1
|
Zhou R, Huang C, Wen X, Sun Z, Dong W, Chen Y, Huang N, Zhang H, Su H, Li Y, Peng Z, Zhang Y, Cao L, Cheng S, Zhan X, Sun L, Chen D. Rice THIN CULM 4 (TC4) modulates culm strength by regulating morphology, structure, and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112375. [PMID: 39800115 DOI: 10.1016/j.plantsci.2024.112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Culm strength is crucial for rice growth, nutrition transportation, and structural resilience, which are essential for lodging resistance and stable production. In this study, we identified a rice thin culm mutant tc4, characterized by thinner culms and thicker cavity walls, resulting in weakened culm mechanical strength. Using map-based cloning, the candidate gene was isolated, and complementation and CRISPR/Cas9 experiments confirmed that a single nucleotide substitution in TC4 is responsible for the thin and brittle culm phenotype. TC4, a homolog of the FLORICAULA/LEAFY gene, localizes to the nucleus and cytoplasm. Further research revealed that TC4 regulates culm development by influencing plant hormones and sugar transport. This research not only advances our understanding of rice culm regulation, but also provides valuable insights for breeding lodging-resistant rice varieties.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Chenbo Huang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Xiaoxia Wen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Zhihao Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Wei Dong
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650051, China
| | - Yuyu Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; Department of Resources and Environment, Moutai Institute, Renhuai 564507, China
| | - Nuan Huang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Han Zhang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Haihan Su
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Yanhui Li
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Zequn Peng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China.
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China.
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China.
| |
Collapse
|
2
|
Liu J, He F, Chen Z, Liu M, Xiao Y, Wang Y, Cai Y, Du J, Jin W, Liu X. Subtilisin-like protease 4 regulates cold tolerance through cell wall modification in rice. Sci Rep 2025; 15:426. [PMID: 39747628 PMCID: PMC11696678 DOI: 10.1038/s41598-024-84491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress. The rice SUB gene family consists of 62 members, but it is unknown whether they are involved in the response to cold stress. In this study, we observed that a loss-of-function SUB4 mutant exhibited enhanced cold tolerance at the seedling stage. The sub4 mutant seedlings exhibited improved survival rates and related physiological parameters, including relative electrolyte conductivity, chlorophyll content, malondialdehyde content, and antioxidant enzyme activity. Transcriptomic analysis revealed that differentially expressed genes responsive to cold stress in the sub4 mutants were primarily associated with metabolism and signal transduction. Notably, the majority of cold-responsive genes were associated with cell wall functions, including those related to cell wall organization, chitin catabolic processes, and oxidoreductases. Our findings suggest that SUB4 negatively regulates the cold response in rice seedlings, possibly by modifying the properties of the cell wall.
Collapse
Affiliation(s)
- Jingyan Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Fei He
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhicai Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Meng Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yingni Xiao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Ying Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - YuMeng Cai
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jin Du
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Weiwei Jin
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xuejun Liu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
3
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Sawasdee A, Tsai TH, Chang YH, Shrestha JK, Lin MC, Chiang HI, Wang CS. Characterization of Cell Wall Compositions of Sodium Azide-Induced Brittle Mutant Lines in IR64 Variety and Its Potential Application. PLANTS (BASEL, SWITZERLAND) 2024; 13:3303. [PMID: 39683096 DOI: 10.3390/plants13233303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024]
Abstract
The rice brittle culm is a cell wall composition changed mutant suitable for studying mechanical strength in rice. However, a thorough investigation of brittle culm has been limited due to the lack of diverse brittle mutants on similar genetic backgrounds in cell walls. In this study, we obtained 45 various brittle mutant lines (BMLs) from the IR64 mutant pool induced by sodium azide mutagenesis using the finger-bending method and texture profile analysis. The first scoring method was established to differentiate the levels of brittleness in rice tissues. The variation of cell wall compositions of BMLs showed that the brittleness in rice primarily correlated with cellulose content supported by high correlation coefficients (R = -0.78) and principal component analysis (PCA = 81.7%). As demonstrated using PCA, lower correlation with brittleness, hemicellulose, lignin, and silica were identified as minor contributors to the overall balance of cell wall compositions and brittleness. The analysis of hydrolysis and feeding indexes highlighted the importance of diversities of brittleness and cell wall compositions of BMLs and their potential applications in ruminant animals and making bioenergy. These results contributed to the comprehension of brittleness and mechanical strength in rice and also extended the applications of rice straw.
Collapse
Affiliation(s)
- Anuchart Sawasdee
- Department of Agronomy, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Tsung-Han Tsai
- Department of Agronomy, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Yi-Hsin Chang
- Department of Agronomy, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Jeevan Kumar Shrestha
- Department of Agronomy, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Meng-Chun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City 115201, Taiwan
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung City 402202, Taiwan
| |
Collapse
|
5
|
Liu H, Zhang W, He Q, Aikemu R, Xu H, Guo Z, Wang L, Li W, Wang G, Wang X, Guo W. Re-localization of a repeat-containing fungal effector by apoplastic protein Chitinase-like 1 blocks its toxicity. Nat Commun 2024; 15:10122. [PMID: 39578470 PMCID: PMC11584738 DOI: 10.1038/s41467-024-54470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
A fungal effector that is toxic to plant cells was identified in Verticillium dahliae. The effector contains a non-canonical Common in several Fungal Extracellular Membrane proteins (CFEM) domain, a tandem repeat region consisting of four 14-amino acid repeats rich in proline, and a C-terminal region, thus is designated V. dahliae tetrapeptide repeat protein (VdTRP). The membrane targeting of VdTRP is vital for its cell toxicity. CFEM mediates the membrane targeting and the tandem repeat region exerts the toxic function upon cell membrane. The chitinase-like 1 (CTL1), an essential apoplastic protein of cotton, can redirect VdTRP from cell membrane to apoplast. Transgenic cotton overexpressing CTL1 greatly enhances cotton resistance to V. dahliae without affecting cotton growth and development, implicating its potential application in breeding cotton with high wilt resistance. Our data demonstrates that genetic manipulation of effector target constitutes potential strategy for improving crop resistance to fungal pathogens.
Collapse
Affiliation(s)
- Hanqiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinqfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reyila Aikemu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
7
|
Yang Y, Mu J, Hao X, Yang K, Cao Z, Feng J, Li R, Zhang N, Zhou G, Kong Y, Wang D. Identification and Analysis of the Mechanism of Stem Mechanical Strength Enhancement for Maize Inbred Lines QY1. Int J Mol Sci 2024; 25:8195. [PMID: 39125770 PMCID: PMC11312173 DOI: 10.3390/ijms25158195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Enhancing stalk strength is a crucial strategy to reduce lodging. We identified a maize inbred line, QY1, with superior stalk mechanical strength. Comprehensive analyses of the microstructure, cell wall composition, and transcriptome of QY1 were performed to elucidate the underlying factors contributing to its increased strength. Notably, both the vascular bundle area and the thickness of the sclerenchyma cell walls in QY1 were significantly increased. Furthermore, analyses of cell wall components revealed a significant increase in cellulose content and a notable reduction in lignin content. RNA sequencing (RNA-seq) revealed changes in the expression of numerous genes involved in cell wall synthesis and modification, especially those encoding pectin methylesterase (PME). Variations in PME activity and the degree of methylesterification were noted. Additionally, glycolytic efficiency in QY1 was significantly enhanced. These findings indicate that QY1 could be a valuable resource for the development of maize varieties with enhanced stalk mechanical strength and for biofuel production.
Collapse
Affiliation(s)
- Yumeng Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Jianing Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Xiaoning Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Kangkang Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Ziyu Cao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Jiping Feng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Runhao Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Ning Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (Y.Y.); (J.M.); (X.H.); (K.Y.); (Z.C.); (J.F.); (R.L.); (N.Z.)
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257000, China
| |
Collapse
|
8
|
Thuy NT, Kim H, Hong S. Antagonistic functions of CTL1 and SUH1 mediate cell wall assembly in Arabidopsis. PLANT DIRECT 2024; 8:e580. [PMID: 38525472 PMCID: PMC10960159 DOI: 10.1002/pld3.580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Plant genomes contain numerous genes encoding chitinase-like (CTL) proteins, which have a similar protein structure to chitinase belonging to the glycoside hydrolase (GH) family but lack the chitinolytic activity to cleave the β-1,4-glycosidic bond in chitins, polymers of N-acetylglucosamine. CTL1 mutations found in rice and Arabidopsis have caused pleiotropic developmental defects, including altered cell wall composition and decreased abiotic stress tolerance, likely due to reduced cellulose content. In this study, we identified suppressor of hot2 1 (suh1) as a genetic suppressor of the ctl1 hot2-1 mutation in Arabidopsis. The mutation in SUH1 restored almost all examined ctl1 hot2-1 defects to nearly wild-type levels or at least partially. SUH1 encodes a Golgi-located type II membrane protein with glycosyltransferase (GT) activity, and its mutations lead to a reduction in cellulose content and hypersensitivity to cellulose biosynthesis inhibitors, although to a lesser extent than ctl1 hot2-1 mutation. The SUH1 promoter fused with the GUS reporter gene exhibited GUS activity in interfascicular fibers and xylem in stems; meanwhile, the ctl1 hot2-1 mutation significantly increased this activity. Our findings provide genetic and molecular evidence that the antagonistic activities of CTL1 and SUH1 play an essential role in assembling the cell wall in Arabidopsis.
Collapse
Affiliation(s)
- Nguyen Thi Thuy
- Department of the Integrative Food, Bioscience, and Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Hyun‐Jung Kim
- Department of the Integrative Food, Bioscience, and Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| | - Suk‐Whan Hong
- Department of the Integrative Food, Bioscience, and Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuKorea
| |
Collapse
|
9
|
Sun H, Sun J, Yuan Z, Li F, Li X, Li J, Du Y, Wang F. A Tos17 transposon insertion in OsCesA9 causes brittle culm in rice. Gene 2024; 890:147818. [PMID: 37739196 DOI: 10.1016/j.gene.2023.147818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The mechanical strength of rice stalks plays an important role in rice growth and development. In this study, the brittle culm mutant bc26 was identified from a tissue culture-derived line of the japonica rice cultivar 'ZH15'. bc26 plants showed fragile leaves and stalks and reduced plant height and spike number compared with wild-type 'ZH15'. Analysis of cell wall components revealed that the cellulose content of stems, leaves, roots and spikes of bc26 plants was significantly lower than that of the wild type, while the hemicellulose content in these tissues of bc26 plants was significantly higher than that of the wild type. Further sequencing using a mixed pool bulked segregant analysis sequencing (BSA-Seq) of brittle plants from the F2 populations localized the bc26 gene to chromosome 9, and a Tos17 transposon insertion in the bc6 gene near the highest SNP-index point was associated with a loss of gene function. Therefore, the bc26 gene was tentatively identified as a new allele of the Bc6 gene, resulting in the brittle culm trait caused by the insertion of the Tos17 transposon.
Collapse
Affiliation(s)
- Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Jiajun Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zeke Yuan
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fuhao Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Xinrong Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Junzhou Li
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yanxiu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
10
|
Xuan C, Feng M, Li X, Hou Y, Wei C, Zhang X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int J Mol Sci 2024; 25:638. [PMID: 38203810 PMCID: PMC10779513 DOI: 10.3390/ijms25010638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Mengjiao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Yinjie Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
11
|
Lv S, Lin Z, Shen J, Luo L, Xu Q, Li L, Gui J. OsTCP19 coordinates inhibition of lignin biosynthesis and promotion of cellulose biosynthesis to modify lodging resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:123-136. [PMID: 37724960 DOI: 10.1093/jxb/erad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Lignin and cellulose are two essential elements of plant secondary cell walls that shape the mechanical characteristics of the culm to prevent lodging. However, how the regulation of the lignin and cellulose composition is combined to achieve optimal mechanical characteristics is unclear. Here, we show that increasing OsTCP19 expression in rice coordinately repressed lignin biosynthesis and promoted cellulose biosynthesis, resulting in enhanced lodging resistance. In contrast, repression of OsTCP19 coordinately promoted lignin biosynthesis and inhibited cellulose biosynthesis, leading to greater susceptibility to lodging. We found that OsTCP19 binds to the promoters of both MYB108 and MYB103L to increase their expression, with the former being responsible for repressing lignin biosynthesis and the latter for promoting cellulose biosynthesis. Moreover, up-regulation of OsTCP19 in fibers improved grain yield and lodging resistance. Thus, our results identify the OsTCP19-OsMYB108/OsMYB103L module as a key regulator of lignin and cellulose production in rice, and open up the possibility for precisely manipulating lignin-cellulose composition to improve culm mechanical properties for lodging resistance.
Collapse
Affiliation(s)
- Siwei Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zengshun Lin
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junhui Shen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laifu Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingguo Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Wu Y, Zha W, Qiu D, Guo J, Liu G, Li C, Wu B, Li S, Chen J, Hu L, Shi S, Zhou L, Zhang Z, Du B, You A. Comprehensive identification and characterization of lncRNAs and circRNAs reveal potential brown planthopper-responsive ceRNA networks in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1242089. [PMID: 37636117 PMCID: PMC10457010 DOI: 10.3389/fpls.2023.1242089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive pests of rice. Non-coding RNA plays an important regulatory role in various biological processes. However, comprehensive identification and characterization of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in BPH-infested rice have not been performed. Here, we performed a genome-wide analysis of lncRNAs and circRNAs in BPH6-transgenic (resistant, BPH6G) and Nipponbare (susceptible, NIP) rice plants before and after BPH feeding (early and late stage) via deep RNA-sequencing. A total of 310 lncRNAs and 129 circRNAs were found to be differentially expressed. To reveal the different responses of resistant and susceptible rice to BPH herbivory, the potential functions of these lncRNAs and circRNAs as competitive endogenous RNAs (ceRNAs) were predicted and investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Dual-luciferase reporter assays revealed that miR1846c and miR530 were targeted by the lncRNAs XLOC_042442 and XLOC_028297, respectively. In responsive to BPH infestation, 39 lncRNAs and 21 circRNAs were predicted to combine with 133 common miRNAs and compete for miRNA binding sites with 834 mRNAs. These mRNAs predictably participated in cell wall organization or biogenesis, developmental growth, single-organism cellular process, and the response to stress. This study comprehensively identified and characterized lncRNAs and circRNAs, and integrated their potential ceRNA functions, to reveal the rice BPH-resistance network. These results lay a foundation for further study on the functions of lncRNAs and circRNAs in the rice-BPH interaction, and enriched our understanding of the BPH-resistance response in rice.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wenjun Zha
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Dongfeng Qiu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Changyan Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bian Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liang Hu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zaijun Zhang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Aiqing You
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
13
|
Xu Z, Dai J, Liang L, Zhang Y, He Y, Xing L, Ma J, Zhang D, Zhao C. Chitinase-Like Protein PpCTL1 Contributes to Maintaining Fruit Firmness by Affecting Cellulose Biosynthesis during Peach Development. Foods 2023; 12:2503. [PMID: 37444241 DOI: 10.3390/foods12132503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The firmness of the flesh fruit is a very important feature in the eating process. Peach fruit is very hard during development, but its firmness slightly decreases in the later stages of development. While there has been extensive research on changes in cell wall polysaccharides during fruit ripening, little is known about the changes that occur during growth and development. In this study, we investigated the modifications in cell wall components throughout the development and ripening of peach fruit, as well as its impact on firmness. Our findings revealed a significant positive correlation between fruit firmness and cellulose content at development stage. However, the correlation was lost during the softening process, suggesting that cellulose might be responsible for the fruit firmness during development. Members of the chitinase-like protein (CTL) group are of interest because of their possible role in plant cell wall biosynthesis. Here, two CTL homologous genes, PpCTL1 and PpCTL2, were identified in peach. Spatial and temporal expression patterns of PpCTLs revealed that PpCTL1 exhibited high expression abundance in the fruit and followed a similar trend to cellulose during fruit growth. Furthermore, silencing PpCTL1 expression resulted in reduced cellulose content at 5 DAI (days after injection), this change that would have a negative effect on fruit firmness. Our results indicate that PpCTL1 plays an important role in cellulose biosynthesis and the maintenance of peach firmness during development.
Collapse
Affiliation(s)
- Ze Xu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Jieyu Dai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Liping Liang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yonglan Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yaojun He
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| |
Collapse
|
14
|
Chen X, Yang S, Ma J, Huang Y, Wang Y, Zeng J, Li J, Li S, Long D, Xiao X, Sha L, Wu D, Fan X, Kang H, Zhang H, Zhou Y, Cheng Y. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130998. [PMID: 36860063 DOI: 10.1016/j.jhazmat.2023.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of manganese (Mn) and copper (Cu) on dwarf Polish wheat under cadmium (Cd) stress by evaluating plant growth, Cd uptake, translocation, accumulation, subcellular distribution, and chemical forms, and the expression of genes participating in cell wall synthesis, metal chelation, and metal transport. Compared with the control, Mn deficiency and Cu deficiency increased Cd uptake and accumulation in roots, and Cd levels in root cell wall and soluble fractions, but inhibited Cd translocation to shoots. Mn addition reduced Cd uptake and accumulation in roots, and Cd level in root soluble fraction. Cu addition did not affect Cd uptake and accumulation in roots, while it caused a decrease and an increase of Cd levels in root cell wall and soluble fractions, respectively. The main Cd chemical forms (water-soluble Cd, pectates and protein integrated Cd, and undissolved Cd phosphate) in roots were differently changed. Furthermore, all treatments distinctly regulated several core genes that control the main component of root cell walls. Several Cd absorber (COPT, HIPP, NRAMP, and IRT) and exporter genes (ABCB, ABCG, ZIP, CAX, OPT, and YSL) were differently regulated to mediate Cd uptake, translocation, and accumulation. Overall, Mn and Cu differently influenced Cd uptake and accumulation; Mn addition is an effective treatment for reducing Cd accumulation in wheat.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Jinjiang 610066, Sichuan, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
15
|
Yang X, Lai Y, Wang L, Zhao M, Wang J, Li M, Chi L, Lv G, Liu Y, Cui Z, Li R, Wu L, Sun B, Zhang X, Jiang S. Isolation of a Novel QTL, qSCM4, Associated with Strong Culm Affects Lodging Resistance and Panicle Branch Number in Rice. Int J Mol Sci 2023; 24:ijms24010812. [PMID: 36614255 PMCID: PMC9821088 DOI: 10.3390/ijms24010812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Rice breeders are now developing new varieties with semi-high or even high plant height to further increase the grain yield, and the problem of lodging has re-appeared. We identified a major quantitative trait locus (QTL), qSCM4, for resistance to lodging by using an F2 segregant population and a recombinant self-incompatible line population from the cross between Shennong265 (SN265) and Lijiangxintuanheigu (LTH) after multiple years and multiple environments. Then, the residual heterozygous derived segregant population which consisted of 1781 individual plants, and the BC3F2 segregant population which consisted of 3216 individual plants, were used to shorten the physical interval of qSCM4 to 58.5 kb including 11 genes. DNA sequencing revealed the most likely candidate gene for qSCM4 was Os04g0615000, which encoded a functional protein with structural domains of serine and cysteine. There were 13 DNA sequence changes in LTH compared to SN265 in this gene, including a fragment deletion, two base changes in the 3' UTR region, six base changes in the exons, and four base changes in the introns. A near-isogenic line carrying qSCM4 showed that it improved the lodging resistance through increasing stem thickness by 25.3% and increasing stem folding resistance by 20.3%. Furthermore, it was also discovered that qSCM4 enhanced the primary branch per panicle by 16.7%, secondary branch by per panicle 9.9%, and grain number per panicle by 14.7%. All the above results will give us a valuable genetic resource for concurrently boosting culm strength and lodging resistance, and they will also provide a basis for further research on the lodging resistance mechanism of rice.
Collapse
Affiliation(s)
- Xianli Yang
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Yongcai Lai
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Lizhi Wang
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Collaborative Innovation Center Co-Sponsored by Liaoning Provincial Government and Ministry of Education for Northeast Japonica Rice Genetic Improvement and High Efficiency Production, Shenyang 110161, China; (M.Z.); (J.W.); (Z.C.)
| | - Jiayu Wang
- Rice Research Institute, Shenyang Agricultural University, Collaborative Innovation Center Co-Sponsored by Liaoning Provincial Government and Ministry of Education for Northeast Japonica Rice Genetic Improvement and High Efficiency Production, Shenyang 110161, China; (M.Z.); (J.W.); (Z.C.)
| | - Mingxian Li
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Liyong Chi
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Guoyi Lv
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
| | - Youhong Liu
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Collaborative Innovation Center Co-Sponsored by Liaoning Provincial Government and Ministry of Education for Northeast Japonica Rice Genetic Improvement and High Efficiency Production, Shenyang 110161, China; (M.Z.); (J.W.); (Z.C.)
| | - Rui Li
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Liren Wu
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
| | - Bing Sun
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
| | - Xijuan Zhang
- Crop Cultivation and Tillage Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (Y.L.); (L.W.); (M.L.); (L.C.); (G.L.); (Y.L.); (R.L.); (L.W.); (B.S.)
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Correspondence: (X.Z.); (S.J.)
| | - Shukun Jiang
- Heilongjiang Provincial Key Laboratory, Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Northeast Center of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Qiqihar Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
- Correspondence: (X.Z.); (S.J.)
| |
Collapse
|
16
|
Liu Y, Wu Q, Qin Z, Huang J. Transcription factor OsNAC055 regulates GA-mediated lignin biosynthesis in rice straw. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111455. [PMID: 36152809 DOI: 10.1016/j.plantsci.2022.111455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Crop straws represent enormous biomass resource that mainly contain secondary cell walls (SCWs) consisting of cellulose, hemicelluloses and lignin. Nevertheless, the regulatory mechanism of SCW biosynthesis still needs to be well understood. In this study, we identified a rice NAC (NAM, ATAF1/2, CUC2) transcription factor OsNAC055 that regulates GA-mediated lignin biosynthesis. As a nucleus-localized transcription factor, OsNAC055 exhibits the transcriptional activation activity. Overexpression of OsNAC055 increases the lignin content in rice straw. Transcriptomic analyses showed that the expression of multiple lignin biosynthetic genes was increased in OsNAC055-overexpressing plants. Further ChIP-qPCR analysis and transient transactivation assays indicated that OsNAC055 directly activates rice lignin biosynthetic genes CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) and CINNAMYL ALCOHOL DEHYDROGENASE 2 (OsCAD2) by binding to their promoters. On the other hand, phytohormone measurement showed that OsNAC055 overexpression significantly increased exogenous GA3 levels in rice plants by regulating GA biosynthetic gene OsGA20ox2. Moreover, yeast two-hybrid and bimolecular fluorescence complement (BiFC) assays indicated that OsNAC055 interacts with SLENDER RICE1 (SLR1), the repressor in GA signaling. More importantly, exogenous GA treatment markedly enhanced the transcription of OsCCR10 and OsCAD2, suggesting the role of GA in lignin biosynthesis. Together, our results provide the evidence that OsNAC055 functions as an essential transcription factor to regulate the GA-mediated lignin biosynthesis, which provides a strategy for manipulating lignin production.
Collapse
Affiliation(s)
- Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zhongliang Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
17
|
Liu Z, Hu Y, Du A, Yu L, Fu X, Wu C, Lu L, Liu Y, Wang S, Huang W, Tu S, Ma X, Li H. Cell Wall Matrix Polysaccharides Contribute to Salt-Alkali Tolerance in Rice. Int J Mol Sci 2022; 23:ijms232315019. [PMID: 36499349 PMCID: PMC9735747 DOI: 10.3390/ijms232315019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Salt-alkali stress threatens the resilience to variable environments and thus the grain yield of rice. However, how rice responds to salt-alkali stress at the molecular level is poorly understood. Here, we report isolation of a novel salt-alkali-tolerant rice (SATR) by screening more than 700 germplasm accessions. Using 93-11, a widely grown cultivar, as a control, we characterized SATR in response to strong salt-alkali stress (SSAS). SATR exhibited SSAS tolerance higher than 93-11, as indicated by a higher survival rate, associated with higher peroxidase activity and total soluble sugar content but lower malonaldehyde accumulation. A transcriptome study showed that cell wall biogenesis-related pathways were most significantly enriched in SATR relative to 93-11 upon SSAS. Furthermore, higher induction of gene expression in the cell wall matrix polysaccharide biosynthesis pathway, coupled with higher accumulations of hemicellulose and pectin as well as measurable physio-biochemical adaptive responses, may explain the strong SSAS tolerance in SATR. We mapped SSAS tolerance to five genomic regions in which 35 genes were candidates potentially governing SSAS tolerance. The 1,4-β-D-xylan synthase gene OsCSLD4 in hemicellulose biosynthesis pathway was investigated in details. The OsCSLD4 function-disrupted mutant displayed reduced SSAS tolerance, biomass and grain yield, whereas the OsCSLD4 overexpression lines exhibited increased SSAS tolerance. Collectively, this study not only reveals the potential role of cell wall matrix polysaccharides in mediating SSAS tolerance, but also highlights applicable value of OsCSLD4 and the large-scale screening system in developing SSAS-tolerant rice.
Collapse
Affiliation(s)
- Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhi Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuili Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Longxiang Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
18
|
Xu Z, Gao Y, Gao C, Mei J, Wang S, Ma J, Yang H, Cao S, Wang Y, Zhang F, Liu X, Liu Q, Zhou Y, Zhang B. Glycosylphosphatidylinositol anchor lipid remodeling directs proteins to the plasma membrane and governs cell wall mechanics. THE PLANT CELL 2022; 34:4778-4794. [PMID: 35976113 PMCID: PMC9709986 DOI: 10.1093/plcell/koac257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring is a common protein modification that targets proteins to the plasma membrane (PM). Knowledge about the GPI lipid tail, which guides the secretion of GPI-anchored proteins (GPI-APs), is limited in plants. Here, we report that rice (Oryza sativa) BRITTLE CULM16 (BC16), a membrane-bound O-acyltransferase (MBOAT) remodels GPI lipid tails and governs cell wall biomechanics. The bc16 mutant exhibits fragile internodes, resulting from reduced cell wall thickness and cellulose content. BC16 is the only MBOAT in rice and is located in the endoplasmic reticulum and Golgi apparatus. Yeast gup1Δ mutant restoring assay and GPI lipid composition analysis demonstrated BC16 as a GPI lipid remodelase. Loss of BC16 alters GPI lipid structure and disturbs the targeting of BC1, a GPI-AP for cellulose biosynthesis, to the PM lipid nanodomains. Atomic force microscopy revealed compromised deposition of cellulosic nanofibers in bc16, leading to an increased Young's modulus and abnormal mechanical properties. Therefore, BC16-mediated lipid remodeling directs the GPI-APs, such as BC1, to the cell surface to fulfill multiple functions, including cellulose organization. Our work unravels a mechanism by which GPI lipids are remodeled in plants and provides insights into the control of cell wall biomechanics, offering a tool for breeding elite crops with improved support strength.
Collapse
Affiliation(s)
- Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiasong Mei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaogan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaxin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoxue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Guo B, Huang X, Qi J, Sun H, Lv C, Wang F, Zhu J, Xu R. Brittle culm 3, encoding a cellulose synthase subunit 5, is required for cell wall biosynthesis in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2022; 13:989406. [PMID: 36507388 PMCID: PMC9726912 DOI: 10.3389/fpls.2022.989406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
The cell wall plays an important role in plant mechanical strength. Cellulose is the major component of plant cell walls and provides the most abundant renewable biomass resource for biofuels on earth. Mutational analysis showed that cellulose synthase (CESA) genes are critical in cell wall biosynthesis in cereal crops like rice. However, their role has not been fully elucidated in barley. In this study, we isolated a brittle culm mutant brittle culm 3 (bc3) derived from Yangnongpi 5 ethyl methanesulfonate (EMS) mutagenesis in barley. The bc3 mutants exhibited reduced mechanical strength of the culms due to impaired thickening of the sclerenchyma cell wall and reduced cellulose and hemicellulose content in the culms. Genetic analysis and map-based cloning revealed that the bc3 mutant was controlled by a single recessive gene and harbored a point mutation in the HvCESA5 gene, generating a premature stop codon near the N-terminal of the protein. Quantitative real-time PCR (qRT-PCR) analysis showed that the HvCESA5 gene is predominantly expressed in the culms and co-expressed with HvCESA4 and HvCESA8, consistent with the brittle culm phenotype of the bc3 mutant. These results indicate that the truncated HvCESA5 affects cell wall biosynthesis leading to a brittle culm phenotype. Our findings provide evidence for the important role of HvCESA5 in cell wall biosynthesis pathway and could be a potential target to modify cell wall in barley.
Collapse
Affiliation(s)
- Baojian Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiang Qi
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongwei Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chao Lv
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feifei Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rugen Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
20
|
Tan Q, He H, Chen W, Huang L, Zhao D, Chen X, Li J, Yang X. Integrated genetic analysis of leaf blast resistance in upland rice: QTL mapping, bulked segregant analysis and transcriptome sequencing. AOB PLANTS 2022; 14:plac047. [PMID: 36567764 PMCID: PMC9773827 DOI: 10.1093/aobpla/plac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Elite upland rice cultivars have the advantages of less water requirement along with high yield but are usually susceptible to various diseases. Rice blast caused by Magnaporthe oryzae is the most devastating disease in rice. Identification of new sources of resistance and the introgression of major resistance genes into elite cultivars are required for sustainable rice production. In this study, an upland rice genotype UR0803 was considered an emerging source of blast resistance. An F2 mapping population was developed from a cross between UR0803 and a local susceptible cultivar Lijiang Xintuan Heigu. The individuals from the F2 population were evaluated for leaf blast resistance in three trials 7 days after inoculation. Bulked segregant analysis (BSA) by high-throughput sequencing and SNP-index algorithm was performed to map the candidate region related to disease resistance trait. A major quantitative trait locus (QTL) for leaf blast resistance was identified on chromosome 11 in an interval of 1.61-Mb genomic region. The candidate region was further shortened to a 108.9-kb genomic region by genotyping the 955 individuals with 14 SNP markers. Transcriptome analysis was further performed between the resistant and susceptible parents, yielding a total of 5044 differentially expressed genes (DEGs). There were four DEGs in the candidate QTL region, of which, two (Os11g0700900 and Os11g0704000) were upregulated and the remaining (Os11g0702400 and Os11g0703600) were downregulated in the susceptible parent after inoculation. These novel candidate genes were functionally annotated to catalytic response against disease stimulus in cellular membranes. The results were further validated by a quantitative real-time PCR analysis. The fine-mapping of a novel QTL for blast resistance by integrative BSA mapping and transcriptome sequencing enhanced the genetic understanding of the mechanism of blast resistance in upland rice. The most suitable genotypes with resistance alleles would be useful genetic resources in rice blast resistance breeding.
Collapse
Affiliation(s)
| | | | - Wen Chen
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Lu Huang
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Dailin Zhao
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Xiaojun Chen
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Jiye Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | | |
Collapse
|
21
|
Wang P, Yamaji N, Ma JF. A Golgi-localized glycosyltransferase, OsGT14;1, is required for growth of both roots and shoots in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:923-935. [PMID: 35791277 DOI: 10.1111/tpj.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Glycosyltransferases (GTs) form a large family in plants and are important enzymes for the synthesis of various polysaccharides, but only a few members have been functionally characterized. Here, through mutant screening with gene mapping, we found that an Oryza sativa (rice) mutant with a short-root phenotype was caused by a frame-shift mutation of a gene (OsGT14;1) belonging to the glycosyltransferase gene family 14. Further analysis indicated that the mutant also had a brittle culm and produced lower grain yield compared with wild-type rice, but the roots showed similar root structure and function in terms of the uptake of mineral nutrients. OsGT14;1 was broadly expressed in all organs throughout the entire growth period, with a relatively high expression in the roots, stems, node I and husk. Furthermore, OsGT14;1 was expressed in all tissues of these organs. Subcellular observation revealed that OsGT14;1 encoded a Golgi-localized protein. Mutation of OsGT14;1 resulted in decreased cellulose content and increased hemicellulose, but did not alter pectin in the cell wall of roots and shoots. The knockout of OsGT14;1 did not affect the tolerance to toxic mineral elements, including Al, As, Cd and salt stress, but did increase the sensitivity to low pH. Taken together, OsGT14;1 located at the Golgi is required for growth of both roots and shoots in rice through affecting cellulose synthesis.
Collapse
Affiliation(s)
- Peitong Wang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
22
|
Kan M, Fujiwara T, Kamiya T. Golgi-Localized OsFPN1 is Involved in Co and Ni Transport and Their Detoxification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:36. [PMID: 35817888 PMCID: PMC9273799 DOI: 10.1186/s12284-022-00583-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/04/2022] [Indexed: 05/13/2023]
Abstract
Cobalt (Co) and nickel (Ni) are beneficial and essential elements for plants, respectively, with the latter required for urease activity, which hydrolyzes urea into ammonium in plants. However, excess Co and Ni are toxic to plants and their transport mechanisms in rice are unclear. Here, we analyzed an ethyl methanesulfonate (EMS)-mutagenized rice mutant, 1187_n, with increased Co and Ni contents in its brown rice and shoots. 1187_n has a mutation in OsFPN1, which was correlated with a high Co and Ni phenotype in F2 crosses between the parental line and mutant. In addition, CRISPR/Cas9 mutants exhibited a phenotype similar to that of 1187_n, demonstrating that OsFPN1 is the causal gene of the mutant. In addition to the high Co and Ni in brown rice and shoots, the mutant also exhibited high Co and Ni concentrations in the xylem sap, but low concentrations in the roots, suggesting that OsFPN1 is involved in the root-to-shoot translocation of Co and Ni. The growth of 1187_n and CRISPR/Cas9 lines were suppressed under high Co and Ni condition, indicating OsFPN1 is required for the normal growth under high Co and Ni. An OsFPN1-green fluorescent protein (GFP) fusion protein was localized to the Golgi apparatus. Yeast carrying GFP-OsFPN1 increased sensitivity to high Co contents and decreased Co and Ni accumulation. These results suggest that OsFPN1 can transport Co and Ni and is vital detoxification in rice.
Collapse
Affiliation(s)
- Manman Kan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
23
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
24
|
Liu J, Sun C, Guo S, Yin X, Yuan Y, Fan B, Lv Q, Cai X, Zhong Y, Xia Y, Dong X, Guo Z, Song G, Huang W. Genomic and Transcriptomic Analyses Reveal Pathways and Genes Associated With Brittle Stalk Phenotype in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:849421. [PMID: 35548303 PMCID: PMC9083323 DOI: 10.3389/fpls.2022.849421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The mechanical strength of the stalk affects the lodging resistance and digestibility of the stalk in maize. The molecular mechanisms regulating the brittleness of stalks in maize remain undefined. In this study, we constructed the maize brittle stalk mutant (bk5) by crossing the W22:Mu line with the Zheng 58 line. The brittle phenotype of the mutant bk5 existed in all of the plant organs after the five-leaf stage. Compared to wild-type (WT) plants, the sclerenchyma cells of bk5 stalks had a looser cell arrangement and thinner cell wall. Determination of cell wall composition showed that obvious differences in cellulose content, lignin content, starch content, and total soluble sugar were found between bk5 and WT stalks. Furthermore, we identified 226 differentially expressed genes (DEGs), with 164 genes significantly upregulated and 62 genes significantly downregulated in RNA-seq analysis. Some pathways related to cellulose and lignin synthesis, such as endocytosis and glycosylphosphatidylinositol (GPI)-anchored biosynthesis, were identified by the Kyoto Encyclopedia of Gene and Genomes (KEGG) and gene ontology (GO) analysis. In bulked-segregant sequence analysis (BSA-seq), we detected 2,931,692 high-quality Single Nucleotide Polymorphisms (SNPs) and identified five overlapped regions (11.2 Mb) containing 17 candidate genes with missense mutations or premature termination codons using the SNP-index methods. Some genes were involved in the cellulose synthesis-related genes such as ENTH/ANTH/VHS superfamily protein gene (endocytosis-related gene) and the lignin synthesis-related genes such as the cytochrome p450 gene. Some of these candidate genes identified from BSA-seq also existed with differential expression in RNA-seq analysis. These findings increase our understanding of the molecular mechanisms regulating the brittle stalk phenotype in maize.
Collapse
Affiliation(s)
- Jun Liu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chuanbo Sun
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Siqi Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaohong Yin
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuling Yuan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Bing Fan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xinru Cai
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yi Zhong
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuanfeng Xia
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xiaomei Dong
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhifu Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wei Huang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
25
|
Li Q, Nie S, Li G, Du J, Ren R, Yang X, Liu B, Gao X, Liu T, Zhang Z, Zhao X, Li X, Nie Y, Wang B, Lin H, Ding H, Pan G. Identification and Fine Mapping of the Recessive Gene BK-5, Which Affects Cell Wall Biosynthesis and Plant Brittleness in Maize. Int J Mol Sci 2022; 23:814. [PMID: 35055000 PMCID: PMC8775815 DOI: 10.3390/ijms23020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/01/2022] Open
Abstract
The cellulose of the plant cell wall indirectly affects the cell shape and straw stiffness of the plant. Here, the novel brittleness mutant brittle stalk-5 (bk-5) of the maize inbred line RP125 was characterized. We found that the mutant displayed brittleness of the stalk and even the whole plant, and that the brittleness phenotype existed during the whole growth period from germination to senescence. The compressive strength was reduced, the cell wall was thinner, and the cellulose content was decreased compared to that of the wild type. Genetic analysis and map-based cloning indicated that bk-5 was controlled by a single recessive nuclear gene and that it was located in a 90.2-Kb region on chromosome 3 that covers three open reading frames (ORFs). Sequence analysis revealed a single non-synonymous missense mutation, T-to-A, in the last exon of Zm00001d043477 (B73: version 4, named BK-5) that caused the 951th amino acid to go from leucine to histidine. BK-5 encodes a cellulose synthase catalytic subunit (CesA), which is involved with cellulose synthesis. We found that BK-5 was constitutively expressed in all tissues of the germinating stage and silking stage, and highly expressed in the leaf, auricula, and root of the silking stage and the 2-cm root and bud of the germinating stage. We found that BK-5 mainly localized to the Golgi apparatus, suggesting that the protein might move to the plasma membrane with the aid of Golgi in maize. According to RNA-seq data, bk-5 had more downregulated genes than upregulated genes, and many of the downregulated genes were enzymes and transcription factors related to cellulose, hemicellulose, and lignin biosynthesis of the secondary cell wall. The other differentially expressed genes were related to metabolic and cellular processes, and were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and the plant-pathogen interaction pathway. Taken together, we propose that the mutation of gene BK-5 causes the brittle stalk phenotype and provides important insights into the regulatory mechanism of cellulose biosynthesis and cell wall development in maize.
Collapse
Affiliation(s)
- Qigui Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| | - Shujun Nie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| | - Gaoke Li
- Guangdong Academy of Agricultural Sciences, Crops Research Institute, Guangzhou 510640, China;
| | - Jiyuan Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Ruchang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xiu Yang
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100081, China; (X.Y.); (B.W.)
| | - Boyan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xiaolong Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Tianjian Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Zhiming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Yongxin Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Baichen Wang
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100081, China; (X.Y.); (B.W.)
| | - Haijian Lin
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| | - Haiping Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (J.D.); (R.R.); (B.L.); (X.G.); (T.L.); (Z.Z.); (X.Z.); (X.L.); (Y.N.)
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (S.N.); (H.L.)
| |
Collapse
|
26
|
Guo J, Ye D, Zhang X, Huang H, Wang Y, Zheng Z, Li T, Yu H. Characterization of cadmium accumulation in the cell walls of leaves in a low-cadmium rice line and strengthening by foliar silicon application. CHEMOSPHERE 2022; 287:132374. [PMID: 34592211 DOI: 10.1016/j.chemosphere.2021.132374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) remobilization in leaves is affected by whether Cd is stored in nonlabile subcellular compartments, which might be regulated by silicon (Si) application. However, the underlying mechanism is still far from being completely understood. In this research, the Cd distribution pattern in leaves and a Cd-binding characterization in the cell wall of the low-Cd rice line YaHui2816 were investigated through one hydroponic experiment with 10 μM Cd in solutions. Foliar Si application was further adopted to explore its influence on the Cd accumulation in the cell walls of leaves in YaHui2816. Most of the Cd (69.4%) was distributed in the cell walls of YaHui2816 leaves, whereas the isolated cell walls of leaves from YaHui2816 exhibited a lower capacity for Cd chemisorption than the contrasting line C268A, which was resulted from its fewer relative peak areas of functional groups in the cell wall, such as carboxyl CO and OH stretching. Foliar Si application significantly increased the Cd concentration in leaves and various cell wall fractions (pectin, hemicellulose 1 and residue) by 191% and 137-160%, respectively. RNA-seq analysis revealed that foliar Si application depressed the expression of the metal transporters OsZIP7 and OsZIP8, up-regulated the expression of genes participating in the glutathione metabolism and the cellulose synthesis. Overall, the influence of foliar Si application on Cd-accumulation in the cell wall of leaves in a low-Cd rice line was demonstrated in this research, which inspires further avenues to ensure the food safety of rice grains.
Collapse
Affiliation(s)
- Jingyi Guo
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
27
|
Ma X, Li C, Huang R, Zhang K, Wang Q, Fu C, Liu W, Sun C, Wang P, Wang F, Deng X. Rice Brittle Culm19 Encoding Cellulose Synthase Subunit CESA4 Causes Dominant Brittle Phenotype But has No Distinct Influence on Growth and Grain Yield. RICE (NEW YORK, N.Y.) 2021; 14:95. [PMID: 34822039 PMCID: PMC8617145 DOI: 10.1186/s12284-021-00536-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Mechanical strength is a crucial agronomic trait in rice (Oryza sativa), and brittle mutants are thought suitable materials to investigate the mechanism of cell wall formation. So far, almost all brittle mutants are recessive, and most of them are defected in multiple morphologies and/or grain yield, limiting their application in hybrid breeding and in rice straw recycling. RESULTS We identified a semi-dominant brittle mutant Brittle culm19 (Bc19) isolated from the japonica variety Nipponbare through chemical mutagenesis. The mutant showed the same apparent morphologies and grain yield to the wild type plant except for its weak mechanical strength. Its development of secondary cell wall in sclerenchyma cells was affected, along with reduced contents of cellulose, hemicellulose, lignin and sugars in culms and leaves. Positional cloning suggested that the Bc19 gene was allelic to OsCESA4, encoding one of the cellulose synthase A (CESA) catalytic subunits. In this mutant, a C-to-T substitution occurred in the coding sequence of BC19, causing the P507S missense mutation in its encoded product, which was located in the second cytoplasmic region of the OsCESA4 protein. Furthermore, introducing mutant gene Bc19 into the wild-type plant resulted in brittle plants, confirming that the P507S point mutation in OsCESA4 protein was responsible for the semi-dominant brittle phenotype of Bc19 mutant. Reverse correlation was revealed between cellulose contents and expression levels of mutant gene Bc19 among the homozygous mutant, the hybrid F1 plant, and the Bc19 overexpression transgenic plants, implying that gene Bc19 might affect cellulose synthesis in a dosage-dependent manner. CONCLUSIONS Bc19, a semi-dominant brittle mutant allele of gene OsCESA4, was identified using map-based cloning approach. The mutated protein of Bc19 possessing the P507S missense mutation behaved in a dosage-dependent semi-dominant manner. Unique brittle effect on phenotype and semi-dominant genetic quality of gene Bc19 indicated its potential application in grain-straw dual-purpose hybrid rice breeding.
Collapse
Affiliation(s)
- Xiaozhi Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Chunmei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Rui Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Kuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chongyun Fu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Wuge Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China.
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Yanni Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Jishuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Zhenzhen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
- Correspondence:
| |
Collapse
|
29
|
Shi S, Wang H, Nie L, Tan D, Zhou C, Zhang Q, Li Y, Du B, Guo J, Huang J, Wu D, Zheng X, Guan W, Shan J, Zhu L, Chen R, Xue L, Walling LL, He G. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. MOLECULAR PLANT 2021; 14:1714-1732. [PMID: 34246801 DOI: 10.1016/j.molp.2021.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Phloem-feeding insects cause massive losses in agriculture and horticulture. Host plant resistance to phloem-feeding insects is often mediated by changes in phloem composition, which deter insect settling and feeding and decrease viability. Here, we report that rice plant resistance to the phloem-feeding brown planthopper (BPH) is associated with fortification of the sclerenchyma tissue, which is located just beneath the epidermis and a cell layer or two away from the vascular bundle in the rice leaf sheath. We found that BPHs prefer to feed on the smooth and soft region on the surface of rice leaf sheaths called the long-cell block. We identified Bph30 as a rice BPH resistance gene that prevents BPH stylets from reaching the phloem due to the fortified sclerenchyma. Bph30 is strongly expressed in sclerenchyma cells and enhances cellulose and hemicellulose synthesis, making the cell walls stiffer and sclerenchyma thicker. The structurally fortified sclerenchyma is a formidable barrier preventing BPH stylets from penetrating the leaf sheath tissues and arriving at the phloem to feed. Bph30 belongs to a novel gene family, encoding a protein with two leucine-rich domains. Another member of the family, Bph40, also conferred resistance to BPH. Collectively, the fortified sclerenchyma-mediated resistance mechanism revealed in this study expands our understanding of plant-insect interactions and opens a new path for controlling planthoppers in rice.
Collapse
Affiliation(s)
- Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Tan
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junhan Shan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of CaliforniaA, Riverside, CA 92521, USA
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
30
|
Genetic Structure and Geographical Differentiation of Traditional Rice ( Oryza sativa L.) from Northern Vietnam. PLANTS 2021; 10:plants10102094. [PMID: 34685903 PMCID: PMC8540186 DOI: 10.3390/plants10102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Northern Vietnam is one of the most important centers of genetic diversity for cultivated rice. Over thousands of years of cultivation, natural and artificial selection has preserved many traditional rice landraces in northern Vietnam due to its geographic situation, climatic conditions, and many ethnic groups. These local landraces serve as a rich source of genetic variation—an important resource for future crop improvement. In this study, we determined the genetic diversity and population structure of 79 rice landraces collected from northern Vietnam and 19 rice accessions collected from different countries. In total, 98 rice accessions could be differentiated into japonica and indica with moderate genetic diversity and a polymorphism information content of 0.382. Moreover, we found that genetic differentiation was related to geographical regions with an overall PhiPT (analog of fixation index FST) value of 0.130. We also detected subspecies-specific markers to classify rice (Oryza sativa L.) into indica and japonica. Additionally, we detected five marker-trait associations and rare alleles that can be applied in future breeding programs. Our results suggest that rice landraces in northern Vietnam have a dynamic genetic system that can create different levels of genetic differentiation among regions, but also maintain a balanced genetic diversity between regions.
Collapse
|
31
|
Zhao W, Kirui A, Deligey F, Mentink-Vigier F, Zhou Y, Zhang B, Wang T. Solid-state NMR of unlabeled plant cell walls: high-resolution structural analysis without isotopic enrichment. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:14. [PMID: 33413580 PMCID: PMC7792314 DOI: 10.1186/s13068-020-01858-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/11/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Multidimensional solid-state nuclear magnetic resonance (ssNMR) spectroscopy has emerged as an indispensable technique for resolving polymer structure and intermolecular packing in primary and secondary plant cell walls. Isotope (13C) enrichment provides feasible sensitivity for measuring 2D/3D correlation spectra, but this time-consuming procedure and its associated expenses have restricted the application of ssNMR in lignocellulose analysis. RESULTS Here, we present a method that relies on the sensitivity-enhancing technique Dynamic Nuclear Polarization (DNP) to eliminate the need for 13C-labeling. With a 26-fold sensitivity enhancement, a series of 2D 13C-13C correlation spectra were successfully collected using the unlabeled stems of wild-type Oryza sativa (rice). The atomic resolution allows us to observe a large number of intramolecular cross peaks for fully revealing the polymorphic structure of cellulose and xylan. NMR relaxation and dipolar order parameters further suggest a sophisticated change of molecular motions in a ctl1 ctl2 double mutant: both cellulose and xylan have become more dynamic on the nanosecond and microsecond timescale, but the motional amplitudes are uniformly small for both polysaccharides. CONCLUSIONS By skipping isotopic labeling, the DNP strategy demonstrated here is universally extendable to all lignocellulose materials. This time-efficient method has landed the technical foundation for understanding polysaccharide structure and cell wall assembly in a large variety of plant tissues and species.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
32
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Xie Q, Gao Y, Li J, Yang Q, Qu X, Li H, Zhang J, Wang T, Ye Z, Yang C. The HD-Zip IV transcription factor SlHDZIV8 controls multicellular trichome morphology by regulating the expression of Hairless-2. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7132-7145. [PMID: 32930788 DOI: 10.1093/jxb/eraa428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Trichomes are specialized epidermal appendages that serve as excellent models to study cell morphogenesis. Although the molecular mechanism underlying trichome morphogenesis in Arabidopsis has been well characterized, most of the regulators essential for multicellular trichome morphology remain unknown in tomato. In this study, we determined that the recessive hairless-2 (hl-2) mutation in tomato causes severe distortion of all trichome types, along with increased stem fragility. Using map-based cloning, we found that the hl-2 phenotype was associated with a 100 bp insertion in the coding region of Nck-associated protein 1, a component of the SCAR/WAVE complex. Direct protein-protein interaction was detected between Hl-2 and Hl (SRA1, specifically Rac1-associated protein) using yeast two-hybrid and co-immunoprecipitation assays, suggesting that these proteins may work together during trichome formation. In addition, knock-down of a HD-Zip IV transcription factor, HDZIPIV8, distorted trichomes similar to the hl-2 mutant. HDZIPIV8 regulates the expression of Hl-2 by binding to the L1-box in the Hl-2 promoter region, and is involved in organizing actin filaments. The brittleness of hl-2 stems was found to result from decreased cellulose content. Taken together, these findings suggest that the Hl-2 gene plays an important role in controlling multicellular trichome morphogenesis and mechanical properties of stems in tomato plants.
Collapse
Affiliation(s)
- Qingmin Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yanna Gao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Combined Transcriptome and Proteome Analysis of Masson Pine ( Pinus massoniana Lamb.) Seedling Root in Response to Nitrate and Ammonium Supplementations. Int J Mol Sci 2020; 21:ijms21207548. [PMID: 33066140 PMCID: PMC7593940 DOI: 10.3390/ijms21207548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development. Plant species respond to N fluctuations and N sources, i.e., ammonium or nitrate, differently. Masson pine (Pinus massoniana Lamb.) is one of the pioneer plants in the southern forests of China. It shows better growth when grown in medium containing ammonium as compared to nitrate. In this study, we had grown masson pine seedlings in medium containing ammonium, nitrate, and a mixture of both, and performed comparative transcriptome and proteome analyses to observe the differential signatures. Our transcriptome and proteome resulted in the identification of 1593 and 71 differentially expressed genes and proteins, respectively. Overall, the masson pine roots had better performance when fed with a mixture of ammonium and nitrate. The transcriptomic and proteomics results combined with the root morphological responses suggest that when ammonium is supplied as a sole N-source to masson pine seedlings, the expression of ammonium transporters and other non-specific NH4+-channels increased, resulting in higher NH4+ concentrations. This stimulates lateral roots branching as evidenced from increased number of root tips. We discussed the root performance in association with ethylene responsive transcription factors, WRKYs, and MADS-box transcription factors. The differential analysis data suggest that the adaptability of roots to ammonium is possibly through the promotion of TCA cycle, owing to the higher expression of malate synthase and malate dehydrogenase. Masson pine seedlings managed the increased NH4+ influx by rerouting N resources to asparagine production. Additionally, flavonoid biosynthesis and flavone and flavonol biosynthesis pathways were differentially regulated in response to increased ammonium influx. Finally, changes in the glutathione s-transferase genes suggested the role of glutathione cycle in scavenging the possible stress induced by excess NH4+. These results demonstrate that masson pine shows increased growth when grown under ammonium by increased N assimilation. Furthermore, it can tolerate high NH4+ content by involving asparagine biosynthesis and glutathione cycle.
Collapse
|
35
|
Zhang R, Hu H, Wang Y, Hu Z, Ren S, Li J, He B, Wang Y, Xia T, Chen P, Xie G, Peng L. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2956-2969. [PMID: 32064495 PMCID: PMC7260720 DOI: 10.1093/jxb/eraa044] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/23/2020] [Indexed: 05/20/2023]
Abstract
UDP-glucose epimerases (UGEs) are essential enzymes for catalysing the conversion of UDP-glucose (UDP-Glc) into UDP-galactose (UDP-Gal). Although UDP-Gal has been well studied as the substrate for the biosynthesis of carbohydrates, glycolipids, and glycoproteins, much remains unknown about the biological function of UGEs in plants. In this study, we selected a novel rice fragile culm 24 (Osfc24) mutant and identified it as a nonsense mutation of the FC24/OsUGE2 gene. The Osfc24 mutant shows a brittleness phenotype with significantly altered cell wall composition and disrupted orientation of the cellulose microfibrils. We found significantly reduced accumulation of arabinogalactan proteins in the cell walls of the mutant, which may consequently affect plant growth and cell wall deposition, and be responsible for the altered cellulose microfibril orientation. The mutant exhibits dwarfism and paler leaves with significantly decreased contents of galactolipids and chlorophyll, resulting in defects in plant photosynthesis. Based on our results, we propose a model for how OsUGE2 participates in two distinct metabolic pathways to co-modulate cellulose biosynthesis and cell wall assembly by dynamically providing UDP-Gal and UDP-Glc substrates.
Collapse
Affiliation(s)
- Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Huizhen Hu
- State Key Laboratory of Biocatalysis & Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Youmei Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Hu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuangfeng Ren
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Li
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Boyang He
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Xia
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Life Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guosheng Xie
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
36
|
Sato-Izawa K, Nakamura SI, Matsumoto T. Mutation of rice bc1 gene affects internode elongation and induces delayed cell wall deposition in developing internodes. PLANT SIGNALING & BEHAVIOR 2020; 15:1749786. [PMID: 32299283 PMCID: PMC7238885 DOI: 10.1080/15592324.2020.1749786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
A rice COBRA-like gene, BRITTLE CULM1 (BC1) has been shown to be involved in assembling cell wall components and cellulose crystallinity, which determines mechanical strength in above ground organs. However, the detailed roles of BC1 in rice development are poorly understood. In this study, we found that, unlike the known brittle culm mutants, the internode length of the bc1 mutant was ~1.27 times longer than that of wild type in rice. In order to analyze the effects of bc1 mutation on internode development, we compared the deposition of cell wall components among each developmental stage of the elongating second internodes from wild type, Kinmaze, and the bc1 mutant. In wild type, histochemical observations of lignin revealed that lignin deposition was gradually increased after the cell elongation stage of the internodes. Cellulose and p-coumaric acid (pCA) content also gradually increased along with the progress of the developmental stage. The ferulic acid (FA) content rapidly increased in the cell elongation stage and decreased at the late secondary cell wall formation stage. In the bc1 mutant, the contents of cell wall components were lower than those of wild type from the cell elongation stage, in which the BC1 started to express at this stage in wild type. In the bc1 mutant, the deposition patterns of cell wall components, especially phenolic components including lignin, pCA, and FA, were delayed compared with those of wild type. These results suggest that the BC1 gene plays a role in synthesizing appropriate cell walls at each stage in the developing internode.
Collapse
Affiliation(s)
- Kanna Sato-Izawa
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Shin-ichi Nakamura
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Takashi Matsumoto
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
37
|
Zhang F, Zeng D, Zhang CS, Lu JL, Chen TJ, Xie JP, Zhou YL. Genome-Wide Association Analysis of the Genetic Basis for Sheath Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2019; 12:93. [PMID: 31853678 PMCID: PMC6920286 DOI: 10.1186/s12284-019-0351-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sheath blight (ShB), caused by Rhizoctonia solani Kühn, is one of the most destructive rice diseases. Developing ShB-resistant rice cultivars represents the most economical and environmentally sound strategy for managing ShB. RESULTS To characterize the genetic basis for ShB resistance in rice, we conducted association studies for traits related to ShB resistance, namely culm length (CL), lesion height (LH), and relative lesion height (RLH). Combined a single locus genome-wide scan and a multi-locus method using 2,977,750 single-nucleotide polymorphisms to analyse 563 rice accessions, we detected 134, 562, and 75 suggestive associations with CL, LH, and RLH, respectively. The adjacent signals associated with RLH were merged into 27 suggestively associated loci (SALs) based on the estimated linkage disequilibrium blocks. More than 44% of detected RLH-SALs harboured multiple QTLs/genes associated with ShB resistance, while the other RLH-SALs were putative novel ShB resistance loci. A total of 261 ShB resistance putative functional genes were screened from 23 RLH-SALs according to bioinformatics and haplotype analyses. Some of the annotated genes were previously reported to encode defence-related and pathogenesis-related proteins, suggesting that quantitative resistance to ShB in rice is mediated by SA- and JA-dependent signalling pathways. CONCLUSIONS Our findings may improve the application of germplasm resources as well as knowledge-based ShB management and the breeding of ShB-resistant rice cultivars.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Dan Zeng
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Cong-Shun Zhang
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Jia-Ling Lu
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Teng-Jun Chen
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Jun-Ping Xie
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Yong-Li Zhou
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
38
|
Johnson KL. No Stakes for High Strength Corn. PLANT PHYSIOLOGY 2019; 181:845-846. [PMID: 31685685 PMCID: PMC6836843 DOI: 10.1104/pp.19.01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Kim L Johnson
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
39
|
Jiao S, Hazebroek JP, Chamberlin MA, Perkins M, Sandhu AS, Gupta R, Simcox KD, Yinghong L, Prall A, Heetland L, Meeley RB, Multani DS. Chitinase-like1 Plays a Role in Stalk Tensile Strength in Maize. PLANT PHYSIOLOGY 2019; 181:1127-1147. [PMID: 31492738 PMCID: PMC6836851 DOI: 10.1104/pp.19.00615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/29/2019] [Indexed: 05/22/2023]
Abstract
Stalk lodging in maize (Zea mays) causes significant yield losses due to breaking of stalk tissue below the ear node before harvest. Here, we identified the maize brittle stalk4 (bk4) mutant in a Mutator F2 population. This mutant was characterized by highly brittle aerial parts that broke easily from mechanical disturbance or in high-wind conditions. The bk4 plants displayed a reduction in average stalk diameter and mechanical strength, dwarf stature, senescence at leaf tips, and semisterility of pollen. Histological studies demonstrated a reduction in lignin staining of cells in the bk4 mutant leaves and stalk, and deformation of vascular bundles in the stalk resulting in the loss of xylem and phloem tissues. Biochemical characterization showed a significant reduction in p-coumaric acid, Glc, Man, and cellulose contents. The candidate gene responsible for bk4 phenotype is Chitinase-like1 protein (Ctl1), which is expressed at its highest levels in elongated internodes. Expression levels of secondary cell wall cellulose synthase genes (CesA) in the bk4 single mutant, and phenotypic observations in double mutants combining bk4 with bk2 or null alleles for two CesA genes, confirmed interaction of ZmCtl1 with CesA genes. Overexpression of ZmCtl1 enhanced mechanical stalk strength without affecting plant stature, senescence, or fertility. Biochemical characterization of ZmCtl1 overexpressing lines supported a role for ZmCtl1 in tensile strength enhancement. Conserved identity of CTL1 peptides across plant species and analysis of Arabidopsis (Arabidopsis thaliana) ctl1-1 ctl2-1 double mutants indicated that Ctl1 might have a conserved role in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alan Prall
- Corteva Agriscience, Johnston, Iowa 50131
| | | | | | | |
Collapse
|
40
|
Gu SY, Wang LC, Cheuh CM, Lo WS. CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:600. [PMID: 31156671 PMCID: PMC6530356 DOI: 10.3389/fpls.2019.00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/24/2019] [Indexed: 05/07/2023]
Abstract
The plant hormone ethylene plays a regulatory role in development in light- and dark-grown seedlings. We previously isolated a group of small-molecule compounds with a quinazolinone backbone, which were named acsinones (for ACC synthase inhibitor quinazolinones), that act as uncompetitive inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). Thus, the triple response phenotype, which consists of shortened hypocotyls and roots, radial swelling of hypocotyls and exaggerated curvature of apical hooks, was suppressed by acsinones in dark-grown (etiolated) ethylene overproducer (eto) seedlings. Here, we describe our isolation and characterization of an Arabidopsis revert to eto1 9 (ret9) mutant, which showed reduced sensitivity to acsinones in etiolated eto1 seedlings. Map-based cloning of RET9 revealed an amino acid substitution in CHITINASE LIKE1 (CTL1), which is required for cell wall biogenesis and stress resistance in Arabidopsis. Etiolated seedlings of ctl1ret9 showed short hypocotyls and roots, which were augmented in combination with eto1-4. Consistently, ctl1ret9 seedlings showed enhanced sensitivity to exogenous ACC to suppress primary root elongation as compared with the wild type. After introducing ctl1ret9 to mutants completely insensitive to ethylene, genetic analysis indicated that an intact ethylene response pathway is essential for the alterations in root and apical hook but not hypocotyl in etiolated ctl1ret9 seedlings. Furthermore, a mild yet significantly increased ethylene level in ctl1 mutants was related to elevated mRNA level and activity of ACC oxidase (ACO). Moreover, genes associated with ethylene biosynthesis (ACO1 and ACO2) and response (ERF1 and EDF1) were upregulated in etiolated ctl1ret9 seedlings. By characterizing a new recessive allele of CTL1, we reveal that CTL1 negatively regulates ACO activity and the ethylene response, which thus contributes to understanding a role for ethylene in root elongation in response to perturbed cell wall integrity.
Collapse
Affiliation(s)
- Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Long-Chi Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chiao-Mei Cheuh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
41
|
Cao J, Tan X. Comprehensive Analysis of the Chitinase Family Genes in Tomato ( Solanum lycopersicum). PLANTS 2019; 8:plants8030052. [PMID: 30823433 PMCID: PMC6473868 DOI: 10.3390/plants8030052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Chitinase catalyzes the hydrolysis of chitin β-1,4 linkages. However, plants cannot produce chitin, suggesting that plant chitinases do not have the same function as animals. This study investigated the chitinase gene family in tomato and divided into eight groups via phylogenetic analyses with Arabidopsis and rice members. Conserved gene structures and motif arrangements indicated their functional relevance with each group. These genes were nonrandomly distributed across the tomato chromosomes, and tandem duplication contributed to the expansion of this gene family. Synteny analysis also established orthology relationships and functional linkages between Arabidopsis and tomato chitinase genes. Several positive selection sites were identified, which may contribute to the functional divergence of the protein family in evolution. In addition, differential expression profiles of the tomato chitinase genes were also investigated at some developmental stages, or under different biotic and abiotic stresses. Finally, functional network analysis found 124 physical or functional interactions, implying the diversity of physiological functions of the family proteins. These results provide a foundation for the exploration of the chitinase genes in plants and will offer some insights for further functional studies.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Xiaona Tan
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
42
|
Ye Y, Wu K, Chen J, Liu Q, Wu Y, Liu B, Fu X. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. RICE (NEW YORK, N.Y.) 2018; 11:36. [PMID: 29855737 PMCID: PMC5981155 DOI: 10.1186/s12284-018-0228-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND As one of the most important staple food crops, rice produces huge agronomic biomass residues that contain lots of secondary cell walls (SCWs) comprising cellulose, hemicelluloses and lignin. The transcriptional regulation mechanism underlying SCWs biosynthesis remains elusive. RESULTS In this study, we isolated a NAC family transcription factor (TF), OsSND2 through yeast one-hybrid screening using the secondary wall NAC-binding element (SNBE) on the promoter region of OsMYB61 which is known transcription factor for regulation of SCWs biosynthesis as bait. We used an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analysis (ChIP) to further confirm that OsSND2 can directly bind to the promoter of OsMYB61 both in vitro and in vivo. OsSND2, a close homolog of AtSND2, is localized in the nucleus and has transcriptional activation activity. Expression pattern analysis indicated that OsSND2 was mainly expressed in internodes and panicles. Overexpression of OsSND2 resulted in rolled leaf, increased cellulose content and up-regulated expression of SCWs related genes. The knockout of OsSND2 using CRISPR/Cas9 system decreased cellulose content and down-regulated the expression of SCWs related genes. Furthermore, OsSND2 can also directly bind to the promoters of other MYB family TFs by transactivation analysis in yeast cells and rice protoplasts. Altogether, our findings suggest that OsSND2 may function as a master regulator to mediate SCWs biosynthesis. CONCLUSION OsSND2 was identified as a positive regulator of cellulose biosynthesis in rice. An increase in the expression level of this gene can improve the SCWs cellulose content. Therefore, the study of the function of OsSND2 can provide a strategy for manipulating plant biomass production.
Collapse
Affiliation(s)
- Yafeng Ye
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianfeng Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuejin Wu
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Binmei Liu
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
43
|
Xu W, Liu W, Ye R, Mazarei M, Huang D, Zhang X, Stewart CN. A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. PLANT CELL REPORTS 2018; 37:587-597. [PMID: 29340787 DOI: 10.1007/s00299-018-2253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 05/25/2023]
Abstract
A switchgrass vascular tissue-specific promoter (PvPfn2) and its 5'-end serial deletions drive high levels of vascular bundle transgene expression in transgenic rice. Constitutive promoters are widely used for crop genetic engineering, which can result in multiple off-target effects, including suboptimal growth and epigenetic gene silencing. These problems can be potentially avoided using tissue-specific promoters for targeted transgene expression. One particularly urgent need for targeted cell wall modification in bioenergy crops, such as switchgrass (Panicum virgatum L.), is the development of vasculature-active promoters to express cell wall-affective genes only in the specific tissues, i.e., xylem and phloem. From a switchgrass expression atlas we identified promoter sequence upstream of a vasculature-specific switchgrass profilin gene (PvPfn2), especially in roots, nodes and inflorescences. When the putative full-length (1715 bp) and 5'-end serial deletions of the PvPfn2 promoter (shortest was 413 bp) were used to drive the GUS reporter expression in stably transformed rice (Oryza sativa L.), strong vasculature-specificity was observed in various tissues including leaves, leaf sheaths, stems, and flowers. The promoters were active in both phloem and xylem. It is interesting to note that the promoter was active in many more tissues in the heterologous rice system than in switchgrass. Surprisingly, all four 5'-end promoter deletions, including the shortest fragment, had the same expression patterns as the full-length promoter and with no attenuation in GUS expression in rice. These results indicated that the PvPfn2 promoter variants are new tools to direct transgene expression specifically to vascular tissues in monocots. Of special interest is the very compact version of the promoter, which could be of use for vasculature-specific genetic engineering in monocots.
Collapse
Affiliation(s)
- Wenzhi Xu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Debao Huang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
44
|
Wu J, Wang Y, Kim SG, Jung KH, Gupta R, Kim J, Park Y, Kang KY, Kim ST. A secreted chitinase-like protein (OsCLP) supports root growth through calcium signaling in Oryza sativa. PHYSIOLOGIA PLANTARUM 2017; 161:273-284. [PMID: 28401568 DOI: 10.1111/ppl.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 05/27/2023]
Abstract
Chitinases belong to a conserved protein family and play multiple roles in defense, development and growth regulation in plants. Here, we identified a secreted chitinase-like protein, OsCLP, which functions in rice growth. A T-DNA insertion mutant of OsCLP (osclp) showed significant retardation of root and shoot growth. A comparative proteomic analysis was carried out using root tissue of wild-type and the osclp mutant to understand the OsCLP-mediated rice growth retardation. Results obtained revealed that proteins related to glycolysis (phosphoglycerate kinase), stress adaption (chaperonin) and calcium signaling (calreticulin and CDPK1) were differentially regulated in osclp roots. Fura-2 molecular probe staining, which is an intracellular calcium indicator, and inductively coupled plasma-mass spectrometry (ICP-MS) analysis suggested that the intracellular calcium content was significantly lower in roots of osclp as compared with the wild-type. Exogenous application of Ca2+ resulted in successful recovery of both primary and lateral root growth in osclp. Moreover, overexpression of OsCLP resulted in improved growth with modified seed shape and starch structure; however, the overall yield remained unaffected. Taken together, our results highlight the involvement of OsCLP in rice growth by regulating the intracellular calcium concentrations.
Collapse
Affiliation(s)
- Jingni Wu
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Sang Gon Kim
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Joonyup Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
- Department of Horticultural Bioscience, Pusan National University, Miryang, 627-706, South Korea
| | - Kyu Young Kang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
| |
Collapse
|
45
|
Hirano K, Masuda R, Takase W, Morinaka Y, Kawamura M, Takeuchi Y, Takagi H, Yaegashi H, Natsume S, Terauchi R, Kotake T, Matsushita Y, Sazuka T. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1. PLANTA 2017; 246:61-74. [PMID: 28357539 DOI: 10.1007/s00425-017-2685-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 05/28/2023]
Abstract
The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Reiko Masuda
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Wakana Takase
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoichi Morinaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Zensho Holdings Co., Ltd., Tokyo, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Takeuchi
- Rice Breeding Research Team, NARO Institute of Crop Science, Tsukuba, Ibaraki, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | | | | | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
46
|
Tobias PA, Christie N, Naidoo S, Guest DI, Külheim C. Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges. TREE PHYSIOLOGY 2017; 37:565-582. [PMID: 28338992 DOI: 10.1093/treephys/tpx010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Eucalyptus grandis (W. Hill ex Maiden) is an Australian Myrtaceae tree grown for timber in many parts of the world and for which the annotated genome sequence is available. Known to be susceptible to a number of pests and diseases, E. grandis is a useful study organism for investigating defense responses in woody plants. Chitinases are widespread in plants and cleave glycosidic bonds of chitin, the major structural component of fungal cell walls and arthropod exoskeletons. They are encoded by an important class of genes known to be up-regulated in plants in response to pathogens. The current study identified 67 chitinase gene models from two families known as glycosyl hydrolase 18 and 19 (36 GH18 and 31 GH19) within the E. grandis genome assembly (v1.1), indicating a recent gene expansion. Sequences were aligned and analyzed as conforming to currently recognized plant chitinase classes (I-V). Unlike other woody species investigated to date, E. grandis has a single gene encoding a putative vacuolar targeted Class I chitinase. In response to Leptocybe invasa (Fisher & La Salle) (the eucalypt gall wasp) and Chrysoporthe austroafricana (Gryzenhout & M.J. Wingf. 2004) (causal agent of fungal stem canker), this Class IA chitinase is strongly up-regulated in both resistant and susceptible plants. Resistant plants, however, indicate greater constitutive expression and increased up-regulation than susceptible plants following fungal challenge. Up-regulation within fungal resistant clones was further confirmed with protein data. Clusters of putative chitinase genes, particularly on chromosomes 3 and 8, are significantly up-regulated in response to fungal challenge, while a cluster on chromosome 1 is significantly down-regulated in response to gall wasp. The results of this study show that the E. grandis genome has an expanded group of chitinase genes, compared with other plants. Despite this expansion, only a single Class I chitinase is present and this gene is highly up-regulated within diverse biotic stress conditions. Our research provides insight into a major class of defense genes within E. grandis and indicates the importance of the Class I chitinase.
Collapse
Affiliation(s)
- Peri A Tobias
- School of Life and Environmental Science, Sydney Institute of Agriculture, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - David I Guest
- School of Life and Environmental Science, Sydney Institute of Agriculture, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
47
|
Wu L, Zhang W, Ding Y, Zhang J, Cambula ED, Weng F, Liu Z, Ding C, Tang S, Chen L, Wang S, Li G. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:881. [PMID: 28611803 PMCID: PMC5447739 DOI: 10.3389/fpls.2017.00881] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/10/2017] [Indexed: 05/08/2023]
Abstract
Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR, and OsCAD2, and primary cell wall synthesis, OsCesA1, OsCesA3, and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights: (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis (OsCesA1, OsCesA3, and OsCesA8) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.
Collapse
Affiliation(s)
- Longmei Wu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Wujun Zhang
- Chongqing Ratooning Rice Research Center, Chongqing Academy of Agricultural SciencesChongqing, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Jianwei Zhang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Elidio D. Cambula
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Fei Weng
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Chengqiang Ding
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - She Tang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Lin Chen
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Ganghua Li,
| |
Collapse
|
48
|
Zhang M, Wei F, Guo K, Hu Z, Li Y, Xie G, Wang Y, Cai X, Peng L, Wang L. A Novel FC116/ BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1366. [PMID: 27708650 PMCID: PMC5030303 DOI: 10.3389/fpls.2016.01366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 05/11/2023]
Abstract
We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif "R, RXG, RA." The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice.
Collapse
Affiliation(s)
- Mingliang Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Feng Wei
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kai Guo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State UniversityFargo, ND, USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
49
|
Ma J, Cheng Z, Chen J, Shen J, Zhang B, Ren Y, Ding Y, Zhou Y, Zhang H, Zhou K, Wang JL, Lei C, Zhang X, Guo X, Gao H, Bao Y, Wan JM. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis. PLoS One 2016; 11:e0153119. [PMID: 27055010 PMCID: PMC4824389 DOI: 10.1371/journal.pone.0153119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/23/2016] [Indexed: 11/18/2022] Open
Abstract
The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.
Collapse
Affiliation(s)
- Jin Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZJC); (JMW)
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jiu-Lin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yiqun Bao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jian-Min Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ZJC); (JMW)
| |
Collapse
|
50
|
Wang X, Cheng Z, Zhao Z, Gan L, Qin R, Zhou K, Ma W, Zhang B, Wang J, Zhai H, Wan J. BRITTLE SHEATH1 encoding OsCYP96B4 is involved in secondary cell wall formation in rice. PLANT CELL REPORTS 2016; 35:745-55. [PMID: 26685666 DOI: 10.1007/s00299-015-1916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Mutation of BSH1 leads to brittle sheath phenotype and reduction of very-long-chain fatty acids and their derivatives in wax. The cell wall plays an important role in plant mechanical strength. Several brittle culm mutants have been identified and characterized in rice. Here, we characterized an anther culture-derived rice brittle sheath mutant, named bsh1 and isolated BSH1 via map-based strategy. BSH1 encodes OsCYP96B4 protein, which was localized on ER membrane in the protoplast transient assay. BSH1 is mainly expressed in developing vascular tissues and the cells in which cell wall secondary thickening is occurring. Mutation in bsh1 causes changes in cell wall composition by affecting the expression of cell wall-related genes. Moreover, bsh1 shows reduced amounts of very-long-chain fatty acids and their derivatives in wax rather than the medium-chain fatty acids. In summary, BSH1 functions mainly in secondary cell wall formation, and probably in wax biosynthesis in an unidentified mechanism.
Collapse
Affiliation(s)
- Xiaole Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Qin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huqu Zhai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|