1
|
Wei L, Zhao J, Zhong Y, Wu X, Wei S, Liu Y. The roles of protein S-nitrosylation in regulating the growth and development of plants: A review. Int J Biol Macromol 2025; 307:142204. [PMID: 40107544 DOI: 10.1016/j.ijbiomac.2025.142204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The free radical nitric oxide (NO) is an important redox-related signaling molecule modulating wide range of biological processes in all living plants. The transfer of NO bioactivity could be executed chiefly through a prototypic, redox-based post-translational modification, S-nitrosylation that covalently adds NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol. Protein S-nitrosylation is recently emerged as an evolutionarily conserved and important mechanism regulating multiple aspects of plant growth and development. Here, we review the recent progress of S-nitrosylated proteins in the modulation of various plant development processes, including seed germination and aging, root development, seedling growth, flowering and fruit ripening and postharvest fruit quality. More importantly, the detailed function mechanism of proteins S-nitrosylation and key challenges in this field are also highlighted.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junyi Zhao
- School of Marxism, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Zhong
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Safdar M, Kim W, Kim D, Lee S, Kim YO, Kim J. Dose-responsive phytotoxicity and oxidative stress induced by metal-organic framework PCN-224 in Arabidopsis thaliana seedlings. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137067. [PMID: 39756321 DOI: 10.1016/j.jhazmat.2024.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored. Herein, we systematically assessed the phytotoxicity of PCN-224 on Arabidopsis thaliana (A. thaliana) due to its commercial availability and widespread use. To achieve this goal, A. thaliana seedlings were subjected to PCN-224 concentrations (10-300 µg/mL) and durations (1-12 days) in agar media, with a control group. PCN-224 slightly accelerated seed germination across all concentrations without altering the total germination rate. Exposure to a higher concentration of PCN-224 (300 µg/mL) significantly impaired A. thaliana development, reducing fresh weight (54.0 %) and root length (82.3 %) compared with control; however, lower exposure (10 µg/mL) showed minimal growth inhibition. Fluorescence microscopy showed that PI-labeled PCN-224 particles adhered to root surfaces and internalized in a concentration- and time-dependent manner, with notable xylem accumulation after 2 h. The net photosynthetic rate, transpiration rate, and stomatal conductance decreased by 54.25 %, 62.37 % and 38.53 %, respectively, compared with control, when the material concentration exceeded 100 µg/mL. Regarding the oxidative damage, higher PCN-224 exposure reduced antioxidant levels and downregulation of antioxidant-related genes resulted in a diminished oxidative stress response. Overall, our study highlights the potential risk of MOFs for plant growth and emphasizes the need to assess their environmental impact for sustainable agricultural practices.
Collapse
Affiliation(s)
- Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ok Kim
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Sun S, Jia PF, Wang W, Chen L, Gong X, Lin H, Wu R, Yang WC, Li HJ, Zuo J, Guo H. S-sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis. J Genet Genomics 2025:S1673-8527(25)00022-0. [PMID: 39826707 DOI: 10.1016/j.jgg.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear. Here, we show that H2O2 negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis. S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity. A GSNOR1C284S mutation causes a reduction of the total SNO level in pistils, thereby disrupting NO homeostasis and eventually leading to defective ovule development. These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity, thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.
Collapse
Affiliation(s)
- Shina Sun
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Jia
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lichao Chen
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinru Gong
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Lin
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Wu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ju Li
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Guo
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Yang T, Mu X, Yu M, Ergashev U, Zhu Y, Shi N, Li N, Luo L, Zhang K, Han Y. Consecutive oxidative stress in CATALASE2-deficient Arabidopsis negatively regulates Glycolate Oxidase1 activity through S-nitrosylation. PHYSIOLOGIA PLANTARUM 2025; 177:e70040. [PMID: 39777728 DOI: 10.1111/ppl.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Glycolate oxidase (GOX) is a crucial enzyme of photorespiration involving carbon metabolism and stress responses. It is poorly understood, however, how its activities are modulated in response to oxidative stress elicited by various environmental cues. Analysis of Arabidopsis catalase-defective mutant cat2 revealed that the GOX activities were gradually repressed during the growth, which were accompanied by decreased salicylic acid (SA)-dependent cell death, suggesting photorespiratory H2O2 may entrain negative feedback regulation of GOX in an age-dependent manner. Intriguingly, a loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) rather than in GOX2 and GOX3 attenuated the SA responses of cat2. We found that GOX1 is S-nitrosylated at Cys-343 during consecutive oxidative stress in the cat2 mutant. Subsequently, increased GOX1-SNO formations may contribute to progressively decreased GOX activities and then compromised photorespiratory H2O2 flux, which forms a negative feedback loop limiting the amplified activation of SA-dependent defence responses. Together, the data reveal that GOX S-nitrosylation is involved in the crosstalk between photorespiratory H2O2 and NO signalling in the fine-tuning regulation of oxidative stress responses and further highlight that NO-based S-nitrosylation acts as an on-off switch for ROS homeostasis.
Collapse
Affiliation(s)
- Tianzhao Yang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- School of Urban and Rural Construction, Fuyang Institute of Technology, Fuyang, China
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mei Yu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ulugbek Ergashev
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yihan Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ningning Shi
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kuanchao Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Kandhol N, Singh VP, Pandey S, Sharma S, Zhao L, Corpas FJ, Chen ZH, White JC, Tripathi DK. Nanoscale materials and NO-ROS homeostasis in plants: trilateral dynamics. TRENDS IN PLANT SCIENCE 2024; 29:1310-1318. [PMID: 39379242 DOI: 10.1016/j.tplants.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 10/10/2024]
Abstract
Nanoparticles (NPs) have garnered increasing attention for their applications in agriculture and plant science, particularly for their interactions with reactive oxygen species (ROS) and nitric oxide (•NO). NPs, owing to their novel physicochemical properties, can be used to uniquely modulate ROS levels, enabling great control over redox homeostasis and signaling cascades. In addition, NPs may act as carriers for •NO donors, thus facilitating controlled and synchronized release and targeted delivery of •NO within plant systems. This opinion article provides insights into the current state of knowledge regarding NP interactions with ROS and •NO homeostasis in plants, highlighting key findings and knowledge gaps, as well as outlining future research directions in this rapidly expanding and potentially transformative field of research.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nano Biology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, Chaudhary Mahadeo Prasad (CMP) Degree College, A Constituent Post-Graduate College of the University of Allahabad, Prayagraj 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food, and Agriculture, Department of Stress, Development, and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| | - Durgesh Kumar Tripathi
- Crop Nano Biology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida 201313, India.
| |
Collapse
|
6
|
Guan M, Zheng X, Zhu Y. S-nitrosoglutathione reductase disfavors cadmium tolerance in shoots of Arabidopsis. Sci Rep 2024; 14:26401. [PMID: 39488641 PMCID: PMC11531582 DOI: 10.1038/s41598-024-77759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) is involved in the response to cadmium (Cd) exposure. In this study, the plants of mutant (gsnor1-3) with lossing-function of- and over-expression (GSNOROE5) of GSNOR were used to clear the role of GSNOR in Cd tolerance. GSNOR activity increased through upregulating the expression of the AtGSNOR gene and protein in Arabidopsis thaliana under Cd stress, which attenuated Cd tolerance. Oxidative damage was more serious in GSNOROE5 and was alleviated in gsnor1-3 under Cd stress, compared with Col-0. Induction of GSNOR facilitated H2O2 accumulation but inhibited catalase (CAT) activity in shoots under Cd stress. This phenotype was eliminated by 3-amino-1,2,4-triazole (3-AT), a CAT inhibitor. In addition, the expressions of AtCAT1 and AtCAT2 were down-regulated with increasing GSNOR activity under Cd stress. This suggested that GSNOR was involved in the accumulation of hydrogen peroxide (H2O2) through regulating CAT expression and activity under Cd exposure. Furthermore, Cd tolerance and CAT activity were improved by spraying S-nitrosoglutathione (GSNO) onto the surface of the leaves. The in vitro activity of CAT increased with GSNO concentration until a GSNO/CAT ratio of 2 was reached. Thus, CAT activity was relative to GSNOR through regulating the expression and S-nitrosylation level of proteins. In summary, the Cd-induced promotion of GSNOR activity aggravated Cd toxicity in plants by mediating H2O2 accumulation controlled by CAT.
Collapse
Affiliation(s)
- Meiyan Guan
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaolong Zheng
- Rice Product Quality Supervision and Inspection Center, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
7
|
Yang Q, Ran Y, Guo Y, Zeng J, Song Y, Qiao D, Xu H, Cao Y. Enhancement of lipid synthesis by the transcription factor Asg1 in Saitozyma podzolica zwy-2-3 under dissolved oxygen stress. BIORESOURCE TECHNOLOGY 2024; 411:131312. [PMID: 39168414 DOI: 10.1016/j.biortech.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
8
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Xiao L, Jiang G, Lai H, Duan X, Yan H, Chen S, Chen Z, Duan X. Study on a Mechanism of Improving MaAPX1 Protein Activity by Mutating Methionine to Lysine. Antioxidants (Basel) 2024; 13:843. [PMID: 39061911 PMCID: PMC11273533 DOI: 10.3390/antiox13070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ascorbate peroxidases (APXs) are key components of the ascorbate-glytathione cycle, which plays an important role in removing excess reactive oxygen species (ROS) in plants. Herein, MaAPX1 was verified as being involved in the ripening and senescence of banana fruit, exhibiting responsiveness to the accumulation of ROS and the oxidation of proteins. Site-directed mutation was applied to explore the mechanism of MaAPX1 activity changes. We found that the 32-site cysteine (Cys, C) served as a potential S-nitrosylation site. The mutant MaAPX1C32S activity was decreased significantly when Cys32 was mutated to serine (Ser, S). Intriguingly, the neighboring conserved 36-site methionine (Met, M), which is adjacent to Cys32, displayed an enzyme activity that was approximately five times higher than that of the wild-type MaAPX1 when mutated to lysine (Lys, K). Utilizing LC-MS/MS spectroscopy coupled with stopped-flow analysis showed that the enhanced MaAPX1M36K activity might be due to the increased S-nitrosylation level of Cys32 and the promotion of intermediate (compound I, the first intermediate product of the reaction of APX with H2O2) production. Molecular docking simulations showed that the S-N bond between Cys32 and Lys36 in MaAPX1M36K might have a function in protecting the thiol of Cys32 from oxidation. MaAPX1M36K, a promising mutant, possesses immense potential for improving the antioxidant capabilities of APX in the realm of bioengineering technology research.
Collapse
Affiliation(s)
- Lu Xiao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Hongmei Lai
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Xiaoyan Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Huiling Yan
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Shaoge Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| | - Zexin Chen
- Accurate International Biotechnology Co., Ltd., Guangzhou 510535, China;
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (L.X.); (G.J.); (H.L.); (X.D.); (S.C.)
| |
Collapse
|
12
|
Lubyanova A, Allagulova C. Exogenous Sodium Nitroprusside Affects the Redox System of Wheat Roots Differentially Regulating the Activity of Antioxidant Enzymes under Short-Time Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1895. [PMID: 39065422 PMCID: PMC11280031 DOI: 10.3390/plants13141895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule involved in the regulation of plant ontogenesis and adaptation to different adverse environmental factors, in particular to osmotic stress. Understanding NO-induced plant protection is important for the improvement of plant stress tolerance and crop productivity under global climate changes. The root system is crucial for plant survival in a changeable environment. Damages that it experiences under water deficit conditions during the initial developmental periods seriously affect the viability of the plants. This work was devoted to the comparative analysis of the pretreatment of wheat seedlings through the root system with NO donor sodium nitroprusside (SNP) for 24 h on various parameters of redox homeostasis under exposure to osmotic stress (PEG 6000, 12%) over 0.5-24 h. The active and exhausted solutions of SNP, termed as (SNP/+NO) and (SNP/-NO), respectively, were used in this work at a concentration of 2 × 10-4 M. Using biochemistry and light microscopy methods, it has been revealed that osmotic stress caused oxidative damages and the disruption of membrane cell structures in wheat roots. PEG exposure increased the production of superoxide (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and the levels of electrolyte leakage (EL) and lipid peroxidation (LPO). Stress treatment enhanced the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), the excretion of proline, and the rate of cell death and inhibited their division. Pretreatment with (SNP/+NO) decreased PEG-induced root damages by differently regulating the antioxidant enzymes under stress conditions. Thus, (SNP/+NO) pretreatment led to SOD, APX, and CAT inhibition during the first 4 h of stress and stimulated their activity after 24 h of PEG exposure when compared to SNP-untreated or (SNP/-NO)-pretreated and stress-subjected plants. Osmotic stress triggered the intense excretion of proline by roots into the external medium. Pretreatment with (SNP/+NO) in contrast with (SNP/-NO) additionally increased stress-induced proline excretion. Our results indicate that NO is able to mitigate the destructive effects of osmotic stress on the roots of wheat seedlings. However, the mechanisms of NO protective action may be different at certain periods of stress exposure.
Collapse
Affiliation(s)
- Alsu Lubyanova
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospect Oktyabrya 71, lit.1e, 450054 Ufa, Russia;
| | | |
Collapse
|
13
|
Wei L, Hou X, Feng L, Liu Y, Kong Y, Cui A, Qiao Y, Hu D, Wang C, Liu H, Li C, Wei S, Liao W. SERK3A and SERK3B could be S-nitrosylated and enhance the salt resistance in tomato seedlings. Int J Biol Macromol 2024; 273:133084. [PMID: 38871104 DOI: 10.1016/j.ijbiomac.2024.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood. BR is perceived by the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its co-receptor BRI1-associated kinase 1 (BAK1) to form the receptor complex, eventually inducing BR-regulated responses. To response stress, a wide range of NO-mediated protein modifications is undergone in eukaryotic cells. Here, we showed that BR participated in NO-enhanced salt tolerance of tomato seedlings (Solanum lycopersicum cv. Micro-Tom) and NO may activate BR signaling under salt stress, which was related to NO-mediated S-nitrosylation. Further, in vitro and in vivo results suggested that BAK1 (SERK3A and SERK3B) was S-nitrosylated, which was inhibited under salt condition and enhanced by NO. Accordingly, knockdown of SERK3A and SERK3B reduced the S-nitrosylation of BAK1 and resulted in a compromised BR response, thereby abolishing NO-induced salt tolerance. Besides, we provided evidence for the interaction between BRI1 and SERK3A/SERK3B. Meanwhile, NO enhanced BRI1-SERK3A/SERK3B interaction. These results imply that NO-mediated S-nitrosylation of BAK1 enhances the interaction BRI1-BAK1, facilitating BR response and subsequently improving salt tolerance in tomato. Our findings illustrate a mechanism by which redox signaling and BR signaling coordinate plant growth in response to abiotic stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yuanyuan Kong
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Aiyin Cui
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yali Qiao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Changxia Li
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning 530004, China
| | - Shouhui Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China.
| |
Collapse
|
14
|
Raihan MT, Ishikawa T. Biochemical and Functional Profiling of Thioredoxin-Dependent Cytosolic GPX-like Proteins in Euglena gracilis. Biomolecules 2024; 14:765. [PMID: 39062479 PMCID: PMC11275057 DOI: 10.3390/biom14070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Unlike plants and animals, the phytoflagellate Euglena gracilis lacks catalase and contains a non-selenocysteine glutathione peroxidase-like protein (EgGPXL), two peroxiredoxins (EgPrx1 and EgPrx4), and one ascorbate peroxidase in the cytosol to maintain reactive oxygen species (ROS) homeostasis. In the present study, the full-length cDNA of three cytosolic EgGPXLs was obtained and further characterized biochemically and functionally. These EgGPXLs used thioredoxin instead of glutathione as an electron donor to reduce the levels of H2O2 and t-BOOH. The specific peroxidase activities of these enzymes for H2O2 and t-BOOH were 1.3 to 4.9 and 0.79 to 3.5 µmol/min/mg protein, respectively. Cytosolic EgGPXLs and EgPrx1/EgPrx4 were silenced simultaneously to investigate the synergistic effects of these genes on the physiological function of E. gracilis. The suppression of cytosolic EgGPXL genes was unable to induce any critical phenomena in Euglena under normal (100 μmol photons m-2 s-1) and high-light conditions (350 μmol photons m-2 s-1) at both autotrophic and heterotrophic states. Unexpectedly, the suppression of EgGPXL genes was able to rescue the EgPrx1/EgPrx4-silenced cell line from a critical situation. This study explored the potential resilience of Euglena to ROS, even with restriction of the cytosolic antioxidant system, indicating the involvement of some compensatory mechanisms.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
15
|
Vogelsang L, Eirich J, Finkemeier I, Dietz KJ. Specificity and dynamics of H 2O 2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution. Redox Biol 2024; 72:103141. [PMID: 38599017 PMCID: PMC11022108 DOI: 10.1016/j.redox.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany.
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany; CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
16
|
Xu J, Lu X, Liu Y, Lan W, Wei Z, Yu W, Li C. Interaction between ABA and NO in plants under abiotic stresses and its regulatory mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1330948. [PMID: 38828220 PMCID: PMC11140121 DOI: 10.3389/fpls.2024.1330948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Abscisic acid (ABA) and nitric oxide (NO), as unique signaling molecules, are involved in plant growth, developmental processes, and abiotic stresses. However, the interaction between ABA and NO under abiotic stresses has little been worked out at present. Therefore, this paper reviews the mechanisms of crosstalk between ABA and NO in the regulation of plants in response to environmental stresses. Firstly, ABA-NO interaction can alleviate the changes of plant morphological indexes damaged by abiotic stresses, for instance, root length, leaf area, and fresh weight. Secondly, regulatory mechanisms of interaction between ABA and NO are also summarized, such as reactive oxygen species (ROS), antioxidant enzymes, proline, flavonoids, polyamines (PAs), ascorbate-glutathione cycle, water balance, photosynthetic, stomatal movement, and post-translational modifications. Meanwhile, the relationships between ABA and NO are established. ABA regulates NO through ROS at the physiological level during the regulatory processes. At the molecular level, NO counteracts ABA through mediating post-translational modifications. Moreover, we also discuss key genes related to the antioxidant enzymes, PAs biosynthesis, ABA receptor, NO biosynthesis, and flavonoid biosynthesis that are regulated by the interaction between ABA and NO under environmental stresses. This review will provide new guiding directions for the mechanism of the crosstalk between ABA and NO to alleviate abiotic stresses.
Collapse
|
17
|
Nabaei M, Amooaghaie R, Ghorbanpour M, Ahadi A. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don. PLANT CELL REPORTS 2024; 43:139. [PMID: 38735908 DOI: 10.1007/s00299-024-03229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
KEY MESSAGE Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Alimohammad Ahadi
- Genetic Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
18
|
Yoshimura K, Ishikawa T. Physiological function and regulation of ascorbate peroxidase isoforms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2700-2715. [PMID: 38367016 DOI: 10.1093/jxb/erae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Ascorbate peroxidase (APX) reduces H2O2 to H2O by utilizing ascorbate as a specific electron donor and constitutes the ascorbate-glutathione cycle in organelles of plants including chloroplasts, cytosol, mitochondria, and peroxisomes. It has been almost 40 years since APX was discovered as an important plant-specific H2O2-scavenging enzyme, during which time many research groups have conducted molecular physiological analyses. It is now clear that APX isoforms function not only just as antioxidant enzymes but also as important factors in intracellular redox regulation through the metabolism of reactive oxygen species. The function of APX isoforms is regulated at multiple steps, from the transcriptional level to post-translational modifications of enzymes, thereby allowing them to respond flexibly to ever-changing environmental factors and physiological phenomena such as cell growth and signal transduction. In this review, we summarize the physiological functions and regulation mechanisms of expression of each APX isoform.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
19
|
Foyer CH, Kunert K. The ascorbate-glutathione cycle coming of age. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2682-2699. [PMID: 38243395 PMCID: PMC11066808 DOI: 10.1093/jxb/erae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Karl Kunert
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, 2001, South Africa
| |
Collapse
|
20
|
Corpas FJ, González-Gordo S, Palma JM. Ascorbate peroxidase in fruits and modulation of its activity by reactive species. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2716-2732. [PMID: 38442039 PMCID: PMC11066807 DOI: 10.1093/jxb/erae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Ascorbate peroxidase (APX) is one of the enzymes of the ascorbate-glutathione cycle and is the key enzyme that breaks down H2O2 with the aid of ascorbate as an electron source. APX is present in all photosynthetic eukaryotes from algae to higher plants and, at the cellular level, it is localized in all subcellular compartments where H2O2 is generated, including the apoplast, cytosol, plastids, mitochondria, and peroxisomes, either in soluble form or attached to the organelle membranes. APX activity can be modulated by various post-translational modifications including tyrosine nitration, S-nitrosation, persulfidation, and S-sulfenylation. This allows the connection of H2O2 metabolism with other relevant signaling molecules such as NO and H2S, thus building a complex coordination system. In both climacteric and non-climacteric fruits, APX plays a key role during the ripening process and during post-harvest, since it participates in the regulation of both H2O2 and ascorbate levels affecting fruit quality. Currently, the exogenous application of molecules such as NO, H2S, H2O2, and, more recently, melatonin is seen as a new alternative to maintain and extend the shelf life and quality of fruits because they can modulate APX activity as well as other antioxidant systems. Therefore, these molecules are being considered as new biotechnological tools to improve crop quality in the horticultural industry.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
21
|
Nejamkin A, Del Castello F, Lamattina L, Foresi N, Correa Aragunde N. Redox regulation in primary nitrate response: Nitric oxide in the spotlight. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108625. [PMID: 38643539 DOI: 10.1016/j.plaphy.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Nitrogen (N) is the main macronutrient of plants that determines growth and productivity. Nitrate is the major source form of N in soils and its uptake and assimilatory pathway has been extensively studied. The early events that occur after the perception of nitrate is known as primary nitrate response (PNR). In this review, new findings on the redox signal that impacts PNR are discussed. We will focus on the novel role of Nitric Oxide (NO) as a signal molecule and the mechanisms that are involved to control NO homeostasis during PNR. Moreover, the role of Reactive Oxygen Species (ROS) and the possible interplay with NO in the PNR are discussed. The sources of NO during PNR will be analyzed as well as the regulation of its intracellular levels. Furthermore, we explored the relevance of the direct action of NO through the S-nitrosation of the transcription factor NLP7, one of the master regulators in the nitrate signaling cascade. This review gives rise to an interesting field with new actors to mark future research directions. This allows us to increase the knowledge of the physiological and molecular fine-tuned modulation during nitrate signaling processes in plants. The discussion of new experimental data will stimulate efforts to further refine our understanding of the redox regulation of nitrate signaling.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Natalia Correa Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina.
| |
Collapse
|
22
|
Wang T, Hou X, Wei L, Deng Y, Zhao Z, Liang C, Liao W. Protein S-nitrosylation under abiotic stress: Role and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108329. [PMID: 38184883 DOI: 10.1016/j.plaphy.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.
Collapse
Affiliation(s)
- Tong Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chen Liang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
23
|
Wei L, Liao W, Zhong Y, Tian Y, Wei S, Liu Y. NO-mediated protein S-nitrosylation under salt stress: Role and mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111927. [PMID: 37984610 DOI: 10.1016/j.plantsci.2023.111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Salt stress is one of the major environmental stressors that remarkably hinders the processes of plant growth and development, thereby limiting crop productivity. An understanding of the molecular mechanisms underlying plant responses against salinity stimulus will help guide the rational design of crop plants to counter these challenges. Nitric oxide (NO) is a redox-related signaling molecule regulating diverse biological processes in plant. Accumulating evidences indicated NO exert its biological functions through posttranslational modification of proteins, notably via S-nitrosylation. During the past decade, the roles of S-nitrosylation as a regulator of plant and S-nitrosylated candidates have also been established and detected. Emerging evidence indicated that protein S-nitrosylation is ubiquitously involved in the regulation of plant response to salt stress. However, little is known about this pivotal molecular amendment in the regulation of salt stress response. Here, we describe current understanding on the regulatory mechanisms of protein S-nitrosylation in response to salt stress in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yue Zhong
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Ye Tian
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
24
|
Lin W, Wang Y, Li X, Huang X, Wang Y, Shang JX, Zhao L. S-nitrosylation of RABG3E positively regulates vesicle trafficking to promote salt tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:3858-3870. [PMID: 37667854 DOI: 10.1111/pce.14714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule affecting the response of plants to salt stress; however, the underlying molecular mechanism is poorly understood. In this study, we conducted a phenotype analysis and found that the small GTPase RABG3E (RAB7) promotes salt tolerance in Arabidopsis thaliana. NO promotes the S-nitrosylation of RAB7 at Cys-171, which in turn helps maintain the ion balance in salt-stressed plants. Furthermore, the S-nitrosylation of RAB7 at Cys-171 enhances the enzyme's GTPase activity, thereby promoting vesicle trafficking and increasing its interaction with phosphatidylinositol phosphates-especially phosphatidylinositol-4-phosphate (PI4P). Exogenously applied PI4P increases vesicle trafficking and promotes salt tolerance depending on the S-nitrosylation of RAB7 at Cys-171. These findings illustrate a unique mechanism in salt tolerance, by which NO regulates vesicle trafficking and ion homeostasis through the S-nitrosylation of RAB7 and its interaction with PI4P.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuehua Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoying Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xiu Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Liqun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
25
|
Saleem S, Alghamdi KM, Mushtaq NU, Tahir I, Bahieldin A, Henrissat B, Alghamdi MK, Rehman RU, Hakeem KR. Computational and experimental analysis of foxtail millet under salt stress and selenium supplementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112695-112709. [PMID: 37837596 DOI: 10.1007/s11356-023-30364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Salinity stress is a major threat to crop growth and productivity. Millets are stress-tolerant crops that can withstand the environmental constraints. Foxtail millet is widely recognized as a drought and salinity-tolerant crop owing to its efficient ROS scavenging mechanism. Ascorbate peroxidase (APX) is one of the reactive oxygen species (ROS) scavenging enzymes that leads to hydrogen peroxide (H2O2) detoxification and stabilization of the internal biochemical state of the cell under stress. This inherent capacity of the APX enzyme can further be enhanced by the application of an external mitigant. This study focuses on the impact of salt (NaCl) and selenium (Se) application on the APX enzyme activity of foxtail millet using in silico and in-vitro techniques and mRNA expression studies. The NaCl was applied in the concentrations, i.e., 150 mM and 200 mM, while the Se was applied in 1 μM, 5 μM, and 10 μM concentrations. The in silico studies involved three-dimensional structure modeling and molecular docking. The in vitro studies comprised the morphological and biochemical parameters, alongside mRNA expression studies in foxtail millet under NaCl stress and Se applications. The in silico studies revealed that the APX enzyme showed better interaction with Se as compared to NaCl, thus suggesting the enzyme-modulating role of Se. The morphological and biochemical analysis indicated that Se alleviated the NaCl (150 mM and 200 mM) and induced symptoms at 1 µM as compared to 5 and 10 µM by enhancing the morphological parameters, upregulating the gene expression and enzyme activity of APX, and ultimately reducing the H2O2 content significantly. The transcriptomic studies confirmed the upregulation of chloroplastic APX in response to salt stress and selenium supplementation. Hence, it can be concluded that Se as a mitigant at lower concentrations can alleviate NaCl stress in foxtail millet.
Collapse
Affiliation(s)
- Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Khalid M Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Mohammad K Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh.
| |
Collapse
|
26
|
Sanchez-Corrionero A, Sánchez-Vicente I, Arteaga N, Manrique-Gil I, Gómez-Jiménez S, Torres-Quezada I, Albertos P, Lorenzo O. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6104-6118. [PMID: 36548145 PMCID: PMC10575706 DOI: 10.1093/jxb/erac508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.
Collapse
Affiliation(s)
- Alvaro Sanchez-Corrionero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Noelia Arteaga
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Manrique-Gil
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Sara Gómez-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Torres-Quezada
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
27
|
Jing H, Yang X, Emenecker RJ, Feng J, Zhang J, Figueiredo MRAD, Chaisupa P, Wright RC, Holehouse AS, Strader LC, Zuo J. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J Genet Genomics 2023; 50:473-485. [PMID: 37187411 PMCID: PMC11070147 DOI: 10.1016/j.jgg.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Hongwei Jing
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, Duke University, Durham, NC 27008, USA.
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Li S. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biol 2023; 64:102789. [PMID: 37352686 DOI: 10.1016/j.redox.2023.102789] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
As plants are sessile organisms, they are inevitably exposed to a variety of environmental stimuli that trigger rapid changes in the generation and disposal of reactive oxygen species such as hydrogen peroxide (H2O2). A major H2O2 scavenging system in plant cells is the ascorbate-glutathione cycle, in which ascorbate peroxidase (APX) catalyzes the conversion of H2O2 into water employing ascorbate as specific electron donor. In higher plants, distinct APX isoforms can occur in multiple subcellular compartments, including chloroplasts, mitochondria, and peroxisomes and the cytosol, to modulate organellar and cellular levels of H2O2. It is well established that APX plays crucial roles in protecting plant cells against diverse environmental stresses, as well as in plant growth and development. Apart from ascorbate, recently, APXs have been found to have a broader substrate specificity and possess chaperone activity, hence participating various biological processes. In this review, we describe the antioxidant properties of APXs and highlight their novel roles beyond 'ascorbate peroxidases'.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
29
|
Qin G, Qu M, Jia B, Wang W, Luo Z, Song CP, Tao WA, Wang P. FAT-switch-based quantitative S-nitrosoproteomics reveals a key role of GSNOR1 in regulating ER functions. Nat Commun 2023; 14:3268. [PMID: 37277371 PMCID: PMC10241878 DOI: 10.1038/s41467-023-39078-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/07/2023] Open
Abstract
Reversible protein S-nitrosylation regulates a wide range of biological functions and physiological activities in plants. However, it is challenging to quantitively determine the S-nitrosylation targets and dynamics in vivo. In this study, we develop a highly sensitive and efficient fluorous affinity tag-switch (FAT-switch) chemical proteomics approach for S-nitrosylation peptide enrichment and detection. We quantitatively compare the global S-nitrosylation profiles in wild-type Arabidopsis and gsnor1/hot5/par2 mutant using this approach, and identify 2,121 S-nitrosylation peptides in 1,595 protein groups, including many previously unrevealed S-nitrosylated proteins. These are 408 S-nitrosylated sites in 360 protein groups showing an accumulation in hot5-4 mutant when compared to wild type. Biochemical and genetic validation reveal that S-nitrosylation at Cys337 in ER OXIDOREDUCTASE 1 (ERO1) causes the rearrangement of disulfide, resulting in enhanced ERO1 activity. This study offers a powerful and applicable tool for S-nitrosylation research, which provides valuable resources for studies on S-nitrosylation-regulated ER functions in plants.
Collapse
Affiliation(s)
- Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, 261000, Weifang, Shandong, China
| | - Menghuan Qu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
30
|
Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou DX. Metabolic regulation of the plant epigenome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1001-1013. [PMID: 36705504 DOI: 10.1111/tpj.16122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Chromatin modifications shape the epigenome and are essential for gene expression reprogramming during plant development and adaptation to the changing environment. Chromatin modification enzymes require primary metabolic intermediates such as S-adenosyl-methionine, acetyl-CoA, alpha-ketoglutarate, and NAD+ as substrates or cofactors. The availability of the metabolites depends on cellular nutrients, energy and reduction/oxidation (redox) states, and affects the activity of chromatin regulators and the epigenomic landscape. The changes in the plant epigenome and the activity of epigenetic regulators in turn control cellular metabolism through transcriptional and post-translational regulation of metabolic enzymes. The interplay between metabolism and the epigenome constitutes a basis for metabolic control of plant growth and response to environmental changes. This review summarizes recent advances regarding the metabolic control of plant chromatin regulators and epigenomes, which are involved in plant adaption to environmental stresses.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Cui
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Wei G, Wang C, Lei X, Gao X, Li J, Zhang S, Guo J. IodoTMT-labeled redox proteomics reveals the involvement of oxidative post-translational modification in response to para-hydroxybenzoic acid and hydrogen peroxide stresses in poplar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115033. [PMID: 37224778 DOI: 10.1016/j.ecoenv.2023.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Poplar is widely planted as an economic and ecological tree species. However, accumulation of the phenolic acid allelochemical para-hydroxybenzoic acid (pHBA) in soil is a severe threat to the growth and productivity of poplar. pHBA stress leads to excessive production of reactive oxygen species (ROS). However, it is unclear which redox-sensitive proteins are involved in the pHBA-induced cellular homeostasis regulatory mechanism. We here identified reversible redox-modified proteins and modified cysteine (Cys) sites in exogenous pHBA- and hydrogen peroxide (H2O2)-treated poplar seedling leaves by using the iodoacetyl tandem mass tag-labeled redox proteomics method. In total, 4786 redox modification sites were identified in 3176 proteins, with 104 and 91 proteins being differentially modified at 118 and 101 Cys sites in response to pHBA and H2O2 stresses, respectively. The differentially modified proteins (DMPs) were predicted to be mainly localized in the chloroplast and cytoplasm, with most proteins being enzymes with catalytic activities. The KEGG enrichment analysis of these DMPs revealed that proteins related to the MAPK signaling pathway, soluble sugar metabolism, amino acid metabolism, photosynthesis, and phagosome pathways were extensively regulated by redox modifications. Moreover, combined with our previous quantitative proteomics data, 8 proteins were upregulated and oxidized under both pHBA and H2O2 stresses. Reversible oxidation of Cys sites in these proteins might be actively responsible for the regulation of tolerance to pHBA-induced oxidative stress. Based on the aforementioned results, a redox regulatory model activated by pHBA- and H2O2-induced oxidative stress was proposed. This study conducts the first redox proteomics analysis of poplar in response to pHBA stress and provides a new insight into the mechanistic framework of reversible oxidative post-translational modifications to gain a better understanding of pHBA-induced chemosensory effects on poplar.
Collapse
Affiliation(s)
- Guoqing Wei
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Changxi Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoyan Lei
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Gao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Junru Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyong Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jing Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
32
|
Zheng Y, Li Z, Cui X, Yang Z, Bao C, Pan L, Liu X, Chatel-Innocenti G, Vanacker H, Noctor G, Dard A, Reichheld JP, Issakidis-Bourguet E, Zhou DX. S-Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:836-854. [PMID: 36883867 DOI: 10.1111/tpj.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 05/27/2023]
Abstract
Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress-responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post-translationally modified by S-nitrosylation at 4 Cysteine (Cys) residues. HDA19 S-nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S-nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress-induced S-nitrosylation, and is required for HDA19 functions in developmental, stress-responsive and epigenetic controls. Together, these results indicate that S-nitrosylation regulates HDA19 activity and is a mechanism of redox-sensing for chromatin regulation of plant tolerance to stress.
Collapse
Affiliation(s)
- Yu Zheng
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Zhenting Li
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Zheng Yang
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Chun Bao
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Lei Pan
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Liu
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Gilles Chatel-Innocenti
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Hélène Vanacker
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860, Perpignan, France
| | | | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) is a multitasking potent regulator that facilitates plant growth, development, and responses to environmental stimuli. RECENT ADVANCES The important beneficial effects of H2S in various aspects of plant physiology aroused the interest of this chemical for agriculture. Protein cysteine persulfidation has been recognized as the main redox regulatory mechanism of H2S signaling. An increasing number of studies, including large-scale proteomic analyses and function characterizations, have revealed that H2S-mediated persulfidations directly regulate protein functions, altering downstream signaling in plants. To date, the importance of H2S-mediated persufidation in several abscisic acid signaling-controlling key proteins has been assessed as well as their role in stomatal movements, largely contributing to the understanding of the plant H2S-regulatory mechanism. CRITICAL ISSUES The molecular mechanisms of the H2S sensing and transduction in plants remain elusive. The correlation between H2S-mediated persulfidation with other oxidative posttranslational modifications of cysteines are still to be explored. FUTURE DIRECTIONS Implementation of advanced detection approaches for the spatiotemporal monitoring of H2S levels in cells and the current proteomic profiling strategies for the identification and quantification of the cysteine site-specific persulfidation will provide insight into the H2S signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Ghent University, 26656, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium;
| | - Yanjie Xie
- Nanjing Agricultural University College of Life Sciences, 98430, No.1 Weigang, Nanjing, Jiangsu, China, 210095;
| |
Collapse
|
34
|
Lv J, Wu W, Ma T, Yang B, Khan A, Fu P, Lu J. Kinase Inhibitor VvBKI1 Interacts with Ascorbate Peroxidase VvAPX1 Promoting Plant Resistance to Oomycetes. Int J Mol Sci 2023; 24:ijms24065106. [PMID: 36982179 PMCID: PMC10049515 DOI: 10.3390/ijms24065106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Downy mildew caused by oomycete pathogen Plasmopara viticola is a devastating disease of grapevine. P. viticola secretes an array of RXLR effectors to enhance virulence. One of these effectors, PvRXLR131, has been reported to interact with grape (Vitis vinifera) BRI1 kinase inhibitor (VvBKI1). BKI1 is conserved in Nicotiana benthamiana and Arabidopsis thaliana. However, the role of VvBKI1 in plant immunity is unknown. Here, we found transient expression of VvBKI1 in grapevine and N. benthamiana increased its resistance to P. viticola and Phytophthora capsici, respectively. Furthermore, ectopic expression of VvBKI1 in Arabidopsis can increase its resistance to downy mildew caused by Hyaloperonospora arabidopsidis. Further experiments revealed that VvBKI1 interacts with a cytoplasmic ascorbate peroxidase, VvAPX1, an ROS-scavenging protein. Transient expression of VvAPX1 in grape and N. benthamiana promoted its resistance against P. viticola, and P. capsici. Moreover, VvAPX1 transgenic Arabidopsis is more resistant to H. arabidopsidis. Furthermore, both VvBKI1 and VvAPX1 transgenic Arabidopsis showed an elevated ascorbate peroxidase activity and enhanced disease resistance. In summary, our findings suggest a positive correlation between APX activity and resistance to oomycetes and that this regulatory network is conserved in V. vinifera, N. benthamiana, and A. thaliana.
Collapse
|
35
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
36
|
Hong X, Qi F, Wang R, Jia Z, Lin F, Yuan M, Xin XF, Liang Y. Ascorbate peroxidase 1 allows monitoring of cytosolic accumulation of effector-triggered reactive oxygen species using a luminol-based assay. PLANT PHYSIOLOGY 2023; 191:1416-1434. [PMID: 36461917 PMCID: PMC9922408 DOI: 10.1093/plphys/kiac551] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 05/06/2023]
Abstract
Biphasic production of reactive oxygen species (ROS) has been observed in plants treated with avirulent bacterial strains. The first transient peak corresponds to pattern-triggered immunity (PTI)-ROS, whereas the second long-lasting peak corresponds to effector-triggered immunity (ETI)-ROS. PTI-ROS are produced in the apoplast by plasma membrane-localized NADPH oxidases, and the recognition of an avirulent effector increases the PTI-ROS regulatory module, leading to ETI-ROS accumulation in the apoplast. However, how apoplastic ETI-ROS signaling is relayed to the cytosol is still unknown. Here, we found that in the absence of cytosolic ascorbate peroxidase 1 (APX1), the second phase of ETI-ROS accumulation was undetectable in Arabidopsis (Arabidopsis thaliana) using luminol-based assays. In addition to being a scavenger of cytosolic H2O2, we discovered that APX1 served as a catalyst in this chemiluminescence ROS assay by employing luminol as an electron donor. A horseradish peroxidase (HRP)-mimicking APX1 mutation (APX1W41F) further enhanced its catalytic activity toward luminol, whereas an HRP-dead APX1 mutation (APX1R38H) reduced its luminol oxidation activity. The cytosolic localization of APX1 implies that ETI-ROS might accumulate in the cytosol. When ROS were detected using a fluorescent dye, green fluorescence was observed in the cytosol 6 h after infiltration with an avirulent bacterial strain. Collectively, these results indicate that ETI-ROS eventually accumulate in the cytosol, and cytosolic APX1 catalyzes luminol oxidation and allows monitoring of the kinetics of ETI-ROS in the cytosol. Our study provides important insights into the spatial dynamics of ROS accumulation in plant immunity.
Collapse
Affiliation(s)
- Xiufang Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhiyi Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
He Y, Zhou Y, Zhou Z, He J, Liu Y, Xiao Y, Long L, Deng O, Xiao H, Shen F, Deng S, Luo L. Allelopathic effect of pyrogallic acid on cyanobacterium Microcystis aeruginosa: The regulatory role of nitric oxide and its significance for controlling harmful algal blooms (HABs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159785. [PMID: 36309262 DOI: 10.1016/j.scitotenv.2022.159785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Utilization of allelochemicals to inhibit overgrowth of toxic cyanobacteria is considered to be an environmentally friendly approach. However, the regulatory role of the signaling molecule nitric oxide (NO) on cyanobacteria under allelopathic stress remains unanswered. Here we demonstrate that the effect of NO on the cyanobacterium Microcystis aeruginosa depends on allelopathic stress of pyrogallic acid (PA). The experimental results revealed that general stimulation of M. aeruginosa by PA occurred within the concentration range 0.4-0.8 mg/L. In parallel with increasing concentration of PA (1.6-16.0 mg/L), the growth of M. aeruginosa was observed to decrease. The effect of NO on M. aeruginosa was evaluated by addition of the NO scavenger hemoglobin. In the stimulation stage, intracellular NO was seen to decreased to modulate the level of reactive oxygen species (ROS) and to maintain redox homeostasis of the cells. In the inhibition stage, the physiological characteristics of M. aeruginosa were changed significantly. Additionally, the accumulation of S-nitrosothiol by M. aeruginosa indicated that the high concentrations of PA induced nitric oxidative stress in M. aeruginosa. This study provides a new thought to understand the role of NO in controlling harmful algal blooms through the allelopathic effect of aquatic macrophytes.
Collapse
Affiliation(s)
- Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yunzi Zhou
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zijian Zhou
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jinsong He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
38
|
Kolupaev YE, Yastreb TO, Ryabchun NI, Yemets AI, Dmitriev OP, Blume YB. Cellular Mechanisms of the Formation of Plant Adaptive Responses to High Temperatures. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
39
|
Verde C, Giordano D, Bruno S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants (Basel) 2023; 12:antiox12020321. [PMID: 36829880 PMCID: PMC9952723 DOI: 10.3390/antiox12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which-among several other reactions-can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.
Collapse
Affiliation(s)
- Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
40
|
Corpas FJ, Palma JM. Functions of NO and H 2S Signal Molecules Against Plant Abiotic Stress. Methods Mol Biol 2023; 2642:97-109. [PMID: 36944874 DOI: 10.1007/978-1-0716-3044-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two recognized signal molecules in higher plants involved in a wide range of physiological processes and the mechanisms of response against adverse environmental conditions. These molecules can interact to provide an adequate response to palliate the negative impact exerted by stressful conditions, particularly by regulating key components of the metabolism of reactive oxygen species (ROS) to avoid their overproduction and further oxidative damage which, finally, affects cellular functioning. NO and H2S can exert the regulation over the function of susceptible proteins by posttranslational modifications (PTMs) including nitration, S-nitrosation, and persulfidation but also through the regulation of gene expression by the induction of specific transcription factors which modulate the expression of genes encoding proteins related to stress resistance. This chapter encompasses a wide perspective of the signaling and functional relationships between NO and H2S to modulate the overproduction of reactive oxygen species, particularly under abiotic stress conditions.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
41
|
Borrowman S, Kapuganti JG, Loake GJ. Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radic Biol Med 2023; 194:357-368. [PMID: 36513331 DOI: 10.1016/j.freeradbiomed.2022.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.
Collapse
Affiliation(s)
- Sam Borrowman
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | | | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, Max Born Crescent, King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
42
|
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L, Rivero RM. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027730. [PMID: 36388514 PMCID: PMC9644032 DOI: 10.3389/fpls.2022.1027730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The impact of climate change entails a progressive and inexorable modification of the Earth's climate and events such as salinity, drought, extreme temperatures, high luminous intensity and ultraviolet radiation tend to be more numerous and prolonged in time. Plants face their exposure to these abiotic stresses or their combination through multiple physiological, metabolic and molecular mechanisms, to achieve the long-awaited acclimatization to these extreme conditions, and to thereby increase their survival rate. In recent decades, the increase in the intensity and duration of these climatological events have intensified research into the mechanisms behind plant tolerance to them, with great advances in this field. Among these mechanisms, the overproduction of molecular reactive species stands out, mainly reactive oxygen, nitrogen and sulfur species. These molecules have a dual activity, as they participate in signaling processes under physiological conditions, but, under stress conditions, their production increases, interacting with each other and modifying and-or damaging the main cellular components: lipids, carbohydrates, nucleic acids and proteins. The latter have amino acids in their sequence that are susceptible to post-translational modifications, both reversible and irreversible, through the different reactive species generated by abiotic stresses (redox-based PTMs). Some research suggests that this process does not occur randomly, but that the modification of critical residues in enzymes modulates their biological activity, being able to enhance or inhibit complete metabolic pathways in the process of acclimatization and tolerance to the exposure to the different abiotic stresses. Given the importance of these PTMs-based regulation mechanisms in the acclimatization processes of plants, the present review gathers the knowledge generated in recent years on this subject, delving into the PTMs of the redox-regulated enzymes of plant metabolism, and those that participate in the main stress-related pathways, such as oxidative metabolism, primary metabolism, cell signaling events, and photosynthetic metabolism. The aim is to unify the existing information thus far obtained to shed light on possible fields of future research in the search for the resilience of plants to climate change.
Collapse
Affiliation(s)
- José M. Martí-Guillén
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miriam Pardo-Hernández
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Sara E. Martínez-Lorente
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
43
|
Nickolov K, Gauthier A, Hashimoto K, Laitinen T, Väisänen E, Paasela T, Soliymani R, Kurusu T, Himanen K, Blokhina O, Fagerstedt KV, Jokipii-Lukkari S, Tuominen H, Häggman H, Wingsle G, Teeri TH, Kuchitsu K, Kärkönen A. Regulation of PaRBOH1-mediated ROS production in Norway spruce by Ca 2+ binding and phosphorylation. FRONTIERS IN PLANT SCIENCE 2022; 13:978586. [PMID: 36311083 PMCID: PMC9608432 DOI: 10.3389/fpls.2022.978586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing positive response in the peptide assays were individually mutated to alanine (kinase-inactive) or to aspartate (phosphomimic), and the wild type PaRBOH1 and the mutated constructs transfected to human kidney embryogenic (HEK293T) cells with a low endogenous level of extracellular ROS production. ROS-producing assays with HEK cells showed that Ca2+ and phosphorylation synergistically activate the enzyme and identified several serine and threonine residues that are likely to be phosphorylated including a novel phosphorylation site not characterized in other plant species. These were further investigated with a phosphoproteomic study. Results of Norway spruce, the first gymnosperm species studied in relation to RBOH regulation, show that regulation of RBOH activity is conserved among seed plants.
Collapse
Affiliation(s)
- Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- UniLaSalle, Agro-Ecology, Hydrogeochemistry, Environments & Resources, UP 2018.C101 of the Ministry in Charge of Agriculture (AGHYLE) Research Unit CS UP 2018.C101, Mont-Saint-Aignan, France
| | - Kenji Hashimoto
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Enni Väisänen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Dev. Biology, University of Helsinki, Biomedicum-Helsinki, Helsinki, Finland
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kristiina Himanen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Olga Blokhina
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kurt V. Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Soile Jokipii-Lukkari
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Gunnar Wingsle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Helsinki, Finland
| |
Collapse
|
44
|
Bi G, Hu M, Fu L, Zhang X, Zuo J, Li J, Yang J, Zhou JM. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H 2O 2 that regulates plant immunity through a redox relay. NATURE PLANTS 2022; 8:1160-1175. [PMID: 36241731 DOI: 10.1038/s41477-022-01252-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Rapid production of H2O2 is a hallmark of plant responses to diverse pathogens and plays a crucial role in signalling downstream of various receptors that perceive immunogenic patterns. However, mechanisms by which plants sense H2O2 to regulate immunity remain poorly understood. We show that endogenous H2O2 generated upon immune activation is sensed by the thiol peroxidase PRXIIB via oxidation at Cys51, and this is essential for stomatal immunity against Pseudomonas syringae. We further show that in immune-stimulated cells, PRXIIB conjugates via Cys51 with the type 2C protein phosphatase ABA insensitive 2 (ABI2), subsequently transducing H2O2 signal to ABI2. This oxidation dramatically sensitizes H2O2-mediated inhibition of the ABI2 phosphatase activity in vitro and is required for stomatal immunity in plants. Together, our results illustrate a redox relay, with PRXIIB as a sensor for H2O2 and ABI2 as a target protein, that mediates reactive oxygen species signalling during plant immunity.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Man Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
45
|
Gao X, Ma J, Tie J, Li Y, Hu L, Yu J. BR-Mediated Protein S-Nitrosylation Alleviated Low-Temperature Stress in Mini Chinese Cabbage ( Brassica rapa ssp. pekinensis). Int J Mol Sci 2022; 23:ijms231810964. [PMID: 36142872 PMCID: PMC9503245 DOI: 10.3390/ijms231810964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Brassinosteroids (BRs), a novel plant hormone, are widely involved in plant growth and stress response processes. Nitric oxide (NO), as an important gas signaling molecule, can regulate target protein activity, subcellular localization and function in response to various stresses through post-translational S-nitrosylation modifications. However, the relationship between BR and NO in alleviating low-temperature stress of mini Chinese cabbage remains unclear. The hydroponic experiment combined with the pharmacological and molecular biological method was conducted to study the alleviating mechanism of BR at low temperature in mini Chinese cabbage. The results showed that low temperature inhibited the growth of mini Chinese cabbage seedlings, as evidenced by dwarf plants and yellow leaves. Treatment with 0.05 mg/L BR and 50 µM NO donor S-nitrosoglutathione (GSNO) significantly increased the leaf area, stem diameter, chlorophyll content, dry and fresh weight and proline content. Meanwhile, the malondialdehyde (MDA) content in 0.05 mg/L BR- and 50 µM GSNO-treated leaves were significantly lower than those in other treated leaves under low-temperature conditions. In addition, BR and GSNO applications induced an increase in NO and S-nitrosothiol (SNO) levels in vivo under low-temperature stress. Similarly, spraying BR after the elimination of NO also increased the level of S-nitrosylation in vivo, while spraying GSNO after inhibiting BR biosynthesis decreased the level of NO and SNO in vivo. In contrast, the S-nitrosoglutathione reductase (BrGSNOR) relative expression level and GSNOR enzyme activity were downregulated and inhibited by BR treatment, GSNO treatment and spraying BR after NO clearance, while the relative expression level of BrGSNOR was upregulated and GSNOR enzyme activity was also increased when spraying GSNO after inhibiting BR synthesis. Meanwhile, the biotin switch assay showed that exogenous BR increased the level of total nitrosylated protein in vivo under low-temperature stress. These results suggested that BR might act as an upstream signal of NO, induced the increase of NO content in vivo and then induced the protein S-nitrosylation modification to alleviate the damage of mini Chinese cabbage seedlings under low-temperature stress.
Collapse
Affiliation(s)
- Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jizhong Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianzhong Tie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yutong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (L.H.); (J.Y.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (L.H.); (J.Y.)
| |
Collapse
|
46
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
47
|
Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Biol 2022; 23:663-679. [PMID: 35760900 DOI: 10.1038/s41580-022-00499-2] [Citation(s) in RCA: 710] [Impact Index Per Article: 236.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing, integration of different environmental signals and activation of stress-response networks, thus contributing to the establishment of defence mechanisms and plant resilience. Recent advances in the study of ROS signalling in plants include the identification of ROS receptors and key regulatory hubs that connect ROS signalling with other important stress-response signal transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing production, scavenging and transport has also increased. In this Review, we discuss these promising developments and how they might be used to increase plant resilience to environmental stress.
Collapse
|
48
|
Janků M, Jedelská T, Činčalová L, Sedlář A, Mikulík J, Luhová L, Lochman J, Petřivalský M. Structure-activity relationships of oomycete elicitins uncover the role of reactive oxygen and nitrogen species in triggering plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111239. [PMID: 35487652 DOI: 10.1016/j.plantsci.2022.111239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Elicitins are proteinaceous elicitors that induce the hypersensitive response and plant resistance against diverse phytopathogens. Elicitin recognition by membrane receptors or high-affinity sites activates a variety of fast responses including the production of reactive oxygen species (ROS) and nitric oxide (NO), leading to induction of plant defense genes. Beta-cryptogein (CRY) is a basic β-elicitin secreted by the oomycete Phytophthora cryptogea that shows high necrotic activity in some plant species, whereas infestin 1 (INF1) secreted by the oomycete P. infestans belongs to acidic α-elicitins with a significantly weaker capacity to induce necrosis. We compared several mutated forms of β-CRY and INF1 with a modulated capacity to trigger ROS and NO production, bind plant sterols and induce cell death responses in cell cultures of Nicotiana tabacum L. cv. Xanthi. We evidenced a key role of the lysine residue in position 13 in basic elicitins for their biological activity and enhancement of necrotic effects of acidic INF1 by the replacement of the valine residue in position 84 by larger phenylalanine. Studied elicitins activated in differing intensity signaling pathways of ROS, NO and phytohormones jasmonic acid, ethylene and salicylic acid, known to be involved in triggering of hypersensitive response and establishment of systemic resistance.
Collapse
Affiliation(s)
- Martina Janků
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Antonín Sedlář
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jaromír Mikulík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Masaryk University, Faculty of Science, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
49
|
González-Gordo S, Rodríguez-Ruiz M, López-Jaramillo J, Muñoz-Vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants (Basel) 2022; 11:antiox11040765. [PMID: 35453450 PMCID: PMC9029456 DOI: 10.3390/antiox11040765] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a free radical which modulates protein function and gene expression throughout all stages of plant development. Fruit ripening involves a complex scenario where drastic phenotypical and metabolic changes take place. Pepper fruits are one of the most consumed horticultural products worldwide which, at ripening, undergo crucial phenotypical and biochemical events, with NO and antioxidants being implicated. Based on previous transcriptomic (RNA-Seq), proteomics (iTRAQ), and enzymatic data, this study aimed to identify the ascorbate peroxidase (APX) gene and protein profiles in sweet peppers and to evaluate their potential modulation by NO during fruit ripening. The data show the existence of six CaAPX genes (CaAPX1–CaAPX6) that encode corresponding APX isozymes distributed in cytosol, plastids, mitochondria, and peroxisomes. The time course expression analysis of these genes showed heterogeneous expression patterns throughout the different ripening stages, and also as a consequence of treatment with NO gas. Additionally, six APX isozymes activities (APX I–APX VI) were identified by non-denaturing PAGE, and they were also differentially modulated during maturation and NO treatment. In vitro analyses of fruit samples in the presence of NO donors, peroxynitrite, and glutathione, showed that CaAPX activity was inhibited, thus suggesting that different posttranslational modifications (PTMs), including S-nitrosation, Tyr-nitration, and glutathionylation, respectively, may occur in APX isozymes. In silico analysis of the protein tertiary structure showed that residues Cys32 and Tyr235 were conserved in the six CaAPXs, and are thus likely potential targets for S-nitrosation and nitration, respectively. These data highlight the complex mechanisms of the regulation of APX isozymes during the ripening process of sweet pepper fruits and how NO can exert fine control. This information could be useful for postharvest technology; NO regulates H2O2 levels through the different APX isozymes and, consequently, could modulate the shelf life and nutritional quality of pepper fruits.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | | | - María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
- Correspondence:
| |
Collapse
|
50
|
Song X, Wang T, Zhang Y, Yu JQ, Xia XJ. S-Nitrosoglutathione Reductase Contributes to Thermotolerance by Modulating High Temperature-Induced Apoplastic H 2O 2 in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:862649. [PMID: 35498691 PMCID: PMC9042256 DOI: 10.3389/fpls.2022.862649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
S-nitrosoglutathione reductase (GSNOR) is considered as a critical regulator of plant stress tolerance for its impacts on protein S-nitrosylation through regulation of the S-nitrosothiol (SNO) level. However, the mechanism of GSNOR-mediated stress tolerance is still obscure. Here, we found that GSNOR activity was induced by high temperature in tomato (Solanum lycopersicum) plants, whereas mRNA level of SlGSNOR1 exhibited little response. Suppressing SlGSNOR1 expression by virus-induced gene silencing (VIGS) increased accumulation of SNO and nitrites under high temperature and reduced thermotolerance. The compromised thermotolerance was associated with less accumulation of abscisic acid (ABA) and salicylic acid (SA), attenuated activation of mitogen-activated protein kinase (MAPK) and reduced expression of heat shock protein. Intriguingly, SlGSNOR1 silencing impaired upregulation of RESPIRATORY BURST OXIDASE HOMOLOG1 (SlRBOH1) and apoplastic H2O2 accumulation in response to high temperature, whereas SlRBOH1 silencing abolished activation of GSNOR and led to a similar decline in thermotolerance as in SlGSNOR1-silenced plants. Importantly, H2O2 treatment recovered the thermotolerance and improved antioxidant capacity in SlGSNOR1-silenced plants. Our results suggest that GSNOR plays a role in regulating the SlRBOH1-dependent apoplastic H2O2 production in response to high temperature, while a balanced interaction between SNO and H2O2 is critical for maintaining the cellular redox homeostasis and thermotolerance.
Collapse
Affiliation(s)
- Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Ting Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|