZmEREB25-ZmARF27 complex is crucial for transactivating core starch synthetic genes in maize endosperm and uncovered a novel regulatory pathway for starch synthesis in maize endosperm.
Collapse
Affiliation(s)
- Yayun Wang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tiandan Long
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Neijiang Academy of Agricultural Sciences, Neijiang, 641000, China
| | - Xiyue Hu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China; Chongqing Chengkou Agricultural Technology Promotion Center, Chongqing, 405900, China
| | - Aying Qin
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruonan Zhang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Gao
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujun Fan
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Wang
- Sichuan Neijiang Modern Agricultural Technology Popularization Service Center, Neijiang, 641000, China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yangping Li
- State Key Laboratory of Crop Gene Resource Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Wang H, Wang ZX, Tian HY, Zeng YL, Xue H, Mao WT, Zhang LY, Chen JN, Lu X, Zhu Y, Li GB, Zhao ZX, Zhang JW, Huang YY, Fan J, Xu PZ, Chen XQ, Li WT, Wu XJ, Wang WM, Li Y. The miR172a-SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice. MOLECULAR PLANT 2025; 18:59-75. [PMID: 39616439 DOI: 10.1016/j.molp.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Plants mount induced resistance and adult-plant resistance against different pathogens throughout the whole growth period. Rice production faces threats from multiple major diseases, including rice blast, sheath blight, and bacterial leaf blight. Here, we report that the miR172a-SNB-MYB30 module regulates both induced and adult-plant resistance to these three major diseases via lignification in rice. Mechanistically, pathogen infections induce the expression of miR172a, which downregulates the transcription factor SNB to release its suppression of MYB30, leading to an increase in lignin biosynthesis and disease resistance throughout the whole growth period. Moreover, expression levels of miR172a and MYB30 gradually increase and are consistently correlated with lignin contents and disease resistance during rice development, reaching a peak at full maturity, whereas SNB RNA levels are negatively correlated with lignin contents and disease resistance, indicating the involvement of the miR172a-SNB-MYB30 module in adult-plant resistance. The functional domain of SNB protein and its binding sites in the MYB30 promoter are highly conserved among more than 4000 rice accessions, while abnormal expression of miR172a, SNB, or MYB30 compromises yield traits, suggesting artificial selection of the miR172a-SNB-MYB30 module during rice domestication. Taken together, these results reveal a novel role for a conserved miRNA-regulated module that contributes significantly to induced and adult-plant resistance against multiple pathogens by increasing lignin accumulation, deepening our understanding of broad-spectrum resistance and adult-plant resistance.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe-Xu Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Yuan Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Long Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wan-Ting Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu-Yue Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Ni Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei-Zhou Xu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Qiong Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wei-Tao Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xian-Jun Wu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Tao J, Kong W, Luo W, Wang L, Dai X, Lin X, Dong H, Yang X, Mo B, Chen X, Yu Y. The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility. THE PLANT CELL 2024; 37:koae324. [PMID: 39665752 DOI: 10.1093/plcell/koae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.
Collapse
Affiliation(s)
- Jinyuan Tao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Weigui Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Li Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Dai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xiaojing Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Haijiao Dong
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Yu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Zhao S, Cao R, Sun L, Zhuang D, Zhong M, Zhao F, Jiao G, Chen P, Li X, Duan Y, Li X, Tang S, Ni S, Hu P, Wei X. An Integrative Analysis of the Transcriptome and Proteome of Rice Grain Chalkiness Formation Under High Temperature. PLANTS (BASEL, SWITZERLAND) 2024; 13:3309. [PMID: 39683102 DOI: 10.3390/plants13233309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Exposure to high temperatures can impair the grain-filling process in rice (Oryza sativa L.), potentially leading to the formation of chalky endosperm, but the molecular regulation mechanism remains largely elusive. Here, we reported that high-temperature (HT) stress (day/night, 35 °C/30 °C) reduces both the grain-filling rate and grain weight of Ningjing 1 variety compared to normal temperatures (NT, day/night, 28 °C/23 °C). Grains under HT stress exhibited an opaque, milky-white appearance, alongside significant alterations in starch physicochemical properties. An integrated transcriptomic analysis of grains under HT revealed up-regulation of genes related to defense mechanisms and oxidoreductase activity, while genes involved in sucrose and starch synthesis were down-regulated, and α-amylase genes were up-regulated. Proteomic analysis of grains under HT echoed this pattern. These results demonstrate that high temperature during the grain-filling stage significantly increases rice chalkiness by down-regulating genes related to sucrose and starch synthesis, while up-regulating those involved in starch degradation.
Collapse
Affiliation(s)
- Shaolu Zhao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Linhe Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongying Zhuang
- Xinyang Agricultural Experiment Station of Yancheng City, Jiangsu Academy of Agricultural Sciences, Yancheng 224049, China
| | - Min Zhong
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Pengfei Chen
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinwei Li
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingqing Duan
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoxue Li
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shen Ni
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
13
|
Yang Y, Yang X, Wu L, Sun Z, Zhang Y, Shen Z, Zhou J, Guo M, Yan C. Phenotypic Analysis and Gene Cloning of Rice Floury Endosperm Mutant wcr (White-Core Rice). PLANTS (BASEL, SWITZERLAND) 2024; 13:2653. [PMID: 39339627 PMCID: PMC11434883 DOI: 10.3390/plants13182653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The composition and distribution of storage substances in rice endosperm directly affect grain quality. A floury endosperm mutant, wcr (white-core rice), was identified, exhibiting a loose arrangement of starch granules with a floury opaque appearance in the inner layer of mature grains, resulting in reduced grain weight. The total starch and amylose content remained unchanged, but the levels of the four component proteins in the mutant brown rice significantly decreased. Additionally, the milled rice (inner endosperm) showed a significant decrease in total starch and amylose content, accompanied by a nearly threefold increase in albumin content. The swelling capacity of mutant starch was reduced, and its chain length distribution was altered. The target gene was mapped on chromosome 5 within a 65 kb region. A frameshift mutation occurred due to an insertion of an extra C base in the second exon of the cyOsPPDKB gene, which encodes pyruvate phosphate dikinase. Expression analysis revealed that wcr not only affected genes involved in starch metabolism but also downregulated expression levels of genes associated with storage protein synthesis. Overall, wcr plays a crucial role as a regulator factor influencing protein synthesis and starch metabolism in rice grains.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Lingjun Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Zixing Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Min Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Jiang M, Zhang H, Song Y, Chen J, Bai J, Tang J, Wang Q, Fotopoulos V, Zhu QH, Yang R, Li R. Transcription factor OsbZIP10 modulates rice grain quality by regulating OsGIF1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2181-2198. [PMID: 38981001 DOI: 10.1111/tpj.16911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Understanding and optimizing the process of grain filling helps the quest to maximize rice (Oryza sativa L.) seed yield and quality, yet the intricate mechanisms at play remain fragmented. Transcription factors (TFs) are major players in the gene networks underlying the grain filling process. Here, we employed grain incomplete filling (OsGIF1)/cell wall invertase 2, a key gene involved in grain filling, to explore its upstream TFs and identified a bZIP family TF, OsbZIP10, to be a transcriptional activator of OsGIF1. Rice grains of the knockouts of OsbZIP10 showed increased white-core rates but lower amylose content (AC), leading to better eating and cooking qualities in all genetic backgrounds investigated, though the impact of mutations in OsbZIP10 on grain weight depended on genetic background. Multi-omics analyses suggested that, in addition to OsGIF1, multiple genes involved in different biological processes contributing to grain filling were targeted by OsbZIP10, including OsAGPS1, a gene encoding the ADP-Glc pyrophosphorylase (AGPase) small subunit, and genes contributing to homeostasis of reactive oxygen species. Distinct genetic make-up was observed in OsbZIP10 between japonica and indica rice varieties, with the majority varieties of each subspecies belonging to two different haplotypes that were closely associated with AC. Overexpressing the haplotype linked to high-AC in the low-AC genetic background increased AC. Overall, this study sheds crucial light on the significance of the OsbZIP10-OsGIF1 module in the determination of rice grain quality, offering a potential avenue for genetic engineering of rice to produce seeds with tailored attributes.
Collapse
Affiliation(s)
- Meng Jiang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, 572000, People's Republic of China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, 572000, People's Republic of China
| | - Jiale Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, 572000, People's Republic of China
| | - Jianjiang Bai
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Jianhao Tang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Qing Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Wuxi Hupper Bioseed Technology Institute Ltd., Wuxi, 214000, Jiangsu, People's Republic of China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australian Capital Territory, Australia
| | - Ruifang Yang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| |
Collapse
|
15
|
Liu J, Yi Q, Dong G, Chen Y, Guo L, Gao Z, Zhu L, Ren D, Zhang Q, Li Q, Li J, Liu Q, Zhang G, Qian Q, Shen L. Improving Rice Quality by Regulating the Heading Dates of Rice Varieties without Yield Penalties. PLANTS (BASEL, SWITZERLAND) 2024; 13:2221. [PMID: 39204657 PMCID: PMC11360702 DOI: 10.3390/plants13162221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The heading date, a critical trait influencing the rice yield and quality, has always been a hot topic in breeding research. Appropriately delaying the flowering time of excellent northern rice varieties is of great significance for improving yields and enhancing regional adaptability during the process for introducing varieties from north to south. In this study, genes influencing the heading date were identified through genome-wide association studies (GWAS). Using KenDao 12 (K12), an excellent cultivar from northern China, as the material, the specific flowering activator, OsMADS50, was edited using the genome-editing method to regulate the heading date to adapt to the southern planting environment. The results indicated that the osmads50 mutant line of K12 flowered about a week later, with a slight increase in the yield and good adaptability in the southern region in China. Additionally, the expressions of key flowering regulatory genes, such as Hd1, Ghd7, Ehd1, Hd3a, and RFT1, were reduced in the mutant plants, corroborating the delayed flowering phenotype. Yield trait analysis revealed that the primary factor for improved yield was an increase in the number of effective tillers, although there is potential for further enhancements in the seed-setting rate and grain plumpness. Furthermore, there were significant increases in the length-to-width ratio of the rice grains, fat content, and seed transparency, all contributing to an overall improvement in the rice quality. In summary, this study successfully obtained a rice variety with a delayed growth period through OsMADS50 gene editing, effectively implementing the strategy for adapting northern rice varieties to southern climates. This achievement significantly supports efforts to enhance the rice yield and quality as well as to optimize production management practices.
Collapse
Affiliation(s)
- Jianguo Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qinqin Yi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Yuyu Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Jingyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| |
Collapse
|
16
|
Calayugan MIC, Hore TK, Palanog AD, Amparado A, Inabangan-Asilo MA, Joshi G, Chintavaram B, Swamy BPM. Deciphering the genetic basis of agronomic, yield, and nutritional traits in rice (Oryza sativa L.) using a saturated GBS-based SNP linkage map. Sci Rep 2024; 14:18024. [PMID: 39098874 PMCID: PMC11298551 DOI: 10.1038/s41598-024-67543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing. Most of the traits demonstrated moderate to high broad-sense heritability. There was a positive relationship between Zn and Fe contents. The principal components and correlation results revealed a significant negative association between YLD and Zn/Fe. ICIM identified 81 QTLs, while IM detected 36 QTLs across populations. The multi-parent population analysis detected 27 QTLs with six of them consistently detected across seasons. We shortlisted eight candidate genes associated with yield QTLs, 19 genes with QTLs for agronomic traits, and 26 genes with Zn and Fe QTLs. Notable candidate genes included CL4 and d35 for YLD, dh1 for DF, OsIRX10, HDT702, sd1 for PH, OsD27 for NP, whereas WFP and OsIPI1 were associated with PL, OsRSR1 and OsMTP1 were associated to TGW. The OsNAS1, OsRZFP34, OsHMP5, OsMTP7, OsC3H33, and OsHMA1 were associated with Fe and Zn QTLs. We identified promising RILs with acceptable yield potential and high grain Zn content from each population. The major effect QTLs, genes and high Zn RILs identified in our study are useful for efficient Zn biofortification of rice.
Collapse
Affiliation(s)
- Mark Ian C Calayugan
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
| | - Tapas Kumer Hore
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
- Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Alvin D Palanog
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños (UPLB), 4031, College, Laguna, Philippines
- PhilRice Negros, Philippine Rice Research Institute, Murcia, Negros, Philippines
| | - Amery Amparado
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Mary Ann Inabangan-Asilo
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Gaurav Joshi
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - Balachiranjeevi Chintavaram
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines
| | - B P Mallikarjuna Swamy
- Rice Breeding and Innovation Department, International Rice Research Institute, DAPO 7777, Metro Manila, Philippines.
| |
Collapse
|
17
|
Zeng R, Chen T, Li X, Cao J, Li J, Xu X, Zhang L, Chen Y. Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress. PLANT, CELL & ENVIRONMENT 2024; 47:3198-3214. [PMID: 38722055 DOI: 10.1111/pce.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024]
Abstract
Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.
Collapse
Affiliation(s)
- Ruier Zeng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Yong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Xu Q, Jiang J, Jing C, Hu C, Zhang M, Li X, Shen J, Hai M, Zhang Y, Wang D, Dang X. Genome-wide association mapping of quantitative trait loci for chalkiness-related traits in rice ( Oryza sativa L.). Front Genet 2024; 15:1423648. [PMID: 39050253 PMCID: PMC11266141 DOI: 10.3389/fgene.2024.1423648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Grain chalkiness directly affects the commercial value of rice. Genes related to chalkiness reported thus far have been discovered in mutants, but it has not been identified whether these genes can be used to improve rice quality by breeding. Therefore, discovering more quantitative trait loci (QTLs) or genes related to chalkiness in the rice germplasm is necessary. This study entails a genome-wide association study on the degree of endosperm chalkiness (DEC) and percentage of grains with chalkiness (PGWC) by combining 1.2 million single-nucleotide polymorphisms (SNPs) with the phenotypic data of 173 rice accessions. Thirteen QTLs for DEC and nine for PGWC were identified, of which four were detected simultaneously for both DEC and PGWC; further, qDEC11/qPGWC11 was identified as the major QTL. By combining linkage disequilibrium analysis and SNP information, LOC_Os11g10170 was identified as the candidate gene for DEC. There were significant differences among the haplotypes of LOC_Os11g10170, and the Hap 1 of LOC_Os11g10170 was observed to reduce the DEC by 6.19%. The qRT-PCR results showed that the gene expression levels in accessions with high DEC values were significantly higher than those in accessions with low DEC values during days 21-42 after flowering, with a maximum at 28 days. These results provide molecular markers and germplasm resources for genetic improvement of the chalkiness-related traits in rice.
Collapse
Affiliation(s)
- Qing Xu
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jianhua Jiang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyu Jing
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Changmin Hu
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mengyuan Zhang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinru Li
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jiaming Shen
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Mei Hai
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Ying Zhang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dezheng Wang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaojing Dang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
19
|
Geng X, Dong L, Zhu T, Yang C, Zhang J, Guo B, Chen H, Zhang Q, Song L. Genome-wide analysis of soybean hypoxia inducible gene domain containing genes: a functional investigation of GmHIGD3. FRONTIERS IN PLANT SCIENCE 2024; 15:1403841. [PMID: 39011304 PMCID: PMC11246964 DOI: 10.3389/fpls.2024.1403841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
The response of Hypoxia Inducible Gene Domain (HIGD) proteins to hypoxia plays a crucial role in plant development. However, the research on this gene family in soybean has been lacking. In this study, we aimed to identify and comprehensively analyze soybean HIGD genes using the Glycine max genome database. As a result, six GmHIGD genes were successfully identified, and their phylogeny, gene structures, and putative conserved motifs were analyzed in comparison to Arabidopsis and rice. Collinearity analysis indicated that the HIGD gene family in soybean has expanded to some extent when compared to Arabidopsis. Additionally, the cis-elements in the promoter regions of GmHIGD and the transcription factors potentially binding to these regions were identified. All GmHIGD genes showed specific responsiveness to submergence and hypoxic stresses. Expression profiling through quantitative real-time PCR revealed that these genes were significantly induced by PEG treatment in root tissue. Co-expressed genes of GmHIGD were primarily associated with oxidoreductase and dioxygenase activities, as well as peroxisome function. Notably, one of GmHIGD genes, GmHIGD3 was found to be predominantly localized in mitochondria, and its overexpression in Arabidopsis led to a significantly reduction in catalase activity compared to wild-type plants. These results bring new insights into the functional role of GmHIGD in terms of subcellular localization and the regulation of oxidoreductase activity.
Collapse
Affiliation(s)
- Xiaoyan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lu Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tiantian Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunhong Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binhui Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huatao Chen
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| |
Collapse
|
20
|
Hu Z, Chen J, Olatoye MO, Zhang H, Lin Z. Transcriptome-wide expression landscape and starch synthesis pathway co-expression network in sorghum. THE PLANT GENOME 2024; 17:e20448. [PMID: 38602082 DOI: 10.1002/tpg2.20448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The gene expression landscape across different tissues and developmental stages reflects their biological functions and evolutionary patterns. Integrative and comprehensive analyses of all transcriptomic data in an organism are instrumental to obtaining a comprehensive picture of gene expression landscape. Such studies are still very limited in sorghum, which limits the discovery of the genetic basis underlying complex agricultural traits in sorghum. We characterized the genome-wide expression landscape for sorghum using 873 RNA-sequencing (RNA-seq) datasets representing 19 tissues. Our integrative analysis of these RNA-seq data provides the most comprehensive transcriptomic atlas for sorghum, which will be valuable for the sorghum research community for functional characterizations of sorghum genes. Based on the transcriptome atlas, we identified 595 housekeeping genes (HKGs) and 2080 tissue-specific expression genes (TEGs) for the 19 tissues. We identified different gene features between HKGs and TEGs, and we found that HKGs have experienced stronger selective constraints than TEGs. Furthermore, we built a transcriptome-wide co-expression network (TW-CEN) comprising 35 modules with each module enriched in specific Gene Ontology terms. High-connectivity genes in TW-CEN tend to express at high levels while undergoing intensive selective pressure. We also built global and seed-preferential co-expression networks of starch synthesis pathways, which indicated that photosynthesis and microtubule-based movement play important roles in starch synthesis. The global transcriptome atlas of sorghum generated by this study provides an important functional genomics resource for trait discovery and insight into starch synthesis regulation in sorghum.
Collapse
Affiliation(s)
- Zhenbin Hu
- Department of Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Junhao Chen
- Department of Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Marcus O Olatoye
- USDA-ARS, Forage Seed and Cereal Research Unit, Prosser, Washington, USA
| | - Hengyou Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
21
|
Zhou Y, Yang H, Liu E, Liu R, Alam M, Gao H, Gao G, Zhang Q, Li Y, Xiong L, He Y. Fine Mapping of Five Grain Size QTLs Which Affect Grain Yield and Quality in Rice. Int J Mol Sci 2024; 25:4149. [PMID: 38673733 PMCID: PMC11050437 DOI: 10.3390/ijms25084149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (H.Y.); (E.L.); (R.L.); (M.A.); (H.G.); (G.G.); (Q.Z.); (Y.L.); (L.X.)
| |
Collapse
|
22
|
Du B, Wu J, Wang M, Wu J, Sun C, Zhang X, Ren X, Wang Q. Detection of consensus genomic regions and candidate genes for quality traits in barley using QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 14:1319889. [PMID: 38283973 PMCID: PMC10811794 DOI: 10.3389/fpls.2023.1319889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Improving barley grain quality is a major goal in barley breeding. In this study, a total of 35 papers focusing on quantitative trait loci (QTLs) mapping for barley quality traits published since 2000 were collected. Among the 454 QTLs identified in these studies, 349 of them were mapped onto high-density consensus maps, which were used for QTL meta-analysis. Through QTL meta-analysis, the initial QTLs were integrated into 41 meta-QTLs (MQTLs) with an average confidence interval (CI) of 1. 66 cM, which is 88.9% narrower than that of the initial QTLs. Among the 41 identified MQTLs, 25 were subsequently validated in publications using genome-wide association study (GWAS). From these 25 validated MQTLs, ten breeder's MQTLs were selected. Synteny analysis comparing barley and wheat MQTLs revealed orthologous relationships between eight breeder's MQTLs and 45 wheat MQTLs. Additionally, 17 barley homologs associated with rice quality traits were identified within the regions of the breeder's MQTLs through comparative analysis. The findings of this study provide valuable insights for molecular marker-assisted breeding and the identification of candidate genes related to quality traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Jindong Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Meng Wang
- Xingtai Agriculture and Rural Bureau, Xingtai, Hebei, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xingen Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qifei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Jiang J, Song S, Hu C, Jing C, Xu Q, Li X, Zhang M, Hai M, Shen J, Zhang Y, Wang D, Dang X. QTL Detection and Candidate Gene Identification for Eating and Cooking Quality Traits in Rice ( Oryza sativa L.) via a Genome-Wide Association Study. Int J Mol Sci 2024; 25:630. [PMID: 38203801 PMCID: PMC10779416 DOI: 10.3390/ijms25010630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The eating and cooking quality (ECQ) directly affects the taste of rice, being closely related to factors such as gelatinization temperature (GT), gel consistency (GC) and amylose content (AC). Mining the quantitative trait loci (QTLs), and gene loci controlling ECQ-related traits is vital. A genome-wide association study on ECQ-related traits was conducted, combining 1.2 million single nucleotide polymorphisms (SNPs) with the phenotypic data of 173 rice accessions. Two QTLs for GT, one for GC and five for AC were identified, of which two were found in previously reported genes, and six were newly found. There were 28 positional candidate genes in the region of qAC11. Based on a linkage disequilibrium (LD) analysis, three candidate genes were screened within the LD region associated with AC. There were significant differences between the haplotypes of LOC_Os11g10170, but no significant differences were found for the other two genes. The qRT-PCR results showed that the gene expression levels in the accessions with high ACs were significantly larger than those in the accessions with low ACs at 35d and 42d after flowering. Hap 2 and Hap 3 of LOC_Os11g10170 reduced the AC by 13.09% and 10.77%, respectively. These results provide a theoretical and material basis for improving the ECQ of rice.
Collapse
Affiliation(s)
- Jianhua Jiang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shaojie Song
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Changmin Hu
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chunyu Jing
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Qing Xu
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinru Li
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mengyuan Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mei Hai
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jiaming Shen
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dezheng Wang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojing Dang
- Anhui Province Key Laboratory of Rice Genetics and Breeding (Rice Research Institute), Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
24
|
Sun X, Bian X, Wang J, Chen S, Yang R, Li R, Xia L, Chen D, Fan X. Loss of RSR1 function increases the abscisic acid content and improves rice quality performance at high temperature. Int J Biol Macromol 2024; 256:128426. [PMID: 38013071 DOI: 10.1016/j.ijbiomac.2023.128426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Rice starch regulator1 (RSR1) participates in the regulation of starch synthesis in rice, but it's function on starch synthesis and quality formation in response to high temperature is unknown. RSR1 mutation resulted in a significant increase in the abscisic acid (ABA) content in rice grains under both normal and high temperature, and the effect of high temperature on grain filling and quality formation of the rsr1 mutants was significantly reduced. The grain size, 1000-kernels weight, amylose content, gelatinization temperature, and starch viscosity of the rsr1 mutants were less sensitive to high temperature. Loss of RSR1 function increased the expression levels of starch synthesis-related genes and reduced their responses to high temperature to some extent. Besides, the percentage of germinated seeds from rsr1 mutants was significantly lower than that of the wild-type, and the difference was more significant under ABA treatment. The shoot lengths of the rsr1 mutants were remarkably shorter than those of the wild-type, which was further exacerbated by ABA treatment. These results indicated that loss function of RSR1 can improve rice quality performance at high temperature by moderately increasing the ABA content of rice grains, which provides theoretical significance for the cultivation of better-quality rice with high-temperature resistance.
Collapse
Affiliation(s)
- Xiaosong Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinyue Bian
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jingdong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Si Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Rui Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Rumeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Lexiong Xia
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dinghao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
25
|
Hu K, Dai Q, Ajayo BS, Wang H, Hu Y, Li Y, Huang H, Liu H, Liu Y, Wang Y, Gao L, Xie Y. Insights into ZmWAKL in maize kernel development: genome-wide investigation and GA-mediated transcription. BMC Genomics 2023; 24:760. [PMID: 38082218 PMCID: PMC10712088 DOI: 10.1186/s12864-023-09849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The functional roles of the Wall Associated Kinase (WAK) and Wall Associated Kinase Like (WAKL) families in cellular expansion and developmental processes have been well-established. However, the molecular regulation of these kinases in maize development is limited due to the absence of comprehensive genome-wide studies. RESULTS Through an in-depth analysis, we identified 58 maize WAKL genes, and classified them into three distinct phylogenetic clusters. Moreover, structural prediction analysis showed functional conservation among WAKLs across maize. Promoter analysis uncovered the existence of cis-acting elements associated with the transcriptional regulation of ZmWAKL genes by Gibberellic acid (GA). To further elucidate the role of WAKL genes in maize kernels, we focused on three highly expressed genes, viz ZmWAKL38, ZmWAKL42 and ZmWAKL52. Co-expression analyses revealed that their expression patterns exhibited a remarkable correlation with GA-responsive transcription factors (TF) TF5, TF6, and TF8, which displayed preferential expression in kernels. RT-qPCR analysis validated the upregulation of ZmWAKL38, ZmWAKL42, ZmWAKL52, TF5, TF6, and TF8 following GA treatment. Additionally, ZmWAKL52 showed significant increase of transcription in the present of TF8, with ZmWAKL52 localizing in both the plasma membrane and cell wall. TF5 positively regulated ZmWAKL38, while TF6 positively regulated ZmWAKL42. CONCLUSIONS Collectively, these findings provide novel insights into the characterization and regulatory mechanisms of specific ZmWAKL genes involved in maize kernel development, offering prospects for their utilization in maize breeding programs.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Sinograin Chengdu Storage Research Institute Co.Ltd, Chengdu, 610091, China
| | - Qiao Dai
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Babatope Samuel Ajayo
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yayun Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Xie
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
26
|
Duan H, Li J, Sun L, Xiong X, Xu S, Sun Y, Ju X, Xue Z, Gao J, Wang Y, Xie H, Ding D, Zhang X, Tang J. Identification of novel loci associated with starch content in maize kernels by a genome-wide association study using an enlarged SNP panel. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:91. [PMID: 38099287 PMCID: PMC10716104 DOI: 10.1007/s11032-023-01437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Starch is a major component of cereals, comprising over 70% of dry weight. It serves as a primary carbon source for humans and animals. In addition, starch is an indispensable industrial raw material. While maize (Zea mays) is a key crop and the primary source of starch, the genetic basis for starch content in maize kernels remains poorly understood. In this study, using an enlarged panel, we conducted a genome-wide association study (GWAS) based on best linear unbiased prediction (BLUP) value for starch content of 261 inbred lines across three environments. Compared with previous study, we identified 14 additional significant quantitative trait loci (QTL), encompassed a total of 42 genes, and indicated that increased marker density contributes to improved statistical power. By integrating gene expression profiling, Gene Ontology (GO) enrichment and haplotype analysis, several potential target genes that may play a role in regulating starch content in maize kernels have been identified. Notably, we found that ZmAPC4, associated with the significant SNP chr4.S_175584318, which encodes a WD40 repeat-like superfamily protein and is highly expressed in maize endosperm, might be a crucial regulator of maize kernel starch synthesis. Out of the 261 inbred lines analyzed, they were categorized into four haplotypes. Remarkably, it was observed that the inbred lines harboring hap4 demonstrated the highest starch content compared to the other haplotypes. Additionally, as a significant achievement, we have developed molecular markers that effectively differentiate maize inbred lines based on their starch content. Overall, our study provides valuable insights into the genetic basis of starch content and the molecular markers can be useful in breeding programs aimed at developing maize varieties with high starch content, thereby improving breeding efficiency. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01437-6.
Collapse
Affiliation(s)
- Haiyang Duan
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Ju
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhengjie Xue
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jionghao Gao
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yan Wang
- Zhucheng Mingjue Tender Company Limited, Weifang, China
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Agronomy, Henan Agricultural University, Agricultural Road No. 63, Zhengzhou, 450002 China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
27
|
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, Liu Y, Xu G. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2654-2670. [PMID: 37623700 PMCID: PMC10651157 DOI: 10.1111/pbi.14160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving rice eating and cooking quality (ECQ) is one of the primary tasks in rice production to meet the rising demands of consumers. However, improving grain ECQ without compromising yield faces a great challenge under varied nitrogen (N) supplies. Here, we report the approach to upgrade rice ECQ by native promoter-controlled high expression of a key N-dependent floral and circadian clock regulator Nhd1. The amplification of endogenous Nhd1 abundance alters rice heading date but does not affect the entire length of growth duration, N use efficiency and grain yield under both low and sufficient N conditions. Enhanced expression of Nhd1 reduces amylose content, pasting temperature and protein content while increasing gel consistence in grains. Metabolome and transcriptome analyses revealed that increased expression of Nhd1 mainly regulates the metabolism of carbohydrates and amino acids in the grain filling stage. Moreover, expression level of Nhd1 shows a positive relationship with grain ECQ in some local main cultivars. Thus, intensifying endogenous abundance of Nhd1 is a promising strategy to upgrade grain ECQ in rice production.
Collapse
Affiliation(s)
- Yuyi Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jinfei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
28
|
Liu Y, Xi W, Wang X, Li H, Liu H, Li T, Hou J, Liu X, Hao C, Zhang X. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. J Genet Genomics 2023; 50:883-894. [PMID: 37062449 DOI: 10.1016/j.jgg.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Starch is the most abundant substance in wheat (Triticum aestivum L.) endosperm and provides the major carbohydrate energy for human daily life. Starch synthesis-related (SSR) genes are believed to be spatiotemporally specific, but their transcriptional regulation remains unclear in wheat. Here, we investigate the role of the basic helix-loop-helix (bHLH) transcription factor TabHLH95 in starch synthesis. TabHLH95 is preferentially expressed in the developing grains in wheat and encodes a nucleus localized protein without autoactivation activity. The Tabhlh95 knockout mutants display smaller grain size and less starch content than wild type, whereas overexpression of TabHLH95 enhances starch accumulation and significantly improves thousand grain weight. Transcriptome analysis reveals that the expression of multiple SSR genes is significantly reduced in the Tabhlh95 mutants. TabHLH95 binds to the promoters of ADP-glucose pyrophosphorylase large subunit 1 (AGPL1-1D/-1B), AGPL2-5D, and isoamylase (ISA1-7D) and enhances their transcription. Intriguingly, TabHLH95 interacts with the nuclear factor Y (NF-Y) family transcription factor TaNF-YB1, thereby synergistically regulating starch synthesis. These results suggest that the TabHLH95-TaNF-YB1 complex positively modulates starch synthesis and grain weight by regulating the expression of a subset of SSR genes, thus providing a good potential approach for genetic improvement of grain productivity in wheat.
Collapse
Affiliation(s)
- Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xi
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University)/Gansu Provincial Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou, Gansu 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
29
|
Jin SK, Xu LN, Leng YJ, Zhang MQ, Yang QQ, Wang SL, Jia SW, Song T, Wang RA, Tao T, Liu QQ, Cai XL, Gao JP. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2224-2240. [PMID: 37432878 PMCID: PMC10579716 DOI: 10.1111/pbi.14124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Starch accounts for up to 90% of the dry weight of rice endosperm and is a key determinant of grain quality. Although starch biosynthesis enzymes have been comprehensively studied, transcriptional regulation of starch-synthesis enzyme-coding genes (SECGs) is largely unknown. In this study, we explored the role of a NAC transcription factor, OsNAC24, in regulating starch biosynthesis in rice. OsNAC24 is highly expressed in developing endosperm. The endosperm of osnac24 mutants is normal in appearance as is starch granule morphology, while total starch content, amylose content, chain length distribution of amylopectin and the physicochemical properties of the starch are changed. In addition, the expression of several SECGs was altered in osnac24 mutant plants. OsNAC24 is a transcriptional activator that targets the promoters of six SECGs; OsGBSSI, OsSBEI, OsAGPS2, OsSSI, OsSSIIIa and OsSSIVb. Since both the mRNA and protein abundances of OsGBSSI and OsSBEI were decreased in the mutants, OsNAC24 functions to regulate starch synthesis mainly through OsGBSSI and OsSBEI. Furthermore, OsNAC24 binds to the newly identified motifs TTGACAA, AGAAGA and ACAAGA as well as the core NAC-binding motif CACG. Another NAC family member, OsNAP, interacts with OsNAC24 and coactivates target gene expression. Loss-of-function of OsNAP led to altered expression in all tested SECGs and reduced the starch content. These results demonstrate that the OsNAC24-OsNAP complex plays key roles in fine-tuning starch synthesis in rice endosperm and further suggest that manipulating the OsNAC24-OsNAP complex regulatory network could be a potential strategy for breeding rice cultivars with improved cooking and eating quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
31
|
Wang DR, Kantar MB, Murugaiyan V, Neyhart J. Where the wild things are: genetic associations of environmental adaptation in the Oryza rufipogon species complex. G3 (BETHESDA, MD.) 2023; 13:jkad128. [PMID: 37293846 PMCID: PMC10411557 DOI: 10.1093/g3journal/jkad128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Crop wild relatives host unique adaptation strategies that enable them to thrive across a wide range of habitats. As pressures from a changing climate mount, a more complete understanding of the genetic variation that underlies this adaptation could enable broader utilization of wild materials for crop improvement. Here, we carry out environmental association analyses (EAA) in the Oryza rufipogon species complex (ORSC), the wild progenitor of cultivated Asian rice, to identify genomic regions associated with environmental adaptation characterized by variation in bioclimatic and soil variables. We further examine regions for colocalizations with phenotypic associations within the same collection. EAA results indicate that significant regions tend to associate with single environmental variables, although 2 significant loci on chromosomes 3 and 5 are detected as common across multiple variable types (i.e. precipitation, temperature, and/or soil). Distributions of allele frequencies at significant loci across subpopulations of cultivated Oryza sativa indicate that, in some cases, adaptive variation may already be present among cultivars, although evaluation in cultivated populations is needed to empirically test this. This work has implications for the potential utility of wild genetic resources in pre-breeding efforts for rice improvement.
Collapse
Affiliation(s)
- Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
| | - Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila 1301, Philippines
| | - Jeffrey Neyhart
- USDA-ARS, Genetic Improvement for Fruits and Vegetables Laboratory, Chatsworth, NJ 08019, USA
| |
Collapse
|
32
|
Irshad A, Guo H, Xiong H, Xie Y, Jin H, Gu J, Wang C, Yu L, Wen X, Zhao S, Liu L. Evaluation of altered starch mutants and identification of candidate genes responsible for starch variation in wheat. BMC PLANT BIOLOGY 2023; 23:377. [PMID: 37528349 PMCID: PMC10391901 DOI: 10.1186/s12870-023-04389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Induction of mutation through chemical mutagenesis is a novel approach for preparing diverse germplasm. Introduction of functional alleles in the starch biosynthetic genes help in the improvement of the quality and yield of cereals. RESULTS In the present study, a set of 350 stable mutant lines were used to evaluate dynamic variation of the total starch contents. A megazyme kits were used for measuring the total starch content, resistant starch, amylose, and amylopectin content. Analysis of variance showed significant variation (p < 0.05) in starch content within the population. Furthermore, two high starch mutants (JE0173 and JE0218) and two low starch mutants (JE0089 and JE0418) were selected for studying different traits. A multiple comparison test showed that significant variation in all physiological and morphological traits, with respect to the parent variety (J411) in 2019-2020 and 2020-2021. The quantitative expression of starch metabolic genes revealed that eleven genes of JE0173 and twelve genes of JE0218 had consistent expression in high starch mutant lines. Similarly, in low starch mutant lines, eleven genes of JE0089 and thirteen genes of JE0418 had consistent expression in all stages of seed development. An additional two candidate genes showed over-expression (PHO1, PUL) in the high starch mutant lines, indicating that other starch metabolic genes may also contribute to the starch biosynthesis. The overexpression of SSII, SSIII and SBEI in JE0173 may be due to presence of missense mutations in these genes and SSI also showed overexpression which may be due to 3-primer_UTR variant. These mutations can affect the other starch related genes and help to increase the starch content in this mutant line (JE0173). CONCLUSIONS This study screened a large scale of mutant population and identified mutants, could provide useful genetic resources for the study of starch biosynthesis and genetic improvement of wheat in the future. Further study will help to understand new genes which are responsible for the fluctuation of total starch.
Collapse
Affiliation(s)
- Ahsan Irshad
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Huijun Guo
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Hongchun Xiong
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yongdun Xie
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiayu Gu
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Chaojie Wang
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Liqun Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Xianghui Wen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Shirong Zhao
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Luxiang Liu
- Institute of Crop Sciences, National Engineering Laboratory of Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, National Centre of Space Mutagenesis for Crop Improvement, Beijing, 100081, China.
| |
Collapse
|
33
|
Li C, Wan Y, Shang X, Fang S. Integration of transcriptomic and metabolomic analysis unveils the response mechanism of sugar metabolism in Cyclocarya paliurus seedlings subjected to PEG-induced drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107856. [PMID: 37354727 DOI: 10.1016/j.plaphy.2023.107856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja is a multiple function tree species used for functional food and valued timber production. Carbohydrates, especially water-soluble carbohydrates, play an important role in osmotic protection, signal transduction and carbon storage. Under the circumstance of global climate change the abiotic stress would restrict the development of C. paliurus plantation, whereas there is few knowledge on the regulatory mechanisms of sugar metabolism under drought stress in C. paliurus. To investigate the drought response of C. paliurus at molecular level, we conducted an integrated analysis of transcriptomic and metabolomic of C. paliurus at three PEG-induced drought stress levels (0%: control; 15%: moderate drought; 25%: severe drought) in short term. Both moderate and severe drought treatments activated the chemical defense with lowering relative water content, and enhancing the contents of soluble protein, proline and malondialdehyde in the leaves. Meanwhile, alterations in the expression of differentially expressed genes and carbohydrate metabolism profiles were observed among the treatments. Weighted gene co-expression network analysis (WGCNA) showed 3 key modules, 8 structural genes (such as genes encoding beta-fructofuranosidase (INV), sucrose synthase (SUS), raffinose synthase (RS)) and 14 regulatory transcription factors were closely linked to sugar metabolism. Our results provided the foundation to understand the response mechanism of sugar metabolism in C. paliurus under drought stress, and would drive progress in breeding of drought-tolerant varieties and plantation development of the species.
Collapse
Affiliation(s)
- Chenhui Li
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Wan
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
34
|
Payne D, Li Y, Govindan G, Kumar A, Thomas J, Addo-Quaye CA, Pereira A, Sunkar R. High Daytime Temperature Responsive MicroRNA Profiles in Developing Grains of Rice Varieties with Contrasting Chalkiness. Int J Mol Sci 2023; 24:11631. [PMID: 37511395 PMCID: PMC10380806 DOI: 10.3390/ijms241411631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.
Collapse
Affiliation(s)
- David Payne
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yongfang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anuj Kumar
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Julie Thomas
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Charles A Addo-Quaye
- Department of Computer Science and Cybersecurity, Metropolitan State University, Saint Paul, MN 55106, USA
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
35
|
Liu Z, Li P, Yu L, Hu Y, Du A, Fu X, Wu C, Luo D, Hu B, Dong H, Jiang H, Ma X, Huang W, Yang X, Tu S, Li H. OsMADS1 Regulates Grain Quality, Gene Expressions, and Regulatory Networks of Starch and Storage Protein Metabolisms in Rice. Int J Mol Sci 2023; 24:ijms24098017. [PMID: 37175747 PMCID: PMC10178960 DOI: 10.3390/ijms24098017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
OsMADS1 plays a vital role in regulating floret development and grain shape, but whether it regulates rice grain quality still remains largely unknown. Therefore, we used comprehensive molecular genetics, plant biotechnology, and functional omics approaches, including phenotyping, mapping-by-sequencing, target gene seed-specific RNAi, transgenic experiments, and transcriptomic profiling to answer this biological and molecular question. Here, we report the characterization of the 'Oat-like rice' mutant, with poor grain quality, including chalky endosperms, abnormal morphology and loose arrangement of starch granules, and lower starch content but higher protein content in grains. The poor grain quality of Oat-like rice was found to be caused by the mutated OsMADS1Olr allele through mapping-by-sequencing analysis and transgenic experiments. OsMADS1 protein is highly expressed in florets and developing seeds. Both OsMADS1-eGFP and OsMADS1Olr-eGFP fusion proteins are localized in the nucleus. Moreover, seed-specific RNAi of OsMADS1 also caused decreased grain quality in transgenic lines, such as the Oat-like rice. Further transcriptomic profiling between Oat-like rice and Nipponbare grains revealed that OsMADS1 regulates gene expressions and regulatory networks of starch and storage protein metabolisms in rice grains, hereafter regulating rice quality. In conclusion, our results not only reveal the crucial role and preliminary mechanism of OsMADS1 in regulating rice grain quality but also highlight the application potentials of OsMADS1 and the target gene seed-specific RNAi system in improving rice grain quality by molecular breeding.
Collapse
Affiliation(s)
- Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yongzhi Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuili Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Dagang Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Binhua Hu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibo Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaocheng Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
36
|
Tiozon RJN, Fettke J, Sreenivasulu N, Fernie AR. More than the main structural genes: Regulation of resistant starch formation in rice endosperm and its potential application. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153980. [PMID: 37086697 DOI: 10.1016/j.jplph.2023.153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
In the past decade, research on resistant starch has evoked interest due to the prevention and inhibition of chronic human diseases, such as diabetes, cancer, and obesity. Increasing the amylose content (AC) and resistant starch (RS) has been pivotal in improving the nutritional benefit of rice. However, the exact mechanism of RS formation is complex due to interconnected genetic factors regulating amylose-amylopectin variation. In this review, we discussed the regulatory factors influencing the RS formation centered on the transcription, post-transcriptional, and post-translational processes. Furthermore, we described the developments in RS and AC levels in rice compared with other high RS cereals. Briefly, we enumerated potential applications of high RS mutants in health, medical, and other industries. We contest that the information captured herein can be deployed for marker-assisted breeding and precision breeding techniques through genome editing to improve rice varieties with enhanced RS content.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Hu Z, Niu F, Yan P, Wang K, Zhang L, Yan Y, Zhu Y, Dong S, Ma F, Lan D, Liu S, Xin X, Wang Y, Yang J, Cao L, Wu S, Luo X. The kinase OsSK41/OsGSK5 negatively regulates amylose content in rice endosperm by affecting the interaction between OsEBP89 and OsBP5. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36965127 DOI: 10.1111/jipb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr-28, Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E -OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A -OsBP5. Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.
Collapse
Affiliation(s)
- Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kai Wang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Lixia Zhang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Ying Yan
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yu Zhu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Siwen Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoyun Xin
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shujun Wu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
38
|
Wu M, Cai M, Zhai R, Ye J, Zhu G, Yu F, Ye S, Zhang X. A mitochondrion-associated PPR protein, WBG1, regulates grain chalkiness in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1136849. [PMID: 36968383 PMCID: PMC10033517 DOI: 10.3389/fpls.2023.1136849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Rice kernel quality has vital commercial value. Grain chalkiness deteriorates rice's appearance and palatability. However, the molecular mechanisms that govern grain chalkiness remain unclear and may be regulated by many factors. In this study, we identified a stable hereditary mutant, white belly grain 1 (wbg1), which has a white belly in its mature grains. The grain filling rate of wbg1 was lower than that of the wild type across the whole filling period, and the starch granules in the chalky part were oval or round and loosely arranged. Map-based cloning showed that wbg1 was an allelic mutant of FLO10, which encodes a mitochondrion-targeted P-type pentatricopeptide repeat protein. Amino acid sequence analysis found that two PPR motifs present in the C-terminal of WBG1 were lost in wbg1. This deletion reduced the splicing efficiency of nad1 intron 1 to approximately 50% in wbg1, thereby partially reducing the activity of complex I and affecting ATP production in wbg1 grains. Furthermore, haplotype analysis showed that WBG1 was associated with grain width between indica and japonica rice varieties. These results suggested that WBG1 influences rice grain chalkiness and grain width by regulating the splicing efficiency of nad1 intron 1. This deepens understanding of the molecular mechanisms governing rice grain quality and provides theoretical support for molecular breeding to improve rice quality.
Collapse
Affiliation(s)
- Mingming Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Maohong Cai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
39
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
40
|
Ying Y, Hu Y, Zhang Y, Tappiban P, Zhang Z, Dai G, Deng G, Bao J, Xu F. Identification of a new allele of soluble starch synthase IIIa involved in the elongation of amylopectin long chains in a chalky rice mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111567. [PMID: 36526029 DOI: 10.1016/j.plantsci.2022.111567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
A chalky endosperm mutant (GM03) induced from an indica rice GLA4 was used to investigate the functional gene in starch biosynthesis. Bulked segregant analysis and sanger sequencing determined that a novel mutation in soluble starch synthase IIIa (SSIIIa) is responsible for the chalky phenotype in GM03. Complementary test by transforming the active SSIIIa gene driven by its native promoter to GM03 recovered the phenotype to its wildtype. The expression of SSIIIa was significantly decreased, while SSIIIa protein was not detected in GM03. The mutation of SSIIIa led to increased expression of most of starch synthesis related genes and elevated the levels of most of proteins in GM03. The CRISPR/Cas9 technology was used for targeted disruption of SSIIIa, and the mutant lines exhibited chalky endosperm which phenocopied the GM03. Additionally, the starch fine structure in the knockout mutant lines ss3a-1 and ss3a-2 was similar with the GM03, which showed increased amylose content, higher proportions of B1 and B2 chains, much lower proportions of B3 chains and decreased degree of crystallinity, leading to altered thermal properties with lower gelatinization temperature and enthalpy. Collectively, these results suggested that SSIIIa plays an important role in starch synthesis by elongating amylopectin long chains in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanni Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhongwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
41
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
42
|
Liu H, Lai Y, Xu Z, Yang Z, Yu Y, Yan P. Expression Characteristics and Sequence Variation Analysis of Rice Starch Regulator 1 Gene in Japonica Rice With Transgressive Variation. INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS 2023. [DOI: 10.4018/ijaeis.317417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The parents and transgressive variation lines of hybrids with significant difference in amylose content were selected to compare and analyze the accumulation characteristics of amylose and the change of OsRSR1 expression in grains in the process of grain filling, and the PCR technology was used to clone the OsRSR1 gene base sequence of four varieties. The results showed that the amylose content in grains increased gradually with grain filling process, the amylose content of offspring and parents with high amylose content were higher than the offspring and parents with low amylose content, hybrids could obtain the transgressive variation lines through the continuous directional selection of amylose content in grain, and the accumulation of amylose content in grain was closely related to genotypes. The expression quantity of OsRSR1 gene in grain was increasing during the grain filling process, the amylose content of grain was closely related to the activity of OsRSR1 gene, and the expression of grain OsRSR1 gene could also produce transgressive variation.
Collapse
Affiliation(s)
- Haiying Liu
- Heilongjiang Academy of Agricultural Sciences, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences, China
| | - Zhenhua Xu
- Biotechnogogy Research Institute, Heilongjiang Academy of Agricultural Sciences, China
| | - Zhonliang Yang
- Biotechnogogy Research Institute, Heilongjiang Academy of Agricultural Sciences, China
| | - Yanmin Yu
- Biotechnogogy Research Institute, Heilongjiang Academy of Agricultural Sciences, China
| | - Ping Yan
- Biotechnogogy Research Institute, Heilongjiang Academy of Agricultural Sciences, China
| |
Collapse
|
43
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
44
|
Zhang P, Liu J, Jia N, Wang M, Lu Y, Wang D, Zhang J, Zhang H, Wang X. Genome-wide identification and characterization of the bZIP gene family and their function in starch accumulation in Chinese chestnut ( Castanea mollissima Blume). FRONTIERS IN PLANT SCIENCE 2023; 14:1166717. [PMID: 37077628 PMCID: PMC10106562 DOI: 10.3389/fpls.2023.1166717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The transcription factors of basic leucine zipper (bZIP) family genes play significant roles in stress response as well as growth and development in plants. However, little is known about the bZIP gene family in Chinese chestnut (Castanea mollissima Blume). To better understand the characteristics of bZIPs in chestnut and their function in starch accumulation, a series of analyses were performed including phylogenetic, synteny, co-expression and yeast one-hybrid analyses. Totally, we identified 59 bZIP genes that were unevenly distributed in the chestnut genome and named them CmbZIP01 to CmbZIP59. These CmbZIPs were clustered into 13 clades with clade-specific motifs and structures. A synteny analysis revealed that segmental duplication was the major driving force of expansion of the CmbZIP gene family. A total of 41 CmbZIP genes had syntenic relationships with four other species. The results from the co-expression analyses indicated that seven CmbZIPs in three key modules may be important in regulating starch accumulation in chestnut seeds. Yeast one-hybrid assays showed that transcription factors CmbZIP13 and CmbZIP35 might participate in starch accumulation in the chestnut seed by binding to the promoters of CmISA2 and CmSBE1_2, respectively. Our study provided basic information on CmbZIP genes, which can be utilized in future functional analysis and breeding studies.
Collapse
Affiliation(s)
- Penglong Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Nan Jia
- Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Science, Changli, Hebei, China
| | - Meng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
| | - Yi Lu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jingzheng Zhang
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
- *Correspondence: Xuan Wang,
| |
Collapse
|
45
|
Fang X, Wang H, Zhou X, Zhang J, Xiao H. Transcriptome reveals insights into biosynthesis of ginseng polysaccharides. BMC PLANT BIOLOGY 2022; 22:594. [PMID: 36529733 PMCID: PMC9761977 DOI: 10.1186/s12870-022-03995-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng polysaccharides, have been used to treat various diseases as an important active ingredient. Nevertheless, the biosynthesis of ginseng polysaccharides is poorly understood. To elucidate the biosynthesis mechanism of ginseng polysaccharides, combined the transcriptome analysis and polysaccharides content determination were performed on the roots, stems, and leaves collected from four cultivars of ginseng. RESULTS The results indicated that the total contents of nine monosaccharides were highest in the roots. Moreover, the total content of nine monosaccharides in the roots of the four cultivars were different but similar in stems and leaves. Glucose (Glc) was the most component of all monosaccharides. In total, 19 potential enzymes synthesizing of ginseng polysaccharides were identified, and 17 enzymes were significantly associated with polysaccharides content. Among these genes, the expression of phosphoglucomutase (PGM), glucose-6-phosphate isomerase (GPI), UTP-glucose-1-phosphate uridylyltransferase (UGP2), fructokinase (scrK), mannose-1-phosphate guanylyltransferase (GMPP), phosphomannomutase (PMM), UDP-glucose 4-epimerase (GALE), beta-fructofuranosidase (sacA), and sucrose synthase (SUS) were correlated with that of MYB, AP2/ERF, bZIP, and NAC transcription factors (TFs). These TFs may regulate the expression of genes involved in ginseng polysaccharides synthesis. CONCLUSION Our findings could provide insight into a better understanding of the regulatory mechanism of polysaccharides biosynthesis, and would drive progress in genetic improvement and plantation development of ginseng.
Collapse
Affiliation(s)
- Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Xinteng Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Jing Zhang
- Forestry Survey and Design Institute of Jilin Province, 130022, Changchun, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
46
|
Shanks CM, Huang J, Cheng CY, Shih HJS, Brooks MD, Alvarez JM, Araus V, Swift J, Henry A, Coruzzi GM. Validation of a high-confidence regulatory network for gene-to-NUE phenotype in field-grown rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1006044. [PMID: 36507422 PMCID: PMC9732682 DOI: 10.3389/fpls.2022.1006044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) and Water (W) - two resources critical for crop productivity - are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta. This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils.
Collapse
Affiliation(s)
- Carly M. Shanks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Ji Huang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Chia-Yi Cheng
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hung-Jui S. Shih
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Matthew D. Brooks
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture (USDA) Agricultural Research Service (ARS), Urbana, IL, United States
| | - José M. Alvarez
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Viviana Araus
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Agencia Nacional de Investigación y Desarrollo–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joseph Swift
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Amelia Henry
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| |
Collapse
|
47
|
Aloryi KD, Okpala NE, Amo A, Bello SF, Akaba S, Tian X. A meta-quantitative trait loci analysis identified consensus genomic regions and candidate genes associated with grain yield in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1035851. [PMID: 36466247 PMCID: PMC9709451 DOI: 10.3389/fpls.2022.1035851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Improving grain yield potential in rice is an important step toward addressing global food security challenges. The meta-QTL analysis offers stable and robust QTLs irrespective of the genetic background of mapping populations and phenotype environment and effectively narrows confidence intervals (CI) for candidate gene (CG) mining and marker-assisted selection improvement. To achieve these aims, a comprehensive bibliographic search for grain yield traits (spikelet fertility, number of grains per panicle, panicles number per plant, and 1000-grain weight) QTLs was conducted, and 462 QTLs were retrieved from 47 independent QTL research published between 2002 and 2022. QTL projection was performed using a reference map with a cumulative length of 2,945.67 cM, and MQTL analysis was conducted on 313 QTLs. Consequently, a total of 62 MQTLs were identified with reduced mean CI (up to 3.40 fold) compared to the mean CI of original QTLs. However, 10 of these MQTLs harbored at least six of the initial QTLs from diverse genetic backgrounds and environments and were considered the most stable and robust MQTLs. Also, MQTLs were compared with GWAS studies and resulted in the identification of 16 common significant loci modulating the evaluated traits. Gene annotation, gene ontology (GO) enrichment, and RNA-seq analyses of chromosome regions of the stable MQTLs detected 52 potential CGs including those that have been cloned in previous studies. These genes encode proteins known to be involved in regulating grain yield including cytochrome P450, zinc fingers, MADs-box, AP2/ERF domain, F-box, ubiquitin ligase domain protein, homeobox domain, DEAD-box ATP domain, and U-box domain. This study provides the framework for molecular dissection of grain yield in rice. Moreover, the MQTLs and CGs identified could be useful for fine mapping, gene cloning, and marker-assisted selection to improve rice productivity.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Aduragbemi Amo
- Institute of Plant Breeding, Genetics and Genomics University of Georgia, Athens, GA, United States
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
48
|
Cao R, Zhao S, Jiao G, Duan Y, Ma L, Dong N, Lu F, Zhu M, Shao G, Hu S, Sheng Z, Zhang J, Tang S, Wei X, Hu P. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. PLANT COMMUNICATIONS 2022; 3:100463. [PMID: 36258666 PMCID: PMC9700205 DOI: 10.1016/j.xplc.2022.100463] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 05/11/2023]
Abstract
Starch and storage proteins are the main components of rice (Oryza sativa L.) grains. Despite their importance, the molecular regulatory mechanisms of storage protein and starch biosynthesis remain largely elusive. Here, we identified a rice opaque endosperm mutant, opaque3 (o3), that overaccumulates 57-kDa proglutelins and has significantly lower protein and starch contents than the wild type. The o3 mutant also has abnormal protein body structures and compound starch grains in its endosperm cells. OPAQUE3 (O3) encodes a transmembrane basic leucine zipper (bZIP) transcription factor (OsbZIP60) and is localized in the endoplasmic reticulum (ER) and the nucleus, but it is localized mostly in the nucleus under ER stress. We demonstrated that O3 could activate the expression of several starch synthesis-related genes (GBSSI, AGPL2, SBEI, and ISA2) and storage protein synthesis-related genes (OsGluA2, Prol14, and Glb1). O3 also plays an important role in protein processing and export in the ER by directly binding to the promoters and activating the expression of OsBIP1 and PDIL1-1, two major chaperones that assist with folding of immature secretory proteins in the ER of rice endosperm cells. High-temperature conditions aggravate ER stress and result in more abnormal grain development in o3 mutants. We also revealed that OsbZIP50 can assist O3 in response to ER stress, especially under high-temperature conditions. We thus demonstrate that O3 plays a central role in rice grain development by participating simultaneously in the regulation of storage protein and starch biosynthesis and the maintenance of ER homeostasis in endosperm cells.
Collapse
Affiliation(s)
- Ruijie Cao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaolu Zhao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China; Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng 224002, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingqing Duan
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuyang Ma
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Nannan Dong
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Feifei Lu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingdong Zhu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
49
|
Feng MQ, Lu MD, Long JM, Yin ZP, Jiang N, Wang PB, Liu Y, Guo WW, Wu XM. miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6170-6185. [PMID: 35661206 DOI: 10.1093/jxb/erac248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/02/2022] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.
Collapse
Affiliation(s)
- Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meng-Di Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Peng-Bo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yue Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Genome-Wide Identification of DOF Gene Family and the Mechanism Dissection of SbDof21 Regulating Starch Biosynthesis in Sorghum. Int J Mol Sci 2022; 23:ijms232012152. [PMID: 36293009 PMCID: PMC9603474 DOI: 10.3390/ijms232012152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Starch is one of the main utilization products of sorghum (Sorghum bicolor L.), the fifth largest cereal crop in the world. Up to now, the regulation mechanism of starch biosynthesis is rarely documented in sorghum. In the present study, we identified 30 genes encoding the C2-C2 zinc finger domain (DOF), with one to three exons in the sorghum genome. The DOF proteins of sorghum were divided into two types according to the results of sequence alignment and evolutionary analysis. Based on gene expressions and co-expression analysis, we identified a regulatory factor, SbDof21, that was located on chromosome 5. SbDof21 contained two exons, encoding a 36.122 kD protein composed of 340 amino acids. SbDof21 co-expressed with 15 genes involved in the sorghum starch biosynthesis pathway, and the Pearson correlation coefficients (PCCs) with 11 genes were greater than 0.9. The results of qRT-PCR assays indicated that SbDof21 is highly expressed in sorghum grains, exhibiting low relative expression levels in the tissues of roots, stems and leaves. SbDOF21 presented as a typical DOF transcription factor (TF) that was localized to the nucleus and possessed transcriptional activation activity. Amino acids at positions 182–231 of SbDOF21 formed an important structure in its activation domain. The results of EMSA showed that SbDOF21 could bind to four tandem repeats of P-Box (TGTAAAG) motifs in vitro, such as its homologous proteins of ZmDOF36, OsPBF and TaPBF. Meanwhile, we also discovered that SbDOF21 could bind and transactivate SbGBSSI, a key gene in sorghum amylose biosynthesis. Collectively, the results of the present study suggest that SbDOF21 acts as an important regulator in sorghum starch biosynthesis, exhibiting potential values for the improvement of starch contents in sorghum.
Collapse
|