1
|
Nigishi M, Shimakawa G, Yamagishi K, Amano R, Ito S, Tsuji Y, Nagasato C, Matsuda Y. Low-CO2-inducible bestrophins outside the pyrenoid sustain high photosynthetic efficacy in diatoms. PLANT PHYSIOLOGY 2024; 195:1432-1445. [PMID: 38478576 PMCID: PMC11142338 DOI: 10.1093/plphys/kiae137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/18/2024] [Indexed: 06/02/2024]
Abstract
Anion transporters sustain a variety of physiological states in cells. Bestrophins (BSTs) belong to a Cl- and/or HCO3- transporter family conserved in bacteria, animals, algae, and plants. Recently, putative BSTs were found in the green alga Chlamydomonas reinhardtii, where they are upregulated under low CO2 (LC) conditions and play an essential role in the CO2-concentrating mechanism (CCM). The putative BST orthologs are also conserved in diatoms, secondary endosymbiotic algae harboring red-type plastids, but their physiological functions are unknown. Here, we characterized the subcellular localization and expression profile of BSTs in the marine diatoms Phaeodactylum tricornutum (PtBST1 to 4) and Thalassiosira pseudonana (TpBST1 and 2). PtBST1, PtBST2, and PtBST4 were localized at the stroma thylakoid membrane outside of the pyrenoid, and PtBST3 was localized in the pyrenoid. Contrarily, TpBST1 and TpBST2 were both localized in the pyrenoid. These BST proteins accumulated in cells grown in LC but not in 1% CO2 (high CO2 [HC]). To assess the physiological functions, we generated knockout mutants for the PtBST1 gene by genome editing. The lack of PtBST1 decreased photosynthetic affinity for dissolved inorganic carbon to the level comparable with the HC-grown wild type. Furthermore, non-photochemical quenching in LC-grown cells was 1.5 to 2.0 times higher in the mutants than in the wild type. These data suggest that HCO3- transport at the stroma thylakoid membranes by PtBST1 is a critical part of the CO2-evolving machinery of the pyrenoid in the fully induced CCM and that PtBST1 may modulate photoprotection under CO2-limited environments in P. tricornutum.
Collapse
Affiliation(s)
- Minori Nigishi
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kansei Yamagishi
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Ryosuke Amano
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Shun Ito
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Yoshinori Tsuji
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran 051-0013, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
2
|
Zhao H, Liu Y, Zhu Z, Feng Q, Ye Y, Zhang J, Han J, Zhou C, Xu J, Yan X, Li X. Mediator subunit MED8 interacts with heat shock transcription factor HSF3 to promote fucoxanthin synthesis in the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1574-1591. [PMID: 38062856 DOI: 10.1111/nph.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
Fucoxanthin, a natural carotenoid that has substantial pharmaceutical value due to its anticancer, antioxidant, antiobesity, and antidiabetic properties, is biosynthesized from glyceraldehyde-3-phosphate (G3P) via a series of enzymatic reactions. However, our understanding of the transcriptional mechanisms involved in fucoxanthin biosynthesis remains limited. Using reverse genetics, the med8 mutant was identified based on its phenotype of reduced fucoxanthin content, and the biological functions of MED8 in fucoxanthin synthesis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Gene-editing mutants of MED8 exhibited decreased fucoxanthin content as well as reduced expression levels of six key genes involved in fucoxanthin synthesis, namely DXS, PSY1, ZDS-like, CRTISO5, ZEP1, and ZEP3, when compared to the wild-type (WT) strain. Furthermore, we showed that MED8 interacts with HSF3, and genetic analysis revealed their shared involvement in the genetic pathway governing fucoxanthin synthesis. Additionally, HSF3 was required for MED8 association with the promoters of the six fucoxanthin synthesis genes. In conclusion, MED8 and HSF3 are involved in fucoxanthin synthesis by modulating the expression of the fucoxanthin synthesis genes. Our results increase the understanding of the molecular regulation mechanisms underlying fucoxanthin synthesis in the diatom P. tricornutum.
Collapse
Affiliation(s)
- Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhengjiang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qingkai Feng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
3
|
Shimakawa G, Matsuda Y. Extra O 2 evolution reveals an O 2-independent alternative electron sink in photosynthesis of marine diatoms. PHOTOSYNTHESIS RESEARCH 2024; 159:61-68. [PMID: 38316719 DOI: 10.1007/s11120-023-01073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024]
Abstract
Following the principle of oxygenic photosynthesis, electron transport in the thylakoid membranes (i.e., light reaction) generates ATP and NADPH from light energy, which is subsequently utilized for CO2 fixation in the Calvin-Benson-Bassham cycle (i.e., dark reaction). However, light and dark reactions could discord when an alternative electron flow occurs with a rate comparable to the linear electron flow. Here, we quantitatively monitored O2 and total dissolved inorganic carbon (DIC) during photosynthesis in the pennate diatom Phaeodactylum tricornutum, and found that evolved O2 was larger than the consumption of DIC, which was consistent with 14CO2 measurements in literature. In our measurements, the stoichiometry of O2 evolution to DIC consumption was always around 1.5 during photosynthesis at different DIC concentrations. The same stoichiometry was observed in the cells grown under different CO2 concentrations and nitrogen sources except for the nitrogen-starved cells showing O2 evolution 2.5 times larger than DIC consumption. An inhibitor to nitrogen assimilation did not affect the extra O2 evolution. Further, the same physiological phenomenon was observed in the centric diatom Thalassiosira pseudonana. Based on the present dataset, we propose that the marine diatoms possess the metabolic pathway(s) functioning as the O2-independent electron sink under steady state photosynthesis that reaches nearly half of electron flux of the Calvin-Benson-Bassham cycle.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan.
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
4
|
Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL. Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering. ACS Synth Biol 2023; 12:3215-3228. [PMID: 37857380 PMCID: PMC10661051 DOI: 10.1021/acssynbio.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 10/21/2023]
Abstract
While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.
Collapse
Affiliation(s)
- Erin A. Garza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | - Josh L. Espinoza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Song J, Zhao H, Zhang L, Li Z, Han J, Zhou C, Xu J, Li X, Yan X. The Heat Shock Transcription Factor PtHSF1 Mediates Triacylglycerol and Fucoxanthin Synthesis by Regulating the Expression of GPAT3 and DXS in Phaeodactylum tricornutum. PLANT & CELL PHYSIOLOGY 2023; 64:622-636. [PMID: 36947404 DOI: 10.1093/pcp/pcad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
In addition to being important primary productive forces in marine ecosystems, diatoms are also rich in bioactive substances such as triacylglycerol and fucoxanthin. However, little is known about the transcriptional mechanisms underlying the biosynthesis of these substances. In this study, we found that the heat shock transcription factor PtHSF1 positively regulated the synthesis of triacylglycerol and fucoxanthin in Phaeodactylum tricornutum. Overexpression of PtHSF1 could increase the contents of triacylglycerol and fucoxanthin and upregulate key enzyme genes involved in the triacylglycerol and fucoxanthin biosynthesis pathways. On the other hand, gene silencing of PtHSF1 reduced the contents of triacylglycerol and fucoxanthin and the expression of the key enzyme genes involved in the triacylglycerol and fucoxanthin biosynthesis pathways. Further biochemical analysis revealed that PtHSF1 upregulated glycerol-2-phosphate acyltransferase 3 (GPAT3) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) by directly binding to their promoters, while genetic analysis demonstrated that PtHSF1 acted upstream of GPAT3 and DXS to regulate triacylglycerol and fucoxanthin synthesis. Therefore, in addition to elucidating the regulation mechanisms underlying PtHSF1-mediated triacylglycerol and fucoxanthin synthesis, this study also provided a candidate target for metabolic engineering of triacylglycerol and fucoxanthin in P. tricornutum.
Collapse
Affiliation(s)
- Jianquan Song
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Linxin Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zheng Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Li M, Young JN. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2023; 156:205-215. [PMID: 36881356 PMCID: PMC10154264 DOI: 10.1007/s11120-023-01004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 05/03/2023]
Abstract
Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2 around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2 concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatom Phaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates by Pt at elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2 saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2 into the cell, driven by Pt's 'chloroplast pump' was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2 and active HCO3- uptake into the cytosol, and significantly increased chloroplast HCO3- concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2 into the cell remained constant, active HCO3- uptake across the cell membrane increased resulting in Pt depending equally on both CO2 and HCO3- as inorganic carbon sources. Despite changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of the Pt CCM in response to increasing temperatures was discussed.
Collapse
Affiliation(s)
- Meng Li
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Brownlee C, Helliwell KE, Meeda Y, McLachlan D, Murphy EA, Wheeler GL. Regulation and integration of membrane transport in marine diatoms. Semin Cell Dev Biol 2023; 134:79-89. [PMID: 35305902 DOI: 10.1016/j.semcdb.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Diatoms represent one of the most successful groups of marine phytoplankton and are major contributors to ocean biogeochemical cycling. They have colonized marine, freshwater and ice environments and inhabit all regions of the World's oceans, from poles to tropics. Their success is underpinned by a remarkable ability to regulate their growth and metabolism during nutrient limitation and to respond rapidly when nutrients are available. This requires precise regulation of membrane transport and nutrient acquisition mechanisms, integration of nutrient sensing mechanisms and coordination of different transport pathways. This review outlines transport mechanisms involved in acquisition of key nutrients (N, C, P, Si, Fe) by marine diatoms, illustrating their complexity, sophistication and multiple levels of control.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK
| | - Katherine E Helliwell
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Yasmin Meeda
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Deirdre McLachlan
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Eleanor A Murphy
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
8
|
Jin P, Wan J, Zhou Y, Gao K, Beardall J, Lin J, Huang J, Lu Y, Liang S, Wang K, Ma Z, Xia J. Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO 2. THE ISME JOURNAL 2022; 16:2587-2598. [PMID: 35948613 PMCID: PMC9561535 DOI: 10.1038/s41396-022-01302-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 05/30/2023]
Abstract
Although high CO2 and warming could act interactively on marine phytoplankton, little is known about the molecular basis for this interaction on an evolutionary scale. Here we explored the adaptation to high CO2 in combination with warming in a model marine diatom Phaeodactylum tricornutum. Whole-genome re-sequencing identifies, in comparison to populations grown under control conditions, a larger genetic diversity loss and a higher genetic differentiation in the populations adapted for 2 years to warming than in those adapted to high CO2. However, this diversity loss was less under high CO2 combined with warming, suggesting that the evolution driven by warming was constrained by high CO2. By integrating genomics, transcriptomics, and physiological data, we found that the underlying molecular basis for this constraint is associated with the expression of genes involved in some key metabolic pathways or biological processes, such as the glyoxylate pathway, amino acid and fatty acid metabolism, and diel variability. Our results shed new light on the evolutionary responses of marine phytoplankton to multiple environmental changes in the context of global change and provide new insights into the molecular basis underpinning interactions among those multiple drivers.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yunyue Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361005, Xiamen, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, 361005, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kaiqiang Wang
- Gene Denovo Biotechnology Co, Guangzhou, 510006, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Kadono T, Tomaru Y, Sato N, Watanabe Y, Suzuki K, Yamada K, Adachi M. Characterization of Chaetoceros lorenzianus-infecting DNA virus-derived promoters of genes from open reading frames of unknown function in Phaeodactylum tricornutum. Mar Genomics 2022; 61:100921. [PMID: 35030498 DOI: 10.1016/j.margen.2021.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Promoters are key elements for the regulation of gene expression. Recently, we investigated the activity of promoters derived from marine diatom-infecting viruses (DIVs) in marine diatoms. Previously, we focused on potential promoter regions of the replication-associated protein gene and the capsid protein gene of the DIVs. In addition to these genes, two genes of unknown function (VP1 and VP4 genes) have been found in the DIV genomes. In this study, the promoter regions of the VP1 gene and VP4 gene derived from a Chaetoceros lorenzianus-infecting DNA virus (named ClP3 and ClP4, respectively) were newly isolated. ClP4 was found to be a constitutive promoter and displayed the highest activity. In particular, the 3' region of ClP4 (ClP4 3' region) showed a higher promoter activity than full-length ClP4. The ClP4 3' region might involve high-level promoter activity of ClP4. In addition, the ClP4 3' region may be useful for substance production and metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, National Research and Development Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nao Sato
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Yamada
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
10
|
Erdene‐Ochir E, Shin B, Huda MN, Lee EH, Song D, Jung C, Pan C. Characterization of endogenous promoters of GapC1 and GS for recombinant protein expression in Phaeodactylum tricornutum. Microbiologyopen 2021; 10:e1239. [PMID: 34713604 PMCID: PMC8545674 DOI: 10.1002/mbo3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/14/2021] [Indexed: 11/11/2022] Open
Abstract
Although diatoms have been utilized as a cellular factory to produce biopharmaceuticals, recombinant proteins, and biofuels, only a few numbers of gene promoters are available. Therefore, the development of novel endogenous promoters is essential for the production of a range of bioactive substances. Here, we characterized the activities of endogenous promoters glyceraldehyde-3-phosphate dehydrogenase (GapC1) and glutamine synthetase (GS) of Phaeodactylum tricornutum using green fluorescent protein (GFP) under different culture conditions. Compared with the widely used fucoxanthin chlorophyll-binding protein A (fcpA) promoter, the GS promoter constitutively drove the expression of GFP throughout all growth phases of P. tricornutum, regardless of culture conditions. Additionally, the GFP level driven by the GapC1 promoter was the highest at the log phase, similar to the fcpA promoter, and increased light and nitrogen-starvation conditions reduced GFP levels by inhibiting promoter activity. These results suggested that the GS promoter could be utilized as a strong endogenous promoter for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Erdenedolgor Erdene‐Ochir
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
| | | | - Md Nazmul Huda
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
| | - Eun Ha Lee
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
| | - Dae‐Geun Song
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangRepublic of Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Cheol‐Ho Pan
- Natural Product Informatics Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
- Microalgae Ask Us Co., Ltd.GangneungRepublic of Korea
| |
Collapse
|
11
|
Pierella Karlusich JJ, Bowler C, Biswas H. Carbon Dioxide Concentration Mechanisms in Natural Populations of Marine Diatoms: Insights From Tara Oceans. FRONTIERS IN PLANT SCIENCE 2021; 12:657821. [PMID: 33995455 PMCID: PMC8119650 DOI: 10.3389/fpls.2021.657821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/23/2021] [Indexed: 05/08/2023]
Abstract
Marine diatoms, the most successful photoautotrophs in the ocean, efficiently sequester a significant part of atmospheric CO2 to the ocean interior through their participation in the biological carbon pump. However, it is poorly understood how marine diatoms fix such a considerable amount of CO2, which is vital information toward modeling their response to future CO2 levels. The Tara Oceans expeditions generated molecular data coupled with in situ biogeochemical measurements across the main ocean regions, and thus provides a framework to compare diatom genetic and transcriptional flexibility under natural CO2 variability. The current study investigates the interlink between the environmental variability of CO2 and other physicochemical parameters with the gene and transcript copy numbers of five key enzymes of diatom CO2 concentration mechanisms (CCMs): Rubisco activase and carbonic anhydrase (CA) as part of the physical pathway, together with phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme as part of the potential C4 biochemical pathway. Toward this aim, we mined >200 metagenomes and >220 metatranscriptomes generated from samples of the surface layer of 66 globally distributed sampling sites and corresponding to the four main size fractions in which diatoms can be found: 0.8-5 μm, 5-20 μm, 20-180 μm, and 180-2,000 μm. Our analyses revealed that the transcripts for the enzymes of the putative C4 biochemical CCM did not in general display co-occurring profiles. The transcripts for CAs were the most abundant, with an order of magnitude higher values than the other enzymes, thus implying the importance of physical CCMs in diatom natural communities. Among the different classes of this enzyme, the most prevalent was the recently characterized iota class. Consequently, very little information is available from natural diatom assemblages about the distribution of this class. Biogeographic distributions for all the enzymes show different abundance hotspots according to the size fraction, pointing to the influence of cell size and aggregation in CCMs. Environmental correlations showed a complex pattern of responses to CO2 levels, total phytoplankton biomass, temperature, and nutrient concentrations. In conclusion, we propose that biophysical CCMs are prevalent in natural diatom communities.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Chris Bowler
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Haimanti Biswas
- CSIR National Institute of Oceanography, Biological Oceanography Division, Dona Paula, India
- *Correspondence: Haimanti Biswas,
| |
Collapse
|
12
|
Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020. [DOI: 10.1007/s12038-020-00080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Sethi D, Butler TO, Shuhaili F, Vaidyanathan S. Diatoms for Carbon Sequestration and Bio-Based Manufacturing. BIOLOGY 2020; 9:E217. [PMID: 32785088 PMCID: PMC7464044 DOI: 10.3390/biology9080217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing.
Collapse
Affiliation(s)
- Deepak Sethi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Thomas O. Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Faqih Shuhaili
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| |
Collapse
|
14
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
15
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
16
|
|
17
|
Jensen EL, Maberly SC, Gontero B. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae. Int J Mol Sci 2020; 21:E2922. [PMID: 32331234 PMCID: PMC7215798 DOI: 10.3390/ijms21082922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Carbonic anhydrases (CAs) exist in all kingdoms of life. They are metalloenzymes, often containing zinc, that catalyze the interconversion of bicarbonate and carbon dioxide-a ubiquitous reaction involved in a variety of cellular processes. So far, eight classes of apparently evolutionary unrelated CAs that are present in a large diversity of living organisms have been described. In this review, we focus on the diversity of CAs and their roles in photosynthetic microalgae. We describe their essential role in carbon dioxide-concentrating mechanisms and photosynthesis, their regulation, as well as their less studied roles in non-photosynthetic processes. We also discuss the presence in some microalgae, especially diatoms, of cambialistic CAs (i.e., CAs that can replace Zn by Co, Cd, or Fe) and, more recently, a CA that uses Mn as a metal cofactor, with potential ecological relevance in aquatic environments where trace metal concentrations are low. There has been a recent explosion of knowledge about this well-known enzyme with exciting future opportunities to answer outstanding questions using a range of different approaches.
Collapse
Affiliation(s)
- Erik L. Jensen
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK;
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, CEDEX 20, 13 402 Marseille, France;
| |
Collapse
|
18
|
Kroth PG, Bones AM, Daboussi F, Ferrante MI, Jaubert M, Kolot M, Nymark M, Río Bártulos C, Ritter A, Russo MT, Serif M, Winge P, Falciatore A. Genome editing in diatoms: achievements and goals. PLANT CELL REPORTS 2018; 37:1401-1408. [PMID: 30167805 DOI: 10.1007/s00299-018-2334-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/07/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.
Collapse
Affiliation(s)
- Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Maria I Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Marianne Jaubert
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Misha Kolot
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Andrés Ritter
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Monia T Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Manuel Serif
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
19
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
20
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
21
|
Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y. Mechanisms of carbon dioxide acquisition and CO 2 sensing in marine diatoms: a gateway to carbon metabolism. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160403. [PMID: 28717013 PMCID: PMC5516112 DOI: 10.1098/rstb.2016.0403] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 01/03/2023] Open
Abstract
Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO2 fixation. The evolution of a CO2-concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO2]aq in seawater relative to concentrations required by the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO2 in water and a limited CO2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO2 only in close proximity to RubisCO preventing unnecessary CO2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | | | - Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
22
|
Tsuji Y, Mahardika A, Matsuda Y. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3949-3958. [PMID: 28398591 PMCID: PMC5853789 DOI: 10.1093/jxb/erx102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 05/07/2023]
Abstract
The acquisition of dissolved inorganic carbon (DIC) in CO2-limited seawater is a central issue to understand in marine primary production. We previously demonstrated the occurrence of direct HCO3- uptake by solute carrier (SLC) 4 transporters in a diatom, a major marine primary producer. Homologs of SLC are found in both centric and pennate marine diatoms, suggesting that SLC transporters are generally conserved. Here, the generality of SLC-mediated DIC uptake in diatoms was examined using an SLC inhibitor, diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), and an inhibitor of external carbonic anhydrase, acetazolamide. DIDS suppressed high-DIC-affinity photosynthesis in the pennate diatom Phaeodactylum tricornutum and the centric diatom Chaetoceros muelleri, but there was no effect on either the pennate Cylindrotheca fusiformis or the centric Thalassiosira pseudonana. Interestingly, the DIC affinity of DIDS-insensitive strains was sensitive to treatment with up to 100 μM acetazolamide, displaying a 2-4-fold increase in K0.5[DIC]. In contrast, acetazolamide did not affect the DIDS-sensitive group. These results indicate the occurrence of two distinct strategies for DIC uptake-one primarily facilitated by SLC and the other being passive CO2 entry facilitated by external carbonic anhydrase. The phylogenetic independence of these strategies suggests that environmental demands drove the evolution of distinct DIC uptake mechanisms in diatoms.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| | - Anggara Mahardika
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo, Japan
| |
Collapse
|
23
|
Tsuji Y, Nakajima K, Matsuda Y. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3763-3772. [PMID: 28633304 DOI: 10.1093/jxb/erx173] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diatoms operate a CO2-concentrating mechanism (CCM) that drives upwards of 20% of annual global primary production. Recent progress in CCM research in the marine pennate diatom Phaeodactylum tricornutum revealed that this diatom directly takes up HCO3- from seawater through low-CO2-inducible plasma membrane HCO3- transporters, which belong to the solute carrier (SLC) 4 family. Apart from this, studies of carbonic anhydrases (CAs) in diatoms have revealed considerable diversity in classes and localization among species. This strongly suggests that the CA systems, which control permeability and flux of dissolved inorganic carbon (DIC) by catalysing reversible CO2 hydration, have evolved from diverse origins. Of particular interest is the occurrence of low-CO2-inducible external CAs in the centric marine diatom Thalassiosira pseudonana, offering a strategy of CA-catalysed initial CO2 entry via passive diffusion, contrasting with active DIC transport in P. tricornutum. Molecular mechanisms to transport DIC across chloroplast envelopes are likely also through specific HCO3- transporters, although details have yet to be elucidated. Furthermore, recent discovery of a luminal θ-CA in the diatom thylakoid implied a common strategy in the mechanism to supply CO2 to RubisCO in the pyrenoid, which is conserved among green algae and some heterokontophytes. These results strongly suggest an occurrence of convergent coevolution between the pyrenoid and thylakoid membrane in aquatic photosynthesis.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
24
|
Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, Fernie AR, Vyverman W, Goossens A. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. EMBO J 2017; 36:1559-1576. [PMID: 28420744 DOI: 10.15252/embj.201696392] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle.
Collapse
Affiliation(s)
- Michiel Matthijs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Michele Fabris
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Imogen Foubert
- Research Unit Food & Lipids, Department of Molecular and Microbial Systems Kulak, Leuven Food Science and Nutrition Research Centre (LFoRCe), Kortrijk, Belgium
| | | | - Roberto Solano
- Genomics Unit, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.,Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium .,Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
25
|
Zhu X, Huang C, Zhang L, Liu H, Yu J, Hu Z, Hua W. Systematic Analysis of Hsf Family Genes in the Brassica napus Genome Reveals Novel Responses to Heat, Drought and High CO 2 Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1174. [PMID: 28729874 PMCID: PMC5498556 DOI: 10.3389/fpls.2017.01174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/19/2017] [Indexed: 05/19/2023]
Abstract
Drought and heat stress are major causes of lost plant crop yield. In the future, high levels of CO2, in combination of other abiotic stress factors, will become a novel source of stress. Little is known of the mechanisms involved in the acclimation responses of plants to this combination of abiotic stress factors, though it has been demonstrated that heat shock transcription factors (Hsfs) are involved in plant response to various abiotic stresses. In this study, we performed a genome-wide identification and a systematic analysis of genes in the Hsf gene family in Brassica napus. A total of 64 genes encoding Hsf proteins were identified and classified into 3 major classes: A, B and C. We found that, unlike in other eudicots, the A9 subclass is absent in rapeseed. Further gene structure analysis revealed a loss of the only intron in the DBD domain for BnaHsf63 and -64 within class C, which is evolutionarily conserved in all Hsf genes. Transcription profile results demonstrated that most BnaHsf family genes are upregulated by both drought and heat conditions, while some are responded to a high CO2 treatment. According to the combined RNA-seq and qRT-PCR analysis, the A1E/A4A/A7 subclasses were upregulated by both drought and heat treatments. Members in class C seemed to be predominantly induced only by drought. Among BnaHsf genes, the A2/A3/B2 subclasses were regulated by all three abiotic stresses. Members in A2/B2 subclasses were upregulated by drought and heat treatments, but were downregulated under high CO2 conditions. While the A3 subclass was upregulated by all the three abiotic stresses. Various stress-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of BnaHsfs to these abiotic stresses. Further study of these novel groups of multifunctional BnaHsf genes will improve our understanding of plant acclimation response to abiotic stresses, and may be useful for improving the abiotic stress resistance of crop varieties.
Collapse
|
26
|
Davis A, Abbriano R, Smith SR, Hildebrand M. Clarification of Photorespiratory Processes and the Role of Malic Enzyme in Diatoms. Protist 2016; 168:134-153. [PMID: 28104538 DOI: 10.1016/j.protis.2016.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/20/2022]
Abstract
Evidence suggests that diatom photorespiratory metabolism is distinct from other photosynthetic eukaryotes in that there may be at least two routes for the metabolism of the photorespiratory metabolite glycolate. One occurs primarily in the mitochondria and is similar to the C2 photorespiratory pathway, and the other processes glycolate through the peroxisomal glyoxylate cycle. Genomic analysis has identified the presence of key genes required for glycolate oxidation, the glyoxylate cycle, and malate metabolism, however, predictions of intracellular localization can be ambiguous and require verification. This knowledge gap leads to uncertainties surrounding how these individual pathways operate, either together or independently, to process photorespiratory intermediates under different environmental conditions. Here, we combine in silico sequence analysis, in vivo protein localization techniques and gene expression patterns to investigate key enzymes potentially involved in photorespiratory metabolism in the model diatom Thalassiosira pseudonana. We demonstrate the peroxisomal localization of isocitrate lyase and the mitochondrial localization of malic enzyme and a glycolate oxidase. Based on these analyses, we propose an updated model for photorespiratory metabolism in T. pseudonana, as well as a mechanism by which C2 photorespiratory metabolism and its associated pathways may operate during silicon starvation and growth arrest.
Collapse
Affiliation(s)
- Aubrey Davis
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A
| | - Raffaela Abbriano
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A
| | - Sarah R Smith
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A.; J. Craig Venter Institute, La Jolla, CA, U.S.A
| | - Mark Hildebrand
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, U.S.A..
| |
Collapse
|
27
|
Taddei L, Stella GR, Rogato A, Bailleul B, Fortunato AE, Annunziata R, Sanges R, Thaler M, Lepetit B, Lavaud J, Jaubert M, Finazzi G, Bouly JP, Falciatore A. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3939-51. [PMID: 27225826 PMCID: PMC4915529 DOI: 10.1093/jxb/erw198] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.
Collapse
Affiliation(s)
- Lucilla Taddei
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giulio Rocco Stella
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy
| | - Alessandra Rogato
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Antonio Emidio Fortunato
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Remo Sanges
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Michael Thaler
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Bernard Lepetit
- Zukunftskolleg, Department of Plant Ecophysiology, University of Konstanz, D-78457 Konstanz, Germany
| | - Johann Lavaud
- UMI 3376 TAKUVIK, CNRS/Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec (Québec) G1V 0A6, Canada
| | - Marianne Jaubert
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Institut National Recherche Agronomique (INRA), Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble, (BIG), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Angela Falciatore
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
28
|
Smith SR, Glé C, Abbriano RM, Traller JC, Davis A, Trentacoste E, Vernet M, Allen AE, Hildebrand M. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2016; 210:890-904. [PMID: 26844818 PMCID: PMC5067629 DOI: 10.1111/nph.13843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/03/2015] [Indexed: 05/06/2023]
Abstract
Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterized alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.
Collapse
Affiliation(s)
- Sarah R. Smith
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA92037USA
| | - Corine Glé
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Raffaela M. Abbriano
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Jesse C. Traller
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Aubrey Davis
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Emily Trentacoste
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Maria Vernet
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Andrew E. Allen
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA92037USA
| | - Mark Hildebrand
- Scripps Institution of OceanographyUC San Diego9500 Gilman DriveLa JollaCA92093USA
| |
Collapse
|
29
|
Tanaka A, Ohno N, Nakajima K, Matsuda Y. Light and CO2/cAMP Signal Cross Talk on the Promoter Elements of Chloroplastic β-Carbonic Anhydrase Genes in the Marine Diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2016; 170:1105-16. [PMID: 26662605 PMCID: PMC4734587 DOI: 10.1104/pp.15.01738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
Our previous study showed that three CO2/cAMP-responsive elements (CCRE) CCRE1, CCRE2, and CCRE3 in the promoter of the chloroplastic β-carbonic anhydrase 1 gene in the marine diatom Phaeodactylum tricornutum (Pptca1) were critical for the cAMP-mediated transcriptional response to ambient CO2 concentration. Pptca1 was activated under CO2 limitation, but the absence of light partially disabled this low-CO2-triggered transcriptional activation. This suppression effect disappeared when CCRE2 or two of three CCREs were replaced with a NotI restriction site, strongly suggesting that light signal cross-talks with CO2 on the cAMP-signal transduction pathway that targets CCREs. The paralogous chloroplastic carbonic anhydrase gene, ptca2 was also CO2/cAMP-responsive. The upstream truncation assay of the ptca2 promoter (Pptca2) revealed a short sequence of -367 to -333 relative to the transcription-start site to be a critical regulatory region for the CO2 and light responses. This core-regulatory region comprises one CCRE1 and two CCRE2 sequences. Further detailed analysis of Pptca2 clearly indicates that two CCRE2s are the cis-element governing the CO2/light response of Pptca2. The transcriptional activation of two Pptcas in CO2 limitation was evident under illumination with a photosynthetically active light wavelength, and an artificial electron acceptor from the reduction side of PSI efficiently inhibited Pptcas activation, while neither inhibition of the linear electron transport from PSII to PSI nor inhibition of ATP synthesis showed an effect on the promoter activity, strongly suggesting a specific involvement of the redox level of the stromal side of the PSI in the CO2/light cross talk.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| | - Naoki Ohno
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| | - Kensuke Nakajima
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| | - Yusuke Matsuda
- Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, and Department of Bioscience, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo, Japan, 669-1337
| |
Collapse
|
30
|
Matthijs M, Fabris M, Broos S, Vyverman W, Goossens A. Profiling of the Early Nitrogen Stress Response in the Diatom Phaeodactylum tricornutum Reveals a Novel Family of RING-Domain Transcription Factors. PLANT PHYSIOLOGY 2016; 170:489-98. [PMID: 26582725 PMCID: PMC4704581 DOI: 10.1104/pp.15.01300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 05/24/2023]
Abstract
Diatoms often inhabit highly variable habitats where they are confronted with a wide variety of stresses, frequently including starvation of nutrients such as nitrogen. In this study, the transcriptome of the model diatom Phaeodactylum tricornutum was profiled during the onset of nitrogen starvation by RNA sequencing, and overrepresented motifs were determined in promoters of genes that were early and strongly up-regulated during the nitrogen stress response. One of these motifs could be bound by a nitrogen starvation-inducible RING-domain protein termed RING-GAF-Gln-containing protein (RGQ1), which was shown to act as a transcription factor and belongs to a previously uncharacterized family that is conserved in heterokont algae.
Collapse
Affiliation(s)
- Michiel Matthijs
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Michele Fabris
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Stefan Broos
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Wim Vyverman
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| | - Alain Goossens
- Department of Plant Systems Biology (M.M., M.F., A.G.) and Inflammation Research Center (S.B.), VIB, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics (M.M., M.F., A.G.) and Department of Biomedical Molecular Biology (S.B.), Ghent University, B-9052 Gent, Belgium; and Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, B-9000 Gent, Belgium (M.M., M.F., W.V.)
| |
Collapse
|
31
|
Characterization of marine diatom-infecting virus promoters in the model diatom Phaeodactylum tricornutum. Sci Rep 2015; 5:18708. [PMID: 26692124 PMCID: PMC4686930 DOI: 10.1038/srep18708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023] Open
Abstract
Viruses are considered key players in phytoplankton population control in oceans. However, mechanisms that control viral gene expression in prominent microalgae such as diatoms remain largely unknown. In this study, potential promoter regions isolated from several marine diatom-infecting viruses (DIVs) were linked to the egfp reporter gene and transformed into the Pennales diatom Phaeodactylum tricornutum. We analysed their activity in cells grown under different conditions. Compared to diatom endogenous promoters, novel DIV promoter (ClP1) mediated a significantly higher degree of reporter transcription and translation. Stable expression levels were observed in transformants grown under both light and dark conditions, and high levels of expression were reported in cells in the stationary phase compared to the exponential phase of growth. Conserved motifs in the sequence of DIV promoters were also found. These results allow the identification of novel regulatory regions that drive DIV gene expression and further examinations of the mechanisms that control virus-mediated bloom control in diatoms. Moreover, the identified ClP1 promoter can serve as a novel tool for metabolic engineering of diatoms. This is the first report describing a promoter of DIVs that may be of use in basic and applied diatom research.
Collapse
|
32
|
García-Gómez C, Gordillo FJL, Palma A, Lorenzo MR, Segovia M. Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta. Photochem Photobiol Sci 2015; 13:1347-58. [PMID: 25043601 DOI: 10.1039/c4pp00044g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of increased CO2 and irradiance on the physiological performance of the chlorophyte Dunaliella tertiolecta were studied at different PAR and UVR (UVA + UVB) irradiances, simulating the solar radiation at different depths, at present (390 ppmv, LC) and predicted CO2 levels for the year 2100 (1000 ppmv, HC). Elevated CO2 resulted in higher optimum and effective quantum yields (F(v)/F(m) and ϕPSII, respectively), electron transport rates (ETR) and specific growth rates (μ). Cell stress was alleviated in HC with respect to LC as evidenced by a decrease in reactive oxygen species (ROS) accumulation. DNA damage showed a 42-fold increase in cyclobutane-pyrimidine dimer (CPD) formation under the highest irradiance (1100 μmol quanta m(-2) s(-1)) in LC with respect to the lowest irradiance (200 μmol quanta m(-2) s(-1)). Photolyase (CII-PCD-PL) gene expression was upregulated under HC resulting in a drastic decrease in CPD accumulation to only 25% with respect to LC. Proliferating cell nuclear antigen (PCNA) accumulation was always higher in HC and the accumulation pattern indicated its involvement in repair or growth depending on the irradiance dose. The repressor of silencing (ROS1) was only marginally involved in the response, suggesting that photoreactivation was the most relevant mechanism to overcome UVR damage. Our results demonstrate that future scenarios of global change result in alleviation of irradiance stress by CO2-induced photoprotection in D. tertiolecta.
Collapse
Affiliation(s)
- Candela García-Gómez
- Department of Ecology, Faculty of Sciences, University of Málaga, Bvd. Louis Pasteur s/n, 29010 Málaga, Spain.
| | | | | | | | | |
Collapse
|
33
|
Hopkinson BM. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2014; 121:223-33. [PMID: 24292858 DOI: 10.1007/s11120-013-9954-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/18/2013] [Indexed: 05/19/2023]
Abstract
Prior analysis of inorganic carbon (Ci) fluxes in the diatom Phaeodactylum tricornutum has indicated that transport of Ci into the chloroplast from the cytoplasm is the major Ci flux in the cell and the primary driving force for the CO2 concentrating mechanism (CCM). This flux drives the accumulation of Ci in the chloroplast stroma and generates a CO2 deficit in the cytoplasm, inducing CO2 influx into the cell. Here, the "chloroplast pump" model of the CCM in P. tricornutum is formalized and its consistency with data on CO2 and HCO3 (-) uptake rates, carbonic anhydrase (CA) activity, intracellular Ci concentration, intracellular pH, and RubisCO characteristics is assessed. The chloroplast pump model can account for the major features of the data. Analysis of photosynthetic and Ci uptake rates as a function of external Ci concentration shows that the model has the most difficulty obtaining sufficiently low cytoplasmic CO2 concentrations to support observed CO2 uptake rates at low external Ci concentrations and achieving high rates of photosynthesis. There are multiple ways in which model parameters can be varied, within a plausible range, to match measured rates of photosynthesis and CO2 uptake. To increase CO2 uptake rates, CA activity can be increased, kinetic characteristics of the putative chloroplast pump can be enhanced to increase HCO3 (-) export, or the cytoplasmic pH can be raised. To increase the photosynthetic rate, the permeability of the pyrenoid to CO2 can be reduced or RubisCO content can be increased.
Collapse
Affiliation(s)
- Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA,
| |
Collapse
|
34
|
Yoshinaga R, Niwa-Kubota M, Matsui H, Matsuda Y. Characterization of iron-responsive promoters in the marine diatom Phaeodactylum tricornutum. Mar Genomics 2014; 16:55-62. [PMID: 24530214 DOI: 10.1016/j.margen.2014.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/24/2013] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
It is well established that iron is one of the major constraints of primary productivity of marine diatoms in world oceans. In the present study, changes in the transcript levels of the 20 iron related genes were profiled in the marine diatom Phaeodactylum tricornutum during an early stage of acclimation from iron replete to iron-limited conditions. The results clearly showed that the profiles differ depending on genes, suggesting the occurrence of several modes of iron-responsive regulation at the transcriptional level. Upstream DNA sequences of iron starvation induced protein1 (Isi1), ferrichrome binding protein1 (FBP1), and flavodoxin (Fld) genes were isolated, fused with the GUS reporter gene, uidA, and transformed into P. tricornutum. Obtained transformants were subjected to the GUS reporter assay and the result clearly revealed that the GUS activity of all transformants was significantly increased upon iron limitation. Iron responsive Cis-elements in each promoter region were determined by the promoter truncation technique, demonstrating the occurrence of the critical iron-responsive regulatory regions of about 30bp in the promoter regions of three genes, Isi1, FBP1, and Fld. Interestingly, these sequences were similar with each other revealing two conserved motifs, A; A(A/C)G(G/C)C(G/-)C(A/G)TG; and B; CACGTG(T/C)C, which are homologous to the iron responsive Cis-element in the green alga, Chlamydomonas reinhardtii. The impairment of the motif B in the Isi1 promoter resulted in the loss of iron response and the core regulatory region of the FBP1 promoter conferred an iron response on the constitutive cytomegalovirus promoter, PCMV, indicating that these conserved promoter sequences are iron-responsive elements. Finally, the inductive regulation of these promoters under iron-limited conditions was dissipated specifically by 5% CO2, strongly suggesting the participation of CO2 in the transcriptional regulation of the iron-related gene promoters.
Collapse
Affiliation(s)
- Ryo Yoshinaga
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Megumi Niwa-Kubota
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hiroaki Matsui
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
35
|
|