1
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
2
|
Yang M, Song C, He X, Wang L, He C, Yu H, Xiao W, Lin Y, Zhang Y, Wang Y, He W, Chen Q, Zhang Y, Wang X, Tang H, Li M, Luo Y. The new function of FaSRT2-1 protein in energy metabolism: Promoting strawberry fruit quality and ripening. Int J Biol Macromol 2024; 281:136199. [PMID: 39366613 DOI: 10.1016/j.ijbiomac.2024.136199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Sirtuins (SRTs) are nicotinamide adenine dinucleotide (NAD+) dependent II histone deacetylases (HDACs) that have been understudied in horticultural crops. However, their functions in regulating mitochondrial energy metabolism and influencing fruit development and quality formation remain unclear. In this study, we found that FaSRT2-1 exhibits diverse subcellular localizations. Overexpression of FaSRT2-1 promoted strawberry fruit quality formation (soluble sugars, organic acids, anthocyanins) and accelerated ripening. Conversely, knockout of FaSRT2-1 yielded opposite results. During fruit ripening, ATP content and ATP/ADP ratio gradually increased, and FaSRT2-1 promoted ATP accumulation and decreased before and after the deep red stage, respectively, indicating its role in fruit ripening and senescence. FaSRT2-1 interacted with energy-related proteins (FaRPT4a, FaATPβ and FaATPγ) to increase ATP content and the ATP/ADP ratio. Additionally, FaSRT2-1 collaborated with FaGDH2 and FaWDR5B to increase the accumulation of soluble sugars, organic acids and anthocyanins. Meanwhile, FaRPT4a, FaATPγ, FaGDH2 and FaWDR5B were co-localized with FaSRT2-1, while FaATPβ was localized in both the cytoplasm and mitochondria. Transient overexpression experiments further highlight the roles of FaRPT4a and FaGDH2/FaWDR5B in modulating ATP accumulation and fruit ripening, respectively. In summary, FaSRT2-1 plays important roles in promoting strawberry fruit ripening, senescence and quality formation by regulating energy metabolism.
Collapse
Affiliation(s)
- Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chenghui Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinrong He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Liangxin Wang
- Wawushan Town Forestry Station, Hongya Country, Meishan 620365, China.
| | - Caixia He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Wenfei Xiao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Rong M, Gao SX, Huang PC, Guo YW, Wen D, Jiang JM, Xu YH, Wei JH. Genome-wide identification of the histone modification gene family in Aquilaria sinensis and functional analysis of several HMs in response to MeJA and NaCl stress. Int J Biol Macromol 2024; 281:135871. [PMID: 39357718 DOI: 10.1016/j.ijbiomac.2024.135871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng-Cheng Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu-Wei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jie-Mei Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
4
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
5
|
Guo JE, Wang H. Suppression of SlHDT1 expression increases fruit yield and decreases drought and salt tolerance in tomato. PLANT MOLECULAR BIOLOGY 2024; 114:101. [PMID: 39312030 DOI: 10.1007/s11103-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Histone deacetylation, one of most important types of post-translational modification, plays multiple indispensable roles in plant growth and development and abiotic stress responses. However, little information about the roles of histone deacetylase in regulating inflorescence architecture, fruit yield, and stress responses is available in tomato. Functional characterization revealed that SlHDT1 participated in the control of inflorescence architecture and fruit yield by regulating auxin signalling, and influenced tolerance to drought and salt stresses by governing abscisic acid (ABA) signalling. More inflorescence branches and higher fruit yield, which were influenced by auxin signalling, were observed in SlHDT1-RNAi transgenic plants. Moreover, tolerance to drought and salt stresses was decreased in SlHDT1-RNAi transgenic lines compared with the wild type (WT). Changes in parameters related to the stress response, including decreases in survival rate, chlorophyll content, relative water content (RWC), proline content, catalase (CAT) activity and ABA content and an increase in malonaldehyde (MDA) content, were observed in SlHDT1-RNAi transgenic lines. In addition, the RNA-seq analysis revealed varying degrees of downregulation for genes such as the stress-related genes SlABCC10 and SlGAME6 and the pathogenesis-related protein P450 gene SlCYP71A1, and upregulation of the pathogenesis-related protein P450 genes SlCYP94B1, SlCYP734A7 and SlCYP94A2 in SlHDT1-RNAi transgenic plants, indicating that SlHDT1 plays an important role in the response to biotic and abiotic stresses by mediating stress-related gene expression. In summary, the data suggest that SlHDT1 plays essential roles in the regulation of inflorescence architecture and fruit yield and in the response to drought and salt stresses.
Collapse
Affiliation(s)
- Jun-E Guo
- Laboratory of Molecular Biology of Tomato, Department of Biology Science and Food Engineering, Lu Liang University, Lvliang, 033000, People's Republic of China.
| | - Huihui Wang
- Laboratory of Molecular Biology of Tomato, Department of Biology Science and Food Engineering, Lu Liang University, Lvliang, 033000, People's Republic of China
| |
Collapse
|
6
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Wang P, Su L, Cao L, Hu H, Wan H, Wu C, Zheng Y, Bao C, Liu X. AtSRT1 regulates flowering by regulating flowering integrators and energy signals in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108841. [PMID: 38879987 DOI: 10.1016/j.plaphy.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.
Collapse
Affiliation(s)
- Ping Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lufang Su
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Lan Cao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Hanbing Hu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chunhong Wu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Yu Zheng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Chun Bao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, PR China.
| |
Collapse
|
8
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
9
|
Obrecht A, Paneque M. Unraveling the Role of AtSRT2 in Energy Metabolism, Stress Responses, and Gene Expression during Osmotic Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:711. [PMID: 38475557 DOI: 10.3390/plants13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Sirtuins participate in chromatin remodeling and gene expression regulation during stress responses. They are the only deacetylases that couple the cellular NAD+-dependent energy metabolism with transcriptional regulation. They catalyze the production of nicotinamide, inhibiting sirtuin 2 (SIR2) activity in vivo. The SIR2 homolog, AtSRT2, deacetylates non-histone proteins associated with mitochondrial energy metabolism. To date, AtSRT2 mechanisms during stress responses in Arabidopsis thaliana remain unclear. The transduction of mitochondrial metabolic signals links the energy status to transcriptional regulation, growth, and stress responses. These signals induce changes by regulating nuclear gene expression. The present study aimed to determine the role of SRT2 and its product nicotinamide in the development of A. thaliana and the expression of osmotic stress-response genes. Leaf development was greater in srt2+ plants than in the wild type, indicating that SET2 plays a role in energy metabolism. Treatment with polyethylene glycol activated and inhibited gene expression in srt2- and srt2+ lines, respectively. Therefore, we concluded that SRT2-stimulated plant growth and repressed signaling are associated with osmotic stress.
Collapse
Affiliation(s)
- Alberto Obrecht
- Doctoral Program in Biotechnology, Universidad de Santiago de Chile, Av. Lib. Bdo. O'Higgins 3363, Estación Central, Santiago 9170022, Chile
- Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11.315, La Pintana, Santiago 8820808, Chile
| | - Manuel Paneque
- Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11.315, La Pintana, Santiago 8820808, Chile
| |
Collapse
|
10
|
Giese J, Eirich J, Walther D, Zhang Y, Lassowskat I, Fernie AR, Elsässer M, Maurino VG, Schwarzländer M, Finkemeier I. The interplay of post-translational protein modifications in Arabidopsis leaves during photosynthesis induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1172-1193. [PMID: 37522418 DOI: 10.1111/tpj.16406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Veronica G Maurino
- Institute of Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| |
Collapse
|
11
|
Cui X, Dard A, Reichheld JP, Zhou DX. Multifaceted functions of histone deacetylases in stress response. TRENDS IN PLANT SCIENCE 2023; 28:1245-1256. [PMID: 37394308 DOI: 10.1016/j.tplants.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Histone deacetylases (HDACs) are important chromatin regulators essential for plant tolerance to adverse environments. In addition to histone deacetylation and epigenetic regulation, HDACs deacetylate non-histone proteins and thereby regulate multiple pathways. Like other post-translational modifications (PTMs), acetylation/deacetylation is a reversible switch regulating different cellular processes in plants. Here, by focusing on results obtained in arabidopsis (Arabidopsis thaliana) and rice plants, we analyze the different aspects of HDAC functions and the underlying regulatory mechanisms in modulating plant responses to stress. We hypothesize that, in addition to epigenetic regulation of gene expression, HDACs can also control plant tolerance to stress by regulating transcription, translation, and metabolic activities and possibly assembly-disassembly of stress granules (SGs) through lysine deacetylation of non-histone proteins.
Collapse
Affiliation(s)
- Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde 71, - 9052 Ghent, Belgium
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405 Orsay, France; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
12
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
13
|
Zeng J, Huang Y, Zhou L, Liang X, Yang C, Wang H, Yuan L, Wang Y, Li Y. Histone Deacetylase GiSRT2 Negatively Regulates Flavonoid Biosynthesis in Glycyrrhiza inflata. Cells 2023; 12:1501. [PMID: 37296622 PMCID: PMC10252568 DOI: 10.3390/cells12111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Glycyrrhiza inflata Batalin is a medicinal licorice species that has been widely used by humans for centuries. Licochalcone A (LCA) is a characteristic flavonoid that accumulates in G. inflata roots with high economical value. However, the biosynthetic pathway and regulatory network of its accumulation remain largely unknown. Here we found that a histone deacetylase (HDAC) inhibitor nicotinamide (NIC) could enhance the accumulation of LCA and total flavonoids in G. inflata seedlings. GiSRT2, a NIC-targeted HDAC was functionally analyzed and its RNAi transgenic hairy roots accumulated much more LCA and total flavonoids than its OE lines and the controls, indicating a negative regulatory role of GiSRT2 in the accumulation of LCA and total flavonoids. Co-analysis of transcriptome and metabolome of RNAi-GiSRT2 lines revealed potential mechanisms in this process. An O-methyltransferase gene, GiLMT1 was up-regulated in RNAi-GiSRT2 lines and the encoded enzyme catalyzed an intermediate step in LCA biosynthesis pathway. Transgenic hairy roots of GiLMT1 proved that GiLMT1 is required for LCA accumulation. Together, this work highlights the critical role of GiSRT2 in the regulation of flavonoid biosynthesis and identifies GiLMT1 as a candidate gene for the biosynthesis of LCA with synthetic biology approaches.
Collapse
Affiliation(s)
- Jiangyi Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Lijun Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiaoju Liang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Hongxia Wang
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA;
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
14
|
Li S, Zhou Y, Downs CA, Yuan S, Hou M, Li Q, Zhong X, Zhong F. Proteomics and Lysine Acetylation Modification Reveal the Responses of Pakchoi ( Brassica rapa L. ssp. chinensis) to Oxybenzone Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37216206 DOI: 10.1021/acs.jafc.2c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The broad-spectrum UV filter oxybenzone is toxic to plants at environmentally relevant concentrations. Lysine acetylation (LysAc) is one of the essential post-translational modifications (PTMs) in plant signaling responses. The goal of this study was to uncover the LysAc regulatory mechanism in response to toxic exposures to oxybenzone as a first step in elucidating xenobiotic acclimatory reactions by using the model Brassica rapa L. ssp. chinensis. A total of 6124 sites on 2497 proteins were acetylated, 63 proteins were differentially abundant, and 162 proteins were differentially acetylated under oxybenzone treatment. Bioinformatics analysis showed that a large number of antioxidant proteins were significantly acetylated under oxybenzone treatment, implying that LysAc alleviated the adverse effects of reactive oxygen species (ROS) by inducing antioxidant systems and stress-related proteins; the significant changes in acetylation modification of enzymes involved in different branches of carbon metabolism in plants under oxybenzone treatment mean that plants can change the direction of carbon flow allocation by regulating the activities of carbon metabolism-related enzymes. Our results profile the protein LysAc under oxybenzone treatment and propose an adaptive mechanism at the post-translational level of vascular plants in response to pollutants, providing a dataset reference for future related research.
Collapse
Affiliation(s)
- Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Yuqi Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Craig A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, Virginia 24533, United States
| | - Song Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Cheng'du 610299, China
| | - Xin Zhong
- Institute of Marine Science and Technology, Shandong University, Qing'dao 266237, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou 350002, China
| |
Collapse
|
15
|
Tilak P, Kotnik F, Née G, Seidel J, Sindlinger J, Heinkow P, Eirich J, Schwarzer D, Finkemeier I. Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36961081 DOI: 10.1111/tpj.16206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
Post-translational modifications (PTMs) of proteins play important roles in the acclimation of plants to environmental stress. Lysine acetylation is a dynamic and reversible PTM, which can be removed by histone deacetylases. Here we investigated the role of lysine acetylation in the response of Arabidopsis leaves to 1 week of salt stress. A quantitative mass spectrometry analysis revealed an increase in lysine acetylation of several proteins from cytosol and plastids, which was accompanied by altered histone deacetylase activities in the salt-treated leaves. While activities of HDA14 and HDA15 were decreased upon salt stress, HDA5 showed a mild and HDA19 a strong increase in activity. Since HDA5 is a cytosolic-nuclear enzyme from the class II histone deacetylase family with yet unknown protein substrates, we performed a lysine acetylome analysis on hda5 mutants and characterized its substrate proteins. Next to histone H2B, the salt stress-responsive transcription factor GT2L and the dehydration-related protein ERD7 were identified as HDA5 substrates. In addition, in protein-protein interaction studies, HDA18 was discovered, among other interacting proteins, to work in a complex together with HDA5. Altogether, this study revealed the substrate proteins of HDA5 and identified new lysine acetylation sites which are hyperacetylated upon salt stress. The identification of specific histone deacetylase substrate proteins, apart from histones, will be important to unravel the acclimation response of Arabidopsis to salt stress and their role in plant physiology.
Collapse
Affiliation(s)
- Priyadarshini Tilak
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Florian Kotnik
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Guillaume Née
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Julian Seidel
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| |
Collapse
|
16
|
Bruscalupi G, Di Micco P, Failla CM, Pascarella G, Morea V, Saliola M, De Paolis A, Venditti S, Mauro ML. Arabidopsis thaliana sirtuins control proliferation and glutamate dehydrogenase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:236-245. [PMID: 36436414 DOI: 10.1016/j.plaphy.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species.
Collapse
Affiliation(s)
- Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Patrizio Di Micco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Cristina Maria Failla
- IDI-IRCCS, Laboratory of Experimental Immunology, Via dei Monti di Creta 104, 00167, Rome, Italy.
| | - Gianmarco Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy; National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Michele Saliola
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Angelo De Paolis
- Institute of Sciences of Food Production (ISPA-CNR), Via Monteroni, Lecce, 73100, Italy.
| | - Sabrina Venditti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Mauro
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
17
|
Zhang M, Tan FQ, Fan YJ, Wang TT, Song X, Xie KD, Wu XM, Zhang F, Deng XX, Grosser JW, Guo WW. Acetylome reprograming participates in the establishment of fruit metabolism during polyploidization in citrus. PLANT PHYSIOLOGY 2022; 190:2519-2538. [PMID: 36135821 PMCID: PMC9706433 DOI: 10.1093/plphys/kiac442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng-Quan Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Jie Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting-Ting Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
18
|
A CobB like sirtuin in Oryza sativa indica regulates the mitochondrial machinery under stress conditions. Arch Biochem Biophys 2022; 731:109446. [DOI: 10.1016/j.abb.2022.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022]
|
19
|
Kurt F, Kurt B, Filiz E, Yildiz K, Akbudak MA. Mitochondrial iron transporter (MIT) gene in potato (Solanum tuberosum): comparative bioinformatics, physiological and expression analyses in response to drought and salinity. Biometals 2022; 35:875-887. [PMID: 35764832 DOI: 10.1007/s10534-022-00411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
Mitochondrial iron transporter (MIT) genes are essential for mitochondrial acquisition/import of iron and vital to proper functioning of mitochondria. Unlike other organisms, research on the MITs in plants is limited. The present study provides comparative bioinformatics assays for the potato MIT gene (StMIT) as well as gene expression analyses. The phylogenetic analyses revealed monocots-dicot divergence in MIT proteins and it was also found clade specific motif diversity. In addition, docking analyses indicated that Asp172 and Gly100 residues to be identified as the closest residues binding to ferrous iron. The percentage of structure overlap of the StMIT 3D protein model with Arabidopsis, maize and rice MIT proteins was found between 80.18% and 85.71%. The transcript analyses exhibited that the expression of StMIT was triggered under drought and salinity stresses. The findings of the present study would provide valuable leads for further studies targeting specifically the MIT gene and generally the plant iron metabolism.
Collapse
Affiliation(s)
- Firat Kurt
- Faculty of Applied Sciences, Plant Production and Technologies, Mus Alparslan University, Muş, Turkey
| | - Baris Kurt
- Department of Mathematics, Faculty of Education, Mus Alparslan University, Muş, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey.
| | - Kubra Yildiz
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - M Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
20
|
Tang WS, Zhong L, Ding QQ, Dou YN, Li WW, Xu ZS, Zhou YB, Chen J, Chen M, Ma YZ. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1278-1293. [PMID: 35224735 DOI: 10.1111/nph.18060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 05/26/2023]
Abstract
Salt tolerance during seed germination is essential for seedling establishment under salt stress. Sirtuin-like proteins, NAD+ -dependent histone deacetylases, are involved in plant responses to abiotic stresses; however, the regulatory mechanism remains unknown. We elucidated the mechanism underlying AtSRT2 (a sirtuin-like protein)-mediated regulation of salt tolerance during seed germination in Arabidopsis. The AtSRT2 mutant srt2 exhibited significantly reduced seed germination percentages under salt stress; its targets were identified via chromatin immunoprecipitation coupled with ultra-high-throughput parallel DNA sequencing (ChIP-Seq) assay. Epistasis analysis was performed to identify AtSRT2-related pathways. Overexpression of SRT2.7, an AtSRT2 splice variant, rescued the salt-sensitive phenotype of mutant srt2. AtSRT2 histone deacetylation activity was important for salt tolerance during seed germination. The acetylation level of histone H4K8 locus in srt2-1 increased significantly under salt treatment. Vesicle-associated membrane protein 714 (VAMP714), a negative regulator of hydrogen peroxide (H2 O2 )-containing vesicle trafficking in cells, was identified as a target of AtSRT2. AtSRT2 regulated histone acetylation in the promoter region of VAMP714 and inhibited VAMP714 transcription under salt treatment. Seed germination percentage of double-mutant srt2-1vamp714 was close to that of single-mutant vamp714, and higher than that of single-mutant srt2 under salt stress. Hydrogen peroxide content and DNA damage increased after salt treatment in srt2 during seed germination. AtSRT2 regulates salt tolerance during seed germination through VAMP714 in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Si Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Li Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Qing-Qian Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yi-Ning Dou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Wei-Wei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
21
|
Du Q, Fang Y, Jiang J, Chen M, Fu X, Yang Z, Luo L, Wu Q, Yang Q, Wang L, Qu Z, Li X, Xie X. Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 2022; 23:28. [PMID: 34991465 PMCID: PMC8739980 DOI: 10.1186/s12864-021-08229-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) play an important role in the regulation of gene expression, which is indispensable in plant growth, development, and responses to environmental stresses. In Arabidopsis and rice, the molecular functions of HDACs have been well-described. However, systematic analysis of the HDAC gene family and gene expression in response to biotic and abiotic stresses has not been reported for sorghum. RESULTS We conducted a systematic analysis of the sorghum HDAC gene family and identified 19 SbHDACs mainly distributed on eight chromosomes. Phylogenetic tree analysis of SbHDACs showed that the gene family was divided into three subfamilies: RPD3/HDA1, SIR2, and HD2. Tissue-specific expression results showed that SbHDACs displayed different expression patterns in different tissues, indicating that these genes may perform different functions in growth and development. The expression pattern of SbHDACs under different stresses (high and low temperature, drought, osmotic and salt) and pathogen-associated molecular model (PAMPs) elf18, chitin, and flg22) indicated that SbHDAC genes may participate in adversity responses and biological stress defenses. Overexpression of SbHDA1, SbHDA3, SbHDT2 and SbSRT2 in Escherichia coli promoted the growth of recombinant cells under abiotic stress. Interestingly, we also showed that the sorghum acetylation level was enhanced when plants were under cold, heat, drought, osmotic and salt stresses. The findings will help us to understand the HDAC gene family in sorghum, and illuminate the molecular mechanism of the responses to abiotic and biotic stresses. CONCLUSION We have identified and classified 19 HDAC genes in sorghum. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Meiqing Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qijiao Wu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Lujie Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhiguang Qu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
22
|
Balparda M, Elsässer M, Badia MB, Giese J, Bovdilova A, Hüdig M, Reinmuth L, Eirich J, Schwarzländer M, Finkemeier I, Schallenberg-Rüdinger M, Maurino VG. Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:92-111. [PMID: 34713507 DOI: 10.1111/tpj.15556] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.
Collapse
Affiliation(s)
- Manuel Balparda
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Marlene Elsässer
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Mariana B Badia
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
- Facultad de Quı́mica e Ingenierı́a del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, S2002QEO, Rosario, Argentina
| | - Jonas Giese
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Anastasiia Bovdilova
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Meike Hüdig
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Lisa Reinmuth
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Molecular Evolution, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Veronica G Maurino
- Molecular Plant Physiology, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
- Plant Molecular Physiology and Biotechnology, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| |
Collapse
|
23
|
Yang L, Meng X, Chen S, Li J, Sun W, Chen W, Wang S, Wan H, Qian G, Yi X, Li J, Zheng Y, Luo M, Chen S, Liu X, Mi Y. Identification of the Histone Deacetylases Gene Family in Hemp Reveals Genes Regulating Cannabinoids Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:755494. [PMID: 34868143 PMCID: PMC8636033 DOI: 10.3389/fpls.2021.755494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Histone deacetylases (HDACs) play crucial roles nearly in all aspects of plant biology, including stress responses, development and growth, and regulation of secondary metabolite biosynthesis. The molecular functions of HDACs have been explored in depth in Arabidopsis thaliana, while little research has been reported in the medicinal plant Cannabis sativa L. Here, we excavated 14 CsHDAC genes of C. sativa L that were divided into three relatively conserved subfamilies, including RPD3/HDA1 (10 genes), SIR2 (2 genes), and HD2 (2 genes). Genes associated with the biosynthesis of bioactive constituents were identified by combining the distribution of cannabinoids with the expression pattern of HDAC genes in various organs. Using qRT-PCR and transcription group analysis, we verified the expression of candidate genes in different tissues. We found that the histone inhibitor Trichostatin A (TSA) affected the expression of key genes in the cannabinoid metabolism pathway and the accumulation of synthetic precursors, which indirectly indicates that histone inhibitor may regulate the synthesis of active substances in C. sativa L.
Collapse
Affiliation(s)
- Liu Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sifan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangtao Qian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaozhe Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yaqin Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Giese J, Eirich J, Post F, Schwarzländer M, Finkemeier I. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling. Methods Mol Biol 2021; 2363:215-234. [PMID: 34545496 DOI: 10.1007/978-1-0716-1653-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria are central hubs of redox biochemistry in the cell. An important role of mitochondrial carbon metabolism is to oxidize respiratory substrates and to pass the electrons down the mitochondrial electron transport chain to reduce oxygen and to drive oxidative phosphorylation. During respiration, reactive oxygen species are produced as a side reaction, some of which in turn oxidize cysteine thiols in proteins. Hence, the redox status of cysteine-containing mitochondrial proteins has to be controlled by the mitochondrial glutathione and thioredoxin systems, which draw electrons from metabolically derived NADPH. The redox status of mitochondrial cysteines can undergo fast transitions depending on the metabolic status of the cell, as for instance at early seed germination. Here, we describe a state-of-the-art method to quantify redox state of protein cysteines in isolated Arabidopsis seedling mitochondria of controlled metabolic and respiratory state by MS2-based redox proteomics using the isobaric thiol labeling reagent Iodoacetyl Tandem Mass Tag™ (iodoTMT). The procedure is also applicable to isolated mitochondria of other plant and nonplant systems.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Frederik Post
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
25
|
Ahmad Z, Bashir K, Matsui A, Tanaka M, Sasaki R, Oikawa A, Hirai MY, Zu Y, Kawai-Yamada M, Rashid B, Husnain T, Seki M. Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 107:63-84. [PMID: 34460049 DOI: 10.1007/s11103-021-01179-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.
Collapse
Affiliation(s)
- Zarnab Ahmad
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Plant Genomics Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Laboratory of Plant Biotechnology, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Ryosuke Sasaki
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Akira Oikawa
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Masami Yokota Hirai
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yanhui Zu
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Bushra Rashid
- Plant Genomics Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- Plant Genomics Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
26
|
Vall-Llaura N, Torres R, Lindo-García V, Muñoz P, Munné-Bosch S, Larrigaudière C, Teixidó N, Giné-Bordonaba J. PbSRT1 and PbSRT2 regulate pear growth and ripening yet displaying a species-specific regulation in comparison to other Rosaceae spp. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110925. [PMID: 34034873 DOI: 10.1016/j.plantsci.2021.110925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic regulation is crucial to ensure a coordinated control of the different events that occur during fruit development and ripening. Sirtuins are NAD+-dependent histone deacetylases involved in the regulation of gene expression of many biological processes. However, their implications in the Rosaceae family remains unexplored. Accordingly, in this work, we demonstrated the phylogenetic divergence of both sirtuins among Rosaceae species. We then characterized the expression pattern of both SRT1 and SRT2 in selected pome and stone fruit species. Both SRT1 and SRT2 significantly changed during the fruit development and ripening of apple, nectarine and pear fruit, displaying a different expression profile. Such differences could explain in part their different ripening behaviour. To further unravel the role of sirtuins on the fruit development and ripening processes, a deeper analysis was performed using pear as a fruit model. In pear, PbSRT1 gene expression levels were negatively correlated with specific hormones (i.e. abscisic acid, indole-3-acetic acid, gibberellin A1 and zeatin) during the first phases of fruit development. PbSRT2 seemed to directly mediate pear ripening in an ethylene-independent manner. This hypothesis was further reinforced by treating the fruit with the ethylene inhibitor 1-methylcyclopropene (1-MCP). Instead, enhanced PbSRT2 along pear growth/ripening positively correlated with the accumulation of major sugars (R2 > 0.94), reinforcing the idea that sugar metabolism may be a target of epigenetic modifications during fruit ripening. Overall, the results from this study point out, for the first time, the importance that sirtuins have in the regulation of fruit growth and ripening of pear fruit by likely regulating hormonal and sugar metabolism.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Violeta Lindo-García
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Christian Larrigaudière
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Jordi Giné-Bordonaba
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| |
Collapse
|
27
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
28
|
Samo N, Ebert A, Kopka J, Mozgová I. Plant chromatin, metabolism and development - an intricate crosstalk. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102002. [PMID: 33497897 DOI: 10.1016/j.pbi.2021.102002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Chromatin structure influences DNA accessibility and underlying gene expression. Disturbances of chromatin structure often result in pleiotropic developmental phenotypes. Interactions between chromatin modifications and development have been the main focus of epigenetic studies. Recent years brought major advance in uncovering and understanding connections between chromatin organisation in the nucleus and metabolic processes that take place in the cytoplasm or other cellular compartments. Products of primary metabolism and cell redox states influence chromatin-modifying complexes, and chromatin modifiers in turn affect expression of metabolic genes. Current evidence indicates that complex interaction loops between these biological system layers exist. Applying interdisciplinary and holistic approaches will decipher causality and molecular mechanisms of the dynamic crosstalk between chromatin structure, metabolism and plant growth and development.
Collapse
Affiliation(s)
- Naseem Samo
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Alina Ebert
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
| |
Collapse
|
29
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
30
|
Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148443. [PMID: 33965424 DOI: 10.1016/j.bbabio.2021.148443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Mitochondrial biology is underpinned by the presence and activity of large protein assemblies participating in the organelle-located steps of respiration, TCA-cycle, glycine oxidation, and oxidative phosphorylation. While the enzymatic roles of these complexes are undisputed, little is known about the interactions of the subunits beyond their presence in these protein complexes and their functions in regulating mitochondrial metabolism. By applying one of the most important regulatory cues for plant metabolism, the presence or absence of light, we here assess changes in the composition and molecular mass of protein assemblies involved in NADH-production in the mitochondrial matrix and in oxidative phosphorylation by employing a differential complexome profiling strategy. Covering a mass up to 25 MDa, we demonstrate dynamic associations of matrix enzymes and of components involved in oxidative phosphorylation. The data presented here form the basis for future studies aiming to advance our understanding of the role of protein:protein interactions in regulating plant mitochondrial functions.
Collapse
|
31
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
32
|
Wurm CJ, Lindermayr C. Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:808-818. [PMID: 33128375 DOI: 10.1093/jxb/eraa404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is involved in a vast number of physiologically important processes in plants, such as organ development, stress resistance, and immunity. Transduction of NO bioactivity is generally achieved by post-translational modification of proteins, with S-nitrosation of cysteine residues as the predominant form. While traditionally the subcellular location of the factors involved was of lesser importance, recent studies identified the connection between NO and transcriptional activity and thereby raised the question about the route of NO into the nuclear sphere. Identification of NO-affected transcription factors and chromatin-modifying histone deacetylases implicated the important role of NO signaling in the plant nucleus as a regulator of epigenetic mechanisms and gene transcription. Here, we discuss the relationship between NO and its directly regulated protein targets in the nuclear environment, focusing on S-nitrosated chromatin modulators and transcription factors.
Collapse
Affiliation(s)
- Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
33
|
Rubisco lysine acetylation occurs at very low stoichiometry in mature Arabidopsis leaves: implications for regulation of enzyme function. Biochem J 2020; 477:3885-3896. [PMID: 32959870 PMCID: PMC7557146 DOI: 10.1042/bcj20200413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Multiple studies have shown ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39; Rubisco) to be subject to Lys-acetylation at various residues; however, opposing reports exist about the biological significance of these post-translational modifications. One aspect of the Lys-acetylation that has not been addressed in plants generally, or with Rubisco specifically, is the stoichiometry at which these Lys-acetylation events occur. As a method to ascertain which Lys-acetylation sites on Arabidopsis Rubisco might be of regulatory importance to its catalytic function in the Calvin–Benson cycle, we purified Rubisco from leaves in both the day and night-time and performed independent mass spectrometry based methods to determine the stoichiometry of Rubisco Lys-acetylation events. The results indicate that Rubisco is acetylated at most Lys residues, but each acetylation event occurs at very low stoichiometry. Furthermore, in vitro treatments that increased the extent of Lys-acetylation on purified Rubisco had no effect on Rubisco maximal activity. Therefore, we are unable to confirm that Lys-acetylation at low stoichiometries can be a regulatory mechanism controlling Rubisco maximal activity. The results highlight the need for further use of stoichiometry measurements when determining the biological significance of reversible PTMs like acetylation.
Collapse
|
34
|
Jiang J, Ding AB, Liu F, Zhong X. Linking signaling pathways to histone acetylation dynamics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5179-5190. [PMID: 32333777 PMCID: PMC7475247 DOI: 10.1093/jxb/eraa202] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants face versatile environmental challenges and require proper responses at multiple levels for survival. Epigenetic modification of DNA and histones is a conserved gene-regulatory mechanism and plays critical roles in diverse aspects of biological processes, ranging from genome defense and imprinting to development and physiology. In recent years, emerging studies have revealed the interplay between signaling transduction pathways, epigenetic modifications, and chromatin cascades. Specifically, histone acetylation and deacetylation dictate plant responses to environmental cues by modulating chromatin dynamics to regulate downstream gene expression as signaling outputs. In this review, we summarize current understandings of the link between plant signaling pathways and epigenetic modifications with a focus on histone acetylation and deacetylation.
Collapse
Affiliation(s)
- Jianjun Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Correspondence: or
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Correspondence: or
| |
Collapse
|
35
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Tran HC, Van Aken O. Mitochondrial unfolded protein-related responses across kingdoms: similar problems, different regulators. Mitochondrion 2020; 53:166-177. [PMID: 32502630 DOI: 10.1016/j.mito.2020.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are key components of eukaryotic cells, so their proper functioning is monitored via different mitochondrial signalling responses. One of these mitochondria-to-nuclear 'retrograde' responses to maintain mitochondrial homeostasis is the mitochondrial unfolded protein response (UPRmt), which can be activated by a variety of defects including blocking mitochondrial translation, respiration, protein import or transmembrane potential. Although UPRmt was first reported in cultured mammalian cells, this signalling pathway has also been extensively studied in the nematode Caenorhabditis elegans. In yeast, there are no published studies focusing on UPRmt in a strict sense, but other unfolded protein responses (UPR) that appear related to UPRmt have been described, such as the UPR activated by protein mistargeting (UPRam) and mitochondrial compromised protein import response (mitoCPR). In plants, very little is known about UPRmt and only recently some of the regulators have been identified. In this paper, we summarise and compare the current knowledge of the UPRmt and related responses across eukaryotic kingdoms: animals, fungi and plants. Our comparison suggests that each kingdom has evolved its own specific set of regulators, however, the functional categories represented among UPRmt-related target genes appear to be largely overlapping. This indicates that the strategies for preserving proper mitochondrial functions are partially conserved, targeting mitochondrial chaperones, proteases, import components, dynamics and stress response, but likely also non-mitochondrial functions including growth regulators/hormone balance and amino acid metabolism. We also identify homologs of known UPRmt regulators and responsive genes across kingdoms, which may be interesting targets for future research.
Collapse
|
37
|
Krupinska K, Blanco NE, Oetke S, Zottini M. Genome communication in plants mediated by organelle-n-ucleus-located proteins. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190397. [PMID: 32362260 PMCID: PMC7209962 DOI: 10.1098/rstb.2019.0397] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An increasing number of eukaryotic proteins have been shown to have a dual localization in the DNA-containing organelles, mitochondria and plastids, and/or the nucleus. Regulation of dual targeting and relocation of proteins from organelles to the nucleus offer the most direct means for communication between organelles as well as organelles and nucleus. Most of the mitochondrial proteins of animals have functions in DNA repair and gene expression by modelling of nucleoid architecture and/or chromatin. In plants, such proteins can affect replication and early development. Most plastid proteins with a confirmed or predicted second location in the nucleus are associated with the prokaryotic core RNA polymerase and are required for chloroplast development and light responses. Few plastid–nucleus-located proteins are involved in pathogen defence and cell cycle control. For three proteins, it has been clearly shown that they are first targeted to the organelle and then relocated to the nucleus, i.e. the nucleoid-associated proteins HEMERA and Whirly1 and the stroma-located defence protein NRIP1. Relocation to the nucleus can be experimentally demonstrated by plastid transformation leading to the synthesis of proteins with a tag that enables their detection in the nucleus or by fusions with fluoroproteins in different experimental set-ups. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Nicolás E Blanco
- Centre of Photosynthetic and Biochemical Studies, Faculty of Biochemical Science and Pharmacy, National University of Rosario (CEFOBI/UNR-CONICET), Rosario, Argentina
| | - Svenja Oetke
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131 Padova, Italy
| |
Collapse
|
38
|
Haq MI, Thakuri BKC, Hobbs T, Davenport ML, Kumar D. Tobacco SABP2-interacting protein SIP428 is a SIR2 type deacetylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:72-80. [PMID: 32388422 DOI: 10.1016/j.plaphy.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 05/25/2023]
Abstract
Salicylic acid is widely studied for its role in biotic stress signaling in plants. Several SA-binding proteins, including SABP2 (salicylic acid-binding protein 2) has been identified and characterized for their role in plant disease resistance. SABP2 is a 29 kDA tobacco protein that binds to salicylic acid with high affinity. It is a methylesterase enzyme that catalyzes the conversion of methyl salicylate into salicylic acid required for inducing a robust systemic acquired resistance (SAR) in plants. Methyl salicylic acid is one of the several mobile SAR signals identified in plants. SABP2-interacting protein 428 (SIP428) was identified in a yeast two-hybrid screen using tobacco SABP2 as a bait. In silico analysis shows that SIP428 possesses the SIR2 (silent information regulatory 2)-like conserved motifs. SIR2 enzymes are orthologs of sirtuin proteins that catalyze the NAD+-dependent deacetylation of Nε lysine-acetylated proteins. The recombinant SIP428 expressed in E. coli exhibits SIR2-like deacetylase activity. SIP428 shows homology to Arabidopsis AtSRT2 (67% identity), which is implicated in SA-mediated basal defenses. Immunoblot analysis using anti-acetylated lysine antibodies showed that the recombinant SIP428 is lysine acetylated. The expression of SIP428 transcripts was moderately downregulated upon infection by TMV. In the presence of SIP428, the esterase activity of SABP2 increased modestly. The interaction of SIP428 with SABP2, it's regulation upon pathogen infection, and similarity with AtSRT2 suggests that SIP428 is likely to play a role in stress signaling in plants.
Collapse
Affiliation(s)
- Md Imdadul Haq
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tazley Hobbs
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Mackenzie L Davenport
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Dhirendra Kumar
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
39
|
Zheng W. Review: The plant sirtuins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110434. [PMID: 32081272 DOI: 10.1016/j.plantsci.2020.110434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/05/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The sirtuin family of intracellular enzymes are able to catalyze a unique β-nicotinamide adenine dinucleotide (β-NAD+)-dependent Nε-acyl-lysine deacylation reaction on histone and non-histone protein substrates. Since 2000, the sirtuin family members have been identified in both prokaryotes and eukaryotes; tremendous accomplishments have also been achieved on the mechanistic and functional (pharmacological) understanding of the sirtuin-catalyzed deacylation reaction. Among the eukaryotic organisms, past research has been focused more on the yeast and mammalian sirtuins than on the plant sirtuins, however, the very presence of sirtuins in various plant species and the functional studies on plant sirtuins published thus far attest to the importance of this particular subfamily of eukaryotic sirtuins in regulating the growth and development of plants and their responses to biotic and abiotic stresses. In this review, an integrated and updated account will be presented on the biochemical, cellular, and functional profiles of all the plant sirtuins identified thus far. It is hoped that this article will also set a stage for expanded efforts in the identification, characterization, and functional interrogation of plant sirtuins; and the development and exploration of their chemical modulators (activators and inhibitors) in plant research and agriculture.
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
40
|
Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M. Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. THE PLANT CELL 2020; 32:573-594. [PMID: 31911454 PMCID: PMC7054041 DOI: 10.1105/tpc.19.00535] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48149 Münster, Germany
| | | | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48143 Münster, Germany
| |
Collapse
|
41
|
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun HP, Eubel H, Meyer EH, Müller-Schüssele SJ, Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:420-441. [PMID: 31520498 DOI: 10.1111/tpj.14534] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/14/2023]
Abstract
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Elsässer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Iris Finkemeier
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Jonas Giese
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Tatjana M Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristina Ruberti
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Janina Steinbeck
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Etienne H Meyer
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Stefanie J Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| |
Collapse
|
42
|
Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun DJ. Histone Deacetylase HDA9 With ABI4 Contributes to Abscisic Acid Homeostasis in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:143. [PMID: 32158458 PMCID: PMC7052305 DOI: 10.3389/fpls.2020.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Drought stress, a major environmental factor, significantly affects plant growth and reproduction. Plants have evolved complex molecular mechanisms to tolerate drought stress. In this study, we investigated the function of the Arabidopsis thaliana RPD3-type HISTONE DEACETYLASE 9 (HDA9) in response to drought stress. The loss-of-function mutants hda9-1 and hda9-2 were insensitive to abscisic acid (ABA) and sensitive to drought stress. The ABA content in the hda9-1 mutant was reduced in wild type (WT) plant. Most histone deacetylases in animals and plants form complexes with other chromatin-remodeling components, such as transcription factors. In this study, we found that HDA9 interacts with the ABA INSENSITIVE 4 (ABI4) transcription factor using a yeast two-hybrid assay and coimmunoprecipitation. The expression of CYP707A1 and CYP707A2, which encode (+)-ABA 8'-hydroxylases, key enzymes in ABA catabolic pathways, was highly induced in hda9-1, hda9-2, abi4, and hda9-1 abi4 mutants upon drought stress. Chromatin immunoprecipitation and quantitative PCR showed that the HDA9 and ABI4 complex repressed the expression of CYP707A1 and CYP707A2 by directly binding to their promoters in response to drought stress. Taken together, these data suggest that HDA9 and ABI4 form a repressive complex to regulate the expression of CYP707A1 and CYP707A2 in response to drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
43
|
High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation. Methods Mol Biol 2020; 2139:241-256. [PMID: 32462591 DOI: 10.1007/978-1-0716-0528-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetylation of lysine side chains at their ε-amino group is a reversible posttranslational modification (PTM), which can affect diverse protein functions. Lysine acetylation was first described on histones, and nowadays gains more and more attention due to its more general occurrence in proteomes, and its possible crosstalk with other protein modifications. Here we describe a workflow to investigate the acetylation of lysine-containing peptides on a large scale. For this high-resolution lysine acetylome analysis, dimethyl-labeled peptide samples are pooled and offline-fractionated using hydrophilic interaction liquid chromatography (HILIC). The offline fractionation is followed by an immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for data acquisition and subsequent data analysis.
Collapse
|
44
|
Née G, Tilak P, Finkemeier I. A Versatile Workflow for the Identification of Protein-Protein Interactions Using GFP-Trap Beads and Mass Spectrometry-Based Label-Free Quantification. Methods Mol Biol 2020; 2139:257-271. [PMID: 32462592 DOI: 10.1007/978-1-0716-0528-8_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein functions often rely on protein-protein interactions. Hence, knowledge about the protein interaction network is essential for an understanding of protein functions and plant physiology. A major challenge of the postgenomic era is the mapping of protein-protein interaction networks. This chapter describes a mass spectrometry-based label-free quantification approach to identify in vivo protein interaction networks. The procedure starts with the extraction of intact protein complexes from transgenic plants expressing the protein of interest fused to a GFP-Tag (bait-GFP), as well as plants expressing a free GFP as background control. Enrichment of the GFP-tagged protein together with its interaction partners, as well as the free GFP, is performed by immunoaffinity purification. The pull-down quality can be evaluated by simple gel-based techniques. In parallel, the captured proteins are trypsin-digested and relatively quantified by label-free mass spectrometry-based quantification. The relative quantification approach largely relies on the normalization of protein abundances of background-binding proteins, which occur in both bait-GFP and free GFP pull-downs. Therefore, relative quantification of the protein pull-down is superior over methods that solely rely on protein identifications and removal of often copurified high-abundance proteins from the bait-GFP pull-downs, which might remove real interaction partners. A further strength of this method is that it can be applied to any soluble GFP-tagged protein.
Collapse
Affiliation(s)
- Guillaume Née
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Priyadarshini Tilak
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
45
|
Chen X, Ding AB, Zhong X. Functions and mechanisms of plant histone deacetylases. SCIENCE CHINA-LIFE SCIENCES 2019; 63:206-216. [PMID: 31879846 DOI: 10.1007/s11427-019-1587-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review, we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.
Collapse
Affiliation(s)
- Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
46
|
Fauteux F, Wang Y, Rocheleau H, Liu Z, Pan Y, Fedak G, McCartney C, Ouellet T. Characterization of QTL and eQTL controlling early Fusarium graminearum infection and deoxynivalenol levels in a Wuhan 1 x Nyubai doubled haploid wheat population. BMC PLANT BIOLOGY 2019; 19:536. [PMID: 31795937 PMCID: PMC6892237 DOI: 10.1186/s12870-019-2149-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/19/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) is a major disease of cereal crops, caused by the fungal pathogen Fusarium graminearum and related species. Breeding wheat for FHB resistance contributes to increase yields and grain quality and to reduce the use of fungicides. The identification of genes and markers for FHB resistance in different wheat genotypes has nevertheless proven challenging. RESULTS In this study, early infection by F. graminearum was analyzed in a doubled haploid population derived from the cross of the moderately resistant wheat genotypes Wuhan 1 and Nyubai. Three quantitative trait loci (QTL) were identified: 1AL was associated with lower deoxynivalenol content, and 4BS and 5A were associated with reduced F. graminearum infection at 2 days post inoculation. Early resistance alleles were inherited from Wuhan 1 for QTL 1AL and 4BS and inherited from Nyubai for the 5A QTL. Cis and trans expression QTL (eQTL) were identified using RNA-seq data from infected head samples. Hotspots for trans eQTL were identified in the vicinity of the 1AL and 4BS QTL peaks. Among differentially expressed genes with cis eQTL within the QTL support intervals, nine genes had higher expression associated with FHB early resistance, and four genes had higher expression associated with FHB early susceptibility. CONCLUSIONS Our analysis of genotype and gene expression data of wheat infected by F. graminearum identified three QTL associated with FHB early resistance, and linked genes with eQTL and differential expression patterns to those QTL. These findings may have applications in breeding wheat for early resistance to FHB.
Collapse
Affiliation(s)
- François Fauteux
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario Canada
| | - Yunli Wang
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario Canada
| | - Ziying Liu
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario Canada
| | - Youlian Pan
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario Canada
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario Canada
| | - Curt McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario Canada
| |
Collapse
|
47
|
Abstract
Eukaryotic life has developed a fascinating and highly optimized system for energy transduction: the mitochondrial respiratory chain. Typically composed of five core protein complexes, we now learn from two studies that plant hemi-parasites of the type Viscum cope without Complex I, the entry point of the classical respiratory system.
Collapse
Affiliation(s)
- Karin B Busch
- Institute of Molecular Cell Biology, Department of Biology, Westfälische Universität Münster, D-48149 Münster, Germany.
| |
Collapse
|
48
|
Bakshi A, Moin M, Madhav MS, Kirti PB. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:190-205. [PMID: 30411830 DOI: 10.1111/plb.12935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
The target of rapamycin (TOR) protein regulates growth and development in photosynthetic and non-photosynthetic eukaryotes. Although the TOR regulatory networks are involved in nutrient and energy signalling, and transcriptional and translational control of multiple signalling pathways, the molecular mechanism of TOR regulation of plant abiotic stress responses is still unclear. The TOR-mediated transcriptional regulation of genes encoding ribosomal proteins (RP) is a necessity under stress conditions for balanced growth and productivity in plants. The activation of SnRKs (sucrose non-fermenting-related kinases) and the inactivation of TOR signalling in abiotic stresses is in line with the accumulation of ABA and transcriptional activation of stress responsive genes. Autophagy is induced under abiotic stress conditions, which results in degradation of proteins and the release of amino acids, which might possibly induce phosphorylation of TOR and, hence, its activation. TOR signalling also has a role in regulating ABA biosynthesis for transcriptional regulation of stress-related genes. The switch between activation and inactivation of TOR by its phosphorylation and de-phosphorylation maintains balanced growth in response to stresses. In the present review, we discuss the important signalling pathways that are regulated by TOR and try to assess the relationship between TOR signalling and tolerance to abiotic stresses in plants. The review also discusses possible cross-talk between TOR and RP genes in response to abiotic stresses.
Collapse
Affiliation(s)
- A Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
49
|
Ageeva-Kieferle A, Rudolf EE, Lindermayr C. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:625. [PMID: 31191565 PMCID: PMC6546728 DOI: 10.3389/fpls.2019.00625] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/26/2019] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in all kingdoms. In plants, NO is involved in the regulation of various processes of growth and development as well as biotic and abiotic stress response. It mainly acts by modifying protein cysteine or tyrosine residues or by interacting with protein bound transition metals. Thereby, the modification of cysteine residues known as protein S-nitrosation is the predominant mechanism for transduction of NO bioactivity. Histone acetylation on N-terminal lysine residues is a very important epigenetic regulatory mechanism. The transfer of acetyl groups from acetyl-coenzyme A on histone lysine residues is catalyzed by histone acetyltransferases. This modification neutralizes the positive charge of the lysine residue and results in a loose structure of the chromatin accessible for the transcriptional machinery. Histone deacetylases, in contrast, remove the acetyl group of histone tails resulting in condensed chromatin with reduced gene expression activity. In plants, the histone acetylation level is regulated by S-nitrosation. NO inhibits HDA complexes resulting in enhanced histone acetylation and promoting a supportive chromatin state for expression of genes. Moreover, methylation of histone tails and DNA are important epigenetic modifications, too. Interestingly, methyltransferases and demethylases are described as targets for redox molecules in several biological systems suggesting that these types of chromatin modifications are also regulated by NO. In this review article, we will focus on redox-regulation of histone acetylation/methylation and DNA methylation in plants, discuss the consequences on the structural level and give an overview where NO can act to modulate chromatin structure.
Collapse
|
50
|
Yang C, Shen W, Chen H, Chu L, Xu Y, Zhou X, Liu C, Chen C, Zeng J, Liu J, Li Q, Gao C, Charron JB, Luo M. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC PLANT BIOLOGY 2018; 18:226. [PMID: 30305032 PMCID: PMC6180487 DOI: 10.1186/s12870-018-1454-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs) function as key epigenetic factors in repressing the expression of genes in multiple aspects of plant growth, development and plant response to abiotic or biotic stresses. To date, the molecular function of HDACs is well described in Arabidopsis thaliana, but no systematic analysis of this gene family in soybean (Glycine max) has been reported. RESULTS In this study, 28 HDAC genes from soybean genome were identified, which were asymmetrically distributed on 12 chromosomes. Phylogenetic analysis demonstrated that GmHDACs fall into three major groups previously named RPD3/HDA1, SIR2, and HD2. Subcellular localization analysis revealed that YFP-tagged GmSRT4, GmHDT2 and GmHDT4 were predominantly localized in the nucleus, whereas GmHDA6, GmHDA13, GmHDA14 and GmHDA16 were found in both the cytoplasm and nucleus. Real-time quantitative PCR showed that GmHDA6, GmHDA13, GmHDA14, GmHDA16 and GmHDT4 were broadly expressed across plant tissues, while GmHDA8, GmSRT2, GmSRT4 and GmHDT2 showed differential expression across various tissues. Interestingly, we measured differential changes in GmHDACs transcripts accumulation in response to several abiotic cues, indicating that these epigenetic modifiers could potentially be part of a dynamic transcriptional response to stress in soybean. Finally, we show that the levels of histone marks previously reported to be associated with plant HDACs are modulated by cold and heat in this legume. CONCLUSION We have identified and classified 28 HDAC genes in soybean. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to environmental stress.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Chunmiao Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jiahui Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Qianfeng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009 China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Jean-Benoit Charron
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|