1
|
Afrin T, Costello CN, Monella AN, Kørner CJ, Pajerowska-Mukhtar KM. The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity. PLANT SIGNALING & BEHAVIOR 2022; 17:2018857. [PMID: 34968413 PMCID: PMC8920210 DOI: 10.1080/15592324.2021.2018857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In eukaryotic cells, the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in ER stress that induces a cascade of reactions called the unfolded protein response (UPR). In Arabidopsis, the most conserved UPR sensor, Inositol-requiring enzyme 1 (IRE1), responds to both abiotic- and biotic-induced ER stress. Guanine nucleotide-binding proteins (G proteins) constitute another universal and conserved family of signal transducers that have been extensively investigated due to their ubiquitous presence and diverse nature of action. Arabidopsis GTP-binding protein β1 (AGB1) is the only G-protein β-subunit encoded by the Arabidopsis genome that is involved in numerous signaling pathways. Mounting evidence suggests the existence of a crosstalk between IRE1 and G protein signaling during ER stress. AGB1 has previously been shown to control a distinct UPR pathway independently of IRE1 when treated with an ER stress inducer tunicamycin. Our results obtained with combinatorial knockout mutants support the hypothesis that both IRE1 and AGB1 synergistically contribute to ER stress responses chemically induced by dithiothreitol (DTT) as well as to the immune responses against a phytopathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Our study highlights the crosstalk between the plant UPR transducers under abiotic and biotic stress.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Caitlin N. Costello
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Amber N. Monella
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Camilla J. Kørner
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | | |
Collapse
|
2
|
Wang Y, Botella JR. Heterotrimeric G Protein Signaling in Abiotic Stress. PLANTS 2022; 11:plants11070876. [PMID: 35406855 PMCID: PMC9002505 DOI: 10.3390/plants11070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
As sessile organisms, plants exhibit extraordinary plasticity and have evolved sophisticated mechanisms to adapt and mitigate the adverse effects of environmental fluctuations. Heterotrimeric G proteins (G proteins), composed of α, β, and γ subunits, are universal signaling molecules mediating the response to a myriad of internal and external signals. Numerous studies have identified G proteins as essential components of the organismal response to stress, leading to adaptation and ultimately survival in plants and animal systems. In plants, G proteins control multiple signaling pathways regulating the response to drought, salt, cold, and heat stresses. G proteins signal through two functional modules, the Gα subunit and the Gβγ dimer, each of which can start either independent or interdependent signaling pathways. Improving the understanding of the role of G proteins in stress reactions can lead to the development of more resilient crops through traditional breeding or biotechnological methods, ensuring global food security. In this review, we summarize and discuss the current knowledge on the roles of the different G protein subunits in response to abiotic stress and suggest future directions for research.
Collapse
|
3
|
Ninh TT, Gao W, Trusov Y, Zhao J, Long L, Song C, Botella JR. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. PLANT DIRECT 2021; 5:e359. [PMID: 34765865 PMCID: PMC8573408 DOI: 10.1002/pld3.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein Gβ-deficient mutants in rice and maize display constitutive immune responses, whereas Arabidopsis Gβ mutants show impaired defense, suggesting the existence of functional differences between monocots and dicots. Using CRISPR/Cas9, we produced one hemizygous tomato line with a mutated SlGB1 Gβ gene. Homozygous slgb1 knockout mutants exhibit all the hallmarks of autoimmune mutants, including development of necrotic lesions, constitutive expression of defense-related genes, and high endogenous levels of salicylic acid (SA) and reactive oxygen species, resulting in early seedling lethality. Virus-induced silencing of Gβ in cotton reproduced the symptoms observed in tomato mutants, confirming that the autoimmune phenotype is not limited to monocot species but is also shared by dicots. Even though multiple genes involved in SA and ethylene signaling are highly induced by Gβ silencing in tomato and cotton, co-silencing of SA or ethylene signaling components in cotton failed to suppress the lethal phenotype, whereas co-silencing of the oxidative burst oxidase RbohD can repress lethality. Despite the autoimmune response observed in slgb1 mutants, we show that SlGB1 is a positive regulator of the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in tomato. We speculate that the phenotypic differences observed between Arabidopsis and tomato/cotton/rice/maize Gβ knockouts do not necessarily reflect divergences in G protein-mediated defense mechanisms.
Collapse
Affiliation(s)
- Thi Thao Ninh
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
- Department of Plant Biotechnology, Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| | - Jing‐Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
4
|
Ofoe R. Signal transduction by plant heterotrimeric G-protein. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:3-10. [PMID: 32803877 DOI: 10.1111/plb.13172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Heterotrimeric G-proteins are complexes that regulate important signalling pathways essential for growth and development in both plants and animals. Although plant cells are composed of the core components (Gα, Gβ and Gγ subunits) found in animal G-proteins, the complexities of the architecture, function and signalling mechanisms of those in animals are dissimilar to those identified in some plants. Current studies on plant G-proteins have improved knowledge of the essential physiological and agronomic properties, which when harnessed, could potentially impact global food security. Extensive studies on the molecular mechanisms underlying these properties in diverse plant species will be imperative in improving our current understanding of G-protein signalling pathways involved in plant growth and development. The advancement of G-protein signalling networks in distinct plant species could significantly aid in better crop development. This review summarizes current progress, novel discoveries and future prospects for this area in potential crop improvement.
Collapse
Affiliation(s)
- R Ofoe
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- West African Centre for Crop Improvement, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
5
|
BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nat Commun 2018; 9:1522. [PMID: 29670153 PMCID: PMC5906681 DOI: 10.1038/s41467-018-03884-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein β subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development. G-proteins regulate sugar-responsive growth in plants. Here the authors show that brassinosteroid (BR) signaling is also involved in sugar responses and present evidence that the BR receptor BRI1 and its co-receptor BAK1 can phosphorylate G-protein subunits to regulate sugar signaling in Arabidopsis.
Collapse
|
6
|
The integration of Gβ and MAPK signaling cascade in zygote development. Sci Rep 2017; 7:8732. [PMID: 28821747 PMCID: PMC5562876 DOI: 10.1038/s41598-017-08230-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/06/2017] [Indexed: 11/23/2022] Open
Abstract
Cells respond to many signals with a limited number of signaling components. Heterotrimeric G proteins and MAPK cascades are universally used by eukaryotic cells to transduce signals in various developmental processes or stress responses by activating different effectors. MAPK cascade is integrated with G proteins by scaffold protein during plant immunity. However, the molecular relationship between G proteins and MAPK modules in plant development is still unclear. In this study, we demonstrate that Arabidopsis Gβ protein AGB1 interacts with MPK3 and 6, MKK4 and 5, as well as the regulatory domains of YODA (YDA), the upstream MEKK of MKK4/5. Remarkably, YDA interacts with the plasma membrane associated SHORT SUSPENSOR (SSP) through its N- and C-terminal region in vitro and in vivo. Additionally, genetic analysis shows that AGB1 functions together with MPK3/6 signaling cascade during the asymmetric division of the zygote. These data indicate that Gβ may function likely as a scaffold, through direct physical interaction with the components of the MPK signaling module in plant development. Our results provide new insights into the molecular functions of G protein and will advance the understanding of the complex mechanism of kinase signaling cascades.
Collapse
|
7
|
Tunc-Ozdemir M, Jones AM. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes. PLoS One 2017; 12:e0171854. [PMID: 28187200 PMCID: PMC5302818 DOI: 10.1371/journal.pone.0171854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1) modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor–like kinases (LRR RLKs) phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction. Methods Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22). These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy. Results The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants. Conclusions A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex becomes dissociated thus AGB1 interacts with its effector proteins leading to changes in reactive oxygen species and calcium.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alan M. Jones
- Department of Biology University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tunc-Ozdemir M, Li B, Jaiswal DK, Urano D, Jones AM, Torres MP. Predicted Functional Implications of Phosphorylation of Regulator of G Protein Signaling Protein in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1456. [PMID: 28890722 PMCID: PMC5575782 DOI: 10.3389/fpls.2017.01456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 05/22/2023]
Abstract
Heterotrimeric G proteins function in development, biotic, and abiotic stress responses, hormone signaling as well as sugar sensing. We previously proposed that discrimination of these various external signals in the G protein pathway is accomplished in plants by membrane-localized receptor-like kinases (RLKs) rather than G-protein-coupled receptors. Arabidopsis thaliana Regulator of G Signaling protein 1 (AtRGS1) modulates G protein activation and is phosphorylated by several RLKs and by WITH-NO-LYSINE kinases (WNKs). Here, a combination of in vitro kinase assays, mass spectrometry, and computational bioinformatics identified and functionally prioritized phosphorylation sites in AtRGS1. Phosphosites for two more RLKs (BRL3 and PEPR1) were identified and added to the AtRGS1 phosphorylation profile. Bioinformatics analyses revealed that RLKs and WNK kinases phosphorylate plant RGS proteins within regions that are conserved across eukaryotes and at a high frequency. Four phospho-sites among 14 identified are proximal to equivalent mammalian phosphosites that impact RGS function, including: pS437 and pT267 in GmRGS2, and pS339 and pS436 in AtRGS1. Based on these analyses, we propose that pS437 and pS436 regulate GmRGS2 and AtRGS1 protein interactions and/or localization, whereas pT267 is important for modulation of GmRGS2 GAP activity and localization. Moreover, pS339 most likely affects AtRGS1 activation.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Bo Li
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Dinesh K. Jaiswal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
| | - Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
- Temasek Life Sciences Laboratory, National University of SingaporeSingapore, Singapore
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel HillNC, United States
- *Correspondence: Alan M. Jones, Matthew P. Torres,
| | - Matthew P. Torres
- School of Biological Sciences, Georgia Institute of Technology, AtlantaGA, United States
- *Correspondence: Alan M. Jones, Matthew P. Torres,
| |
Collapse
|
9
|
Kørner CJ, Du X, Vollmer ME, Pajerowska-Mukhtar KM. Endoplasmic Reticulum Stress Signaling in Plant Immunity--At the Crossroad of Life and Death. Int J Mol Sci 2015; 16:26582-98. [PMID: 26556351 PMCID: PMC4661823 DOI: 10.3390/ijms161125964] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rapid and complex immune responses are induced in plants upon pathogen recognition. One form of plant defense response is a programmed burst in transcription and translation of pathogenesis-related proteins, of which many rely on ER processing. Interestingly, several ER stress marker genes are up-regulated during early stages of immune responses, suggesting that enhanced ER capacity is needed for immunity. Eukaryotic cells respond to ER stress through conserved signaling networks initiated by specific ER stress sensors tethered to the ER membrane. Depending on the nature of ER stress the cell prioritizes either survival or initiates programmed cell death (PCD). At present two plant ER stress sensors, bZIP28 and IRE1, have been described. Both sensor proteins are involved in ER stress-induced signaling, but only IRE1 has been additionally linked to immunity. A second branch of immune responses relies on PCD. In mammals, ER stress sensors are involved in activation of PCD, but it is unclear if plant ER stress sensors play a role in PCD. Nevertheless, some ER resident proteins have been linked to pathogen-induced cell death in plants. In this review, we will discuss the current understanding of plant ER stress signaling and its cross-talk with immune signaling.
Collapse
Affiliation(s)
- Camilla J Kørner
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | - Xinran Du
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | - Marie E Vollmer
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | | |
Collapse
|
10
|
Colaneri AC, Jones AM. The wiring diagram for plant G signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:56-64. [PMID: 25282586 PMCID: PMC4676402 DOI: 10.1016/j.pbi.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 05/08/2023]
Abstract
Like electronic circuits, the modular arrangement of cell-signaling networks decides how inputs produce outputs. Animal heterotrimeric guanine nucleotide binding proteins (G-proteins) operate as switches in the circuits that signal between extracellular agonists and intracellular effectors. There still is no biochemical evidence for a receptor or its agonist in the plant G-protein pathways. Plant G-proteins deviate in many important ways from the animal paradigm. This review covers important discoveries from the last two years that enlighten these differences and ends describing alternative wiring diagrams for the plant signaling circuits regulated by G-proteins. We propose that plant G-proteins are integrated in the signaling circuits as variable resistor rather than switches, controlling the flux of information in response to the cell's metabolic state.
Collapse
Affiliation(s)
| | - Alan M Jones
- The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Colaneri AC, Tunc-Ozdemir M, Huang JP, Jones AM. Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC PLANT BIOLOGY 2014; 14:129. [PMID: 24884438 PMCID: PMC4061919 DOI: 10.1186/1471-2229-14-129] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant growth is plastic, able to rapidly adjust to fluctuation in environmental conditions such as drought and salinity. Due to long-term irrigation use in agricultural systems, soil salinity is increasing; consequently crop yield is adversely affected. It is known that salt tolerance is a quantitative trait supported by genes affecting ion homeostasis, ion transport, ion compartmentalization and ion selectivity. Less is known about pathways connecting NaCl and cell proliferation and cell death. Plant growth and cell proliferation is, in part, controlled by the concerted activity of the heterotrimeric G-protein complex with glucose. Prompted by the abundance of stress-related, functional annotations of genes encoding proteins that interact with core components of the Arabidopsis heterotrimeric G protein complex (AtRGS1, AtGPA1, AGB1, and AGG), we tested the hypothesis that G proteins modulate plant growth under salt stress. RESULTS Na+ activates G signaling as quantitated by internalization of Arabidopsis Regulator of G Signaling protein 1 (AtRGS1). Despite being components of a singular signaling complex loss of the Gβ subunit (agb1-2 mutant) conferred accelerated senescence and aborted development in the presence of Na+, whereas loss of AtRGS1 (rgs1-2 mutant) conferred Na+ tolerance evident as less attenuated shoot growth and senescence. Site-directed changes in the Gα and Gβγ protein-protein interface were made to disrupt the interaction between the Gα and Gβγ subunits in order to elevate free activated Gα subunit and free Gβγ dimer at the plasma membrane. These mutations conferred sodium tolerance. Glucose in the growth media improved the survival under salt stress in Col but not in agb1-2 or rgs1-2 mutants. CONCLUSIONS These results demonstrate a direct role for G-protein signaling in the plant growth response to salt stress. The contrasting phenotypes of agb1-2 and rgs1-2 mutants suggest that G-proteins balance growth and death under salt stress. The phenotypes of the loss-of-function mutations prompted the model that during salt stress, G activation promotes growth and attenuates senescence probably by releasing ER stress.
Collapse
Affiliation(s)
- Alejandro C Colaneri
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599, USA
| | - Jian Ping Huang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
13
|
Abstract
Investigators studying G protein-coupled signaling--often called the best-understood pathway in the world owing to intense research in medical fields--have adopted plants as a new model to explore the plasticity and evolution of G signaling. Much research on plant G signaling has not disappointed. Although plant cells have most of the core elements found in animal G signaling, differences in network architecture and intrinsic properties of plant G protein elements make G signaling in plant cells distinct from the animal paradigm. In contrast to animal G proteins, plant G proteins are self-activating, and therefore regulation of G activation in plants occurs at the deactivation step. The self-activating property also means that plant G proteins do not need and therefore do not have typical animal G protein-coupled receptors. Targets of activated plant G proteins, also known as effectors, are unlike effectors in animal cells. The simpler repertoire of G signal elements in Arabidopsis makes G signaling easier to manipulate in a multicellular context.
Collapse
Affiliation(s)
- Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
14
|
Torres MA, Morales J, Sánchez-Rodríguez C, Molina A, Dangl JL. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:686-94. [PMID: 23441575 DOI: 10.1094/mpmi-10-12-0236-r] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant NADPH oxidases produce reactive oxygen species (ROS) in response to pathogens that have diverse functions in different cellular contexts. Distinct phenotypic outcomes may derive from the interaction of NADPH oxidase-dependent ROS with other signaling components that mediate defense activation. We analyze the interaction between NADPH oxidases AtRbohD and AtRbohF and the Arabidopsis heterotrimeric G protein. The Gβ subunit (AGB1) of the heterotrimeric G protein is required for full disease resistance to different Pseudomonas syringae strains. Genetic studies reveal that, upon P. syringae infection, AGB1 and AtRbohD and AtRbohF can function in the same pathway, as the agb1 null allele is epistatic to the NADPH oxidase null alleles, combinatorial mutants display the agb1 phenotypes, and agb1 suppresses some of the atrbohD atrbohF double mutant phenotypes. In contrast, increased susceptibility to the necrotrophic fungus Plectosphaerella cucumerina displayed by agb1 and atrbohD atrbohF is enhanced in the agb1 atrbohD atrbohF triple mutant, suggesting that NADPH oxidase and heterotrimeric G proteins mediate different response pathways in response to this necrotrophic pathogen. The defense response mediated by AGB1 is independent of pathogen-dependent salicylic acid accumulation and signaling, as the agb1 sid2 (isochorismate synthase 2) double mutant showed enhanced disease susceptibility to P. syringae and Plectosphaerella cucumerina as compared with both single mutants. This study exemplifies the complex interplay between signaling events mediating defense activation, depending on the type of plant-pathogen interaction.
Collapse
|
15
|
Liu J, Ding P, Sun T, Nitta Y, Dong O, Huang X, Yang W, Li X, Botella JR, Zhang Y. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. PLANT PHYSIOLOGY 2013; 161:2146-58. [PMID: 23424249 PMCID: PMC3613483 DOI: 10.1104/pp.112.212431] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In fungi and metazoans, extracellular signals are often perceived by G-protein-coupled receptors (GPCRs) and transduced through heterotrimeric G-protein complexes to downstream targets. Plant heterotrimeric G proteins are also involved in diverse biological processes, but little is known about their upstream receptors. Moreover, the presence of bona fide GPCRs in plants is yet to be established. In Arabidopsis (Arabidopsis thaliana), heterotrimeric G protein consists of one Gα subunit (G protein α-subunit1), one Gβ subunit (Arabidopsis G protein β-subunit1 [AGB1]), and three Gγs subunits (Arabidopsis G protein γ-subunit1 [AGG1], AGG2, and AGG3). We identified AGB1 from a suppressor screen of BAK1-interacting receptor-like kinase1-1 (bir1-1), a mutant that activates cell death and defense responses mediated by the receptor-like kinase (RLK) suppressor of BIR1-1. Mutations in AGB1 suppress the cell death and defense responses in bir1-1 and transgenic plants overexpressing suppressor of BIR1-1. In addition, agb1 mutant plants were severely compromised in immunity mediated by three other RLKs, flagellin-sensitive2 (FLS2), Elongation Factor-TU RECEPTOR (EFR), and chitin elicitor receptor kinase1 (CERK1), respectively. By contrast, G protein α-subunit1 is not required for either cell death in bir1-1 or pathogen-associated molecular pattern-triggered immunity mediated by FLS2, EFR, and CERK1. Further analysis of agg1 and agg2 mutant plants indicates that AGG1 and AGG2 are also required for pathogen-associated molecular pattern-triggered immune responses mediated by FLS2, EFR, and CERK1, as well as cell death and defense responses in bir1-1. We hypothesize that the Arabidopsis heterotrimeric G proteins function as a converging point of plant defense signaling by mediating responses initiated by multiple RLKs, which may fulfill equivalent roles to GPCRs in fungi and animals.
Collapse
|
16
|
Urano D, Chen JG, Botella JR, Jones AM. Heterotrimeric G protein signalling in the plant kingdom. Open Biol 2013. [PMID: 23536550 DOI: 10.1098/rsob.12.0186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.
Collapse
Affiliation(s)
- Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
17
|
Urano D, Chen JG, Botella JR, Jones AM. Heterotrimeric G protein signalling in the plant kingdom. Open Biol 2013; 3:120186. [PMID: 23536550 PMCID: PMC3718340 DOI: 10.1098/rsob.120186] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/05/2013] [Indexed: 12/18/2022] Open
Abstract
In animals, heterotrimeric G proteins, comprising α-, β-and γ-subunits, perceive extracellular stimuli through cell surface receptors, and transmit signals to ion channels, enzymes and other effector proteins to affect numerous cellular behaviours. In plants, G proteins have structural similarities to the corresponding molecules in animals but transmit signals by atypical mechanisms and effector proteins to control growth, cell proliferation, defence, stomate movements, channel regulation, sugar sensing and some hormonal responses. In this review, we summarize the current knowledge on the molecular regulation of plant G proteins, their effectors and the physiological functions studied mainly in two model organisms: Arabidopsis thaliana and rice (Oryza sativa). We also look at recent progress on structural analyses, systems biology and evolutionary studies.
Collapse
Affiliation(s)
- Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan M. Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Thung L, Chakravorty D, Trusov Y, Jones AM, Botella JR. Signaling specificity provided by the Arabidopsis thaliana heterotrimeric G-protein γ subunits AGG1 and AGG2 is partially but not exclusively provided through transcriptional regulation. PLoS One 2013; 8:e58503. [PMID: 23520518 PMCID: PMC3592790 DOI: 10.1371/journal.pone.0058503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
The heterotrimeric G-protein complex in Arabidopsis thaliana consists of one α, one ß and three γ subunits. While two of the γ subunits, AGG1 and AGG2 have been shown to provide functional selectivity to the Gßγ dimer in Arabidopsis, it is unclear if such selectivity is embedded in their molecular structures or conferred by the different expression patterns observed in both subunits. In order to study the molecular basis for such selectivity we tested genetic complementation of AGG1- and AGG2 driven by the respectively swapped gene promoters. When expressed in the same tissues as AGG1, AGG2 rescues some agg1 mutant phenotypes such as the hypersensitivity to Fusarium oxysporum and D-mannitol as well as the altered levels of lateral roots, but does not rescue the early flowering phenotype. Similarly, AGG1 when expressed in the same tissues as AGG2 rescues the osmotic stress and lateral-root phenotypes observed in agg2 mutants but failed to rescue the heat-stress induction of flowering. The fact that AGG1 and AGG2 are functionally interchangeable in some pathways implies that, at least for those pathways, signaling specificity resides in the distinctive spatiotemporal expression patterns exhibited by each γ subunit. On the other hand, the lack of complementation for some phenotypes indicates that there are pathways in which signaling specificity is provided by differences in the primary AGG1 and AGG2 amino acid sequences.
Collapse
Affiliation(s)
- Leena Thung
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - David Chakravorty
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alan M. Jones
- Departments of Biology and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|