1
|
Khatoon M, Dubey A. Functional characterization of two distinct classes of NADPH-cytochrome P450 reductases in Senna alexandrina Mill. Mol Biol Rep 2025; 52:457. [PMID: 40366465 DOI: 10.1007/s11033-025-10566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Senna alexandrina Mill., an important medicinal plant of Fabaceae family, is famous for its laxative properties which are mainly due to the presence of sennosides (anthraquinone glycosides). However, the complete biosynthetic pathway of sennosides in Senna is not yet fully understood. Cytochrome P450 monooxygenases (CYPs), which are heme-containing enzymes are supposed to play key roles in sennoside biosynthesis. Cytochrome P450 reductases (CPRs) are essential for the activity of CYPs, as they function as their redox partners. However, CPRs in Senna have not yet been characterized in detail. METHODS AND RESULTS In this study, two different sequences of SaCPRs were retrieved from the publicly available Transcriptome Shotgun Assembly (TSA) database of S. alexandrina at National Center for Biotechnology Information (NCBI). The open reading frames of SaCPR1 and SaCPR2 were found to be 2079 and 2121 bp, encoding 693 and 707 amino acid long polypeptides, respectively. Phylogenetic and 3-D structure analysis predicted that these two SaCPRs (i.e. SaCPR1 and SaCPR2) were grouped with the members of Class I and Class II CPRs, respectively. Analysis of SaCPR1 and SaCPR2 sequences showed that the conserved domains commonly found in CPRs such as FMN- (Flavin adenine mononucleotide), FAD-(Flavin adenine dinucleotide), NADPH-(Nicotinamide adenine dinucleotide phosphate hydrogen) and cytochrome P450 binding region, were also present in SaCPRs. SaCPR1 and SaCPR2 were cloned and expressed in yeast for functional characterization. In cytochrome P450 reductase assay, both SaCPR1 and SaCPR2 reduced cytochrome c in the presence of NADPH as an electron donor, however, SaCPR1 showed higher specific activity than SaCPR2. The real time expression analysis of SaCPRs performed in the leaf, stem and root tissues of Senna showed that SaCPR1 was expressed more in leaf tissue while SaCPR2 expressed more in stem tissue. Furthermore, both the SaCPRs were found to be induced by salicylic acid as well as wound treatment (up to two hr). CONCLUSION Two different classes of cytochrome P450 reductases were identified and functionally characterized. SaCPR1 showed higher in vitro activity than SaCPR2 in cytochrome c reduction assay.
Collapse
Affiliation(s)
- Mushfa Khatoon
- Genetic Engineering and Translational Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Amita Dubey
- Genetic Engineering and Translational Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
2
|
Li Y, Feng Y, Guo W, Gao Y, Zhang J, Yang L, Lei C, Kang Y, Wang Y, Qu X, Huang J. A CYP80B enzyme from Stephania tetrandra enables the 3'-hydroxylation of N-methylcoclaurine and coclaurine in the biosynthesis of benzylisoquinoline alkaloids. Chin J Nat Med 2025; 23:630-640. [PMID: 40383618 DOI: 10.1016/s1875-5364(25)60867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/30/2024] [Accepted: 12/22/2024] [Indexed: 05/20/2025]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant metabolites renowned for their pharmacological properties. However, sustainable sources for these compounds remain limited. Consequently, researchers are focusing on elucidating BIA biosynthetic pathways and genes to explore alternative sources using synthetic biology approaches. CYP80B, a family of cytochrome P450 (CYP450) enzymes, plays a crucial role in BIA biosynthesis. Previously reported CYP80Bs are known to catalyze the 3'-hydroxylation of (S)-N-methylcoclaurine, with the N-methyl group essential for catalytic activity. In this study, we successfully cloned a full-length CYP80B gene (StCYP80B) from Stephania tetrandra (S. tetrandra) and identified its function using a yeast heterologous expression system. Both in vivo yeast feeding and in vitro enzyme analysis demonstrated that StCYP80B could catalyze N-methylcoclaurine and coclaurine into their respective 3'-hydroxylated products. Notably, StCYP80B exhibited an expanded substrate selectivity compared to previously reported wild-type CYP80Bs, as it did not require an N-methyl group for hydroxylase activity. Furthermore, StCYP80B displayed a clear preference for the (S)-configuration. Co-expression of StCYP80B with the CYP450 reductases (CPRs, StCPR1, and StCPR2), also cloned from S. tetrandra, significantly enhanced the catalytic activity towards (S)-coclaurine. Site-directed mutagenesis of StCYP80B revealed that the residue H205 is crucial for coclaurine catalysis. Additionally, StCYP80B exhibited tissue-specific expression in plants. This study provides new genetic resources for the biosynthesis of BIAs and further elucidates their synthetic pathway in natural plant systems.
Collapse
Affiliation(s)
- Yaoting Li
- School of Pharmacy, Fudan University, Shanghai 201203, China; State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhan Feng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wan Guo
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Gao
- School of Pharmacy, Fudan University, Shanghai 201203, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiatao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Kang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yaqin Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianming Huang
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
3
|
Ishikawa E, Kanai S, Shinozawa A, Hyakutake M, Sue M. Hordeum vulgare CYP76M57 catalyzes C 2 shortening of tryptophan side chain by C-N bond rearrangement in gramine biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:892-904. [PMID: 38281119 DOI: 10.1111/tpj.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/29/2024]
Abstract
The indole alkaloid gramine, 3-(dimethylaminomethyl)indole, is a defensive specialized metabolite found in some barley cultivars. In its biosynthetic process, the tryptophan (Trp) side chain is shortened by two carbon atoms to produce 3-(aminomethyl)indole (AMI), which is then methylated by N-methyltransferase (HvNMT) to produce gramine. Although side chain shortening is one of the crucial scaffold formation steps of alkaloids originating from aromatic amino acids, the gene and enzyme involved in the Trp-AMI conversion reactions are unknown. In this study, through RNA-seq analysis, 35 transcripts were shown to correlate with gramine production; among them, an uncharacterized cytochrome P450 (CYP) gene, CYP76M57, and HvNMT were identified as candidate genes for gramine production. Transgenic Arabidopsis thaliana and rice overexpressing CYP and HvNMT accumulate AMI, N-methyl-AMI, and gramine. CYP76M57, heterologously expressed in Pichia pastoris, was able to act on Trp to produce AMI. Furthermore, the amino group nitrogen of Trp was retained during the CYP76M57-catalyzed reaction, indicating that the C2 shortening of Trp proceeds with an unprecedented biosynthetic process, the removal of the carboxyl group and Cα and the rearrangement of the nitrogen atom to Cβ. In some gramine-non-accumulating barley cultivars, arginine 104 in CYP76M57 is replaced by threonine, which abolished the catalytic activity of CYP76M57 to convert Trp into AMI. These results uncovered the missing committed enzyme of gramine biosynthesis in barley and contribute to the elucidation of the potential functions of CYPs in plants and undiscovered specialized pathways.
Collapse
Affiliation(s)
- Erika Ishikawa
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Shion Kanai
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
- The NODAI Genome Research Center (NGRC), Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Mami Hyakutake
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
4
|
Istiandari P, Yasumoto S, Seki H, Fukushima EO, Muranaka T. Class I and II NADPH-cytochrome P450 reductases exhibit different roles in triterpenoid biosynthesis in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2023; 14:1214602. [PMID: 37621889 PMCID: PMC10445947 DOI: 10.3389/fpls.2023.1214602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are enzymes that play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations of the triterpene scaffold, CYPs require electrons transferred by NADPH-cytochrome P450 reductase (CPR), which is classified into two main classes, class I and class II, based on their structural difference. Lotus japonicus is a triterpenoids-producing model legume with one CPR class I gene (LjCPR1) and a minimum of two CPR class II genes (LjCPR2-1 and LjCPR2-2). CPR classes I and II from different plants have been reported to be involved in different metabolic pathways. By performing gene expression analyses of L. japonicus hairy root culture treated with methyl jasmonate (MeJA), this study revealed that LjCPR1, CYP716A51, and LUS were down-regulated which resulted in no change in betulinic acid and lupeol content. In contrast, LjCPR2s, bAS, CYP93E1, and CYP72A61 were significantly upregulated by MeJA treatment, followed by a significant increase of the precursors for soyasaponins, i.e. β-amyrin, 24-OH β-amyrin, and sophoradiol content. Triterpenoids profile analysis of LORE1 insertion and hairy root mutants showed that the loss of the Ljcpr2-1 gene significantly reduced soyasaponins precursors but not in Ljcpr1 mutants. However, Ljcpr1 and Ljcpr2-1 mutants showed a significant reduction in lupeol and oleanolic, ursolic, and betulinic acid contents. Furthermore, LjCPR1, but not LjCPR2, was crucial for seed development, supporting the previous notion that CPR class I might support plant basal metabolism. This study suggests that CPR classes I and II play different roles in L. japonicus triterpenoid biosynthesis.
Collapse
Affiliation(s)
- Pramesti Istiandari
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Plant Translational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Zhao X, Zhao Y, Gou M, Liu CJ. Tissue-preferential recruitment of electron transfer chains for cytochrome P450-catalyzed phenolic biosynthesis. SCIENCE ADVANCES 2023; 9:eade4389. [PMID: 36630494 PMCID: PMC9833660 DOI: 10.1126/sciadv.ade4389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Cytochrome P450 system consists of P450 monooxygenase and redox pattern(s). While the importance of monooxygenases in plant metabolism is well documented, the metabolic roles of the related redox components have been largely overlooked. Here, we show that distinct electron transfer chains are recruited in phenylpropanoid-monolignol P450 systems to support the synthesis and distribution of different classes of phenolics in different plant tissues. While Arabidopsis cinnamate 4-hydroxylase adopts conventional NADPH-cytochrome P450 oxidoreductase (CPR) electron transfer chain for its para-hydroxylation reaction, ferulate 5-hydroxylase uses both NADPH-CPR-cytochrome b5 (CB5) and NADH-cytochrome b5 reductase-CB5 chains to support benzene ring 5-hydroxylation, in which the former route is primarily recruited in the stem for syringyl lignin synthesis, while the latter dominates in the syntheses of 5-hydroxylated phenolics in seeds and seed coat suberin. Our study unveils an additional layer of complexity and versatility of P450 system that the plants evolved for diversifying phenolic repertoires.
Collapse
|
6
|
Iyanagi T. Roles of Ferredoxin-NADP + Oxidoreductase and Flavodoxin in NAD(P)H-Dependent Electron Transfer Systems. Antioxidants (Basel) 2022; 11:2143. [PMID: 36358515 PMCID: PMC9687028 DOI: 10.3390/antiox11112143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 07/21/2023] Open
Abstract
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and some algae, one-electron carrier Fd serves as a substitute for low-potential FMN-containing flavodoxin (Fld) during growth under low-iron conditions. This complex evolves into the covalent FNR (FAD)-Fld (FMN) pair, which participates in a wide variety of NAD(P)H-dependent metabolic pathways as an electron donor, including bacterial sulfite reductase, cytochrome P450 BM3, plant or mammalian cytochrome P450 reductase and nitric oxide synthase isoforms. These electron transfer systems share the conserved Ser-Glu/Asp pair in the active site of the FAD module. In addition to physiological electron acceptors, the NAD(P)H-dependent diflavin reductase family catalyzes a one-electron reduction of artificial electron acceptors such as quinone-containing anticancer drugs. Conversely, NAD(P)H: quinone oxidoreductase (NQO1), which shares a Fld-like active site, functions as a typical two-electron transfer antioxidant enzyme, and the NQO1 and UDP-glucuronosyltransfease/sulfotransferase pairs function as an antioxidant detoxification system. In this review, the roles of the plant FNR-Fd and FNR-Fld complex pairs were compared to those of the diflavin reductase (FAD-FMN) family. In the final section, evolutionary aspects of NAD(P)H-dependent multi-domain electron transfer systems are discussed.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Akoh 678-1297, Hyogo, Japan
| |
Collapse
|
7
|
Linnenbrügger L, Doering L, Lansing H, Fischer K, Eirich J, Finkemeier I, von Schaewen A. Alternative splicing of Arabidopsis G6PD5 recruits NADPH-producing OPPP reactions to the endoplasmic reticulum. FRONTIERS IN PLANT SCIENCE 2022; 13:909624. [PMID: 36119606 PMCID: PMC9478949 DOI: 10.3389/fpls.2022.909624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Glucose-6-phosphate dehydrogenase is the rate-limiting enzyme of the oxidative pentose-phosphate pathway (OPPP). The OPPP mainly provides NADPH and sugar-phosphate building blocks for anabolic pathways and is present in all eukaryotes. In plant cells, the irreversible part of the OPPP is found in several compartments. Among the isoforms catalyzing the first OPPP step in Arabidopsis, G6PD1 to G6PD4 target plastids (with G6PD1 being also directed to peroxisomes), whereas G6PD5 and G6PD6 operate in the cytosol. We noticed that alternative splice forms G6PD5.4 and G6PD5.5 encode N-terminally extended proteoforms. Compared to G6PD5.1, RT-PCR signals differed and fluorescent reporter fusions expressed in Arabidopsis protoplasts accumulated in distinct intracellular sites. Co-expression with organelle-specific markers revealed that the G6PD5.4 and G6PD5.5 proteoforms label different subdomains of the endoplasmic reticulum (ER), and analysis of C-terminal roGFP fusions showed that their catalytic domains face the cytosol. In g6pd5-1 g6pd6-2 mutant protoplasts lacking cytosolic G6PDH activity, the ER-bound proteoforms were both active and thus able to form homomers. Among the Arabidopsis 6-phosphogluconolactonases (catalyzing the second OPPP step), we noticed that isoform PGL2 carries a C-terminal CaaX motif that may be prenylated for membrane attachment. Reporter-PGL2 fusions co-localized with G6PD5.4 in ER subdomains, which was abolished by Cys-to-Ser exchange in the 256CSIL motif. Among the Arabidopsis 6-phosphogluconate dehydrogenases (catalyzing the third OPPP step), S-acylated peptides were detected for all three isoforms in a recent palmitoylome, with dual cytosolic/peroxisomal PGD2 displaying three sites. Co-expression of GFP-PGD2 diminished crowding of OFP-G6PD5.4 at the ER, independent of PGL2's presence. Upon pull-down of GFP-G6PD5.4, not only unlabeled PGD2 and PGL2 were enriched, but also enzymes that depend on NADPH provision at the ER, indicative of physical interaction with the OPPP enzymes. When membrane-bound G6PD5.5 and 5.4 variants were co-expressed with KCR1 (ketoacyl-CoA reductase, involved in fatty acid elongation), ATR1 (NADPH:cytochrome-P450 oxidoreductase), or pulled C4H/CYP73A5 (cinnamate 4-hydroxylase) as indirectly (via ATR) NADPH-dependent cytochrome P450 enzyme, co-localization in ER subdomains was observed. Thus, alternative splicing of G6PD5 can direct the NADPH-producing OPPP reactions to the cytosolic face of the ER, where they may operate as membrane-bound metabolon to support several important biosynthetic pathways of plant cells.
Collapse
Affiliation(s)
- Loreen Linnenbrügger
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Lennart Doering
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Hannes Lansing
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Kerstin Fischer
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Jürgen Eirich
- Department of Biology, Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Iris Finkemeier
- Department of Biology, Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| | - Antje von Schaewen
- Department of Biology, Molecular Physiology of Plants, Institute of Plant Biology and Biotechnology, University of Münster (WWU Münster), Münster, Germany
| |
Collapse
|
8
|
Gong FL, Han J, Li S. MULTI-SCULPT: Multiplex Integration via Selective, CRISPR-Mediated, Ultralong Pathway Transformation in Yeast for Plant Natural Product Synthesis. ACS Synth Biol 2022; 11:2484-2495. [PMID: 35737816 DOI: 10.1021/acssynbio.2c00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Yeast has been a versatile model host for complex and valuable natural product biosynthesis via the reconstruction of heterologous biosynthetic pathways. Recent advances in natural product pathway elucidation have uncovered many large and complicated plant pathways that contain 10-30 genes for the biosynthesis of structurally complex, valuable natural products. However, the ability to reconstruct ultralong pathways efficiently in yeast does not match the increasing demand for valuable plant natural product biomanufacturing. Here, we developed a one-pot, multigene pathway integration method in yeast, named MULTI-SCULPT for multiplex integration via selective, CRISPR-mediated, ultralong pathway transformation. Leveraging multilocus genomic disruption via CRISPR/Cas9, newly developed native and synthetic genetic parts, and fine-tuned gene integration and characterization methods, we managed to integrate 21 DNA inserts that contain a 12-gene plant isoflavone biosynthetic pathway into yeast with a 90-100% success rate in 12 days. This method enables fast and efficient ultralong biosynthetic pathway integration and can allow for the fast iterative integration of even longer pathways in the future. Ultimately, this method will accelerate combinatorial optimization of elucidated plant natural product pathways and accelerate putative pathway characterization heterologously.
Collapse
Affiliation(s)
- Franklin Leyang Gong
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jianing Han
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
10
|
Zhang B, Munske GR, Timokhin VI, Ralph J, Davydov DR, Vermerris W, Sattler SE, Kang C. Functional and structural insight into the flexibility of cytochrome P450 reductases from Sorghum bicolor and its implications for lignin composition. J Biol Chem 2022; 298:101761. [PMID: 35202651 PMCID: PMC8942828 DOI: 10.1016/j.jbc.2022.101761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3′-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3′H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide–binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Gerhard R Munske
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Vitaliy I Timokhin
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Scott E Sattler
- U.S. Department of Agriculture - Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, Lincoln, Nebraska, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
11
|
Production and structural characterization of the cytochrome P450 enzymes in carotene ring hydroxylation. Methods Enzymol 2022; 671:223-241. [DOI: 10.1016/bs.mie.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Huang R, Liu L, He X, Wang W, Hou Y, Chen J, Li Y, Zhou H, Tian T, Wang W, Xu Q, Yu Y, Zhou T. Isolation and Functional Characterization of Multiple NADPH-Cytochrome P450 Reductase Genes from Camellia sinensis in View of Catechin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14926-14937. [PMID: 34859673 DOI: 10.1021/acs.jafc.1c04255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catechins are critical constituents for the sensory quality and health-promoting benefits of tea. Cytochrome P450 monooxygenases are required for catechin biosynthesis and are dependent on NADPH-cytochrome P450 reductases (CPRs) to provide reducing equivalents for their activities. However, CPRs have not been identified in tea, and their relationship to catechin accumulation also remains unknown. Thus, three CsCPR genes were identified in this study, all of which had five CPR-related conserved domains and were targeted to the endoplasmic reticulum. These three recombinant CsCPR proteins could reduce cytochrome c using NADPH as an electron donor. Heterologous co-expression in yeast demonstrated that all the three CsCPRs could support the enzyme activities of CsC4H and CsF3'H. Correlation analysis indicated that the expression level of CsCPR1 (or CsCPR2 or CsCPR3) was positively correlated with 3',4',5'-catechin (or total catechins) content. Our results indicate that the CsCPRs are involved in the biosynthesis of catechins in tea leaves.
Collapse
Affiliation(s)
- Ronghao Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lipeng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuqiu He
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jinfan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
13
|
Liao J, Xie L, Shi H, Cui S, Lan F, Luo Z, Ma X. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases. PHYTOCHEMISTRY 2021; 189:112824. [PMID: 34102591 DOI: 10.1016/j.phytochem.2021.112824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Siraitia grosvenorii (Luo hanguo or monk fruit) is a valuable medicinal herb for which the market demand has increased dramatically worldwide. As promising natural sweeteners, mogrosides have received much attention from researchers because of their extremely high sweetness and lack of calories. Nevertheless, owing to the absence of genetic transformation methods, the molecular mechanisms underlying the regulation of mogroside biosynthesis have not yet been fully elucidated. Therefore, an effective method for gene function analysis needs to be developed for S. grosvenorii fruit. As a powerful approach, transient expression has become a versatile method to elucidate the biological functions of genes and proteins in various plant species. In this study, PBI121 with a β-glucuronidase (GUS) marker and tobacco rattle virus (TRV) were used as vectors for overexpression and silencing, respectively, of the SgCPR1 and SgCPR2 genes in S. grosvenorii fruit. The effectiveness of transient expression was validated by GUS staining in S. grosvenorii fruit, and the expression levels of SgCPR1 and SgCPR2 increased significantly after infiltration for 36 h. In addition, TRV-induced gene silencing suppressed the expression of SgCPR1 and SgCPR2 in S. grosvenorii fruit. More importantly, the production of the major secondary metabolites mogrol, mogroside IIE (MIIE) and mogroside III (MIII) was activated by the overexpression of SgCPR1 and SgCPR2 in S. grosvenorii fruit, with levels 1-2 times those in the control group. Moreover, the accumulation of mogrol, MIIE and MIII was decreased in the SgCPR1 and SgCPR2 gene silencing assays. Therefore, this transient expression approach was available for S. grosvenorii fruit, providing insight into the expression of the SgCPR1 and SgCPR2 genes involved in the mogroside biosynthesis pathway. Our study also suggests that this method has potential applications in the exploration of the molecular mechanisms, biochemical hypotheses and functional characteristics of S. grosvenorii genes.
Collapse
Affiliation(s)
- Jingjing Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Fusheng Lan
- Guilin GFS Monk Fruit Corp, Guilin, 541006, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
14
|
Mitu SA, Ogbourne SM, Klein AH, Tran TD, Reddell PW, Cummins SF. The P450 multigene family of Fontainea and insights into diterpenoid synthesis. BMC PLANT BIOLOGY 2021; 21:191. [PMID: 33879061 PMCID: PMC8058993 DOI: 10.1186/s12870-021-02958-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cytochrome P450s (P450s) are enzymes that play critical roles in the biosynthesis of physiologically important compounds across all organisms. Although they have been characterised in a large number of plant species, no information relating to these enzymes are available from the genus Fontainea (family Euphorbiaceae). Fontainea is significant as the genus includes species that produce medicinally significant epoxy-tigliane natural products, one of which has been approved as an anti-cancer therapeutic. RESULTS A comparative species leaf metabolome analysis showed that Fontainea species possess a chemical profile different from various other plant species. The diversity and expression profiles of Fontainea P450s were investigated from leaf and root tissue. A total of 103 and 123 full-length P450 genes in Fontainea picrosperma and Fontainea venosa, respectively (and a further 127/125 partial-length) that were phylogenetically classified into clans, families and subfamilies. The majority of P450 identified are most active within root tissue (66.2% F. picrosperma, 65.0% F. venosa). Representatives within the CYP71D and CYP726A were identified in Fontainea that are excellent candidates for diterpenoid synthesis, of which CYP726A1, CYP726A2 and CYP71D1 appear to be exclusive to Fontainea species and were significantly more highly expressed in root tissue compared to leaf tissue. CONCLUSION This study presents a comprehensive overview of the P450 gene family in Fontainea that may provide important insights into the biosynthesis of the medicinally significant epoxy-tigliane diterpenes found within the genus.
Collapse
Affiliation(s)
- Shahida A. Mitu
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Steven M. Ogbourne
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Anne H. Klein
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | - Trong D. Tran
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| | | | - Scott F. Cummins
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558 Australia
| |
Collapse
|
15
|
Wakabayashi T, Ishiwa S, Shida K, Motonami N, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. PLANT PHYSIOLOGY 2021; 185:902-913. [PMID: 33793911 PMCID: PMC8133691 DOI: 10.1093/plphys/kiaa113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/09/2020] [Indexed: 05/10/2023]
Abstract
Strigolactones (SLs), first identified as germination stimulants for root parasitic weeds, act as endogenous phytohormones regulating shoot branching and as root-derived signal molecules mediating symbiotic communications in the rhizosphere. Canonical SLs typically have an ABCD ring system and can be classified into orobanchol- and strigol-type based on the C-ring stereochemistry. Their simplest structures are 4-deoxyorobanchol (4DO) and 5-deoxystrigol (5DS), respectively. Diverse canonical SLs are chemically modified with one or more hydroxy or acetoxy groups introduced into the A- and/or B-ring of these simplest structures, but the biochemical mechanisms behind this structural diversity remain largely unexplored. Sorgomol in sorghum (Sorghum bicolor [L.] Moench) is a strigol-type SL with a hydroxy group at C-9 of 5DS. In this study, we characterized sorgomol synthase. Microsomal fractions prepared from a high-sorgomol-producing cultivar of sorghum, Sudax, were shown to convert 5DS to sorgomol. A comparative transcriptome analysis identified SbCYP728B subfamily as candidate genes encoding sorgomol synthase. Recombinant SbCYP728B35 catalyzed the conversion of 5DS to sorgomol in vitro. Substrate specificity revealed that the C-8bS configuration in the C-ring of 5DS stereoisomers was essential for this reaction. The overexpression of SbCYP728B35 in Lotus japonicus hairy roots, which produce 5DS as an endogenous SL, also resulted in the conversion of 5DS to sorgomol. Furthermore, SbCYP728B35 expression was not detected in nonsorgomol-producing cultivar, Abu70, suggesting that this gene is responsible for sorgomol production in sorghum. Identification of the mechanism modifying parental 5DS of strigol-type SLs provides insights on how plants biosynthesize diverse SLs.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shunsuke Ishiwa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kasumi Shida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Noriko Motonami
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba, 292-0818, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Author for communication:
| |
Collapse
|
16
|
Istiandari P, Yasumoto S, Srisawat P, Tamura K, Chikugo A, Suzuki H, Seki H, Fukushima EO, Muranaka T. Comparative Analysis of NADPH-Cytochrome P450 Reductases From Legumes for Heterologous Production of Triterpenoids in Transgenic Saccharomyces cerevisiae. FRONTIERS IN PLANT SCIENCE 2021; 12:762546. [PMID: 34975947 PMCID: PMC8716914 DOI: 10.3389/fpls.2021.762546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/25/2021] [Indexed: 05/06/2023]
Abstract
Triterpenoids are plant specialized metabolites with various pharmacological activities. They are widely distributed in higher plants, such as legumes. Because of their low accumulation in plants, there is a need for improving triterpenoid production. Cytochrome P450 monooxygenases (CYPs) play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations, CYPs require the electrons that are transferred by NADPH-cytochrome P450 reductase (CPR). Plants possess two main CPR classes, class I and class II. CPR classes I and II have been reported to be responsible for primary and specialized (secondary) metabolism, respectively. In this study, we first analyzed the CPR expression level of three legumes species, Medicago truncatula, Lotus japonicus, and Glycyrrhiza uralensis, showing that the expression level of CPR class I was lower and more stable, while that of CPR class II was higher in almost all the samples. We then co-expressed different combinations of CYP716As and CYP72As with different CPR classes from these three legumes in transgenic yeast. We found that CYP716As worked better with CPR-I from the same species, while CYP72As worked better with any CPR-IIs. Using engineered yeast strains, CYP88D6 paired with class II GuCPR produced the highest level of 11-oxo-β-amyrin, the important precursor of high-value metabolites glycyrrhizin. This study provides insight into co-expressing genes from legumes for heterologous production of triterpenoids in yeast.
Collapse
Affiliation(s)
- Pramesti Istiandari
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Pisanee Srisawat
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Keita Tamura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Ayaka Chikugo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Plant Translational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- *Correspondence: Toshiya Muranaka,
| |
Collapse
|
17
|
Liang Y, Chen S, Wei K, Yang Z, Duan S, Du Y, Qu P, Miao J, Chen W, Dong Y. Chromosome Level Genome Assembly of Andrographis paniculata. Front Genet 2020; 11:701. [PMID: 32714378 PMCID: PMC7340177 DOI: 10.3389/fgene.2020.00701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Andrographis paniculata (Chinese name: Chuanxinlian) is an annual dicotyledonous medicinal plant widely grown in China and Southeast Asia. The dried plant has a highly acclaimed usage in the traditional Chinese medicine for its antipyretic, anti-inflammatory, and analgesic effects. In order to help delineate the biosynthetic pathways of various secondary metabolites, we report in this study a high-quality reference genome for A. paniculata. With the help of both PacBio single molecule real time sequencing and Illumina sequencing reads for error correction, the A. paniculata genome was assembled into a total size of 284 Mb with a contig N50 size of 5.14 Mb. The contigs were further assembled into 24 pseudo-chromosomes by the Hi-C technique. We also analyzed the gene families (e.g., KSL, and CYP450) whose protein products are essential for synthesizing bioactive compounds in A. paniculata. In conclusion, the high-quality A. paniculata genome assembly builds the foundation for decoding the biosynthetic pathways of various medicinal compounds.
Collapse
Affiliation(s)
- Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | | | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zijiang Yang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | | | - Yuan Du
- NowBio Biotechnology Company, Kunming, China
| | - Peng Qu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yang Dong
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| |
Collapse
|
18
|
Abstract
Two cytochrome P450 enzymes, CYP97A3 and CYP97C1, catalyze hydroxylations of the β- and ε-rings of α-carotene to produce lutein. Chirality is introduced at the C-3 atom of both rings, and the reactions are both pro-3R-stereospecific. We determined the crystal structures of CYP97A3 in substrate-free and complex forms with a nonnatural substrate and the structure of CYP97C1 in a detergent-bound form. The structures of CYP97A3 in different states show the substrate channel and the structure of CYP97C1 bound with octylthioglucoside confirms the binding site for the carotenoid substrate. Biochemical assays confirm that the ferredoxin-NADP+ reductase (FNR)-ferredoxin pair is used as the redox partner. Details of the pro-3R stereospecificity are revealed in the retinal-bound CYP97A3 structure. Further analysis indicates that the CYP97B clan bears similarity to the β-ring-specific CYP97A clan. Overall, our research describes the molecular basis for the last steps of lutein biosynthesis.
Collapse
|
19
|
Wakabayashi T, Shida K, Kitano Y, Takikawa H, Mizutani M, Sugimoto Y. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. PLANTA 2020; 251:97. [PMID: 32306106 DOI: 10.1007/s00425-020-03390-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
CYP722C from cotton, a homolog of the enzyme involved in orobanchol synthesis in cowpea and tomato, catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Strigolactones (SLs) are important phytohormones with roles in the regulation of plant growth and development. These compounds also function as signaling molecules in the rhizosphere by interacting with beneficial arbuscular mycorrhizal fungi and harmful root parasitic plants. Canonical SLs, such as 5-deoxystrigol (5DS), consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Although it is known that 5DS biosynthesis begins with carlactonoic acid (CLA) derived from β-carotene, the enzyme that catalyzes the conversion of CLA remains elusive. Recently, we identified cytochrome P450 (CYP) CYP722C as the enzyme that catalyzes direct conversion of CLA to orobanchol in cowpea and tomato (Wakabayashi et al., Sci Adv 5:eaax9067, 2019). Orobanchol has a different C-ring configuration from that of 5DS. The present study aimed to characterize the homologous gene, designated GaCYP722C, from cotton (Gossypium arboreum) to examine whether this gene is involved in 5DS biosynthesis. Expression of GaCYP722C was upregulated under phosphate starvation, which is an SL-producing condition. Recombinant GaCYP722C was expressed in a baculovirus-insect cell expression system and was found to catalyze the conversion of CLA to 5DS but not to 4-deoxyorobanchol. These results strongly suggest that GaCYP722C from cotton is a 5DS synthase and that CYP722C is the crucial CYP subfamily involved in the generation of canonical SLs, irrespective of the different C-ring configurations.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kasumi Shida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yurie Kitano
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
20
|
Roh J, Moon J, Youn JH, Seo C, Park YJ, Kim SK. Establishment of Biosynthetic Pathways To Generate Castasterone as the Biologically Active Brassinosteroid in Brachypodium distachyon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3912-3923. [PMID: 32146811 DOI: 10.1021/acs.jafc.9b07963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) analysis revealed that castasterone and its biosynthetic precursors are found in Brachypodium distachyon. In vitro conversion experiments with crude enzyme solutions prepared from B. distachyon demonstrated the presence of the following biosynthetic sequences: campesterol → campesta-4-en-3-one → campesta-3-one → campestanol → 6-deoxocathasterone → 6-deoxoteasterone → teasterone ↔ 3-dehydroteasterone ↔ typhasterol → castasterone. campesterol → 22-hydroxycampesterol → 22-hydroxy-campesta-4-en-3-one → 22-hydroxy-campesta-3-one → 6-deoxo-3-dehydroteasterone → 3-dehydroteasterone. 6-deoxoteasterone ↔ 6-deoxo-3-dehydroteasterone ↔ 6-deoxotyphasterol → 6-deoxocastasterone → castasterone. This shows that there are campestanol-dependent and campestanol-independent pathway in B. distachyon that synthesize 24-methylated brassinosteroids (BRs). Biochemical analysis of BRs biosynthetic enzymes confirmed that BdDET2, BdCYP90B1, BdCYP90A1, BdCYP90D2, and BdCYP85A1 are orthologous to BR 5α-reductase, BR C-22 hydroxylase, BR C-3 oxidase, BR C-23 hydroxylase, and BR C-6 oxidase, respectively. Brassinolide was not identified in B. distachyon. Additionally, B. distachyon crude enzyme solutions could not catalyze the conversion of castasterone to brassinolide, and the gene encoding an ortholog of CYP85A2 (a brassinolide synthase) was not found in B. distachyon. These results strongly suggest that the end product for brassinosteroid biosynthesis which controls the growth and development of B. distachyon is not brassinolide but rather castasterone.
Collapse
Affiliation(s)
- Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chaiweon Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeon Ju Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Yamamura Y, Mabuchi A. Functional characterization of NADPH-cytochrome P450 reductase and cinnamic acid 4-hydroxylase encoding genes from Scoparia dulcis L. BOTANICAL STUDIES 2020; 61:6. [PMID: 32124148 PMCID: PMC7052086 DOI: 10.1186/s40529-020-00284-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Most plant cytochrome P450 (P450) proteins need to be supplied with electrons from a redox partner, e.g. an NADPH-cytochrome P450 reductase (CPR), for the activation of oxygen molecules via heme. CPR is a flavoprotein with an N-terminal transmembrane domain, which transfers electrons from NADPH to the P450 via coenzymes flavin adenine dinucleotide and flavin mononucleotide. RESULTS In this study, a novel CPR (SdCPR) was isolated from a tropical medicinal plant Scoparia dulcis L. The deduced amino acid of SdCPR showed high homology of > 76% with CPR from higher plants and belonged to the class II CPRs of dicots. Recombinant SdCPR protein reduced cytochrome c, ferricyanide (K3Fe(CN)6), and dichlorophenolindophenol in an NADPH-dependent manner. To elucidate the P450 monooxygenase activity of SdCPR, we isolated a cinnamic acid 4-hydroxylase (SdC4H, CYP73A111) gene from S. dulcis. Biochemical characterization of SdCPR/SdC4H demonstrated that SdCPR supports the oxidation step of SdC4H. Real-time qPCR results showed that expression levels of SdCPR and SdC4H were inducible by mechanical wounding treatment and phytohormone elicitation (methyl jasmonate, salicylic acid), which were consistent with the results of promotor analyses. CONCLUSIONS Our results showed that the SdCPR and SdC4H are related to defense reactions, including the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Yoshimi Yamamura
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Ayaka Mabuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
22
|
Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. SCIENCE ADVANCES 2019; 5:eaax9067. [PMID: 32064317 PMCID: PMC6989309 DOI: 10.1126/sciadv.aax9067] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/01/2019] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived phytohormones and rhizosphere signaling molecules for arbuscular mycorrhizal fungi and root parasitic weeds. Why and how plants produce diverse SLs are unknown. Here, cytochrome P450 CYP722C is identified as a key enzyme that catalyzes the reaction of BC-ring closure leading to orobanchol, the most prevalent canonical SL. The direct conversion of carlactonoic acid to orobanchol without passing through 4-deoxyorobanchol is catalyzed by the recombinant enzyme. By knocking out the gene in tomato plants, orobanchol was undetectable in the root exudates, whereas the architecture of the knockout and wild-type plants was comparable. These findings add to our understanding of the function of the diverse SLs in plants and suggest the potential of these compounds to generate crops with greater resistance to infection by noxious root parasitic weeds.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Misaki Hamana
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayami Mori
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kotomi Ueno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yuriko Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Corresponding author.
| |
Collapse
|
23
|
Jin Z, Cong Y, Zhu S, Xing R, Zhang D, Yao X, Wan R, Wang Y, Yu F. Two classes of cytochrome P450 reductase genes and their divergent functions in Camptotheca acuminata Decne. Int J Biol Macromol 2019; 138:1098-1108. [DOI: 10.1016/j.ijbiomac.2019.07.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
|
24
|
Petersen A, Crocoll C, Halkier BA. De novo production of benzyl glucosinolate in Escherichia coli. Metab Eng 2019; 54:24-34. [DOI: 10.1016/j.ymben.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022]
|
25
|
Fujiyama K, Hino T, Kanadani M, Watanabe B, Jae Lee H, Mizutani M, Nagano S. Structural insights into a key step of brassinosteroid biosynthesis and its inhibition. NATURE PLANTS 2019; 5:589-594. [PMID: 31182839 DOI: 10.1038/s41477-019-0436-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 04/28/2019] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) are essential plant steroid hormones that regulate plant growth and development1. The most potent BR, brassinolide, is produced by addition of many oxygen atoms to campesterol by several cytochrome P450 monooxygenases (CYPs). CYP90B1 (also known as DWF4) catalyses the 22(S)-hydroxylation of campesterol and is the first and rate-limiting enzyme at the branch point of the biosynthetic pathway from sterols to BRs2. Here we show the crystal structure of Arabidopsis thaliana CYP90B1 complexed with cholesterol as a substrate. The substrate-binding conformation explains the stereoselective introduction of a hydroxy group at the 22S position, facilitating hydrogen bonding of brassinolide with the BR receptor3-5. We also determined the crystal structures of CYP90B1 complexed with uniconazole6,7 or brassinazole8, which inhibit BR biosynthesis. The two inhibitors are structurally similar; however, their binding conformations are unexpectedly different. The shape and volume of the active site pocket varies depending on which inhibitor or substrate is bound. These crystal structures of plant CYPs that function as membrane-anchored enzymes and exhibit structural plasticity can inform design of novel inhibitors targeting plant membrane-bound CYPs, including those involved in BR biosynthesis, which could then be used as plant growth regulators and agrochemicals.
Collapse
Affiliation(s)
- Keisuke Fujiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Masahiro Kanadani
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Hyoung Jae Lee
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masaharu Mizutani
- Functional Phytochemistry, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| |
Collapse
|
26
|
Eichenberger M, Hansson A, Fischer D, Dürr L, Naesby M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:4975775. [PMID: 29771352 DOI: 10.1093/femsyr/foy046] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.
Collapse
Affiliation(s)
- Michael Eichenberger
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland.,Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Anders Hansson
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - David Fischer
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Lara Dürr
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Michael Naesby
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| |
Collapse
|
27
|
Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genomics 2019; 20:116. [PMID: 30732561 PMCID: PMC6367802 DOI: 10.1186/s12864-019-5483-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cytochrome P450 (P450) is a functionally diverse and multifamily class of enzymes which catalyses vast variety of biochemical reactions. P450 genes play regulatory role in growth, development and secondary metabolite biosynthesis. Solanum lycopersicum L. (Tomato) is an economically important crop plant and model system for various studies with massive genomic data. The comprehensive identification and characterization of P450 genes was lacking. Probing tomato genome for P450 identification would provide valuable information about the functions and evolution of the P450 gene family. Results In the present study, we have identified 233 P450 genes from tomato genome along with conserved motifs. Through the phylogenetic analysis of Solanum lycopersicum P450 (SlP450) protein sequences, they were classified into two major clades and nine clans further divided into 42 families. RT-qPCR analysis of selected six candidate genes were corroborated with digital expression profile. Out of 233 SlP450 genes, 73 showed expression evidence in 19 tissues of tomato. Out of 22 intron gain/loss positions, two positions were conserved in tomato P450 genes supporting intron late theory of intron evolution in SlP450 families. The comparison between tomato and other related plant P450s families showed that CYP728, CYP733, CYP80, CYP92, CYP736 and CYP749 families have been evolved in tomato and few higher plants whereas lost from Arabidopsis. The global promoter analysis of SlP450 against all the protein coding genes, coupled with expression data, revealed statistical overrepresentation of few promoter motifs in SlP450 genes which were highly expressed in specific tissue of tomato. Hence, these identified promoter motifs can be pursued further as tissue specific promoter that are driving expression of respective SlP450. Conclusions The phylogenetic analysis and expression profiles of tomato P450 gene family offers essential genomic resource for their functional characterization. This study allows comparison of SlP450 gene family with other Solanaceae members which are also economically important and attempt to classify functionally important SlP450 genes into groups and families. This report would enable researchers working on Tomato P450 to select appropriate candidate genes from huge repertoire of P450 genes depending on their phylogenetic class, tissue specific expression and promoter prevalence. Electronic supplementary material The online version of this article (10.1186/s12864-019-5483-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Functional expression of two NADPH-cytochrome P450 reductases from Siraitia grosvenorii. Int J Biol Macromol 2018; 120:1515-1524. [DOI: 10.1016/j.ijbiomac.2018.09.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
|
29
|
Ramstein GP, Evans J, Nandety A, Saha MC, Brummer EC, Kaeppler SM, Buell CR, Casler MD. Candidate Variants for Additive and Interactive Effects on Bioenergy Traits in Switchgrass ( Panicum virgatum L.) Identified by Genome-Wide Association Analyses. THE PLANT GENOME 2018; 11:180002. [PMID: 30512032 DOI: 10.3835/plantgenome2018.01.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Switchgrass ( L.) is a promising herbaceous energy crop, but further gains in biomass yield and quality must be achieved to enable a viable bioenergy industry. Developing DNA markers can contribute to such progress, but depiction of genetic bases should be reliable, involving simple additive marker effects and also interactions with genetic backgrounds (e.g., ecotypes) or synergies with other markers. We analyzed plant height, C content, N content, and mineral concentration in a diverse panel consisting of 512 genotypes of upland and lowland ecotypes. We performed association analyses based on exome capture sequencing and tested 439,170 markers for marginal effects, 83,290 markers for marker × ecotype interactions, and up to 311,445 marker pairs for pairwise interactions. Analyses of pairwise interactions focused on subsets of marker pairs preselected on the basis of marginal marker effects, gene ontology annotation, and pairwise marker associations. Our tests identified 12 significant effects. Homology and gene expression information corroborated seven effects and indicated plausible causal pathways: flowering time and lignin synthesis for plant height; plant growth and senescence for C content and mineral concentration. Four pairwise interactions were detected, including three interactions preselected on the basis of pairwise marker correlations. Furthermore, a marker × ecotype interaction and a pairwise interaction were confirmed in an independent switchgrass panel. Our analyses identified reliable candidate variants for important bioenergy traits. Moreover, they exemplified the importance of interactive effects for depicting genetic bases and illustrated the usefulness of preselecting marker pairs for identifying pairwise marker interactions in association studies.
Collapse
|
30
|
Sagwan-Barkdoll L, Anterola AM. Taxadiene-5α-ol is a minor product of CYP725A4 when expressed in Escherichia coli. Biotechnol Appl Biochem 2018; 65:294-305. [PMID: 28876471 PMCID: PMC5839926 DOI: 10.1002/bab.1606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/02/2017] [Indexed: 11/11/2022]
Abstract
CYP725A4 is a P450 enzyme from Taxus cuspidata that catalyzes the formation of taxadiene-5α-ol (T5α-ol) from taxadiene in paclitaxel biosynthesis. Past attempts expressing CYP725A4 in heterologous hosts reported the formation of 5(12)-oxa-3(11)-cyclotaxane (OCT) and/or 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) instead of, or in addition to, T5α-ol. Here, we report that T5α-ol is produced as a minor product by Escherichia coli expressing both taxadiene synthase and CYP725A4. The major products were OCT and iso-OCT, while trace amounts of unidentified monooxygenated taxanes were also detected by gas chromatography-mass spectrometry. Since OCT and iso-OCT had not been found in nature, we tested the hypothesis that protein-protein interaction of CYP725A4 with redox partners, such as cytochrome P450 reductase (CPR) and cytochrome b5, may affect the products formed by CYP725A4, possibly favoring the formation of T5α-ol over OCT and iso-OCT. Our results show that coexpression of CYP725A4 with CPR from different organisms did not change the relative ratios of OCT, iso-OCT, and T5α-ol, while cytochrome b5 decreased overall levels of the products formed. Although unsuccessful in finding conditions that promote T5α-ol formation over other products, we used our results to clarify conflicting claims in the literature and discuss other possible approaches to produce paclitaxel via metabolic and enzyme engineering.
Collapse
Affiliation(s)
- Laxmi Sagwan-Barkdoll
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Aldwin M. Anterola
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
31
|
Lin H, Wang J, Qi M, Guo J, Rong Q, Tang J, Wu Y, Ma X, Huang L. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata. Int J Biol Macromol 2017; 102:208-217. [DOI: 10.1016/j.ijbiomac.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023]
|
32
|
Tsou CY, Matsunaga S, Okada S. Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race. J Biosci Bioeng 2017; 125:30-37. [PMID: 28818427 DOI: 10.1016/j.jbiosc.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/08/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
Abstract
The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a km for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 μM, and a kcat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 μmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae.
Collapse
Affiliation(s)
- Chung-Yau Tsou
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
33
|
Insights into the functional properties of the marneral oxidase CYP71A16 from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:2-10. [PMID: 28734978 DOI: 10.1016/j.bbapap.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The Arabidopsis thaliana gene encoding CYP71A16 is part of the gene cluster for the biosynthesis and modification of the triterpenoid marneral. Previous investigations of A. thaliana have revealed that CYP71A16 catalyzes marneral oxidation, while it also can accept marnerol as substrate. The aim of the present study was to investigate functional properties of CYP71A16 in vitro. For this purpose, heterologous expression of a N-terminally modified version of CYP71A16 was established in Escherichia coli, which yielded up to 50mgL-1 recombinant enzyme. The enzyme was purified and activity was reconstituted in vitro with different redox partners. A heterologous bacterial redox partner system consisting of the flavodoxin YkuN from Bacillus subtilis and the flavodoxin reductase Fpr from E. coli clearly outperformed the cytochrome P450 reductase ATR2 from A. thaliana in supporting the CYP71A16-mediated hydroxylation of marnerol. Substrate binding experiments with CYP71A16 revealed a dissociation constant KD of 225μM for marnerol. CYP71A16 catalyzed the hydroxylation of marnerol to 23-hydroxymarnerol with a KM of 142μM and a kcat of 3.9min-1. Furthermore, GC/MS analysis revealed an as of yet unidentified overoxidation product of this in vitro reaction. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
|
34
|
Wu J, Niu Y, Bakur A, Li H, Chen Q. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae. Molecules 2017; 22:molecules22071075. [PMID: 28653998 PMCID: PMC6152010 DOI: 10.3390/molecules22071075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022] Open
Abstract
Betulinic acid is a product of plant secondary metabolism which has shown various bioactivities. Several CYP716A subfamily genes were recently characterized encoding multifunctional oxidases capable of C-28 oxidation. CYP716A12 was identified as betulin C-28 oxidase, capable of modifying betulin. This study aimed to induce the transformation of betulin to betulinic acid by co-expressing enzymes CYP716A12 from Medicago truncatula and ATR1 from Arabidopsis thaliana in Saccharomyces cerevisiae. The microsome protein extracted from the transgenic yeast successfully catalyzed the transformation of betulin to betulinic acid. We also characterized the optimization of cell fragmentation, protein extraction method, and the conversion conditions. Response surface methodology was implemented, and the optimal yield of betulinic acid reached 18.70%. After optimization, the yield and the conversion rate of betulin were increased by 83.97% and 136.39%, respectively. These results may present insights and strategies for the sustainable production of betulinic acid in multifarious transgenic microbes.
Collapse
Affiliation(s)
- Jianan Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Yongwu Niu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Abdelmoneim Bakur
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Hao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Misra RC, Sharma S, Garg A, Chanotiya CS, Ghosh S. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. THE NEW PHYTOLOGIST 2017; 214:706-720. [PMID: 28967669 DOI: 10.1111/nph.14412] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 05/23/2023]
Abstract
The medicinal plant sweet basil (Ocimum basilicum) accumulates bioactive ursane- and oleanane-type pentacyclic triterpenes (PCTs), ursolic acid and oleanolic acid, respectively, in a spatio-temporal manner; however, the biosynthetic enzymes and their contributions towards PCT biosynthesis remain to be elucidated. Two CYP716A subfamily cytochrome P450 monooxygenases (CYP716A252 and CYP716A253) are identified from a methyl jasmonate-responsive expression sequence tag collection and functionally characterized, employing yeast (Saccharomyces cerevisiae) expression platform and adapting virus-induced gene silencing (VIGS) in sweet basil. CYP716A252 and CYP716A253 catalyzed sequential three-step oxidation at the C-28 position of α-amyrin and β-amyrin to produce ursolic acid and oleanolic acid, respectively. Although CYP716A253 was more efficient than CYP716A252 for amyrin C-28 oxidation in yeast, VIGS revealed essential roles for both of these CYP716As in constitutive biosynthesis of ursolic acid and oleanolic acid in sweet basil leaves. However, CYP716A253 played a major role in elicitor-induced biosynthesis of ursolic acid and oleanolic acid. Overall, the results suggest similar as well as distinct roles of CYP716A252 and CYP716A253 for the spatio-temporal biosynthesis of PCTs. CYP716A252 and CYP716A253 might be useful for the alternative and sustainable production of PCTs in microbial host, besides increasing plant metabolite content through genetic modification.
Collapse
Affiliation(s)
- Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Shubha Sharma
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Analytical Chemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
36
|
Abstract
Purpose of Review We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from Sorghum bicolor as a case study. Recent Findings Sessile plants control their metabolism to prioritize their resources between growth and development, or defense. This requires fine-tuned complex dynamic regulation of the metabolic networks involved. Within the recent years, numerous studies point to the formation of dynamic metabolons playing a major role in controlling the metabolic fluxes within such networks. Summary We propose that P450s and their partners interact and associate dynamically with POR, which acts as a charging station possibly in concert with Cytb5. Solvent environment, lipid composition, and non-catalytic proteins guide metabolon formation and thereby activity, which have important implications for synthetic biology approaches aiming to produce high-value specialized metabolites in heterologous hosts.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-1799 Copenhagen V, Denmark
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity,” Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen Denmark
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608 USA
| |
Collapse
|
37
|
Niu G, Zhao S, Wang L, Dong W, Liu L, He Y. Structure of the
Arabidopsis thaliana
NADPH
‐cytochrome P450 reductase 2 (ATR2) provides insight into its function. FEBS J 2017; 284:754-765. [DOI: 10.1111/febs.14017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Guoqi Niu
- College of Life Sciences Capital Normal University Beijing China
| | - Shun Zhao
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lei Wang
- College of Life Sciences Capital Normal University Beijing China
| | - Wei Dong
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lin Liu
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yikun He
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
38
|
Su P, Guan H, Zhang Y, Wang X, Gao L, Zhao Y, Hu T, Zhou J, Ma B, Tu L, Tong Y, Huang L, Gao W. Probing the Single Key Amino Acid Responsible for the Novel Catalytic Function of ent-Kaurene Oxidase Supported by NADPH-Cytochrome P450 Reductases in Tripterygium wilfordii. FRONTIERS IN PLANT SCIENCE 2017; 8:1756. [PMID: 29081786 PMCID: PMC5645531 DOI: 10.3389/fpls.2017.01756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 05/07/2023]
Abstract
Tripterygium wilfordii produces not only ent-kaurene, which is an intermediate of gibberellin (GA) biosynthesis in flowering plants, but also 16α-hydroxy-ent-kaurane, whose physiological role has not been characterized. The two compounds are biosynthesized from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) by diterpene synthases, which have been discovered and functionally characterized in T. wilfordii. Here, we described the functional characterization of four cytochrome P450 reductases (TwCPR) and one ent-kaurene oxidase (TwKO). Four TwCPRs were found to have relatively ubiquitous expression in T. wilfordii root, stem, leaf, and flower tissues. Co-expression of both a TwCPR and TwKO in yeast showed that TwCPR3 has a slightly better activity for providing the electrons required for these reactions, indicating that TwCPR3 is more suitable for use in the functional analysis of other cytochrome P450 monooxygenases. TwKO catalyzed the three-step oxidation of the C4α methyl of the tetracyclic diterpene intermediate ent-kaurene to form ent-kaurenoic acid as an early step in GA biosynthesis. Notably, TwKO could also convert 16α-hydroxy-ent-kaurane to 16α-hydroxy-ent-kaurenoic acid, indicating an important function of 16α-hydroxy-ent-kaurane in the anti-HIV principle tripterifordin biosynthetic pathway in planta. Homology modeling and molecular docking were used to investigate the unknown crucial active amino acid residue involved in the catalytic reaction of TwKO, and one key residue (Leu387) contributed to the formation of 16α-hydroxy-ent-kaurenoic acid, most likely by forming hydrogen bonds with the hydroxyl group (-OH) of 16α-hydroxy-ent-kaurane, which laid the basis for further investigation of the multifunctional nature of KO catalysis. Also, our findings paved the way for the complete biosynthesis of the anti-HIV principle tripterifordin.
Collapse
Affiliation(s)
- Ping Su
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongyu Guan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yifeng Zhang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Linhui Gao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuru Tong
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Luqi Huang, Wei Gao,
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- *Correspondence: Luqi Huang, Wei Gao,
| |
Collapse
|
39
|
Liu F, Yang H, Wang L, Yu B. Biosynthesis of the High-Value Plant Secondary Product Benzyl Isothiocyanate via Functional Expression of Multiple Heterologous Enzymes in Escherichia coli. ACS Synth Biol 2016; 5:1557-1565. [PMID: 27389525 DOI: 10.1021/acssynbio.6b00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plants produce a wide variety of secondary metabolites that are highly nutraceutically and pharmaceutically important. Isothiocyanates, which are found abundantly in cruciferous vegetables, are believed to reduce the risk of several types of cancers and cardiovascular diseases. The challenges arising from the structural diversity and complex chemistry of these compounds have spurred great interest in producing them in large amounts in microbes. In this study, we aimed to synthesize benzyl isothiocyanate in Escherichia coli via gene mining, pathway engineering, and protein modification. Two chimeric cytochrome P450 enzymes were constructed and functionally expressed in E. coli. The E. coli cystathionine β-lyase was used to replace the plant-derived C-S lyase; its active form cannot be expressed in E. coli. Suitable desulfoglucosinolate:PAPS sulfotransferase from Arabidopsis thaliana ecotype Col-0 and myrosinase from Brevicoryne brassicae were successfully mined from the database. Biosynthesis of benzyl isothiocyanate by the combined expression of the optimized enzymes in vitro was confirmed by gas chromatography-mass spectrometry analysis. This study provided a proof of concept for the production of benzyl isothiocyanate by microbially produced enzymes and, importantly, laid the groundwork for further metabolic engineering of microbial cells for the production of isothiocyanates.
Collapse
Affiliation(s)
- Feixia Liu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Yang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Wang
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS
Key Laboratory of Microbial Physiological and Metabolic Engineering,
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Scheler U, Brandt W, Porzel A, Rothe K, Manzano D, Božić D, Papaefthimiou D, Balcke GU, Henning A, Lohse S, Marillonnet S, Kanellis AK, Ferrer A, Tissier A. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nat Commun 2016; 7:12942. [PMID: 27703160 PMCID: PMC5059481 DOI: 10.1038/ncomms12942] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/11/2016] [Indexed: 12/03/2022] Open
Abstract
Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities. Diterpenes are plant products with high antioxidant properties and potential application as food additives and therapeutics. Here, the authors describe the complete biosynthetic pathway of carnosic acid and reconstruct it in yeast, opening the way to metabolic engineering of phenolic diterpenes.
Collapse
Affiliation(s)
- Ulschan Scheler
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Kathleen Rothe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - David Manzano
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics, Campus UAB, 08193 Bellaterra, Spain.,Faculty of Pharmacy, Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Dragana Božić
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Anja Henning
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Swanhild Lohse
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Albert Ferrer
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics, Campus UAB, 08193 Bellaterra, Spain.,Faculty of Pharmacy, Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| |
Collapse
|
41
|
Umemoto N, Nakayasu M, Ohyama K, Yotsu-Yamashita M, Mizutani M, Seki H, Saito K, Muranaka T. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway. PLANT PHYSIOLOGY 2016; 171:2458-67. [PMID: 27307258 PMCID: PMC4972264 DOI: 10.1104/pp.16.00137] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/11/2016] [Indexed: 05/19/2023]
Abstract
α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Masaru Nakayasu
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Kiyoshi Ohyama
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Mari Yotsu-Yamashita
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Masaharu Mizutani
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Hikaru Seki
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Kazuki Saito
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| | - Toshiya Muranaka
- Central Laboratories for Key Technologies, Kirin Co., Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan (N.U.); RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (N.U., K.O., K.S.); Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan (M.N., M.M.); Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan (K.O.); Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan (M.Y.-Y.); Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan (H.S., T.M.); and Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan (K.S.)
| |
Collapse
|
42
|
Bavishi K, Laursen T, Martinez KL, Møller BL, Della Pia EA. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Sci Rep 2016; 6:29459. [PMID: 27386958 PMCID: PMC4937447 DOI: 10.1038/srep29459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/18/2016] [Indexed: 11/15/2022] Open
Abstract
Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, "nanodiscs", and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and -300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s(-1). POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products.
Collapse
Affiliation(s)
- Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | - Karen L. Martinez
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Bio-Nanotechnology Laboratory, Department of Chemistry & Nano-Science Center, Universitetparken 5, DK-2100, University of Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
| | - Eduardo Antonio Della Pia
- Bio-Nanotechnology Laboratory, Department of Chemistry & Nano-Science Center, Universitetparken 5, DK-2100, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis. Nat Commun 2016; 7:11472. [PMID: 27145837 PMCID: PMC4858744 DOI: 10.1038/ncomms11472] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. Xanthones are pharmacologically and biosynthetically intriguing compounds. Here, the authors identify two cytochrome P450 enzymes, which hydroxylate and cyclize the benzophenone precursor to either 1,3,7- or 1,3,5-trihydroxyxanthones, and pinpoint residues that determine the alternative regioselectivities.
Collapse
|
44
|
Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing. Mol Phylogenet Evol 2016; 98:21-8. [PMID: 26854662 DOI: 10.1016/j.ympev.2016.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/19/2015] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to a huge number of different cytochromes P450s (from 50 to several hundred within one plant). Within the eudicotyledons, PORs can be divided into two major clades, POR 1 and POR 2. Based on our own sequencing analysis and publicly available data, we have identified 45 PORs from the angiosperm order Apiales. These were subjected to a phylogenetic analysis along with 237 other publicly available (NCBI and oneKP) POR sequences found within the clade Asterids. Here, we show that the order Apiales only harbor members of the POR 2 clade, which are further divided into two distinct subclades. This is in contrast to most other eudicotyledon orders that have both POR 1 and POR 2. This suggests that through gene duplications and one gene deletion, Apiales only contain members of the POR 2 clade. Three POR 2 isoforms from Thapsia garganica L., Apiaceae, were all full-length in an Illumina root transcriptome dataset (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes.
Collapse
|
45
|
Mao H, Liu J, Ren F, Peters RJ, Wang Q. Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis. PHYTOCHEMISTRY 2016; 121:4-10. [PMID: 26471326 DOI: 10.1016/j.phytochem.2015.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/26/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Maize (Zea mays) produces zealexins as phytoalexins, with the inducible production of these antibiotics providing biochemical protection against fungal infection. However, the biosynthesis of these sesquiterpenoids has remained unclear. In particular, it is unclear how the olefinic precursor, (S)-β-macrocarpene produced by the characterized maize sesquiterpene synthases TPS6/11, is further elaborated to form the bioactive zealexins. The first step is likely to be conversion of carbon-15 (C15) from a methyl group to a carboxylic acid by a cytochrome P450 mono-oxygenase (CYP). In this study, CYP71Z18, whose transcription is strongly induced by fungal infection, was found to catalyze oxidation of C15 in (S)-β-macrocarpene, forming zealexin A1. The inducible transcription of CYP71Z18 matches that observed for TPS6/11 and the accumulation of zealexins, which is consistent with a role for CYP71Z18 in sesquiterpenoid phytoalexin production. This completes identification of zealexin A1 biosynthesis, and represents the initial CYP identified for the production of maize terpenoid phytoalexins.
Collapse
Affiliation(s)
- Hongjie Mao
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Fei Ren
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - Qiang Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
46
|
In Vitro Biochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2015; 59:7771-8. [PMID: 26459890 DOI: 10.1128/aac.01806-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 01/03/2023] Open
Abstract
The incidence of triazole-resistant Aspergillus infections is increasing worldwide, often mediated through mutations in the CYP51A amino acid sequence. New classes of azole-based drugs are required to combat the increasing resistance to existing triazole therapeutics. In this study, a CYP51 reconstitution assay is described consisting of eburicol, purified recombinant Aspergillus fumigatus CPR1 (AfCPR1), and Escherichia coli membrane suspensions containing recombinant A. fumigatus CYP51 proteins, allowing in vitro screening of azole antifungals. Azole-CYP51 studies determining the 50% inhibitory concentration (IC50) showed that A. fumigatus CYP51B (Af51B IC50, 0.50 μM) was 34-fold more susceptible to inhibition by fluconazole than A. fumigatus CYP51A (Af51A IC50, 17 μM) and that Af51A and Af51B were equally susceptible to inhibition by voriconazole, itraconazole, and posaconazole (IC50s of 0.16 to 0.38 μM). Af51A-G54W and Af51A-M220K enzymes were 11- and 15-fold less susceptible to inhibition by itraconazole and 30- and 8-fold less susceptible to inhibition by posaconazole than wild-type Af51A, confirming the azole-resistant phenotype of these two Af51A mutations. Susceptibility to voriconazole of Af51A-G54W and Af51A-M220K was only marginally lower than that of wild-type Af51A. Susceptibility of Af51A-L98H to inhibition by voriconazole, itraconazole, and posaconazole was only marginally lower (less than 2-fold) than that of wild-type Af51A. However, Af51A-L98H retained 5 to 8% residual activity in the presence of 32 μM triazole, which could confer azole resistance in A. fumigatus strains that harbor the Af51A-L98H mutation. The AfCPR1/Af51 assay system demonstrated the biochemical basis for the increased azole resistance of A. fumigatus strains harboring G54W, L98H, and M220K Af51A point mutations.
Collapse
|
47
|
Sintupachee S, Promden W, Ngamrojanavanich N, Sitthithaworn W, De-Eknamkul W. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba. PHYTOCHEMISTRY 2015; 118:204-215. [PMID: 26300313 DOI: 10.1016/j.phytochem.2015.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
While attempting to isolate the enzyme geranylgeraniol 18-hydroxylase, which is involved in plaunotol biosynthesis in Croton stellatopilosus (Cs), the cDNAs for a cytochrome P450 monooxygenase(designated as CYP76F45) and an NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from the leaf. The CYP76F45 and CsCPR I genes have open reading frames (ORFs) encoding 507- and 711-amino acid proteins with predicted relative molecular weights of 56.7 and 79.0 kDa,respectively. Amino acid sequence comparison showed that both CYP76F45 (63–73%) and CsCPR I (79–83%) share relatively high sequence identities with homologous proteins in other plant species.Phylogenetic tree analysis confirmed that CYP76F45 belongs to the CYP76 family and that CsCPR I belongs to Class I of dicotyledonous CPRs, with both being closely related to Ricinus communis genes. Functional characterization of both enzymes, each expressed separately in Escherichia coli as recombinant proteins,showed that only simultaneous incubation of the membrane bound proteins with the substrate geraniol (GOH) and the coenzyme NADPH could form 8-hydroxygeraniol. The enzyme mixture could also utilize acyclic sesquiterpene farnesol (FOH) with a comparable substrate preference ratio (GOH:FOH) of 54:46. The levelsof the CYP76F45 and CsCPR I transcripts in the shoots, leaves and twigs of C. stellatopilosus were correlated with the levels of a major monoterpenoid indole alkaloid, identified tentatively as 19-Evallesamine,that accumulated in these plant parts. These results suggested that CYP76F45 and CPR I function as the enzyme geraniol-8-hydroxylase (G8H), which is likely to be involved in the biosynthesis of the indole alkaloid in C. stellatopilosus [corrected].
Collapse
Affiliation(s)
- Siriluk Sintupachee
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit for Natural Product Biotechnology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worrawat Promden
- Research Unit for Natural Product Biotechnology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Division of General Science, Faculty of Education, Buriram Rajabhat University, Buriram 31000, Thailand
| | | | - Worapan Sitthithaworn
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakonnayok 26120, Thailand
| | - Wanchai De-Eknamkul
- Research Unit for Natural Product Biotechnology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
48
|
Vos T, de la Torre Cortés P, van Gulik WM, Pronk JT, Daran-Lapujade P. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Microb Cell Fact 2015; 14:133. [PMID: 26369953 PMCID: PMC4570684 DOI: 10.1186/s12934-015-0321-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023] Open
Abstract
Introduction Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic, sugar-limited fed-batch reactors which, due to constraints in oxygen transfer and cooling capacities, have to be operated at low specific growth rates. Because intracellular levels of key metabolites are growth-rate dependent, slow growth can significantly affect biomass-specific productivity. Using an engineered Saccharomyces cerevisiae strain expressing a heterologous pathway for resveratrol production as a model energy-requiring product, the impact of specific growth rate on yeast physiology and productivity was investigated in aerobic, glucose-limited chemostat cultures. Results Stoichiometric analysis revealed that de novo resveratrol production from glucose requires 13 moles of ATP per mole of produced resveratrol. The biomass-specific production rate of resveratrol showed a strong positive correlation with the specific growth rate. At low growth rates a substantial fraction of the carbon source was invested in cellular maintenance-energy requirements (e.g. 27 % at 0.03 h−1). This distribution of resources was unaffected by resveratrol production. Formation of the by-products coumaric, phloretic and cinnamic acid had no detectable effect on maintenance energy requirement and yeast physiology in chemostat. Expression of the heterologous pathway led to marked differences in transcript levels in the resveratrol-producing strain, including increased expression levels of genes involved in pathways for precursor supply (e.g. ARO7 and ARO9 involved in phenylalanine biosynthesis). The observed strong differential expression of many glucose-responsive genes in the resveratrol producer as compared to a congenic reference strain could be explained from higher residual glucose concentrations and higher relative growth rates in cultures of the resveratrol producer. Conclusions De novo resveratrol production by engineered S. cerevisiae is an energy demanding process. Resveratrol production by an engineered strain exhibited a strong correlation with specific growth rate. Since industrial production in fed-batch reactors typically involves low specific growth rates, this study emphasizes the need for uncoupling growth and product formation via energy-requiring pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0321-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Vos
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | - Pilar de la Torre Cortés
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | - Walter M van Gulik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| |
Collapse
|
49
|
Kitaoka N, Wu Y, Xu M, Peters RJ. Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis. Appl Microbiol Biotechnol 2015; 99:7549-58. [PMID: 25758958 DOI: 10.1007/s00253-015-6496-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The oxygenation reactions catalyzed by cytochromes P450 (CYPs) play critical roles in plant natural products biosynthesis. At the same time, CYPs are one of most challenging enzymes to functionally characterize due to the difficulty of recombinantly expressing these membrane-associated monooxygenases. In the course of investigating rice diterpenoid biosynthesis, we have developed a synthetic biology approach for functional expression of relevant CYPs in Escherichia coli. In certain cases, activity was observed for only one of two closely related paralogs although it seems clear that related reactions are required for production of the known diterpenoids. Here, we report that optimization of the recombinant expression system enabled characterization of not only these previously recalcitrant CYPs, but also discovery of additional activity relevant to rice diterpenoid biosynthesis. Of particular interest, CYP701A8 was found to catalyze 3β-hydroxylation of syn-pimaradiene, which is presumably relevant to momilactone biosynthesis, while CYP71Z6 & 7 were found to catalyze multiple reactions, with CYP71Z6 catalyzing the production of 2α,3α-dihydroxy-ent-isokaurene via 2α-hydroxy-ent-isokaurene, and CYP71Z7 catalyzing the production of 3α-hydroxy-ent-cassadien-2-one via 2α-hydroxy-ent-cassadiene and ent-cassadien-2-one, which may be relevant to oryzadione and phytocassane biosynthesis, respectively.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | |
Collapse
|
50
|
Chen X, Zhang Y. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b5 gene from Plutella xylostella: Possible involvement in resistance to beta-cypermethrin. Gene 2015; 558:208-14. [DOI: 10.1016/j.gene.2014.12.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/20/2014] [Accepted: 12/25/2014] [Indexed: 01/27/2023]
|