1
|
Kumar K, Durgesh K, Anjoy P, Srivastava H, Tribhuvan KU, Sevanthi AM, Singh A, Prabha R, Sharma S, Joshi R, Jain PK, Singh NK, Gaikwad K. Transcriptional Reprogramming and Allelic Variation in Pleiotropic QTL Regulates Days to Flowering and Growth Habit in Pigeonpea. PLANT, CELL & ENVIRONMENT 2025; 48:2783-2803. [PMID: 39704095 DOI: 10.1111/pce.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
The present study investigated the linkage between days to flowering (DTF) and growth habit (GH) in pigeonpea using QTL mapping, QTL-seq, and GWAS approaches. The linkage map developed here is the largest to date, spanning 1825.56 cM with 7987 SNP markers. In total, eight and four QTLs were mapped for DTF and GH, respectively, harbouring 78 pigeonpea orthologs of Arabidopsis flowering time genes. Corroboratively, QTL-seq analysis identified a single linked QTL for both traits on chromosome 3, possessing 15 genes bearing genic variants. Together, these 91 genes were clustered primarily into autonomous, photoperiod, and epigenetic pathways. Further, we identified 39 associations for DTF and 111 associations for GH through GWAS in the QTL regions. Of these, nine associations were consistent and constituted nine haplotypes (five late, two early, one each for super-early and medium duration). The involvement of multiple genes explained the range of allelic effects and the presence of multiple LD blocks. Further, the linked QTL on chromosome 3 was fine-mapped to the 0.24-Mb region with an LOD score of 8.56, explaining 36.47% of the phenotypic variance. We identified a 10-bp deletion in the first exon of TFL1 gene of the ICPL 20338 variety, which may affect its interaction with the Apetala1 and Leafy genes, resulting in determinate GH and early flowering. Further, the genic marker developed for the deletion in the TFL1 gene could be utilized as a foreground marker in marker-assisted breeding programmes to develop early-flowering pigeonpea varieties.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kumar Durgesh
- ICAR-Indian Agricultural Research Institute, Division of Genetics, New Delhi, India
| | - Priyanka Anjoy
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | | | | | | | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Ratna Prabha
- Agricultural Knowledge Management Unit, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rekha Joshi
- ICAR-Indian Agricultural Research Institute, Division of Genetics, New Delhi, India
| | | | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Cai J, Jia R, Jiang Y, Fu J, Dong T, Deng J, Zhang L. Functional verification of the JmLFY gene associated with the flowering of Juglans mandshurica Maxim. PeerJ 2023; 11:e14938. [PMID: 36908820 PMCID: PMC10000305 DOI: 10.7717/peerj.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In this study, a pBI121-JmLFY plant expression vector was constructed on the basis of obtaining the full-length sequence of the JmLFY gene from Juglans mandshurica, which was then used for genetic transformation via Agrobacterium inflorescence infection using wild-type Arabidopsis thaliana and lfy mutants as transgenic receptors. Seeds of positive A. thaliana plants with high expression of JmLFY were collected and sowed till the homozygous T3 regeneration plants were obtained. Then the expression of flowering-related genes (AtAP1, AtSOC1, AtFT and AtPI) in T3 generation plants were analyzed and the results showed that JmLFY gene overexpression promoted the expression of flowering-related genes and resulted in earlier flowering in A. thaliana. The A. thaliana plants of JmLFY-transformed and JmLFY-transformed lfy mutants appeared shorter leaves, longer fruit pods, and fewer cauline leaves than those of wild-type and the lfy mutants plants, respectively. In addition, some secondary branches in the transgenic plants converted into inflorescences, which indicated that the overexpression of JmLFY promoted the transition from vegetative growth to reproductive growth, and compensate the phenotypic defects of lfy mutant partially. The results provides a scientific reference for formulating reasonable genetic improvement strategies such as shortening childhood, improving yield and quality, and breeding desirable varieties, which have important guiding significance in production.
Collapse
Affiliation(s)
- Jiayou Cai
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Ruoxue Jia
- Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ying Jiang
- Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jingqi Fu
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Tianyi Dong
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Jifeng Deng
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| | - Lijie Zhang
- Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Exploring the Molecular Mechanism of Sepal Formation in the Decorative Flowers of Hydrangea macrophylla 'Endless Summer' Based on the ABCDE Model. Int J Mol Sci 2022; 23:ijms232214112. [PMID: 36430589 PMCID: PMC9694991 DOI: 10.3390/ijms232214112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
With its large inflorescences and colorful flowers, Hydrangea macrophylla has been one of the most popular ornamental plants in recent years. However, the formation mechanism of its major ornamental part, the decorative floret sepals, is still not clear. In this study, we compared the transcriptome data of H. macrophylla 'Endless Summer' from the nutritional stage (BS1) to the blooming stage (BS5) and annotated them into the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. The 347 identified differentially expressed genes (DEGs) associated with flower development were subjected to a trend analysis and a protein-protein interaction analysis. The combined analysis of the two yielded 60 DEGs, including four MADS-box transcription factors (HmSVP-1, HmSOC1, HmAP1-2, and HmAGL24-3) and genes with strong connectivity (HmLFY and HmUFO). In addition, 17 transcription factors related to the ABCDE model were screened, and key candidate genes related to the development of decorative floret sepals in H. macrophylla were identified by phylogenetic and expression pattern analysis, including HmAP1-1, HmAP1-2, HmAP1-3, HmAP2-3, HmAP2-4, and HmAP2-5. On this basis, a gene regulatory network model of decorative sepal development was also postulated. Our results provide a theoretical basis for the study of the formation mechanism of decorative floret sepals and suggest a new direction for the molecular breeding of H. macrophylla.
Collapse
|
4
|
Yang J, Bertolini E, Braud M, Preciado J, Chepote A, Jiang H, Eveland AL. The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis. PLANT PHYSIOLOGY 2021; 187:1202-1220. [PMID: 33871654 PMCID: PMC8566296 DOI: 10.1093/plphys/kiab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture, yet little is known about the intersecting pathways and how they are rewired during development. Here, we show that a single mutation in a gene encoding an AP1/FUL-like MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis. Previous reports of AP1/FUL-like genes in cereals have revealed extensive functional redundancy, and in panicoid grasses, no associated inflorescence phenotypes have been described. In S. viridis, perturbation of SvFul2, both through chemical mutagenesis and gene editing, converted a normally determinate inflorescence habit to an indeterminate one, and also repressed determinacy in axillary branch and floral meristems. Our analysis of gene networks connected to disruption of SvFul2 identified regulatory hubs at the intersection of floral transition and inflorescence determinacy, providing insights into the optimization of cereal crop architecture.
Collapse
Affiliation(s)
- Jiani Yang
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Edoardo Bertolini
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Max Braud
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Jesus Preciado
- National Science Foundation Research Experiences in Plant Science at the Danforth Center, Saint Louis, Missouri, 63132, USA
| | - Adriana Chepote
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Hui Jiang
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| | - Andrea L Eveland
- Donald Danforth Plant Science Center, Saint Louis, Missouri, 63132, USA
| |
Collapse
|
5
|
Li D, Liu Q, Schnable PS. TWAS results are complementary to and less affected by linkage disequilibrium than GWAS. PLANT PHYSIOLOGY 2021; 186:1800-1811. [PMID: 33823025 PMCID: PMC8331151 DOI: 10.1093/plphys/kiab161] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
A genome-wide association study (GWAS) is used to identify genetic markers associated with phenotypic variation. In contrast, a transcriptome-wide association study (TWAS) detects associations between gene expression levels and phenotypic variation. It has previously been shown that in the cross-pollinated species, maize (Zea mays), GWAS, and TWAS identify complementary sets of trait-associated genes, many of which exhibit characteristics of true positives. Here, we extend this conclusion to the self-pollinated species, Arabidopsis thaliana and soybean (Glycine max). Linkage disequilibrium (LD) can result in the identification, via GWAS, of false-positive associations. In all three analyzed plant species, most trait-associated genes identified via TWAS are well separated physically from other candidate genes. Hence, TWAS is less affected by LD than is GWAS, demonstrating that TWAS is particularly well suited for association studies in genomes with slow rates of LD decay, such as soybean. TWAS is reasonably robust to the plant organs/tissues used to determine expression levels. In summary, this study confirms that TWAS is a promising approach for accurate gene-level association mapping in plants that is complementary to GWAS, and established that TWAS can exhibit substantial advantages relative to GWAS in species with slow rates of LD decay.
Collapse
Affiliation(s)
- Delin Li
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- Data Biotech (Beijing) Co. Ltd., Beijing, 100085, China
- National Key Facility for Gene Resources and Genetic Improvement, Key Lab of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qiang Liu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011-3650, USA
| | - Patrick S Schnable
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- Department of Agronomy, Iowa State University, Ames, Iowa 50011-3650, USA
| |
Collapse
|
6
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
8
|
The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. Sci Rep 2020; 10:21404. [PMID: 33293614 PMCID: PMC7722890 DOI: 10.1038/s41598-020-78417-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Shortening the juvenile stage in citrus and inducing early flowering has been the focus of several citrus genetic improvement programs. FLOWERING LOCUS T (FT) is a small phloem-translocated protein that regulates precocious flowering. In this study, two populations of transgenic Carrizo citrange rootstocks expressing either Citrus clementina FT1 or FT3 genes under the control of the Arabidopsis thaliana phloem specific SUCROSE SYNTHASE 2 (AtSUC2) promoter were developed. The transgenic plants were morphologically similar to the non-transgenic controls (non-transgenic Carrizo citrange), however, only AtSUC2-CcFT3 was capable of inducing precocious flowers. The transgenic lines produced flowers 16 months after transformation and flower buds appeared 30-40 days on juvenile immature scions grafted onto transgenic rootstock. Gene expression analysis revealed that the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and APETALA1 (AP1) were enhanced in the transgenics. Transcriptome profiling of a selected transgenic line showed the induction of genes in different groups including: genes from the flowering induction pathway, APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family genes, and jasmonic acid (JA) pathway genes. Altogether, our results suggested that ectopic expression of CcFT3 in phloem tissues of Carrizo citrange triggered the expression of several genes to mediate early flowering.
Collapse
|
9
|
Chowdhury Z, Mohanty D, Giri MK, Venables BJ, Chaturvedi R, Chao A, Petros RA, Shah J. Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4903-4913. [PMID: 32392578 DOI: 10.1093/jxb/eraa232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Abietane diterpenoids are tricyclic diterpenes whose biological functions in angiosperms are largely unknown. Here, we show that dehydroabietinal (DA) fosters transition from the vegetative phase to reproductive development in Arabidopsis thaliana by promoting flowering time. DA's promotion of flowering time was mediated through up-regulation of the autonomous pathway genes FLOWERING LOCUS D (FLD), RELATIVE OF EARLY FLOWERING 6 (REF6), and FVE, which repress expression of FLOWERING LOCUS C (FLC), a negative regulator of the key floral integrator FLOWERING LOCUS T (FT). Our results further indicate that FLD, REF6, and FVE are also required for systemic acquired resistance (SAR), an inducible defense mechanism that is also activated by DA. However, unlike flowering time, FT was not required for DA-induced SAR. Conversely, salicylic acid, which is essential for the manifestation of SAR, was not required for the DA-promoted flowering time. Thus, although the autonomous pathway genes FLD, REF6, and FVE are involved in SAR and flowering time, these biological processes are not interdependent. We suggest that SAR and flowering time signaling pathways bifurcate at a step downstream of FLD, REF6, and FVE, with an FLC-dependent arm controlling flowering time, and an FLC-independent pathway controlling SAR.
Collapse
Affiliation(s)
- Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Devasantosh Mohanty
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Mrunmay K Giri
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Aaron Chao
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Robby A Petros
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
10
|
The Striking Flower-in-Flower Phenotype of Arabidopsis thaliana Nossen (No-0) is Caused by a Novel LEAFY Allele. PLANTS 2019; 8:plants8120599. [PMID: 31847079 PMCID: PMC6963406 DOI: 10.3390/plants8120599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023]
Abstract
The transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly, cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel lfy allele and results in a cysteine-to-tyrosine exchange in the α1-helix of LEAFY’s DNA-binding domain. This exchange abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected. To explain the strong fif phenotype against these molecular findings, several hypotheses are discussed.
Collapse
|
11
|
Shah S, Karunarathna NL, Jung C, Emrani N. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC PLANT BIOLOGY 2018; 18:380. [PMID: 30594150 PMCID: PMC6310979 DOI: 10.1186/s12870-018-1606-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Increasing the productivity of rapeseed as one of the widely cultivated oil crops in the world is of upmost importance. As flowering time and plant architecture play a key role in the regulation of rapeseed yield, understanding the genetic mechanism underlying these traits can boost the rapeseed breeding. Meristem identity genes are known to have pleiotropic effects on plant architecture and seed yield in various crops. To understand the function of one of the meristem identity genes, APETALA1 (AP1) in rapeseed, we performed phenotypic analysis of TILLING mutants under greenhouse conditions. Three stop codon mutant families carrying a mutation in Bna.AP1.A02 paralog were analyzed for different plant architecture and seed yield-related traits. RESULTS It was evident that stop codon mutation in the K domain of Bna.AP1.A02 paralog caused significant changes in flower morphology as well as plant architecture related traits like plant height, branch height, and branch number. Furthermore, yield-related traits like seed yield per plant and number of seeds per plants were also significantly altered in the same mutant family. Apart from phenotypic changes, stop codon mutation in K domain of Bna.AP1.A02 paralog also altered the expression of putative downstream target genes like Bna.TFL1 and Bna.FUL in shoot apical meristem (SAM) of rapeseed. Mutant plants carrying stop codon mutations in the COOH domain of Bna.AP1.A02 paralog did not have a significant effect on plant architecture, yield-related traits or the expression of the downstream targets. CONCLUSIONS We found that Bna.AP1.A02 paralog has pleiotropic effect on plant architecture and yield-related traits in rapeseed. The allele we found in the current study with a beneficial effect on seed yield can be incorporated into rapeseed breeding pool to develop new varieties.
Collapse
Affiliation(s)
- Smit Shah
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Nirosha L. Karunarathna
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| |
Collapse
|
12
|
Helliwell EE, Faber‐Hammond J, Lopez ZC, Garoutte A, Wettberg E, Friesen ML, Porter SS. Rapid establishment of a flowering cline in
Medicago polymorpha
after invasion of North America. Mol Ecol 2018; 27:4758-4774. [DOI: 10.1111/mec.14898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Emily E. Helliwell
- School of Biological Sciences Washington State University Vancouver Washington
| | | | - Zoie C. Lopez
- School of Biological Sciences Washington State University Vancouver Washington
| | - Aaron Garoutte
- Department of Plant Biology Michigan State University East Lansing Michigan
| | - Eric Wettberg
- Department of Plant and Soil Science The University of Vermont Burlington Vermont
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University East Lansing Michigan
- Department of Plant Pathology Washington State University Pullman Washington
- Department of Crop and Soil Sciences Washington State University Pullman Washington
| | - Stephanie S. Porter
- School of Biological Sciences Washington State University Vancouver Washington
| |
Collapse
|
13
|
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006263. [PMID: 27541584 PMCID: PMC4991793 DOI: 10.1371/journal.pgen.1006263] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023] Open
Abstract
Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mee-Yeon Park
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith W. Earley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Li Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Song MF, Zhang S, Hou P, Shang HZ, Gu HK, Li JJ, Xiao Y, Guo L, Su L, Gao JW, Yang JP. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. PLANT MOLECULAR BIOLOGY 2015; 87:633-43. [PMID: 25724426 DOI: 10.1007/s11103-015-0302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/18/2015] [Indexed: 05/22/2023]
Abstract
Phytochrome B (phyB) is an essential red light receptor that predominantly mediates seedling de-etiolation, shade-avoidance response, and flowering time. In this study, we isolate a full-length cDNA of PHYB, designated BrPHYB, from Chinese cabbage (Brassica rapa L. ssp. pekinensis), and we find that BrphyB protein has high amino acid sequence similarity and the closest evolutionary relationship to Arabidopsis thaliana phyB (i.e., AtphyB). Quantitative reverse transcription (RT)-PCR results indicate that the BrPHYB gene is ubiquitously expressed in different tissues under all light conditions. Constitutive expression of the BrPHYB gene in A. thaliana significantly enhances seedling de-etiolation under red- and white-light conditions, and causes dwarf stature in mature plants. Unexpectedly, overexpression of BrPHYB in transgenic A. thaliana resulted in reduced expression of gibberellins biosynthesis genes and delayed flowering under short-day conditions, whereas AtPHYB overexpression caused enhanced expression of FLOWERING LOCUS T and earlier flowering. Our results suggest that BrphyB might play an important role in regulating the development of Chinese cabbage. BrphyB and AtphyB have conserved functions during de-etiolation and vegetative plant growth and divergent functions in the regulation of flowering time.
Collapse
Affiliation(s)
- Mei-Fang Song
- Beijing Radiation Center, Beijing, 100875, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu Q, Zhao L, Li D, Hao D, Zhan Y, Li W. A GmRAV ortholog is involved in photoperiod and sucrose control of flowering time in soybean. PLoS One 2014; 9:e89145. [PMID: 24551235 PMCID: PMC3925180 DOI: 10.1371/journal.pone.0089145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/14/2014] [Indexed: 01/02/2023] Open
Abstract
Photoperiod and sucrose levels play a key role in the control of flowering. GmRAV reflected a diurnal rhythm with the highest expression at 4 h after the beginning of a dark period in soybean leaves, and was highly up-regulated under short-day (SD) conditions, despite of not following a diurnal pattern under long-day (LD) conditions. GmRAV-i (GmRAV-inhibition) transgenic soybean exhibited early flowering phenotype. Two of the FT Arabidopsis homologs, GmFT2a and GmFT5a, were highly expressed in the leaves of soybeans with inhibition (-i) of GmRAV under SD conditions. Moreover, the transcript levels of the two FT homologs in GmRAV-i soybeans were more sensitive to SD conditions than LD conditions compared to the WT plant. GmRAV-i soybeans and Arabidopsis rav mutants showed more sensitive hypocotyl elongation responses when compared with wild-type seedlings, and GmRAV-ox overevpressed in tobacco revealed no sensitive changes in hypocotyl length. These indicated that GmRAV was a novel negative regulator of SD-mediated flowering and hypocotyl elongation. Although sucrose has been suggested to promote flowering induction in many plant species, high concentration of sucrose (4% [w/v]) applied into media defer flowering time in Arabidopsis wild-type and rav mutant. This delayed flowering stage might be caused by reduction of LEAFY expression. Furthermore, Arabidopsis rav mutants and GmRAV-i soybean plants were less sensitive to sucrose by the inhibition assays of hypocotyls and roots growth. In contrast, transgenic GmRAV overexpressing (-ox) tobacco plants displayed more sensitivity to sucrose. In conclusion, GmRAV was inferred to have a fundamental function in photoperiod, darkness, and sucrose signaling responses to regulate plant development and flowering induction.
Collapse
Affiliation(s)
- Qingyao Lu
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agriculture University, Harbin, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agriculture University, Harbin, China
| | - Dongmei Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agriculture University, Harbin, China
| | - Diqiu Hao
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agriculture University, Harbin, China
| | - Yong Zhan
- Agricultural Academy of Shi He Zi, Xinjiang Province, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Northeast Agriculture University, Harbin, China
| |
Collapse
|
16
|
Zhou H, Cheng FY, Wang R, Zhong Y, He C. Transcriptome comparison reveals key candidate genes responsible for the unusual reblooming trait in tree peonies. PLoS One 2013; 8:e79996. [PMID: 24244590 PMCID: PMC3828231 DOI: 10.1371/journal.pone.0079996] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/29/2013] [Indexed: 11/19/2022] Open
Abstract
Tree peonies are important ornamental plants worldwide, but growing them can be frustrating due to their short and concentrated flowering period. Certain cultivars exhibit a reblooming trait that provides a valuable alternative for extending the flowering period. However, the genetic control of reblooming in tree peonies is not well understood. In this study, we compared the molecular properties and morphology of reblooming and non-reblooming tree peonies during the floral initiation and developmental processes. Using transcriptome sequencing technology, we generated 59,275 and 63,962 unigenes with a mean size of 698 bp and 699 bp from the two types of tree peonies, respectively, and identified eight differentially expressed genes that are involved in the floral pathways of Arabidopsis thaliana. These differentially regulated genes were verified through a detailed analysis of their expression pattern during the floral process by real time RT-PCR. From this combined analysis, we identified four genes, PsFT, PsVIN3, PsCO and PsGA20OX, which likely play important roles in the regulation of the reblooming process in tree peonies. These data constitute a valuable resource for the discovery of genes involved in flowering time and insights into the molecular mechanism of flowering to further accelerate the breeding of tree peonies and other perennial woody plants.
Collapse
Affiliation(s)
- Hua Zhou
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
- Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Fang-Yun Cheng
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
- * E-mail: (FYC); (CYH)
| | - Rong Wang
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Yuan Zhong
- Landscape Architecture College of Beijing Forestry University, National Flower Engineering Research Center, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (FYC); (CYH)
| |
Collapse
|
17
|
Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. PLANTA 2012; 236:887-900. [PMID: 22767201 DOI: 10.1007/s00425-012-1697-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) has been proposed to regulate a diverse array of activities during plant growth, development and immune function. S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is emerging as a prototypic redox-based post-translational modification. An ARABIDOPSIS THALIANA S-NITROSOGLUTATHIONE (GSNO) REDUCTASE (AtGSNOR1) is thought to be the major regulator of total cellular SNO levels in this plant species. Here, we report on the impact of loss- and gain-of-function mutations in AtGSNOR1 upon plant growth and development. Loss of AtGSNOR1 function in atgsnor1-3 plants increased the number of initiated higher order axillary shoots that remain active, resulting in a loss of apical dominance relative to wild type. In addition atgsnor1-3 affected leaf shape, germination, 2,4-D sensitivity and reduced hypocotyl elongation in both light and dark grown seedlings. Silique size and seed production were also decreased in atgsnor1-3 plants and the latter was reduced in atgsnor1-1 plants, which overexpress AtGSNOR1. Overexpression of AtGSNOR1 slightly delayed flowering time in both long and short days, whereas atgsnor1-3 showed early flowering compared to wild type. In the atgsnor1-3 line, FLOWERING LOCUS C (FLC) expression was reduced, whereas transcription of CONSTANS (CO) was enhanced. Therefore, AtGSNOR1 may negatively regulate the autonomous and photoperiod flowering time pathways. Both overexpression and loss of AtGSNOR1 function also reduced primary root growth, while root hair development was increased in atgsnor1-1 and reduced in atgsnor1-3 plants. Collectively, our findings imply that AtGSNOR1 controls multiple genetic networks integral to plant growth and development.
Collapse
Affiliation(s)
- Eunjung Kwon
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
19
|
|
20
|
Zhang MZ, Ye D, Wang LL, Pang JL, Zhang YH, Zheng K, Bian HW, Han N, Pan JW, Wang JH, Zhu MY. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). PLANT MOLECULAR BIOLOGY 2008; 67:419-427. [PMID: 18392697 DOI: 10.1007/s11103-008-9330-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 03/23/2008] [Indexed: 05/26/2023]
Abstract
Leafy (LFY) and LFY-like genes control the initiation of floral meristems and regulate MADS-box genes in higher plants. The Cucumber-FLO-LFY (CFL) gene, a LFY homolog in Cucumis sativus L. is expressed in the primordia, floral primordia, and each whirl of floral organs during the early stage of flower development. In this study, functions of CFL in flower development were investigated by overexpressing the CFL gene in gloxinia (Sinningia speciosa). Our results show that constitutive CFL overexpression significantly promote early flowering without gibberellin (GA(3)) supplement, suggesting that CFL can serve functionally as a LFY homolog in gloxinia. Moreover, GA(3) and abscisic acid (ABA) treatments could modulate the expression of MADS-box genes in opposite directions. GA(3) resembles the overexpression of CFL in the expression of MADS-box genes and the regeneration of floral buds, but ABA inhibits the expression of MADS-box genes and flower development. These results suggest that CFL and downstream MADS-box genes involved in flower development are regulated by GA(3) and ABA.
Collapse
Affiliation(s)
- Ming-Zhe Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xing D, Zhao H, Xu R, Li QQ. Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:899-910. [PMID: 18298670 DOI: 10.1111/j.1365-313x.2008.03455.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The timely transition from vegetative to reproductive growth is vital for reproductive success in plants. It has been suggested that messenger RNA 3'-end processing plays a role in this transition. Specifically, two autonomous factors in the Arabidopsis thaliana flowering time control pathway, FY and FCA, are required for the alternative polyadenylation of FCA pre-mRNA. In this paper we provide evidence that Pcf11p-similar protein 4 (PCFS4), an Arabidopsis homologue of yeast polyadenylation factor Protein 1 of Cleavage Factor 1 (Pcf11p), regulates FCA alternative polyadenylation and promotes flowering as a novel factor in the autonomous pathway. First, the mutants of PCFS4 show delayed flowering under both long-day and short-day conditions and still respond to vernalization treatment. Next, gene expression analyses indicate that the delayed flowering in pcfs4 mutants is mediated by Flowering Locus C (FLC). Moreover, the expression profile of the known FCA transcripts, which result from alternative polyadenylation, was altered in the pcfs4 mutants, suggesting the role of PCFS4 in FCA alternative polyadenylation and control of flowering time. In agreement with these observations, using yeast two-hybrid assays and TAP-tagged protein pull-down analyses, we also revealed that PCFS4 forms a complex in vivo with FY and other polyadenylation factors. The PCFS4 promoter activity assay indicated that the transcription of PCFS4 is temporally and spatially regulated, suggesting its non-essential nature in plant growth and development.
Collapse
Affiliation(s)
- Denghui Xing
- Department of Botany, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
22
|
Wilkie JD, Sedgley M, Olesen T. Regulation of floral initiation in horticultural trees. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3215-28. [PMID: 18653697 DOI: 10.1093/jxb/ern188] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The intention of this review is to discuss floral initiation of horticultural trees. Floral initiation is best understood for herbaceous species, especially at the molecular level, so a brief overview of the control of floral initiation of Arabidopsis (Arabidopsis thaliana (L.) Heynh.) precedes the discussion of trees. Four major pathways to flowering have been characterized in Arabidopsis, including environmental induction through photoperiod and temperature, autonomous floral initiation, and regulation by gibberellins. Tropical trees are generally induced to flower through environmental cues, whereas floral initiation of temperate deciduous trees is often autonomous. In the tropical evergreen tree mango, Mangifera indica L., cool temperature is the only factor known to induce flowering, but does not ensure floral initiation will occur because there are important interactions with vegetative growth. The temperate deciduous tree apple, Malus domestica Borkh., flowers autonomously, with floral initiation dependent on aspects of vegetative development in the growing season before anthesis, although with respect to the floral initiation of trees in general: the effect of the environment, interactions with vegetative growth, the roles of plant growth regulators and carbohydrates, and recent advances in molecular biology, are discussed.
Collapse
Affiliation(s)
- John D Wilkie
- Faculty of Arts and Sciences, The University of New England, Armidale, NSW 2351, Australia.
| | | | | |
Collapse
|
23
|
Dornelas MC, Rodriguez APM. Identifying Eucalyptus expressed sequence tags related to Arabidopsis flowering-time pathway genes. ACTA ACUST UNITED AC 2005. [DOI: 10.1590/s1677-04202005000200009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flowering initiation depends on the balanced expression of a complex network of genes that is regulated by both endogenous and environmental factors. The timing of the initiation of flowering is crucial for the reproductive success of plants; therefore, they have developed conserved molecular mechanisms to integrate both environmental and endogenous cues to regulate flowering time precisely. Extensive advances in plant biology are possible now that the complete genome sequences of flowering plants is available and plant genomes can be comprehensively compared. Thus, association studies are emerging as powerful tools for the functional identification of genes involved on the regulation of flowering pathways. In this paper we report the results of our search in the Eucalyptus Genome Sequencing Project Consortium (FORESTS) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched the 33,080 sequence clusters in the FORESTS database and identified Eucalyptus sequences that codify putative conserved elements of the autonomous, vernalization-, photoperiod response- and gibberellic acid-controlled flowering-time pathways. Additionally, we have characterized in silico ten putative members of the Eucalyptus homologs to the Arabidopsis CONSTANS family of transcription factors.
Collapse
|
24
|
Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. THE PLANT CELL 2004; 16:2923-39. [PMID: 15486106 PMCID: PMC527189 DOI: 10.1105/tpc.104.021725] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 08/17/2004] [Indexed: 05/19/2023]
Abstract
Flowers are icons in developmental studies of complex structures. The vast majority of 250,000 angiosperm plant species have flowers with a conserved organ plan bearing sepals, petals, stamens, and carpels in the center. The combinatorial model for the activity of the so-called ABC homeotic floral genes has guided extensive experimental studies in Arabidopsis thaliana and many other plant species. However, a mechanistic and dynamical explanation for the ABC model and prevalence among flowering plants is lacking. Here, we put forward a simple discrete model that postulates logical rules that formally summarize published ABC and non-ABC gene interaction data for Arabidopsis floral organ cell fate determination and integrates this data into a dynamic network model. This model shows that all possible initial conditions converge to few steady gene activity states that match gene expression profiles observed experimentally in primordial floral organ cells of wild-type and mutant plants. Therefore, the network proposed here provides a dynamical explanation for the ABC model and shows that precise signaling pathways are not required to restrain cell types to those found in Arabidopsis, but these are rather determined by the overall gene network dynamics. Furthermore, we performed robustness analyses that clearly show that the cell types recovered depend on the network architecture rather than on specific values of the model's gene interaction parameters. These results support the hypothesis that such a network constitutes a developmental module, and hence provide a possible explanation for the overall conservation of the ABC model and overall floral plan among angiosperms. In addition, we have been able to predict the effects of differences in network architecture between Arabidopsis and Petunia hybrida.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510
| | | | | |
Collapse
|
25
|
Abstract
Photoperiod has been known to regulate flowering time in many plant species. In Arabidopsis, genes in the long day (LD) pathway detect photoperiod and promote flowering under LD. It was previously reported that clavata2 (clv2) mutants grown under short day (SD) conditions showed suppression of the flower meristem defects, namely the accumulation of stem cells and the resulting production of extra floral organs. Detailed analysis of this phenomenon presented here demonstrates that the suppression is a true photoperiodic response mediated by the inactivation of the LD pathway under SD. Inactivation of the LD pathway was sufficient to suppress the clv2 defects under LD, and activation of the LD pathway under SD conditions restored clv2 phenotypes. These results reveal a novel role of photoperiod in flower meristem development in Arabidopsis. Flower meristem defects of clv1 and clv3 mutants are also suppressed under SD, and 35S:CO enhanced the defects of clv3, indicating that the LD pathway works independently from the CLV genes. A model is proposed to explain the interactions between photoperiod and the CLV genes.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
26
|
Heyer AG, Raap M, Schroeer B, Marty B, Willmitzer L. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:161-9. [PMID: 15225282 DOI: 10.1111/j.1365-313x.2004.02124.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Resource allocation is a major determinant of plant fitness and is influenced by external as well as internal stimuli. We have investigated the effect of cell wall invertase activity on the transition from vegetative to reproductive growth, inflorescence architecture, and reproductive output, i.e. seed production, in the model plant Arabidopsis thaliana by expressing a cell wall invertase under a meristem-specific promoter. Increased cell wall invertase activity causes accelerated flowering and an increase in seed yield by nearly 30%. This increase is caused by an elevation of the number of siliques, which results from enhanced branching of the inflorescence. On the contrary, as cytosolic enzyme, the invertase causes delayed flowering, reduced seed yield, and branching. This demonstrates that invertases not only are important in determining sink strength of storage organs but also play a role in regulating developmental processes.
Collapse
Affiliation(s)
- Arnd G Heyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany.
| | | | | | | | | |
Collapse
|
27
|
Nakagawa M, Komeda Y. Flowering of Arabidopsis cop1 mutants in darkness. PLANT & CELL PHYSIOLOGY 2004; 45:398-406. [PMID: 15111714 DOI: 10.1093/pcp/pch047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To elucidate the role of the COP1 gene in flowering, we analyzed flowering of cop1 mutant lines in darkness. When grown in the presence of 1% (w/v) sucrose, the cop1-6 mutant flowered in darkness, but cop1-1 and cop1-4 did not. However, cop1-1 and cop1-4 flowered in darkness when grown in the presence of 5% (w/v) sucrose. Therefore, the COP1 gene represses not only photomorphogenesis in seedlings but also flowering in darkness. Comparison of mRNAs levels of floral identity genes in cop1-6 and wild-type plants grown in darkness revealed increased mRNA levels of genes that act downstream of CO and reduced FLC mRNA level in cop1-6. Double mutants of cop1-6 and each of the late-flowering mutations cry2-1, gi-2, co-1, and ld-1 flowered in darkness. All of the double mutants except cry2-1 cop1-6 flowered later than cop1-6, demonstrating that cop1-6 is epistatic to cry2-1 for early flowering. The ld-1 cop1-6 double mutant flowered much earlier than the ld-1 mutant. The delay in flowering in the double mutants was not strongly influenced by the light conditions, whereas that of the gi-2 cop1-6 double mutant was reduced in darkness.
Collapse
Affiliation(s)
- Mayu Nakagawa
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo, 060-0810 Japan
| | | |
Collapse
|
28
|
Ogawara T, Higashi K, Kamada H, Ezura H. Ethylene advances the transition from vegetative growth to flowering in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1335-40. [PMID: 14658386 DOI: 10.1078/0176-1617-01129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The transition from vegetative growth to flowering is the most drastic change in plant development. In order to examine the involvement of ethylene in growth transition, we compared the development of ethylene-related mutants, eto1, etr1, ein2-1 and ein3-1, with the wild type (WT) in Arabidopsis thaliana. The ethylene sensitivity of two WT and the mutants is decreased in the following order: eto1 = WT < ein3-1 < ein2-1 = etr1-1. Bolting time was also delayed in nearly the same order: eto1 < WT < ein3-1 < ein2-1 < etr1. Leaf numbers increased according to the delay of bolting time, indicating that the delay of bolting time was caused by the delay of transition from vegetative to reproductive growth. Other growth parameters, including leaf area and number of flowers opening at the same time, increased in the same order, indicating that these changes were caused by a single factor, the amount of ethylene signal which was transferred though an ethylene signal transduction pathway. These results suggest that ethylene is involved in the transition from vegetative to reproductive growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Toshiyuki Ogawara
- Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | |
Collapse
|
29
|
Korves TM, Bergelson J. A developmental response to pathogen infection in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:339-47. [PMID: 12970499 PMCID: PMC196610 DOI: 10.1104/pp.103.027094] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 06/13/2003] [Accepted: 06/13/2003] [Indexed: 05/18/2023]
Abstract
We present evidence that susceptible Arabidopsis plants accelerate their reproductive development and alter their shoot architecture in response to three different pathogen species. We infected 2-week-old Arabidopsis seedlings with two bacterial pathogens, Pseudomonas syringae and Xanthomonas campestris, and an oomycete, Peronospora parasitica. Infection with each of the three pathogens reduced time to flowering and the number of aerial branches on the primary inflorescence. In the absence of competition, P. syringae and P. parasitica infection also increased basal branch development. Flowering time and branch responses were affected by the amount of pathogen present. Large amounts of pathogen caused the most dramatic changes in the number of branches on the primary inflorescence, but small amounts of P. syringae caused the fastest flowering and the production of the most basal branches. RPS2 resistance prevented large changes in development when it prevented visible disease symptoms but not at high pathogen doses and when substantial visible hypersensitive response occurred. These experiments indicate that phylogenetically disparate pathogens cause similar changes in the development of susceptible Arabidopsis. We propose that these changes in flowering time and branch architecture constitute a general developmental response to pathogen infection that may affect tolerance of and/or resistance to disease.
Collapse
Affiliation(s)
- Tonia M Korves
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
30
|
Abstract
The last decade provided the plant science community with the complete genome sequence of Arabidopsis thaliana and rice, tools to investigate the function of potentially every plant gene, methods to dissect virtually any aspect of the plant life cycle, and a wealth of information on gene expression and protein function. Focusing on Arabidopsis as a model system has led to an integration of the plant sciences that triggered the development of new technologies and concepts benefiting plant research in general. These enormous changes led to an unprecedented increase in our understanding of the genetic basis and molecular mechanisms of developmental, physiological and biochemical processes, some of which will be discussed in this article.
Collapse
Affiliation(s)
- Robert E Pruitt
- Botany and Plant Pathology, Purdue University, West Lafayette, Indianapolis 47907-1155, USA
| | | | | |
Collapse
|
31
|
Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A 2003; 100:2140-5. [PMID: 12578985 PMCID: PMC149972 DOI: 10.1073/pnas.0437826100] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoperiodism is a day-length-dependent seasonal change of physiological or developmental activities that is widely found in plants and animals. Photoperiodic flowering in plants is regulated by photosensory receptors including the red/far-red light-receptor phytochromes and the blue/UV-A light-receptor cryptochromes. However, the molecular mechanisms underlying the specific roles of individual photoreceptors have remained poorly understood. Here, we report a study of the day-length-dependent response of cryptochrome 2 (cry2) and phytochrome A (phyA) and their role as day-length sensors in Arabidopsis. The protein abundance of cry2 and phyA showed a diurnal rhythm in plants grown in short-day but not in plants grown in long-day. The short-day-specific diurnal rhythm of cry2 is determined primarily by blue light-dependent cry2 turnover. Consistent with a proposition that cry2 and phyA are the major day-length sensors in Arabidopsis, we show that phyA mediates far-red light promotion of flowering with modes of action similar to that of cry2. Based on these results and a finding that the photoperiodic responsiveness of plants depends on light quality, a model is proposed to explain how individual phytochromes and cryptochromes work together to confer photoperiodic responsiveness in Arabidopsis.
Collapse
Affiliation(s)
- Todd Mockler
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Thin Cell Layer (TCL) Morphogenesis as a Powerful Tool in Woody Plant and Fruit Crop Micropropagation and Biotechnology, Floral Genetics and Genetic Transformation. MICROPROPAGATION OF WOODY TREES AND FRUITS 2003. [DOI: 10.1007/978-94-010-0125-0_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. THE PLANT CELL 2002; 14:3043-56. [PMID: 12468726 PMCID: PMC151201 DOI: 10.1105/tpc.005306] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 09/13/2002] [Indexed: 05/20/2023]
Abstract
Reversible protein phosphorylation, which is catalyzed by functionally coupled protein kinases and protein phosphatases, is a major signaling mechanism in eukaryotic cellular functions. The red and far-red light-absorbing phytochrome photoreceptors are light-regulated Ser/Thr-specific protein kinases that regulate diverse photomorphogenic processes in plants. Here, we demonstrate that the phytochromes functionally interact with the catalytic subunit of a Ser/Thr-specific protein phosphatase 2A designated FyPP. The interactions were influenced by phosphorylation status and spectral conformation of the phytochromes. Recombinant FyPP efficiently dephosphorylated oat phytochrome A in the presence of Fe(2+) or Zn(2+) in a spectral form-dependent manner. FyPP was expressed predominantly in floral organs. Transgenic Arabidopsis plants with overexpressed or suppressed FyPP levels exhibited delayed or accelerated flowering, respectively, indicating that FyPP modulates phytochrome-mediated light signals in the timing of flowering. Accordingly, expression patterns of the clock genes in the long-day flowering pathway were altered greatly. These results indicate that a self-regulatory phytochrome kinase-phosphatase coupling is a key signaling component in the photoperiodic control of flowering.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Kumho Life and Environmental Science Laboratory, 1 Oryong-dong, Buk-gu, Kwangju 500-712, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Martínez-García JF, Virgós-Soler A, Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci U S A 2002; 99:15211-6. [PMID: 12393812 PMCID: PMC137569 DOI: 10.1073/pnas.222390599] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Indexed: 11/18/2022] Open
Abstract
Photoperiod controls several responses throughout the plant life cycle, like germination, flowering, tuber formation, onset of bud dormancy, leaf abscission, and cambium activity. From these processes, flowering has been most extensively studied, especially in Arabidopsis thaliana. Photoperiod sensing by the function of photoreceptors and the circadian clock appears to regulate flowering time via Arabidopsis CONSTANS (AtCO), a putative transcription factor that accelerates flowering in response to long days. The genetic factors controlling plant photoperiodic responses other than flowering are little known. However, interspecific grafting experiments demonstrated that the flower-inducing (florigen) and tuber- inducing (tuberigen) signals are functionally exchangeable. Here we show that constitutive overexpression in potato of the Arabidopsis flowering-time gene AtCO impairs tuberization under short-day inductive conditions; AtCO overexpressing lines require prolonged exposure to short days to form tubers. Grafting experiments using these lines indicated that AtCO exerts its inhibitory effect on tuber formation by acting in the leaves. We propose that a conserved photoperiodic functional module may be involved in controlling distinct photoperiod-regulated evocation responses in different species. This module would involve the action of CONSTANS in the production of the elusive and long-distance acting florigen-tuberigen signal(s) in the leaves.
Collapse
Affiliation(s)
- Jaime F Martínez-García
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona (CSIC), Jordi Girona 18-26, Spain.
| | | | | |
Collapse
|
35
|
Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. PLANT & CELL PHYSIOLOGY 2002; 43:1096-105. [PMID: 12407188 DOI: 10.1093/pcp/pcf156] [Citation(s) in RCA: 673] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Heading date 3a (Hd3a) has been detected as a heading-date-related quantitative trait locus in a cross between rice cultivars Nipponbare and Kasalath. A previous study revealed that the Kasalath allele of Hd3a promotes heading under short-day (SD) conditions. High-resolution linkage mapping located the Hd3a locus in a approximately 20-kb genomic region. In this region, we found a candidate gene that shows high similarity to the FLOWERING LOCUS T (FT) gene, which promotes flowering in Arabidopsis: Introduction of the gene caused an early-heading phenotype in rice. The transcript levels of Hd3a were increased under SD conditions. The rice Heading date 1 (Hd1) gene, a homolog of CONSTANS (CO), has been shown to promote heading under SD conditions. By expression analysis, we showed that the amount of Hd3a mRNA is up-regulated by Hd1 under SD conditions, suggesting that Hd3a promotes heading under the control of Hd1. These results indicate that Hd3a encodes a protein closely related to Arabidopsis FT and that the function and regulatory relationship with Hd1 and CO, respectively, of Hd3a and FT are conserved between rice (an SD plant) and Arabidopsis (a long-day plant).
Collapse
Affiliation(s)
- Shoko Kojima
- Institute of the Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, 305-0854 Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Taylor SA, Hofer JMI, Murfet IC, Sollinger JD, Singer SR, Knox MR, Ellis THN. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. PLANT PHYSIOLOGY 2002; 129:1150-9. [PMID: 12114569 PMCID: PMC166509 DOI: 10.1104/pp.001677] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Revised: 01/30/2002] [Accepted: 04/04/2002] [Indexed: 05/19/2023]
Abstract
SQUAMOSA and APETALA1 are floral meristem identity genes from snapdragon (Antirrhinum majus) and Arabidopsis, respectively. Here, we characterize the floral meristem identity mutation proliferating inflorescence meristem (pim) from pea (Pisum sativum) and show that it corresponds to a defect in the PEAM4 gene, a homolog of SQUAMOSA and APETALA1. The PEAM4 coding region was deleted in the pim-1 allele, and this deletion cosegregated with the pim-1 mutant phenotype. The pim-2 allele carried a nucleotide substitution at a predicted 5' splice site that resulted in mis-splicing of pim-2 mRNA. PCR products corresponding to unspliced and exon-skipped mRNA species were observed. The pim-1 and pim-2 mutations delayed floral meristem specification and altered floral morphology significantly but had no observable effect on vegetative development. These floral-specific mutant phenotypes and the restriction of PIM gene expression to flowers contrast with other known floral meristem genes in pea that additionally affect vegetative development. The identification of PIM provides an opportunity to compare pathways to flowering in species with different inflorescence architectures.
Collapse
Affiliation(s)
- Scott A Taylor
- School of Plant Science, University of Tasmania, G.P.O. Box 252-55, Hobart, Tasmania, 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Franco-Zorrilla JM, Cubas P, Jarillo JA, Fernández-Calvín B, Salinas J, Martínez-Zapater JM. AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems. PLANT PHYSIOLOGY 2002; 128:418-27. [PMID: 11842146 PMCID: PMC148905 DOI: 10.1104/pp.010323] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2001] [Revised: 06/13/2001] [Accepted: 08/11/2001] [Indexed: 05/20/2023]
Abstract
We have isolated and characterized AtREM1, the Arabidopsis ortholog of the cauliflower (Brassica oleracea) BoREM1. AtREM1 belongs to a large gene family of more than 20 members in Arabidopsis. The deduced AtREM1 protein contains several repeats of a B3-related domain, and it could represent a new class of regulatory proteins only found in plants. Expression of AtREM1 is developmentally regulated, being first localized in a few central cells of vegetative apical meristems, and later expanding to the whole inflorescence meristem, as well as primordia and organs of third and fourth floral whorls. This specific expression pattern suggests a role in the organization of reproductive meristems, as well as during flower organ development.
Collapse
Affiliation(s)
- José M Franco-Zorrilla
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. THE PLANT CELL 2002; 14 Suppl:S111-30. [PMID: 12045273 PMCID: PMC151251 DOI: 10.1105/tpc.001362] [Citation(s) in RCA: 545] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2001] [Accepted: 03/04/2002] [Indexed: 05/18/2023]
Affiliation(s)
| | | | - George Coupland
- To whom correspondence should be addressed. E-mail ; fax 49-221-5062207
| |
Collapse
|
39
|
Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES. FLC, a repressor of flowering, is regulated by genes in different inductive pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:183-91. [PMID: 11851919 DOI: 10.1046/j.0960-7412.2001.01210.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The MADS-box protein encoded by FLOWERING LOCUS C (FLC) is a repressor of flowering. Loci in the autonomous flowering pathway control FLC levels. We show the epistatic groupings of autonomous pathway mutants fca/fy and fve/fpa, based on their effects on flowering time, are consistent with their effects on FLC transcript and protein levels. We demonstrate that synergistic increases in FLC mRNA and protein expression occur in response to interactions between the autonomous pathway mutants fca and fpa and mutants in other pathways (fe, ft, fha) that do not regulate FLC when present as single mutants. These changes in FLC levels provide the molecular basis of the interactions previously shown in genetic analyses. The interactions between genes of multiple pathways emphasize the central position of FLC in the control of floral initiation. FLC protein levels match those of its mRNA for a range of genetic, developmental and environmental variables, indicating that control of FLC is at the level of transcription or transcript stability. The autonomous and photoperiod pathways also interact at the level of SOC1. FLC acts as a repressor of SOC1, and SOC1 levels are low when FLC levels are high. In C24 plants which have moderately high FLC levels, flowering occurs without a decrease in FLC level, but the SOC1 level does increase. Thus SOC1 levels can be upregulated through the activities of other pathways, despite the repression by FLC.
Collapse
Affiliation(s)
- Dean T Rouse
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
| | | | | | | | | |
Collapse
|
40
|
Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. THE PLANT CELL 2002; 14 Suppl:S111-S130. [PMID: 12045273 DOI: 10.1105/tpc001362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Aidyn Mouradov
- Max-Planck-Institute for Plant Breeding, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | |
Collapse
|
41
|
Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:1682-1693. [PMID: 11743113 DOI: 10.1104/pp.127.4.1682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter. We have investigated the relationships between gibberellins (GAs), these GAMYB-like genes, and petiole elongation and flowering of Arabidopsis. Within 1 to 2 d of transferring plants from short- to long-day photoperiods, growth rate and erectness of petioles increased, and there were morphological changes at the shoot apex associated with the transition to flowering. These responses were accompanied by accumulation of GAs in the petioles (GA(1) by 11-fold and GA(4) by 3-fold), and an increase in expression of AtMYB33 at the shoot apex. Inhibition of GA biosynthesis using paclobutrazol blocked the petiole elongation induced by long days. Causality was suggested by the finding that, with GA treatment, plants flowered in short days, AtMYB33 expression increased at the shoot apex, and the petioles elongated and grew erect. That AtMYB33 may mediate a GA signaling role in flowering was supported by its ability to bind to a specific 8-bp sequence in the promoter of the floral meristem-identity gene, LEAFY, this same sequence being important in the GA response of the LEAFY promoter. One or more of these AtMYB genes may also play a role in the root tip during germination and, later, in stem tissue. These findings extend our earlier studies of GA signaling in the Gramineae to include a dicot species, Arabidopsis, and indicate that GAMYB-like genes may mediate GA signaling in growth and flowering responses.
Collapse
Affiliation(s)
- G F Gocal
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:1682-1693. [PMID: 11743113 DOI: 10.1104/pp.010442] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have identified three Arabidopsis genes with GAMYB-like activity, AtMYB33, AtMYB65, and AtMYB101, which can substitute for barley (Hordeum vulgare) GAMYB in transactivating the barley alpha-amylase promoter. We have investigated the relationships between gibberellins (GAs), these GAMYB-like genes, and petiole elongation and flowering of Arabidopsis. Within 1 to 2 d of transferring plants from short- to long-day photoperiods, growth rate and erectness of petioles increased, and there were morphological changes at the shoot apex associated with the transition to flowering. These responses were accompanied by accumulation of GAs in the petioles (GA(1) by 11-fold and GA(4) by 3-fold), and an increase in expression of AtMYB33 at the shoot apex. Inhibition of GA biosynthesis using paclobutrazol blocked the petiole elongation induced by long days. Causality was suggested by the finding that, with GA treatment, plants flowered in short days, AtMYB33 expression increased at the shoot apex, and the petioles elongated and grew erect. That AtMYB33 may mediate a GA signaling role in flowering was supported by its ability to bind to a specific 8-bp sequence in the promoter of the floral meristem-identity gene, LEAFY, this same sequence being important in the GA response of the LEAFY promoter. One or more of these AtMYB genes may also play a role in the root tip during germination and, later, in stem tissue. These findings extend our earlier studies of GA signaling in the Gramineae to include a dicot species, Arabidopsis, and indicate that GAMYB-like genes may mediate GA signaling in growth and flowering responses.
Collapse
Affiliation(s)
- G F Gocal
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, G.P.O. Box 1600, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chou ML, Haung MD, Yang CH. EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2001; 42:499-507. [PMID: 11382816 DOI: 10.1093/pcp/pce062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To investigate the mechanisms regulating the initiation of floral development in Arabidopsis, a construct containing beta-glucuronidase (GUS) gene driven by APETALA1 promoter (AP1::GUS) was introduced into emf fwa and emf ft double mutants. GUS activity was strongly detected on shoot meristem of emf1-1 single mutants harboring AP1::GUS construct just 5 d after germination. By contrast, GUS activity was undetectable on emf1-1 fwa-1, emf1-1 ft-1, emf2-1 fwa-1, emf2-3 fwa-1 and emf2-3 ft-1 double mutants harboring AP1::GUS construct 10 d after germination. GUS activity was only weakly detected on the apical meristem of 20-day-old emf1-1 fwa-1 and emf2-1 fwa-1 seedlings. During this time, only sessile leaves were produced. Further analysis indicated that AP1 was strongly expressed in 10-day-old emf1-1 and emf2-1 single mutants. Its expression was significantly reduced in all emf1-1 or emf2-1 late-flowering double mutants tested. Similar to AP1, the expression of LEAFY (LFY) was also high in emf1-1 and emf2-1 single mutants and reduced in emf1-1 or emf2-1 late-flowering double mutants. Our results indicate that the precocious expression of AP1 and LFY is dependent not only on the low EMF and FWA activities but also on the expression of most of the late-flowering genes such as FT, FCA, FE, CO and GI. These data also reveal that most late-flowering genes may function downstream of EMF or in pathways distinct from EMF to activate genes specified floral meristem identity during shoot maturation in Arabidopsis.
Collapse
Affiliation(s)
- M L Chou
- Graduate Institute of Agricultural Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, ROC
| | | | | |
Collapse
|
44
|
Dielen V, Lecouvet V, Dupont S, Kinet JM. In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:715-723. [PMID: 11413208 DOI: 10.1093/jexbot/52.357.715] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model plant for autonomously flowering species has been investigated using the late flowering mutant uniflora (uf). Apices collected from truly vegetative plants were cultivated on solid media supplemented with different combinations of growth regulators and chemicals. Several chemical factors implicated in the promotion of floral transition of the uf mutant have been identified: sucrose, cytokinins and nitrogenous nutrients have all to be supplied at optimal concentrations. In contrast, gibberellic acid was found to be inhibitory. These results are discussed in relation to knowledge accumulated on the nature of the flowering signals circulating, at floral transition, in other plants, especially in photoperiodic species. This study suggests that tomato could constitute an adequate model to investigate the genetic and physiological control of floral transition and contribute in unravelling pathways which are constitutively regulating this important step of plant life cycle.
Collapse
Affiliation(s)
- V Dielen
- Laboratoire de Cytogénétique, Département de Biologie, Université catholique de Louvain, Croix du Sud, 13-5, B-1348, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
45
|
Wilkosz R, Schläppi M. A gene expression screen identifies EARLI1 as a novel vernalization-responsive gene in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2000; 44:777-787. [PMID: 11202439 DOI: 10.1023/a:1026536724779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vernalization promotes early flowering in late ecotypes of Arabidopsis thaliana. The mechanisms of vernalization are poorly understood. A subtractive hybridization approach was used to isolate vernalization-responsive genes from a late-flowering ecotype of Arabidopsis thaliana based on the premise that transcript levels of such genes would increase with cold treatment and remain high even after removal of the vernalization stimulus. EARLI1 is the first Arabidopsis gene shown to be stably activated by vernalization. The abundance of its RNA is progressively elevated by vernalization and remains high for at least 20 days at room temperature. The basal level of EARLI1 RNA is higher in early-flowering ecotypes, but is increased also after vernalization. Vernalization and subsequent growth in long-day photoperiods have an additive or synergistic effect on EARLI1 activation. EARLI1 RNA levels are also transiently induced by brief exposures to cold, but not to abscisic acid. EARLI1 is thus a novel vernalization-responsive gene in Arabidopsis thaliana that can be used to investigate vernalization-specific transcriptional regulation.
Collapse
Affiliation(s)
- R Wilkosz
- Department of Biology, Marquette University, Milwaukee, WI 53233, USA
| | | |
Collapse
|
46
|
Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:591-9. [PMID: 11123798 DOI: 10.1046/j.1365-313x.2000.00906.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowering time in many plants is triggered by environmental factors that lead to uniform flowering in plant populations, ensuring higher reproductive success. So far, several genes have been identified that are involved in flowering time control. AGL20 (AGAMOUS LIKE 20) is a MADS domain gene from Arabidopsis that is activated in shoot apical meristems during the transition to flowering. By transposon tagging we have identified late flowering agl20 mutants, showing that AGL20 is involved in flowering time control. In previously described late flowering mutants of the long-day and constitutive pathways of floral induction the expression of AGL20 is down-regulated, demonstrating that AGL20 acts downstream to the mutated genes. Moreover, we can show that AGL20 is also regulated by the gibberellin (GA) pathway, indicating that AGL20 integrates signals of different pathways of floral induction and might be a central component for the induction of flowering. In addition, the constitutive expression of AGL20 in Arabidopsis is sufficient for photoperiod independent flowering and the over-expression of the orthologous gene from mustard, MADSA, in the classical short-day tobacco Maryland Mammoth bypasses the strict photoperiodic control of flowering.
Collapse
Affiliation(s)
- R Borner
- Swiss Federal Institute of Technology, Institute for Plant Sciences, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A. Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:103-111. [PMID: 11029708 DOI: 10.1046/j.1365-313x.2000.00859.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In plants of Sinapis alba induced to flower by one long day, the MADS box gene, SaMADS A, is expressed initially in the central corpus (L3 cells) of the shoot apical meristem (SAM), about 1.5-2 days before initiation of the first floral meristem. We have combined a physiological approach by testing the effects of three putative floral signals on SaMADS A expression in the SAM of S. alba plants with a transgenic approach using Arabidopsis thaliana plants. A single application of a low dose of a cytokinin or a gibberellin to the apex of vegetative S. alba plants is capable of mimicking perfectly the initial effect of the long day on SaMADS A transcription. A treatment combining the two hormones causes the same activation but seems to enhance the level of SaMADS A expression. A sucrose application to the apex of vegetative plants is, on the contrary, unable to activate SaMADS A expression. None of these chemicals, alone or combined, is capable of causing the floral shift at the SAM. Since the constitutive expression of SaMADS A leads to precocious flowering in A. thaliana and antisense expression of a fragment of the A. thaliana homologue AGL20 leads to a delay in flowering time, these results are consistent with SaMADS A activation being an intermediate event in a cytokinin- and/or gibberellin-triggered signal transduction pathway that is involved in the regulation of floral transition in S. alba.
Collapse
Affiliation(s)
- F Bonhomme
- Laboratory of Plant Physiology, University of Liège, Sart Tilman, B4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
48
|
Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 2000; 14:2366-76. [PMID: 10995392 PMCID: PMC316936 DOI: 10.1101/gad.813600] [Citation(s) in RCA: 487] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The very late-flowering behavior of Arabidopsis winter-annual ecotypes is conferred mainly by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). A MADS-domain gene, AGAMOUS-LIKE 20 (AGL20), was identified as a dominant FRI suppressor in activation tagging mutagenesis. Overexpression of AGL20 suppresses not only the late flowering of plants that have functional FRI and FLC alleles but also the delayed phase transitions during the vegetative stages of plant development. Interestingly, AGL20 expression is positively regulated not only by the redundant vernalization and autonomous pathways of flowering but also by the photoperiod pathway. Our results indicate that AGL20 is an important integrator of three pathways controlling flowering in Arabidopsis.
Collapse
Affiliation(s)
- H Lee
- School of Biological Sciences and Research Center for Cell Differentiation, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kiyosue T, Wada M. LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:807-15. [PMID: 10998191 DOI: 10.1046/j.1365-313x.2000.00850.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In plants, light is not only an energy source but also a very important signal that modulates development and differentiation. Here, we report a putative photo-regulatory factor sequence in LKP1 (LOV kelch protein 1). LKP1 cDNA encodes a protein of 610 amino acids and with a molecular weight of 65 905 with an LOV domain and kelch repeats. LOV domains are present in a number of sensor proteins involved in the detection of light, oxygen or voltage. The LKP1 LOV is very similar to the LOV domains in NPH1, a plasma membrane-associated blue light receptor kinase that regulates phototropism (Huala, E., Oeller, P.W., Liscum, E., Han, I-S., Larsen, E. & Briggs, W.R. (1997) Science, 278, 2120-2123). LKP1 mRNA accumulates in roots, stems, flowers and siliques. It is most abundant in leaves, and least abundant in seeds. Transgenic plants with a beta-glucuronidase (GUS) reporter gene driven by a 1.5 kb LKP1 promoter display strong GUS activity in leaves. Transgenic plants with a 35S:LKP1 cDNA gene overexpress LKP1 mRNA. These plants have elongated hypocotyls and petioles with elongated cells, and exhibit distinct cotyledon movement during the day. Expression of 35S:LKP1 in transgenic Arabidopsis promotes late flowering in plants grown under long-day, but not under short-day conditions. Vernalization does not affect the late flowering phenotype of the 35S:LKP1 plants. Transgenic plants possessing the 35S:GFP-LKP1 construct also have long hypocotyles and petioles, and a late flowering phenotype, suggesting that the GFP-LKP1 fusion protein is active. The GFP-associated fluorescence in 35S:GFP-LKP1 plants is observed in nuclei and cytosol, indicating that LKP1 is a new nucleo-cytoplasmic factor that influences flowering time in the long day pathway of Arabidopsis.
Collapse
Affiliation(s)
- T Kiyosue
- Gene Research Center, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | | |
Collapse
|
50
|
|