1
|
Geng L, Zhuang Y, Sui Y, Guo R, Luo L, Pan H, Zhang Q, Yu C. Molecular mechanism of response to low-temperature during the natural overwintering period of Rosa persica. PLANT CELL REPORTS 2025; 44:88. [PMID: 40131510 DOI: 10.1007/s00299-025-03464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
KEY MESSAGE The JA and ICE-CBF-COR signaling pathways play important roles in the low-temperature response of Rosa persica, with RpMYC2 interacting with multiple transcription factors and positively regulating tolerance to low-temperature stress. Rosa persica is highly resilient to cold and drought, making it a valuable resource for breeding in the Rosa. However, the response mechanism of R. persica during the overwintering period remains unclear. This study examined root and stem tissues of R. persica over an eight-month natural open field overwintering period, measuring physiological indices of cold tolerance and investigating changes in cold tolerance across different overwintering stages. The values of physiological indicators of cold hardiness of R. persica roots and stems increased and then decreased. Osmoregulatory substances were the primary contributors to cold hardiness of R. persica roots, while antioxidant enzyme systems played a dominant role in cold hardiness of stems. Differential gene enrichment analyses revealed that oxidative reactions, the synthesis of various secondary metabolites, and hormone signaling pathways are crucial in establishing cold tolerance of R. persica at different overwintering stages. Weighted gene co-expression network and time-ordered gene co-expression network analyses identified the gene RpMYC2 as potentially key to cold tolerance in R. persica. Yeast two-hybrid discovery revealed that RpMYC2 interacts with multiple transcription factors to regulate cold stress resistance in R. persica. Based on the transcriptome, key genes involved in response to low temperature were identified in this study, providing the physiological and molecular insights for cold tolerance breeding of Rosa.
Collapse
Affiliation(s)
- Lifang Geng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Yueying Zhuang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Yunji Sui
- Xinjiang Career Technical College, Xinjiang, 833200, China
| | - Runhua Guo
- Xinjiang Career Technical College, Xinjiang, 833200, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China.
| |
Collapse
|
2
|
Bao M, Xu Y, Wei G, Bai M, Wang J, Feng L. The MYC Gene RrbHLH105 Contributes to Salt Stress-Induced Geraniol in Rose by Regulating Trehalose-6-Phosphate Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:1947-1962. [PMID: 39526398 DOI: 10.1111/pce.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Rose (Rosa rugosa) is an important perfume plant, but its cultivation is significantly constrained by salt stress. Terpenes represent the most abundant volatile aromatic compounds in roses, yet little is known about how terpene metabolism responds to salt stress. In this study, salt-treated rose petals presented significant accumulation of monoterpenes, including geraniol, due to the disruption of jasmonic acid (JA) biosynthesis and signalling. Overexpression and silencing analyses revealed a MYC transcription factor involved in JA signalling (RrbHLH105) as a repressor of geraniol biosynthesis. RrbHLH105 was shown to activate the trehalose-6-phosphate synthase genes RrTPS5 and RrTPS8 by binding to the E-box (5'-CANNTG-3'). The increased trehalose-6-phosphate content and decreased geraniol content in rose petals overexpressing TPS5 or RrTPS8, along with the high accumulation of geraniol in petals where both RrbHLH105 and TPSs were cosilenced, indicate that trehalose signalling plays a role in the negative regulation of geraniol accumulation via the RrbHLH105-TPS module. In summary, the suppression of RrbHLH105 by salt stress leads to excessive geraniol accumulation through the inhibition of both RrbHLH105-mediated JA signalling and RrTPS-mediated trehalose signalling in rose petals. Additionally, this study highlights the emerging role of RrbHLH105 as a critical integrator of JA and trehalose signalling crosstalk.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
4
|
Garhwal V, Das S, Gangappa S. Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis. PLANT DIRECT 2025; 9:e700042. [PMID: 39950159 PMCID: PMC11825187 DOI: 10.1002/pld3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025]
Abstract
Light is one of the most critical ecological cues controlling plant growth and development. Plants have evolved complex mechanisms to cope with fluctuating light signals. In Arabidopsis, bHLH transcription factors MYC2, MYC3, and MYC4 have been shown to play a vital role in protecting plants against herbivory and necrotrophic pathogens. While the role of MYC2 in light-mediated seedling development has been studied in some detail, the role of MYC3 and MYC4 still needs to be discovered. Here, we show that MYC4 negatively regulates seedling photomorphogenesis, while the MYC3 function seems redundant. However, the genetic analysis reveals that MYC3/MYC4 together act as positive regulators of seedling photomorphogenic growth as the myc3myc4 double mutants showed exaggerated hypocotyl growth compared to the myc3 and myc4 single mutants and Col-0. Intriguingly, the loss of MYC2 function in the myc3myc4 double mutant background (myc2myc3myc4) resulted in further enhancement in the hypocotyl growth than myc3myc4 double mutants in WL, BL and FRL, suggesting that MYC2/3/4 together play an essential and positive role in meditating optimal seedling photomorphogenesis. Besides, MYC3/MYC4 genetically and physically interact with HY5 to partially inhibit its function in controlling hypocotyl and photo-pigment accumulation. Moreover, our results suggest that COP1 physically interacts and degrades MYC3 and MYC4 through the 26S proteasomal pathway and controls their response to dark and light for fine-tuning HY5 function and seedling photomorphogenesis.
Collapse
Affiliation(s)
- Vikas Garhwal
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
| | - Sreya Das
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
| | - Sreeramaiah N. Gangappa
- Department of Biological SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
| |
Collapse
|
5
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
6
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
7
|
Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu QH, Chen J, Zhu S, Zhao T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. MOLECULAR PLANT 2023; 16:694-708. [PMID: 36772793 DOI: 10.1016/j.molp.2023.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/31/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Comprehensive utilization of cottonseeds is limited by the presence of pigment glands and its inclusion gossypol. The ideal cotton has glandless seeds but a glanded plant, a trait found in only a few Australian wild cotton species, including Gossypium bickii. Introgression of this trait into cultivated species has proved to be difficult. Understanding the biological processes toward pigment gland morphogenesis and the associated underlying molecular mechanisms will facilitate breeding of cultivated cotton varieties with the trait of glandless seeds and glanded plant. In this study, single-cell RNA sequencing (scRNA-seq) was performed on 12 222 protoplasts isolated from cotyledons of germinating G. bickii seeds 48 h after imbibition. Clustered into 14 distinct clusters unsupervisedly, these cells could be grouped into eight cell populations with the assistance of known cell marker genes. The pigment gland cells were well separated from others and could be separated into pigment gland parenchyma cells, secretory cells, and apoptotic cells. By integrating the pigment gland cell developmental trajectory, transcription factor regulatory networks, and core transcription factor functional validation, we established a model for pigment gland formation. In this model, light and gibberellin were verified to promote the formation of pigment glands. In addition, three novel genes, GbiERF114 (ETHYLENE RESPONSE FACTOR 114), GbiZAT11 (ZINC FINGER OF ARABIDOPSIS THALIANA 11), and GbiNTL9 (NAC TRANSCRIPTION FACTOR-LIKE 9), were found to affect pigment gland formation. Collectively, these findings provide new insights into pigment gland morphogenesis and lay the cornerstone for future cotton scRNA-seq investigations.
Collapse
Affiliation(s)
- Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kuang Sheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Yuefen Cao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Institute of Hainan, Zhejiang University, Hangzhou 310058, China
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Institute of Hainan, Zhejiang University, Hangzhou 310058, China.
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Institute of Hainan, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis. Int J Mol Sci 2023; 24:ijms24043511. [PMID: 36834921 PMCID: PMC9963318 DOI: 10.3390/ijms24043511] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.
Collapse
|
9
|
Ojha M, Verma D, Chakraborty N, Pal A, Bhagat PK, Singh A, Verma N, Sinha AK, Chattopadhyay S. MKKK20 works as an upstream triple-kinase of MKK3-MPK6-MYC2 module in Arabidopsis seedling development. iScience 2023; 26:106049. [PMID: 36818282 PMCID: PMC9929681 DOI: 10.1016/j.isci.2023.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is involved in several signal transduction processes in eukaryotes. Here, we report a mechanistic function of MAP kinase kinase kinase 20 (MKKK20) in light signal transduction pathways. We show that MKKK20 acts as a negative regulator of photomorphogenic growth at various wavelengths of light. MKKK20 not only regulates the expression of light signaling pathway regulatory genes but also gets regulated by the same pathway genes. The atmyc2 mkkk20 double mutant analysis shows that MYC2 works downstream to MKKK20 in the regulation of photomorphogenic growth. MYC2 directly binds to the promoter of MKKK20 to modulate its expression. The protein-protein interaction study indicates that MKKK20 physically interacts with MYC2, and this interaction likely suppresses the MYC2-mediated promotion of MKKK20 expression. Further, the protein phosphorylation studies demonstrate that MKKK20 works as the upstream kinase of MKK3-MPK6-MYC2 module in photomorphogenesis.
Collapse
Affiliation(s)
- Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nibedita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anshuman Singh
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India,Corresponding author
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
10
|
BBX24 Interacts with DELLA to Regulate UV-B-Induced Photomorphogenesis in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23137386. [PMID: 35806395 PMCID: PMC9266986 DOI: 10.3390/ijms23137386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
UV-B radiation, sensed by the photoreceptor UVR8, induces signal transduction for plant photomorphogenesis. UV-B radiation affects the concentration of the endogenous plant hormone gibberellin (GA), which in turn triggers DELLA protein degradation through the 26S proteasome pathway. DELLA is a negative regulator in GA signaling, partially relieving the inhibition of hypocotyl growth induced by UV-B in Arabidopsis thaliana. However, GAs do usually not work independently but integrate in complex networks linking to other plant hormones and responses to external environmental signals. Until now, our understanding of the regulatory network underlying GA-involved UV-B photomorphogenesis had remained elusive. In the present research, we investigate the crosstalk between the GA and UV-B signaling pathways in UV-B-induced photomorphogenesis of Arabidopsis thaliana. Compared with wild type Landsberg erecta (Ler), the abundance of HY5, CHS, FLS, and UF3GT were found to be down-regulated in rga-24 and gai-t6 mutants under UV-B radiation, indicating that DELLA is a positive regulator in UV-B-induced photomorphogenesis. Our results indicate that BBX24 interacts with RGA (one of the functional DELLA family members). Furthermore, we also found that RGA interacts with HY5 (the master regulator in plant photomorphogenesis). Collectively, our findings suggest that the HY5−BBX24−DELLA module serves as an important signal regulating network, in which GA is involved in UV-B signaling to regulate hypocotyl inhibition.
Collapse
|
11
|
Chen Q, Wang W, Zhang Y, Zhan Q, Liu K, Botella JR, Bai L, Song C. Abscisic acid-induced cytoplasmic translocation of constitutive photomorphogenic 1 enhances reactive oxygen species accumulation through the HY5-ABI5 pathway to modulate seed germination. PLANT, CELL & ENVIRONMENT 2022; 45:1474-1489. [PMID: 35199338 PMCID: PMC9311139 DOI: 10.1111/pce.14298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/05/2022] [Indexed: 05/13/2023]
Abstract
Seed germination is a physiological process regulated by multiple factors. Abscisic acid (ABA) can inhibit seed germination to improve seedling survival under conditions of abiotic stress, and this process is often regulated by light signals. Constitutive photomorphogenic 1 (COP1) is an upstream core repressor of light signals and is involved in several ABA responses. Here, we demonstrate that COP1 is a negative regulator of the ABA-mediated inhibition of seed germination. Disruption of COP1 enhanced Arabidopsis seed sensitivity to ABA and increased reactive oxygen species (ROS) levels. In seeds, ABA induced the translocation of COP1 to the cytoplasm, resulting in enhanced ABA-induced ROS levels. Genetic evidence indicated that HY5 and ABI5 act downstream of COP1 in the ABA-mediated inhibition of seed germination. ABA-induced COP1 cytoplasmic localization increased HY5 and ABI5 protein levels in the nucleus, leading to increased expression of ABI5 target genes and ROS levels in seeds. Together, our results reveal that ABA-induced cytoplasmic translocation of COP1 activates the HY5-ABI5 pathway to promote the expression of ABA-responsive genes and the accumulation of ROS during ABA-mediated inhibition of seed germination. These findings enhance the role of COP1 in the ABA signal transduction pathway.
Collapse
Affiliation(s)
- Qing‐Bin Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Jing Wang
- Department of Biology and Food ScienceShangqiu Normal UniversityShangqiuChina
| | - Yue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Qi‐Di Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Kang Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
12
|
Hou S, Thiergart T, Vannier N, Mesny F, Ziegler J, Pickel B, Hacquard S. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. NATURE PLANTS 2021; 7:1078-1092. [PMID: 34226690 PMCID: PMC8367822 DOI: 10.1038/s41477-021-00956-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Bidirectional root-shoot signalling is probably key in orchestrating stress responses and ensuring plant survival. Here, we show that Arabidopsis thaliana responses to microbial root commensals and light are interconnected along a microbiota-root-shoot axis. Microbiota and light manipulation experiments in a gnotobiotic plant system reveal that low photosynthetically active radiation perceived by leaves induces long-distance modulation of root bacterial communities but not fungal or oomycete communities. Reciprocally, microbial commensals alleviate plant growth deficiency under low photosynthetically active radiation. This growth rescue was associated with reduced microbiota-induced aboveground defence responses and altered resistance to foliar pathogens compared with the control light condition. Inspection of a set of A. thaliana mutants reveals that this microbiota- and light-dependent growth-defence trade-off is directly explained by belowground bacterial community composition and requires the host transcriptional regulator MYC2. Our work indicates that aboveground stress responses in plants can be modulated by signals from microbial root commensals.
Collapse
Affiliation(s)
- Shiji Hou
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Nathan Vannier
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fantin Mesny
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Brigitte Pickel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
13
|
Frerigmann H, Hoecker U, Gigolashvili T. New Insights on the Regulation of Glucosinolate Biosynthesis via COP1 and DELLA Proteins in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:680255. [PMID: 34276733 PMCID: PMC8281118 DOI: 10.3389/fpls.2021.680255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The biosynthesis of defensive secondary metabolites, such as glucosinolates (GSLs), is a costly process, which requires nutrients, ATP, and reduction equivalents, and, therefore, needs well-orchestrated machinery while coordinating defense and growth. We discovered that the key repressor of light signaling, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYTOCHROME A-105 (COP1/SPA) complex, is a crucial component of GSL biosynthesis regulation. Various mutants in this COP1/SPA complex exhibited a strongly reduced level of GSL and a low expression of jasmonate (JA)-dependent genes. Furthermore, cop1, which is known to accumulate DELLA proteins in the dark, shows reduced gibberellin (GA) and JA signaling, thereby phenocopying other DELLA-accumulating mutants. This phenotype can be complemented by a dominant gain-of-function allele of MYC3 and by crossing with a mutant having low DELLA protein levels. Hence, SPA1 interacts with DELLA proteins in a yeast two-hybrid screen, whereas high levels of DELLA inhibit MYC function and suppress JA signaling. DELLA accumulation leads to reduced synthesis of GSL and inhibited growth. Thus, the COP1/SPA-mediated degradation of DELLA not only affects growth but also regulates the biosynthesis of GSLs.
Collapse
Affiliation(s)
- Henning Frerigmann
- Department of Plant-Microbe Interactions and Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ute Hoecker
- BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Müller M, Munné-Bosch S. Hormonal impact on photosynthesis and photoprotection in plants. PLANT PHYSIOLOGY 2021; 185:1500-1522. [PMID: 33793915 PMCID: PMC8133604 DOI: 10.1093/plphys/kiaa119] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/19/2023]
Abstract
Photosynthesis is not only essential for plants, but it also sustains life on Earth. Phytohormones play crucial roles in developmental processes, from organ initiation to senescence, due to their role as growth and developmental regulators, as well as their central role in the regulation of photosynthesis. Furthermore, phytohormones play a major role in photoprotection of the photosynthetic apparatus under stress conditions. Here, in addition to discussing our current knowledge on the role of the phytohormones auxin, cytokinins, gibberellins, and strigolactones in promoting photosynthesis, we will also highlight the role of abscisic acid beyond stomatal closure in modulating photosynthesis and photoprotection under various stress conditions through crosstalk with ethylene, salicylates, jasmonates, and brassinosteroids. Furthermore, the role of phytohormones in controlling the production and scavenging of photosynthesis-derived reactive oxygen species, the duration and extent of photo-oxidative stress and redox signaling under stress conditions will be discussed in detail. Hormones have a significant impact on the regulation of photosynthetic processes in plants under both optimal and stress conditions, with hormonal interactions, complementation, and crosstalk being important in the spatiotemporal and integrative regulation of photosynthetic processes during organ development at the whole-plant level.
Collapse
Affiliation(s)
- Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Author for communication:
| |
Collapse
|
15
|
Ponnu J, Hoecker U. Illuminating the COP1/SPA Ubiquitin Ligase: Fresh Insights Into Its Structure and Functions During Plant Photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:662793. [PMID: 33841486 PMCID: PMC8024647 DOI: 10.3389/fpls.2021.662793] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 functions as an E3 ubiquitin ligase in plants and animals. Discovered originally in Arabidopsis thaliana, COP1 acts in a complex with SPA proteins as a central repressor of light-mediated responses in plants. By ubiquitinating and promoting the degradation of several substrates, COP1/SPA regulates many aspects of plant growth, development and metabolism. In contrast to plants, human COP1 acts as a crucial regulator of tumorigenesis. In this review, we discuss the recent important findings in COP1/SPA research including a brief comparison between COP1 activity in plants and humans.
Collapse
|
16
|
Agarwal P, Mitra M, Banerjee S, Roy S. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110501. [PMID: 32563471 DOI: 10.1016/j.plantsci.2020.110501] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 05/06/2023]
Abstract
Here, we describe functional characterization of Arabidopsis thaliana MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, in the regulation of Cd-stress tolerance in Arabidopsis. Transgenic Arabidopsis plants overexpressing MYB4 showed appreciable Cd tolerance than wild-type plants, while MYB4 loss of function mutant lines (atmyb4) showed increased sensitivity to Cd-stress. MYB4 overexpression lines showed strong activation of anti-oxidant defense components and increased Cd accumulation than wild-type and atmyb4 mutant lines under Cd-stress. MYB4 overexpression resulted in the coordinated activation of the expression of phytochelatin (PC) synthesis related genes and specifically enhanced the transcript abundance of phytochelatin synthase 1 (PCS1) and metallothionein 1C (MT1C) genes under Cd-stress. In contrast, atmyb4 mutant lines showed reduced Cd accumulation and compromised expression of PC-synthesis related genes. Electrophoretic gel mobility shift assays have demonstrated specific binding activity of recombinant AtMYB4 to the putative MYB4-binding motifs ACCAACCAA and GGTAGGT identified in the promoters of PCS1 and MT1C genes, respectively. Further analyses have revealed that MYB4 binds directly to PCS1 and MT1C promoters in vivo and positively regulates their transcriptional expression, suggesting that PCS1 and MT1C are the key targets of MYB4. Overall, our results have provided evidence that MYB4 regulates Cd-tolerance via the coordinated activity of improved anti-oxidant defense system and through the enhanced expression of PCS1 and MT1C under Cd-stress in Arabidopsis.
Collapse
Affiliation(s)
- Puja Agarwal
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Mehali Mitra
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Samrat Banerjee
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Centre for Advanced Studies, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India.
| |
Collapse
|
17
|
Kuo HY, Kang FC, Wang YY. Glucosinolate Transporter1 involves in salt-induced jasmonate signaling and alleviates the repression of lateral root growth by salt in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110487. [PMID: 32563451 DOI: 10.1016/j.plantsci.2020.110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 05/15/2023]
Abstract
Salt stress has negative impact on plant development and growth. Jasmonic acid (JA), a phytohormone, has been shown to involve in salt-induced inhibition of primary root growth. The Arabidopsis Glucosinolate transporter1 (GTR1/NPF2.10) is characterized as a JA-Ile, a bioactive form of JA, transporter. However, whether GTR1 participates in salt responses is not clear. In this study, we confirmed that GTR1 is induced by both JA and salinity. Salt-induced JA signaling is affected in gtr1 mutant. The JA responsive genes, JAZ1, JAZ5, MYC2, LOX3, are down-regulated in gtr1 mutant. Phenotypic analyses showed that the salinity-induced lateral root growth inhibition is enhanced in gtr1 mutant, suggesting that GTR1 plays a positive role in lateral root development under salt stress. Interestingly, the expression of a Na+ transporter, HKT1, is upregulated in gtr1. Since HKT1 is a negative regulator for lateral root development under salt stress, we proposed that GTR1 alleviates the repression of lateral root development by salt stress by mediating JA signaling and repressing HKT1 expression. This study demonstrates that GTR1 is the molecular link between salt stress, JA signaling, and lateral root development.
Collapse
Affiliation(s)
- Hsin-Yi Kuo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Chih Kang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Yun Wang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Lakehal A, Ranjan A, Bellini C. Multiple Roles of Jasmonates in Shaping Rhizotaxis: Emerging Integrators. Methods Mol Biol 2020; 2085:3-22. [PMID: 31734913 DOI: 10.1007/978-1-0716-0142-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The root system and its architecture enormously contribute to plant survival and adaptation to the environment. Depending on the intrinsic genetic information and the surrounding rhizosphere, plants develop a highly plastic root system, which is a critical determinant for survival. Plant root system, which includes primary root (PR), lateral roots (LR) and adventitious roots (AR), is shaped by tightly controlled developmental programs. Phytohormones are the main signaling components that orchestrate and coordinate the genetic information and the external stimuli to shape the root system patterning or rhizotaxis. Besides their role in plant stress responses and defense against herbivory and pathogen attacks, jasmonic acid and its derivatives, including the receptor-active conjugate jasmonoyl-L-isoleucine (JA-Ile), emerge as potential regulators of rhizotaxis. In this chapter, we summarize and discuss the recent progress achieved during the recent years to understand the JA-mediated genetic and molecular networks guiding PR, LR, and AR initiation. We highlight the role of JAs as critical integrators in shaping rhizotaxis.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.
| | - Alok Ranjan
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden. .,Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
19
|
Bai JF, Wang YK, Guo LP, Guo XM, Guo HY, Yuan SH, Duan WJ, Liu Z, Zhao CP, Zhang FT, Zhang LP. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.). BMC Genomics 2019; 20:1032. [PMID: 31888472 PMCID: PMC6937671 DOI: 10.1186/s12864-019-6373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis, but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. Results 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7, TaMYC9, and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. Conclusions This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Yu-Kun Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Li-Ping Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.,School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiao-Ming Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Hao-Yu Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Shao-Hua Yuan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jing Duan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Zihan Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Li-Ping Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| |
Collapse
|
20
|
Verma D, Jalmi SK, Bhagat PK, Verma N, Sinha AK. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J 2019; 287:2560-2576. [PMID: 31782895 DOI: 10.1111/febs.15157] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/26/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
MYC2, a bHLH TF, acts as regulatory hub within several signaling pathways by integration of various endogenous and exogenous signals which shape plant growth and development. However, its involvement in salt stress regulation is still elusive. This study has deciphered a novel role of MYC2 in imparting salt stress intolerance by regulating delta1 -pyrroline-5-carboxylate synthase1 (P5CS1) gene and hence proline synthesis. P5CS1 is a rate-limiting enzyme in the biosynthesis of proline. Y-1-H and EMSA studies confirmed the binding of MYC2 with the 5'UTR region of P5CS1. Transcript and biochemical studies have revealed MYC2 as a negative regulator of proline biosynthesis. Proline is necessary for imparting tolerance toward abiotic stress; however, its overaccumulation is toxic for the plants. Hence, studying the regulation of proline biosynthesis is requisite to understand the mechanism of stress tolerance. We have also studied that MYC2 is regulated by mitogen-activated protein kinase (MAPK) cascade mitogen-activated protein kinase kinase 3-MPK6 and vice versa. Altogether, this study demonstrates salt stress-mediated activation of MYC2 by MAPK cascade, regulating proline biosynthesis and thus salt stress.
Collapse
Affiliation(s)
| | | | | | - Neetu Verma
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
21
|
Srivastava AK, Dutta S, Chattopadhyay S. MYC2 regulates ARR16, a component of cytokinin signaling pathways, in Arabidopsis seedling development. PLANT DIRECT 2019; 3:e00177. [PMID: 31788657 PMCID: PMC6875704 DOI: 10.1002/pld3.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/07/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
MYC2 is a basic helix-loop-helix transcription factor that acts as a repressor of blue light-mediated photomorphogenic growth; however, it promotes lateral root formation. MYC2 also regulates different phytohormone-signaling pathways in crucial manner. Arabidopsis response regulator 16 (ARR16) is a negative regulator of cytokinin signaling pathways. Here, we show that MYC2 directly binds to the E-box of ARR16 minimal promoter and negatively regulates its expression in a cytokinin-dependent manner. While ARR16 and MYC2 influence jasmonic acid and cytokinin signaling, the expression of ARR16 is regulated by cry1, GBF1, and HYH, the components of light signaling pathways. The transgenic studies show that the expression of ARR16 is regulated by MYC2 at various stages of development. The mutational studies reveal that ARR16 positively regulates the hypocotyl growth in blue light, and phenotypic analysis of atmyc2 arr16 double mutant further reveals that arr16 can suppress the short hypocotyl phenotype of atmyc2. Altogether, this work highlights MYC2-mediated transcriptional repression of ARR16 in Arabidopsis seedling development.
Collapse
Affiliation(s)
| | - Siddhartha Dutta
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | | |
Collapse
|
22
|
Chakraborty M, Gangappa SN, Maurya JP, Sethi V, Srivastava AK, Singh A, Dutta S, Ojha M, Gupta N, Sengupta M, Ram H, Chattopadhyay S. Functional interrelation of MYC2 and HY5 plays an important role in Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1080-1097. [PMID: 31059179 DOI: 10.1111/tpj.14381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Arabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways. However, the functional interrelations of these two transcription factors in seedling development remain unknown. Additionally, whereas HY5-mediated regulation of gene expression has been investigated in detail, the transcriptional regulation of HY5 itself is yet to be understood. Here, we show that HY5 and MYC2 work in an antagonistic manner in Arabidopsis seedling development. Our results reveal that HY5 expression is negatively regulated by MYC2 predominantly in BL, and at various stages of development. On the other hand, HY5 negatively regulates the expression of MYC2 at various wavelengths of light. In vitro and in vivo DNA-protein interaction studies suggest that MYC2 binds to the E-box cis-acting element of HY5 promoter. Collectively, this study demonstrates a coordinated regulation of MYC2 and HY5 in blue-light-mediated Arabidopsis seedling development.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Jay P Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Vishmita Sethi
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Archana K Srivastava
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Aparna Singh
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Madhusmita Ojha
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Nisha Gupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Hasthi Ram
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
23
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
24
|
Kovacevic J, Palm D, Jooss D, Bublak D, Simm S, Schleiff E. Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors. PLANT CELL REPORTS 2019; 38:937-949. [PMID: 31087154 DOI: 10.1007/s00299-019-02416-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Different genes coding for one ribosome biogenesis factor are differentially expressed and are likely under the control of distinct transcription factors, which contributes to the regulatory space for ribosome maturation. Maturation of ribosomes including rRNA processing and modification, rRNA folding and ribosome protein association requires the function of many ribosome biogenesis factors (RBFs). Recent studies document plant-specific variations of the generally conserved process of ribosome biogenesis. For instance, distinct rRNA maturation pathways and intermediates have been identified, the existence of plant specific RBFs has been proposed and several RBFs are encoded by multiple genes. The latter in combination with the discussed ribosome heterogeneity points to a possible function of the different proteins representing one RBF in diversification of ribosomal compositions. Such factor-based regulation would require a differential regulation of their expression, may be even controlled by different transcription factors. We analyzed the expression profiles of genes coding for putative RBFs and transcription factors. Most of the genes coding for RBFs are expressed in a comparable manner, while different genes coding for a single RBF are often differentially expressed. Based on a selected set of genes we document a function of the transcription factors AtMYC1, AtMYC2, AtbHLH105 and AtMYB26 on the regulation of different RBFs. Moreover, on the example of the RBFs LSG1 and BRX1, both encoded by two genes, we give a first hint on a differential transcription factor dependence of expression. Consistent with this observation, the phenotypic analysis of RBF mutants suggests a relation between LSG1-1 and BRX1-1 expression and the transcription factor MYC1. In summary, we propose that the multiple genes coding for one RBF are required to enlarge the regulatory space for ribosome biogenesis.
Collapse
Affiliation(s)
- Jelena Kovacevic
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Denise Palm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Domink Jooss
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Wang W, Chen Q, Botella JR, Guo S. Beyond Light: Insights Into the Role of Constitutively Photomorphogenic1 in Plant Hormonal Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:557. [PMID: 31156657 PMCID: PMC6532413 DOI: 10.3389/fpls.2019.00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 05/20/2023]
Abstract
Light is an important environmental factor with profound effects in plant growth and development. Constitutively photomorphogenic1 (COP1) is a vital component of the light signaling pathway as a negative regulator of photomorphogenesis. Although the role of COP1 in light signaling has been firmly established for some time, recent studies have proven that COP1 is also a crucial part of multiple plant hormonal regulatory pathways. In this article, we review the available evidence involving COP1 in hormone signaling, its molecular mechanisms, and its contribution to the complicated regulatory network linking light and plant hormone signaling.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, China
| | - Qingbin Chen
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: José Ramón Botella,
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- Siyi Guo,
| |
Collapse
|
26
|
Debieu M, Sine B, Passot S, Grondin A, Akata E, Gangashetty P, Vadez V, Gantet P, Foncéka D, Cournac L, Hash CT, Kane NA, Vigouroux Y, Laplaze L. Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PLoS One 2018; 13:e0201635. [PMID: 30359386 PMCID: PMC6201870 DOI: 10.1371/journal.pone.0201635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 01/07/2023] Open
Abstract
Pearl millet plays a major role in food security in arid and semi-arid areas of Africa and India. However, it lags behind the other cereal crops in terms of genetic improvement. The recent sequencing of its genome opens the way to the use of modern genomic tools for breeding. Our study aimed at identifying genetic components involved in early drought stress tolerance as a first step toward the development of improved pearl millet varieties or hybrids. A panel of 188 inbred lines from West Africa was phenotyped under early drought stress and well-irrigated conditions. We found a strong impact of drought stress on yield components. This impact was variable between inbred lines. We then performed an association analysis with a total of 392,493 SNPs identified using Genotyping-by-Sequencing (GBS). Correcting for genetic relatedness, genome wide association study identified QTLs for biomass production in early drought stress conditions and for stay-green trait. In particular, genes involved in the sirohaem and wax biosynthesis pathways were found to co-locate with two of these QTLs. Our results might contribute to breed pearl millet lines with improved yield under drought stress.
Collapse
Affiliation(s)
- Marilyne Debieu
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Bassirou Sine
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Institut Sénégalais des Recherches Agricoles (ISRA), Thiès, Senegal
| | - Sixtine Passot
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Alexandre Grondin
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Eyanawa Akata
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Institut Sénégalais des Recherches Agricoles (ISRA), Thiès, Senegal
- Institut Togolais de Recherche Agronomique (ITRA), Lomé, Togo
| | - Prakash Gangashetty
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, Niger
| | - Vincent Vadez
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Daniel Foncéka
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Institut Sénégalais des Recherches Agricoles (ISRA), Thiès, Senegal
- AGAP, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Laurent Cournac
- Eco&Sols, IRD, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- Laboratoire mixte international Intensification Ecologique des Sols cultivés en Afrique de l’Ouest, Dakar, Senegal
| | - Charles Tom Hash
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey, Niger
| | - Ndjido Ardo Kane
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV), ISRA, Dakar, Senegal
| | - Yves Vigouroux
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- * E-mail: (LL); (YV)
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement (IRD), Montpellier, France
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- Laboratoire Commun de Microbiologie IRD/ISRA/Université Cheikh Anta Diop (UCAD), Dakar, Senegal
- * E-mail: (LL); (YV)
| |
Collapse
|
27
|
Zhang Q, Xie Z, Zhang R, Xu P, Liu H, Yang H, Doblin MS, Bacic A, Li L. Blue Light Regulates Secondary Cell Wall Thickening via MYC2/MYC4 Activation of the NST1-Directed Transcriptional Network in Arabidopsis. THE PLANT CELL 2018; 30:2512-2528. [PMID: 30242037 PMCID: PMC6241271 DOI: 10.1105/tpc.18.00315] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 05/18/2023]
Abstract
Secondary cell walls (SCWs) are formed in some specific types of plant cells, providing plants with mechanical strength. During plant growth and development, formation of secondary cell walls is regulated by various developmental and environmental signals. The underlying molecular mechanisms are poorly understood. In this study, we analyzed the blue light receptor cryptochrome1 (cry1) mutant of Arabidopsis thaliana for its SCW phenotypes. During inflorescence stem growth, SCW thickening in the vasculature was significantly affected by blue light. cry1 plants displayed a decline of SCW thickening in fiber cells, while CRY1 overexpression led to enhanced SCW formation. Transcriptome analysis indicated that the reduced SCW thickening was associated with repression of the NST1-directed transcription regulatory networks. Further analyses revealed that the expression of MYC2/MYC4 that is induced by blue light activates the transcriptional network underlying SCW thickening. The activation is caused by direct binding of MYC2/MYC4 to the NST1 promoter. This study demonstrates that SCW thickening in fiber cells is regulated by a blue light signal that is mediated through MYC2/MYC4 activation of NST1-directed SCW formation in Arabidopsis.
Collapse
Affiliation(s)
- Qian Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongquan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls and La Trobe Institute for Agriculture and Food, School of Life Sciences, Department of Animal, Plant, and Soil Sciences, AgriBio, La Trobe University, Bundoora VIC 3086, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls and La Trobe Institute for Agriculture and Food, School of Life Sciences, Department of Animal, Plant, and Soil Sciences, AgriBio, La Trobe University, Bundoora VIC 3086, Australia
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
28
|
Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.). BMC Genomics 2017; 18:152. [PMID: 28193162 PMCID: PMC5307646 DOI: 10.1186/s12864-017-3582-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. RESULTS Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. CONCLUSION This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.
Collapse
|
29
|
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Sci Rep 2016; 6:28941. [PMID: 27357749 PMCID: PMC4928087 DOI: 10.1038/srep28941] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 01/30/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.
Collapse
Affiliation(s)
- Fernando Aleman
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Junshi Yazaki
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Melissa Lee
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Yohei Takahashi
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Alice Y. Kim
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Zixing Li
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Joseph R. Ecker
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Sci Rep 2016; 6:28941. [PMID: 27357749 DOI: 10.1038/srep2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 05/26/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.
Collapse
Affiliation(s)
- Fernando Aleman
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Junshi Yazaki
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Melissa Lee
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Yohei Takahashi
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Alice Y Kim
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Zixing Li
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Joseph R Ecker
- Plant Biology Laboratory, Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, 92037 USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016. [PMID: 27030359 DOI: 10.1186/s12864-016-2593-2596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. RESULTS In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. CONCLUSIONS The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
32
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016; 17:269. [PMID: 27030359 PMCID: PMC4815114 DOI: 10.1186/s12864-016-2593-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. Results In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. Conclusions The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
33
|
Srivastava AK, Senapati D, Srivastava A, Chakraborty M, Gangappa SN, Chattopadhyay S. Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development. PLANT PHYSIOLOGY 2015; 169:2922-34. [PMID: 26474641 PMCID: PMC4677909 DOI: 10.1104/pp.15.01184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) Short Hypocotyl in White Light1 (SHW1) encodes a Ser-Arg-Asp-rich protein that acts as a negative regulator of photomorphogenesis. SHW1 and Constitutive Photomorphogenic1 (COP1) genetically interact in an additive manner to suppress photomorphogenesis. Elongated Hypocotyl5 (HY5) is a photomorphogenesis promoting a basic leucine zipper transcription factor that is degraded by COP1 ubiquitin ligase in the darkness. Here, we report the functional interrelation of SHW1 with COP1 and HY5 in Arabidopsis seedling development. The in vitro and in vivo molecular interaction studies show that SHW1 physically interacts with both COP1 and HY5. The genetic studies reveal that SHW1 and HY5 work in an antagonistic manner to regulate photomorphogenic growth. Additional mutation of SHW1 in hy5 mutant background is able to suppress the gravitropic root growth defect of hy5 mutants. This study further reveals that the altered abscisic acid responsiveness of hy5 mutants is modulated by additional loss of SHW1 function. Furthermore, this study shows that SHW1 promotes COP1-mediated degradation of HY5 through enhanced ubiquitylation in the darkness. Collectively, this study highlights a mechanistic view on coordinated regulation of SHW1, COP1, and HY5 in Arabidopsis seedling development.
Collapse
Affiliation(s)
| | - Dhirodatta Senapati
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Archana Srivastava
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Moumita Chakraborty
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | | | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
34
|
Maurya JP, Sethi V, Gangappa SN, Gupta N, Chattopadhyay S. Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:439-450. [PMID: 26047210 DOI: 10.1111/tpj.12899] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Regulations of Arabidopsis seedling growth by two proteins, which belong to different classes of transcription factors, are poorly understood. MYC2 and GBF1 belong to bHLH and bZIP classes of transcription factors, respectively, and function in cryptochrome-mediated blue light signaling. Here, we have investigated the molecular and functional interrelation of MYC2 and GBF1 in blue light-mediated photomorphogenesis. Our study reveals that MYC2 and GBF1 colocalize and physically interact in the nucleus. This interaction requires the N-terminal domain of each protein. The atmyc2 gbf1 double mutant analyses and transgenic studies have revealed that MYC2 and GBF1 act antagonistically and inhibit the activity of each other to regulate hypocotyl growth and several other biological processes. This study further reveals that MYC2 and GBF1 bind to HYH promoter and inhibit each other through non-DNA binding bHLH-bZIP heterodimers. These results, taken together, provide insights into the mechanistic view on the concerted regulatory role of MYC2 and GBF1 in Arabidopsis seedling development.
Collapse
Affiliation(s)
- Jay P Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Vishmita Sethi
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | | | - Nisha Gupta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
35
|
Goossens J, Swinnen G, Vanden Bossche R, Pauwels L, Goossens A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. THE NEW PHYTOLOGIST 2015; 206:1229-37. [PMID: 25817565 DOI: 10.1111/nph.13398] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/05/2015] [Indexed: 05/22/2023]
Abstract
The bHLH transcription factor MYC2, together with its paralogues MYC3 and MYC4, is a master regulator of the response to the jasmonate (JA) hormone in Arabidopsis (Arabidopsis thaliana). In the absence of JA, JASMONATE ZIM (JAZ) proteins interact with the MYC proteins to block their activity. Understanding of the mechanism and specificity of this interaction is key to unravel JA signalling. We generated mutant MYC proteins and assessed their activity and the specificity of their interaction with the 12 Arabidopsis JAZ proteins. We show that the D94N mutation present in the atr2D allele of MYC3 abolishes the interaction between MYC3 and most JAZ proteins. The same effect is observed when the corresponding conserved Asp (D105) was mutated in MYC2. Accordingly, MYC2(D105N) activated target genes in the presence of JAZ proteins, in contrast to wild-type MYC2. JAZ1 and JAZ10 were the only JAZ proteins still showing interaction with the mutant MYC proteins, due to a second MYC interaction domain, besides the classical Jas domain. Our results visualize the divergence among JAZ proteins in their interaction with MYC proteins. Ultimately, the transferability of the Asp-to-Asn amino acid change might facilitate the design of hyperactive transcription factors for plant engineering.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Gwen Swinnen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Gent, Belgium
| |
Collapse
|
36
|
Wu G, Zhang L, Yin Y, Wu J, Yu L, Zhou Y, Li M. Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome. FRONTIERS IN PLANT SCIENCE 2015; 6:198. [PMID: 26029219 PMCID: PMC4428447 DOI: 10.3389/fpls.2015.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/12/2015] [Indexed: 05/29/2023]
Abstract
Raphanus sativus is an important Brassicaceae plant and also an edible vegetable with great economic value. However, currently there is not enough transcriptome information of R. sativus tissues, which impedes further functional genomics research on R. sativus. In this study, RNA-seq technology was employed to characterize the transcriptome of leaf tissues. Approximately 70 million clean pair-end reads were obtained and used for de novo assembly by Trinity program, which generated 68,086 unigenes with an average length of 576 bp. All the unigenes were annotated against GO and KEGG databases. In the meanwhile, we merged leaf sequencing data with existing root sequencing data and obtained better de novo assembly of R. sativus using Oases program. Accordingly, potential simple sequence repeats (SSRs), transcription factors (TFs) and enzyme codes were identified in R. sativus. Additionally, we detected a total of 3563 significantly differentially expressed genes (DEGs, P = 0.05) and tissue-specific biological processes between leaf and root tissues. Furthermore, a TFs-based regulation network was constructed using Cytoscape software. Taken together, these results not only provide a comprehensive genomic resource of R. sativus but also shed light on functional genomic and proteomic research on R. sativus in the future.
Collapse
Affiliation(s)
- Gang Wu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Libin Zhang
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yongtai Yin
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jiangsheng Wu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Longjiang Yu
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yanhong Zhou
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
37
|
Lenka SK, Nims NE, Vongpaseuth K, Boshar RA, Roberts SC, Walker EL. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. FRONTIERS IN PLANT SCIENCE 2015; 6:115. [PMID: 25767476 PMCID: PMC4341510 DOI: 10.3389/fpls.2015.00115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 05/18/2023]
Abstract
Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®), a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ)-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT, and DBTNBT), encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription. The paclitaxel biosynthetic pathway promoters contained a large number of E-box sites (CANNTG), similar to the binding sites for the key MJ-inducible transcription factor AtMYC2 from Arabidopsis thaliana. Three MJ-inducible MYC transcription factors similar to AtMYC2 (TcJAMYC1, TcJAMYC2, and TcJAMYC4) were identified in Taxus. Transcriptional regulation of paclitaxel biosynthetic pathway promoters by transient over expression of TcJAMYC transcription factors indicated a negative rather than positive regulatory role of TcJAMYCs on paclitaxel biosynthetic gene expression.
Collapse
Affiliation(s)
- Sangram K. Lenka
- Department of Biology, University of MassachusettsAmherst, MA, USA
| | - N. Ezekiel Nims
- Department of Biology, University of MassachusettsAmherst, MA, USA
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
| | - Kham Vongpaseuth
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
- Department of Chemical Engineering, University of MassachusettsAmherst, MA, USA
| | | | - Susan C. Roberts
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
- Department of Chemical Engineering, University of MassachusettsAmherst, MA, USA
| | - Elsbeth L. Walker
- Department of Biology, University of MassachusettsAmherst, MA, USA
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
- *Correspondence: Elsbeth L. Walker, Department of Biology, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003, USA e-mail:
| |
Collapse
|
38
|
Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2014; 26:3343-57. [PMID: 25139007 PMCID: PMC4371833 DOI: 10.1105/tpc.114.128702] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis.
Collapse
Affiliation(s)
- Vishmita Sethi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
39
|
Hsieh HL, Okamoto H. Molecular interaction of jasmonate and phytochrome A signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2847-57. [PMID: 24868039 DOI: 10.1093/jxb/eru230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytochrome family of red (R) and far-red (FR) light receptors (phyA-phyE in Arabidopsis) play important roles throughout plant development and regulate elongation growth during de-etiolation and under light. Phytochromes regulate growth through interaction with the phytohormones gibberellin, auxin, and brassinosteroid. Recently it has been established that jasmonic acid (JA), a phytohormone for stress responses, namely wounding and defence, is also important in inhibition of hypocotyl growth regulated by phyA and phyB. This review focuses on recent advances in our understanding of the molecular basis of the interaction between JA and phytochrome signalling particularly during seedling development in Arabidopsis. Significantly, JA biosynthesis genes are induced by phyA. The protein abundance of JAR1/FIN219, an enzyme for the final synthesis step to give JA-Ile, an active form of JA, is also determined by phyA. In addition, JAR1/FIN219 directly interacts with an E3-ligase, COP1, a master regulator for transcription factors regulating hypocotyl growth, suggesting a more direct role in growth regulation. There are a number of points of interaction in the molecular signalling of JA and phytochrome during seedling development in Arabidopsis, and we propose a model for how they work together to regulate hypocotyl growth.
Collapse
Affiliation(s)
- Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Haruko Okamoto
- Centre for Biological Sciences, University of Southampton, Southampton, UK Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Iwate, Japan
| |
Collapse
|
40
|
Chico JM, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, Solano R. Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis. THE PLANT CELL 2014; 26:1967-1980. [PMID: 24824488 PMCID: PMC4079362 DOI: 10.1105/tpc.114.125047] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reduction of the red/far-red (R/FR) light ratio that occurs in dense canopies promotes plant growth to outcompete neighbors but has a repressive effect on jasmonate (JA)-dependent defenses. The molecular mechanism underlying this trade-off is not well understood. We found that the JA-related transcription factors MYC2, MYC3, and MYC4 are short-lived proteins degraded by the proteasome, and stabilized by JA and light, in Arabidopsis thaliana. Dark and CONSTITUTIVE PHOTOMORPHOGENIC1 destabilize MYC2, MYC3, and MYC4, whereas R and blue (B) lights stabilize them through the activation of the corresponding photoreceptors. Consistently, phytochrome B inactivation by monochromatic FR light or shade (FR-enriched light) destabilizes these three proteins and reduces their stabilization by JA. In contrast to MYCs, simulated shade conditions stabilize seven of their 10 JAZ repressors tested and reduce their degradation by JA. MYC2, MYC3, and MYC4 are required for JA-mediated defenses against the necrotrophic pathogen Botrytis cinerea and for the shade-triggered increased susceptibility, indicating that this negative effect of shade on defense is likely mediated by shade-triggered inactivation of MYC2, MYC3, and MYC4. The opposite regulation of protein stability of MYCs and JAZs by FR-enriched light help explain (on the molecular level) the long-standing observation that canopy shade represses JA-mediated defenses, facilitating reallocation of resources from defense to growth.
Collapse
Affiliation(s)
- José-Manuel Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernández-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Patricia Fernández-Calvo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Mónica Díez-Díaz
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
41
|
Sharma P, Chatterjee M, Burman N, Khurana JP. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. PLANT, CELL & ENVIRONMENT 2014; 37:961-77. [PMID: 24117455 DOI: 10.1111/pce.12212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 10/01/2013] [Indexed: 05/19/2023]
Abstract
The blue light photoreceptors cryptochromes are ubiquitous in higher plants and are vital for regulating plant growth and development. In spite of being involved in controlling agronomically important traits like plant height and flowering time, cryptochromes have not been extensively characterized from agriculturally important crops. Here we show that overexpression of CRY1 from Brassica napus (BnCRY1), an oilseed crop, results in short-statured Brassica transgenics, likely to be less prone to wind and water lodging. The overexpression of BnCRY1 accentuates the inhibition of cell elongation in hypocotyls of transgenic seedlings. The analysis of hypocotyl growth inhibition and anthocyanin accumulation responses in BnCRY1 overexpressors substantiates that regulation of seedling photomorphogenesis by cry1 is dependent on light intensity. This study highlights that the photoactivated cry1 acts through coordinated induction and suppression of specific downstream genes involved in phytohormone synthesis or signalling, and those involved in cell wall modification, during de-etiolation of Brassica seedlings. The microarray-based transcriptome profiling also suggests that the overexpression of BnCRY1 alters abiotic/biotic stress signalling pathways; the transgenic seedlings were apparently oversensitive to abscisic acid (ABA) and mannitol.
Collapse
Affiliation(s)
- Pooja Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | |
Collapse
|
42
|
Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyay S. Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. THE PLANT CELL 2014; 26:1036-52. [PMID: 24610722 PMCID: PMC4001367 DOI: 10.1105/tpc.113.122515] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 12/31/2013] [Accepted: 02/12/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis thaliana CALMODULIN7 (CAM7), a unique member of the calmodulin gene family, plays a crucial role as a transcriptional regulator in seedling development. The elongated HYPOCOTYL5 (HY5) bZIP protein, an integrator of multiple signaling pathways, also plays an important role in photomorphogenic growth and light-regulated gene expression. CAM7 acts synergistically with HY5 to promote photomorphogenesis at various wavelengths of light. Although the genetic relationships between CAM7 and HY5 in light-mediated seedling development have been demonstrated, the molecular connectivity between CAM7 and HY5 is unknown. Furthermore, whereas HY5-mediated gene regulation has been fairly well investigated, the transcriptional regulation of HY5 is largely unknown. Here, we report that HY5 expression is regulated by HY5 and CAM7 at various wavelengths of light and also at various stages of development. In vitro and in vivo DNA-protein interaction studies suggest that HY5 and CAM7 bind to closely located T/G- and E-box cis-acting elements present in the HY5 promoter, respectively. Furthermore, CAM7 and HY5 physically interact and regulate the expression of HY5 in a concerted manner. Taken together, these results demonstrate that CAM7 and HY5 directly interact with the HY5 promoter to mediate the transcriptional activity of HY5 during Arabidopsis seedling development.
Collapse
Affiliation(s)
- Nazia Abbas
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jay P. Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Dhirodatta Senapati
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
43
|
Gupta N, Prasad VBR, Chattopadhyay S. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants. BMC PLANT BIOLOGY 2014; 14:38. [PMID: 24483714 PMCID: PMC3922655 DOI: 10.1186/1471-2229-14-38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/28/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. RESULTS Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. CONCLUSIONS Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants.
Collapse
Affiliation(s)
- Nisha Gupta
- National Institute of Plant Genome Research, New Delhi 110067, India
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, India
| |
Collapse
|
44
|
Gangappa SN, Srivastava AK, Maurya JP, Ram H, Chattopadhyay S. Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development. MOLECULAR PLANT 2013; 6:1758-1768. [PMID: 24157607 DOI: 10.1093/mp/sst140] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One set of genes encoding diverse groups of transcription factors that interact with the Z-box (ATACGTGT; a potential Z-DNA forming sequence) is called ZBFs (Z-box Binding Factors). ZBFs include ZBF1, ZBF2, and ZBF3, which encode ZBF1/MYC2 (bHLH), ZBF2/GBF1 (bZIP), and ZBF3/CAM7 (Calmodulin) proteins, respectively. With several recent reports, it is becoming increasingly evident that ZBFs play crucial roles in Arabidopsis seedling photomorphogenesis. ZBFs integrate signals from various wavelengths of light to coordinate the regulation of transcriptional networks that affect multiple facets of plant growth and development. The function of each ZBF is qualitatively and quantitatively distinct. The zbf mutants display pleiotropic effects including altered hypocotyl elongation, cotyledon expansion, lateral root development, and flowering time. In this inaugural review, we discuss the identification, molecular functions, and interacting partners of ZBFs in light-mediated Arabidopsis seedling development.
Collapse
Affiliation(s)
- Sreeramaiah N Gangappa
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, India
| | | | | | | | | |
Collapse
|
45
|
Gangappa SN, Chattopadhyay S. MYC2 differentially regulates GATA-box containing promoters during seedling development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25679. [PMID: 23857363 PMCID: PMC4091078 DOI: 10.4161/psb.25679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 05/21/2023]
Abstract
MY C2 is an important transcription factor, which modulates transcription by directly binding to Z-, G- and E-box elements present in the promoters of light and different stress responsive genes. Very recently, we have shown that MY C2 plays a role in the regulation of Z- and/or G-box containing promoters during both seedling and adult plant growth. Although, MY C2 does not bind to the GATA box light responsive element (LRE ) in vitro as shown in DNA binding assays, its involvement in the regulation of GATA -box containing promoter in planta, if any, is not known. Here, we report that the promoter activity of GATA-NOS101 in atmyc2 mutant was found to be similar to wild-type in BL and dark grown seedlings, whereas it was found to be lower compared with wild-type as revealed from GUS staining results. Further, we will discuss the consequences of MY C2 regulating GATA -box containing promoter in combination with G-box containing promoters.
Collapse
Affiliation(s)
| | - Sudip Chattopadhyay
- National Institute of Technology; Durgapur, India
- National Institute of Plant Genome Research; New Delhi, India
- Correspondence to: Sudip Chattopadhyay, or
| |
Collapse
|
46
|
Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I. NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC PLANT BIOLOGY 2013; 13:73. [PMID: 23634896 PMCID: PMC3655906 DOI: 10.1186/1471-2229-13-73] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND To survive herbivore attack, plants have evolved potent mechanisms of mechanical or chemical defense that are either constitutively present or inducible after herbivore attack. Due to the costs of defense deployment, plants often regulate their biosynthesis using various transcription factors (TFs). MYC2 regulators belong to the bHLH family of transcription factors that are involved in many aspects of plant defense and development. In this study, we identified a novel MYC2 TF from N. attenuata and characterized its regulatory function using a combination of molecular, analytic and ecological methods. RESULTS The transcript and targeted metabolite analyses demonstrated that NaMYC2 is mainly involved in the regulation of the biosynthesis of nicotine and phenolamides in N. attenuata. In addition, using broadly-targeted metabolite analysis, we identified a number of other metabolite features that were regulated by NaMYC2, which, after full annotation, are expected to broaden our understanding of plant defense regulation. Unlike previous reports, the biosynthesis of jasmonates and some JA-/NaCOI1-dependent metabolites (e.g. HGL-DTGs) were not strongly regulated by NaMYC2, suggesting the involvement of other independent regulators. No significant differences were observed in the performance of M. sexta on MYC2-silenced plants, consistent with the well-known ability of this specialist insect to tolerate nicotine. CONCLUSION By regulating the biosynthesis of nicotine, NaMYC2 is likely to enhance plant resistance against non-adapted herbivores and contribute to plant fitness; however, multiple JA/NaCOI1-dependent mechanisms (perhaps involving other MYCs) that regulate separate defense responses are likely to exist in N. attenuata. The considerable variation observed amongst different plant families in the responses regulated by jasmonate signaling highlights the sophistication with which plants craft highly specific and fine-tuned responses against the herbivores that attack them.
Collapse
Affiliation(s)
- Melkamu G Woldemariam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Son Truong Dinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Ivan Galis
- Present address: Institute of Plant Science and Resources, Okayama University, 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
47
|
Abstract
Jasmonates (JAs) are plant hormones with essential roles in plant defense and development. The basic-helix-loop-helix (bHLH) transcription factor (TF) MYC2 has recently emerged as a master regulator of most aspects of the jasmonate (JA) signaling pathway in Arabidopsis. MYC2 coordinates JA-mediated defense responses by antagonistically regulating two different branches of the JA signaling pathway that determine resistance to pests and pathogens, respectively. MYC2 is required for induced systemic resistance (ISR) triggered by beneficial soil microbes while MYC2 function is targeted by pathogens during effector-mediated suppression of innate immunity in roots. Another notable function of MYC2 is the regulation of crosstalk between the signaling pathways of JA and those of other phytohormones such as abscisic acid (ABA), salicylic acid (SA), gibberellins (GAs), and auxin (IAA). MYC2 also regulates interactions between JA signaling and light, phytochrome signaling, and the circadian clock. MYC2 is involved in JA-regulated plant development, lateral and adventitious root formation, flowering time, and shade avoidance syndrome. Related bHLH TFs MYC3 and MYC4 also regulate both overlapping and distinct MYC2-regulated functions in Arabidopsis while MYC2 orthologs act as 'master switches' that regulate JA-mediated biosynthesis of secondary metabolites. Here, we briefly review recent studies that revealed mechanistic new insights into the mode of action of this versatile TF.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, Brisbane, Queensland 4067, Australia.
| | | |
Collapse
|
48
|
Gangappa SN, Maurya JP, Yadav V, Chattopadhyay S. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis. PLoS One 2013; 8:e62194. [PMID: 23646119 PMCID: PMC3639979 DOI: 10.1371/journal.pone.0062194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Although many transcription factors and regulatory proteins have been identified and functionally characterized in light signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1, which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.
Collapse
Affiliation(s)
| | | | - Vandana Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Sudip Chattopadhyay
- National Institute of Technology, Durgapur, India
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
49
|
Gangappa SN, Crocco CD, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto JF. The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. THE PLANT CELL 2013; 25:1243-57. [PMID: 23624715 PMCID: PMC3663265 DOI: 10.1105/tpc.113.109751] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/09/2013] [Accepted: 04/04/2013] [Indexed: 05/18/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5) is a basic domain/leucine zipper (bZIP) transcription factor, central for the regulation of seedling photomorphogenesis. Here, we identified a B-BOX (BBX)-containing protein, BBX25/SALT TOLERANCE HOMOLOG, as an interacting partner of HY5, which has been previously found to physically interact with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). BBX25 physically interacts with HY5 both in vitro and in vivo. By physiological and genetic approaches, we showed that BBX25 is a negative regulator of seedling photomorphogenesis. BBX25 and its homolog BBX24 regulate deetiolation processes and hypocotyl shade avoidance response in an additive manner. Moreover, genetic relationships of bbx25 and bbx24 with hy5 and cop1 revealed that BBX25 and BBX24 additively enhance COP1 and suppress HY5 functions. BBX25 accumulates in a light-dependent manner and undergoes COP1-mediated degradation in dark and light conditions. Furthermore, a protoplast cotransfection assay showed that BBX24 and BBX25 repress BBX22 expression by interfering with HY5 transcriptional activity. As HY5 binds to the BBX22 promoter and promotes its expression, our results identify a direct mechanism through which the expression of BBX22 is regulated. We suggest that BBX25 and BBX24 function as transcriptional corepressors, probably by forming inactive heterodimers with HY5, downregulating BBX22 expression for the fine-tuning of light-mediated seedling development.
Collapse
Affiliation(s)
- Sreeramaiah N. Gangappa
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg SE 40530, Sweden
| | - Carlos D. Crocco
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina
| | - Henrik Johansson
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg SE 40530, Sweden
| | - Sourav Datta
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg SE 40530, Sweden
| | - Chamari Hettiarachchi
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg SE 40530, Sweden
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg SE 40530, Sweden
| | - Javier F. Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina
- Address correspondence to
| |
Collapse
|
50
|
Chen J, Sonobe K, Ogawa N, Masuda S, Nagatani A, Kobayashi Y, Ohta H. Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. JOURNAL OF PLANT RESEARCH 2013; 126:161-8. [PMID: 22825635 PMCID: PMC3530149 DOI: 10.1007/s10265-012-0509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/30/2012] [Indexed: 05/18/2023]
Abstract
Jasmonates are phytohormones derived from oxygenated fatty acids that regulate a broad range of plant defense and developmental processes. In Arabidopsis, hypocotyl elongation under various light conditions was suppressed by exogenously supplied methyl jasmonate (MeJA). Moreover, this suppression by MeJA was particularly effective under red light condition. Mutant analyses suggested that SCF(COI1)-mediated proteolysis was involved in this function. However, MeJA action still remained in the coi1 mutant, and (+)-7-iso-JA-L-Ile, a well-known active form of jasmonate, had a weaker effect than MeJA under the red light condition, suggesting that unknown signaling pathway are present in MeJA-mediated inhibition of hypocotyl elongation. EMS mutant screening identified two MeJA-insensitive hypocotyl elongation mutants, jasmonate resistance long hypocotyl 1 (jal1) and jal36, which had mutations in the phytochrome B (PHYB) gene. These analyses suggested that inhibition of hypocotyl elongation by jasmonates is enhanced under red light in phyB dependent manner.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Kohei Sonobe
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Narihito Ogawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yuichi Kobayashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|