1
|
Huang KY, Feng YY, Du H, Ma CW, Xie D, Wan T, Feng XY, Dai XG, Yin TM, Wang XQ, Ran JH. DNA methylation dynamics in gymnosperm duplicate genes: implications for genome evolution and stress adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70006. [PMID: 39982811 DOI: 10.1111/tpj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025]
Abstract
Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 510650, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Chang-Wang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan Xie
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiu-Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Gang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Ming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Haidar S, Hooker J, Lackey S, Elian M, Puchacz N, Szczyglowski K, Marsolais F, Golshani A, Cober ER, Samanfar B. Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2714. [PMID: 39409584 PMCID: PMC11478702 DOI: 10.3390/plants13192714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Soybean improvement has entered a new era with the advent of multi-omics strategies and bioinformatics innovations, enabling more precise and efficient breeding practices. This comprehensive review examines the application of multi-omics approaches in soybean-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics. We first explore pre-breeding and genomic selection as tools that have laid the groundwork for advanced trait improvement. Subsequently, we dig into the specific contributions of each -omics field, highlighting how bioinformatics tools and resources have facilitated the generation and integration of multifaceted data. The review emphasizes the power of integrating multi-omics datasets to elucidate complex traits and drive the development of superior soybean cultivars. Emerging trends, including novel computational techniques and high-throughput technologies, are discussed in the context of their potential to revolutionize soybean breeding. Finally, we address the challenges associated with multi-omics integration and propose future directions to overcome these hurdles, aiming to accelerate the pace of soybean improvement. This review serves as a crucial resource for researchers and breeders seeking to leverage multi-omics strategies for enhanced soybean productivity and resilience.
Collapse
Affiliation(s)
- Siwar Haidar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Simon Lackey
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mohamad Elian
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Nathalie Puchacz
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (S.H.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Sultan AB, Nawaz H, Saleem F, Nawaz S, Danial M, Iftikhar R, Maqsood U, Areej A, Shakoor S, Aljarba NH, Maqbool R, Rizwan M, Serfraz S. Divergent evolution of NLR genes in the genus Glycine: impacts of annuals and perennials' life history strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1383135. [PMID: 39045600 PMCID: PMC11263291 DOI: 10.3389/fpls.2024.1383135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
Within the family Fabaceae, the genus Glycine is composed of two subgenera annuals (2n=40) and perennials. This life strategy transition may have differentially affected the evolution of various gene families. Its cultivated species G. max has high level of susceptibility to major pathogens including viruses, bacteria and fungi. Understanding nucleotide-binding domain leucine-rich repeat (NLR) genes evolution in soybean is of paramount importance due to their central role in plant immunity and their potential in improving disease resistance in soybean cultivars. In this study, we investigated the significance of this annual-perennial transition on the macroevolution of NLR genes in the genus Glycine. Our results reveal a remarkable distinction between annual species such as Glycine max and Glycine soja, which exhibit an expanded NLRome compared to perennial species (G. cyrtoloba, G. stenophita, G. dolichocarpa, G. falcata, G. syndetika, G. latifolia and G. tomentella). Our evolutionary timescale analysis pinpoints recent accelerated gene duplication events for this expansion, which occurred between 0.1 and 0.5 million years ago, driven predominantly by lineage-specific and terminal duplications. In contrast, perennials initially experienced significant contraction during the diploidisation phase following the Glycine-specific whole-genome duplication event (~10 million years ago). Despite the reduction in the NLRome, perennial lineages exhibit a unique and highly diversified repertoire of NLR genes with limited interspecies synteny. The investigation of gene gain and loss ratios revealed that this diversification resulted from the birth of novel genes following individual speciation events. Among perennials, G. latifolia, a well-known resistance resource, has the highest ratio of these novel genes in the tertiary gene pool. Our study suggests evolutionary mechanisms, including recombination and transposition, as potential drivers for the emergence of these novel genes. This study also provides evidence for the unbalanced expansion of the NLRome in the Dt subgenome compared with the At subgenome in the young allopolyploid G. dolichocarpa. To the best of our knowledge, this is the first study to investigate the effect of annuality and perenniality life transition on the evolution of NLR genes in the genus Glycine to identify its genomics resources for improving the resistance of soybean crop with global importance on the economy and food security.
Collapse
Affiliation(s)
- Abu Bakar Sultan
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Humera Nawaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fozia Saleem
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sehar Nawaz
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Romana Iftikhar
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Umer Maqsood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Amna Areej
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sidra Shakoor
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rizwan Maqbool
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Roelfs KU, Känel A, Twyman RM, Prüfer D, Schulze Gronover C. Epigenetic variation in early and late flowering plants of the rubber-producing Russian dandelion Taraxacum koksaghyz provides insights into the regulation of flowering time. Sci Rep 2024; 14:4283. [PMID: 38383610 PMCID: PMC10881582 DOI: 10.1038/s41598-024-54862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.
Collapse
Affiliation(s)
- Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
| | - Andrea Känel
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | |
Collapse
|
6
|
Nakashima K, Yuhazu M, Mikuriya S, Kasai M, Abe J, Taneda A, Kanazawa A. Frequency of cytosine methylation in the adjacent regions of soybean retrotransposon SORE-1 depends on chromosomal location. Genome 2024; 67:1-12. [PMID: 37746933 DOI: 10.1139/gen-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Mobilization of transposable elements (TEs) is suppressed by epigenetic mechanisms involving cytosine methylation. However, few studies have focused on clarifying relationships between epigenetic influences of TEs on the adjacent DNA regions and time after insertion of TEs into the genome and/or their chromosomal location. Here we addressed these issues using soybean retrotransposon SORE-1. We analyzed SORE-1, inserted in exon 1 of the GmphyA2 gene, one of the newest insertions in this family so far identified. Cytosine methylation was detected in this element but was barely present in the adjacent regions. These results were correlated, respectively, with the presence and absence of the production of short interfering RNAs. Cytosine methylation profiles of 74 SORE-1 elements in the Williams 82 reference genome indicated that methylation frequency in the adjacent regions of SORE-1 was profoundly higher in pericentromeric regions than in euchromatic chromosome arms and was only weakly correlated with the length of time after insertion into the genome. Notably, the higher level of methylation in the 5' adjacent regions of SORE-1 coincided with the presence of repetitive elements in pericentromeric regions. Together, these results suggest that epigenetic influence of SORE-1 on the adjacent regions is influenced by its location on the chromosome.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Mashiro Yuhazu
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shun Mikuriya
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
7
|
Junaid A, Singh B, Bhatia S. Evolutionary insights into 3D genome organization and epigenetic landscape of Vigna mungo. Life Sci Alliance 2024; 7:e202302074. [PMID: 37923361 PMCID: PMC10624639 DOI: 10.26508/lsa.202302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Eukaryotic genomes show an intricate three-dimensional (3D) organization within the nucleus that regulates multiple biological processes including gene expression. Contrary to animals, understanding of 3D genome organization in plants remains at a nascent stage. Here, we investigate the evolution of 3D chromatin architecture in legumes. By using cutting-edge PacBio, Illumina, and Hi-C contact reads, we report a gap-free, chromosome-scale reference genome assembly of Vigna mungo, an important minor legume cultivated in Southeast Asia. We spatially resolved V. mungo chromosomes into euchromatic, transcriptionally active A compartment and heterochromatic, transcriptionally-dormant B compartment. We report the presence of TAD-like-regions throughout the diagonal of the HiC matrix that resembled transcriptional quiescent centers based on their genomic and epigenomic features. We observed high syntenic breakpoints but also high coverage of syntenic sequences and conserved blocks in boundary regions than in the TAD-like region domains. Our findings present unprecedented evolutionary insights into spatial 3D genome organization and epigenetic patterns and their interaction within the V. mungo genome. This will aid future genomics and epigenomics research and breeding programs of V. mungo.
Collapse
Affiliation(s)
- Alim Junaid
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
8
|
Pascual-Morales E, Jiménez-Chávez P, Olivares-Grajales JE, Sarmiento-López L, García-Niño WR, López-López A, Goodwin PH, Palacios-Martínez J, Chávez-Martínez AI, Cárdenas L. Role of a LORELEI- like gene from Phaseolus vulgaris during a mutualistic interaction with Rhizobium tropici. PLoS One 2023; 18:e0294334. [PMID: 38060483 PMCID: PMC10703324 DOI: 10.1371/journal.pone.0294334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Reactive oxygen species (ROS), produced by NADPH oxidases known as RBOHs in plants, play a key role in plant development, biotic and abiotic stress responses, hormone signaling, and reproduction. Among the subfamily of receptor-like kinases referred to as CrRLK, there is FERONIA (FER), a regulator of RBOHs, and FER requires a GPI-modified membrane protein produced by LORELEI (LRE) or LORELEI-like proteins (LLG) to reach the plasma membrane and generate ROS. In Arabidopsis, AtLLG1 is involved in interactions with microbes as AtLLG1 interacts with the flagellin receptor (FLS2) to trigger the innate immune response, but the role of LLGs in mutualistic interactions has not been examined. In this study, two Phaseolus vulgaris LLG genes were identified, PvLLG2 that was expressed in floral tissue and PvLLG1 that was expressed in vegetative tissue. Transcripts of PvLLG1 increased during rhizobial nodule formation peaking during the early period of well-developed nodules. Also, P. vulgaris roots expressing pPvLLG1:GFP-GUS showed that this promoter was highly active during rhizobium infections, and very similar to the subcellular localization using a construct pLLG1::PvLLG1-Neon. Compared to control plants, PvLLG1 silenced plants had less superoxide (O2-) at the root tip and elongation zone, spotty hydrogen peroxide (H2O2) in the elongation root zone, and significantly reduced root hair length, nodule number and nitrogen fixation. Unlike control plants, PvLLG1 overexpressing plants showed superoxide beyond the nodule meristem, and significantly increased nodule number and nodule diameter. PvLLG1 appears to play a key role during this mutualistic interaction, possibly due to the regulation of the production and distribution of ROS in roots.
Collapse
Affiliation(s)
- Edgar Pascual-Morales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pamela Jiménez-Chávez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan E. Olivares-Grajales
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Sarmiento-López
- Departamento de Biociencias y Agrotecnología, Centro de Investigación en Química Aplicada, Saltillo, Coahuila, México
| | - Wylly R. García-Niño
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Aline López-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Janet Palacios-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ana I. Chávez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
9
|
Kenchanmane Raju SK, Lensink M, Kliebenstein DJ, Niederhuth C, Monroe G. Epigenomic divergence correlates with sequence polymorphism in Arabidopsis paralogs. THE NEW PHYTOLOGIST 2023; 240:1292-1304. [PMID: 37614211 DOI: 10.1111/nph.19227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene-body methylated (gbM), and transposon-like methylated (teM) states, which reflect divergence in gene expression. We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue-specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome-wide patterns - gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair. This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome-mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.
Collapse
Affiliation(s)
| | - Mariele Lensink
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
10
|
Tian J, Zhang J, Francis F. Large-Scale Identification and Characterization Analysis of VQ Family Genes in Plants, Especially Gymnosperms. Int J Mol Sci 2023; 24:14968. [PMID: 37834416 PMCID: PMC10573558 DOI: 10.3390/ijms241914968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
VQ motif-containing (VQ) proteins are a class of transcription regulatory cofactors widely present in plants, playing crucial roles in growth and development, stress response, and defense. Although there have been some reports on the member identification and functional research of VQ genes in some plants, there is still a lack of large-scale identification and clear graphical presentation of their basic characterization information to help us to better understand this family. Especially in gymnosperms, the VQ family genes and their evolutionary relationships have not yet been reported. In this study, we systematically identified 2469 VQ genes from 56 plant species, including bryophytes, gymnosperms, and angiosperms, and analyzed their molecular and evolutionary features. We found that amino acids are only highly conserved in the VQ domain, while other positions are relatively variable; most VQ genes encode relatively small proteins and do not have introns. The GC content in Poaceae plants is the highest (up to 70%); these VQ proteins can be divided into nine subgroups. In particular, we analyzed the molecular characteristics, chromosome distribution, duplication events, and expression levels of VQ genes in three gymnosperms: Ginkgo biloba, Taxus chinensis, and Pinus tabuliformis. In gymnosperms, VQ genes are classified into 11 groups, with highly similar motifs in each group; most VQ proteins have less than 300 amino acids and are predicted to be located in nucleus. Tandem duplication is an important driving force for the expansion of the VQ gene family, and the evolutionary processes of most VQ genes and duplication events are relatively independent; some candidate VQ genes are preliminarily screened, and they are likely to be involved in plant growth and stress and defense responses. These results provide detailed information and powerful references for further understanding and utilizing the VQ family genes in various plants.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
| |
Collapse
|
11
|
Mangena P, Mushadu PN. Colchicine-Induced Polyploidy in Leguminous Crops Enhances Morpho-Physiological Characteristics for Drought Stress Tolerance. Life (Basel) 2023; 13:1966. [PMID: 37895348 PMCID: PMC10607973 DOI: 10.3390/life13101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Legumes play a significant role in the alleviation of food insecurity, maintaining soil fertility, and achieving sustainable crop production under adverse environmental conditions. The increased demand in legume production contemplates that attention on the genetic improvement of these crops through various means such as genetic engineering and mutation breeding should take a centre stage in global agriculture. Therefore, this paper provides a succinct analysis of the currently available literature on morphological and physiological traits in polyploidised leguminous plants to counter the adverse effects of drought stress. The effects of colchicine on various morphological and physiological traits of polyploidised legumes compared to their diploid counterparts were examined. Numerous reports revealed variations in these traits, such as improved root and shoot growth, plant biomass, chloroplastidic content, protein, RNA, and DNA. The differences observed were also associated with the strong relationship between plant ploidy induction and colchicine application. Furthermore, the analysis indicated that polyploidisation remains dose-dependent and may be achievable within a shorter space of time as this antimitotic chemical interferes with chromosome separations in somatic plant cells. The efficiency of this process also depends on the advancement of treatment conditions (in vitro, in vivo, or ex vitro) and the successful regeneration of polyploidised plants for adaptation under drought stress conditions. As such, the improvement in metabolite profile and other essential growth characteristics serves as a clear indication that induced polyploidy needs to be further explored to confer resilience to environmental stress and improve crop yield under drought stress conditions in leguminous plants.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| | | |
Collapse
|
12
|
Yuan J, Song Q. Polyploidy and diploidization in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:51. [PMID: 37313224 PMCID: PMC10244302 DOI: 10.1007/s11032-023-01396-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Polyploidy is widespread and particularly common in angiosperms. The prevalence of polyploidy in the plant suggests it as a crucial driver of diversification and speciation. The paleopolyploid soybean (Glycine max) is one of the most important crops of plant protein and oil for humans and livestock. Soybean experienced two rounds of whole genome duplication around 13 and 59 million years ago. Due to the relatively slow process of post-polyploid diploidization, most genes are present in multiple copies across the soybean genome. Growing evidence suggests that polyploidization and diploidization could cause rapid and dramatic changes in genomic structure and epigenetic modifications, including gene loss, transposon amplification, and reorganization of chromatin architecture. This review is focused on recent progresses about genetic and epigenetic changes during polyploidization and diploidization of soybean and represents the challenges and potentials for application of polyploidy in soybean breeding.
Collapse
Affiliation(s)
- Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| |
Collapse
|
13
|
Zhang Y, Zhang Q, Yang X, Gu X, Chen J, Shi T. 6mA DNA Methylation on Genes in Plants Is Associated with Gene Complexity, Expression and Duplication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1949. [PMID: 37653866 PMCID: PMC10221889 DOI: 10.3390/plants12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
N6-methyladenine (6mA) DNA methylation has emerged as an important epigenetic modification in eukaryotes. Nevertheless, the evolution of the 6mA methylation of homologous genes after species and after gene duplications remains unclear in plants. To understand the evolution of 6mA methylation, we detected the genome-wide 6mA methylation patterns of four lotus plants (Nelumbo nucifera) from different geographic origins by nanopore sequencing and compared them to patterns in Arabidopsis and rice. Within lotus, the genomic distributions of 6mA sites are different from the widely studied 5mC methylation sites. Consistently, in lotus, Arabidopsis and rice, 6mA sites are enriched around transcriptional start sites, positively correlated with gene expression levels, and preferentially retained in highly and broadly expressed orthologs with longer gene lengths and more exons. Among different duplicate genes, 6mA methylation is significantly more enriched and conserved in whole-genome duplicates than in local duplicates. Overall, our study reveals the convergent patterns of 6mA methylation evolution based on both lineage and duplicate gene divergence, which underpin their potential role in gene regulatory evolution in plants.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
- Hubei Ecology Polytechnic College, Wuhan 430200, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
14
|
Kenchanmane Raju SK, Ledford M, Niederhuth CE. DNA methylation signatures of duplicate gene evolution in angiosperms. PLANT PHYSIOLOGY 2023:kiad220. [PMID: 37061825 PMCID: PMC10400039 DOI: 10.1093/plphys/kiad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomics approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole genome duplicates were typically enriched for CG-only gene-body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was characteristic of more recent single-gene duplicates. Core angiosperm gene families differentiated into those which preferentially retain paralogs and 'duplication-resistant' families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Mangena P. Impact of Polyploidy Induction for Salinity Stress Mitigation in Soybean ( Glycine max L. Merrill). PLANTS (BASEL, SWITZERLAND) 2023; 12:1356. [PMID: 36987050 PMCID: PMC10051967 DOI: 10.3390/plants12061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Polyploidy induction is recognized as one of the major evolutionary processes leading to remarkable morphological, physiological, and genetic variations in plants. Soybean (Glycine max L.), also known as soja bean or soya bean, is an annual leguminous crop of the pea family (Fabaceae) that shares a paleopolypoidy history, dating back to approximately 56.5 million years ago with other leguminous crops such as cowpea and other Glycine specific polyploids. This crop has been documented as one of the polyploid complex species among legumes whose gene evolution and resultant adaptive growth characteristics following induced polyploidization has not been fully explored. Furthermore, no successfully established in vivo or in vitro based polyploidy induction protocols have been reported to date, particularly, with the intention to develop mutant plants showing strong resistance to abiotic salinity stress. This review, therefore, describes the role of synthetic polyploid plant production in soybean for the mitigation of high soil salt stress levels and how this evolving approach could be used to further enhance the nutritional, pharmaceutical and economic industrial value of soybeans. This review also addresses the challenges involved during the polyploidization process.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Sovenga, Private Bag X1106, Polokwane 0727, South Africa
| |
Collapse
|
16
|
Junaid A, Singh NK, Gaikwad K. Evolutionary fates of gene-body methylation and its divergent association with gene expression in pigeonpea. THE PLANT GENOME 2022; 15:e20207. [PMID: 35790083 DOI: 10.1002/tpg2.20207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/07/2021] [Indexed: 06/15/2023]
Abstract
Pigeonpea (Cajanus cajan L. Huth) is an agronomically important legume cultivated worldwide. In this study, we extensively analyzed gene-body methylation (GbM) patterns in pigeonpea. We found a bimodal distribution of CG and CHG methylation patterns. GbM features- slow evolution rate and increased length remained conserved. Genes with moderate CG body methylation showed highest expression where as highly-methylated genes showed lowest expression. Transposable element (TE)-related genes were methylated in multiple contexts and hence classified as C-methylated genes. A low expression among C-methylated genes was associated with transposons insertion in gene-body and upstream regulatory regions. The CG methylation patterns were found to be conserved in orthologs compared with non-CG methylation. By comparing methylation patterns between differentially methylated regions (DMRs) of the three genotypes, we found that variably methylated marks are less likely to target evolutionary conserved sequences. Finally, our analysis showed enrichment of nitrogen-related genes in GbM orthologs of legumes, which could be promising candidates for generating epialleles for crop improvement.
Collapse
Affiliation(s)
- Alim Junaid
- National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
17
|
Tirnaz S, Miyaji N, Takuno S, Bayer PE, Shimizu M, Akter MA, Edwards D, Batley J, Fujimoto R. Whole-Genome DNA Methylation Analysis in Brassica rapa subsp. perviridis in Response to Albugo candida Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:849358. [PMID: 35812966 PMCID: PMC9261781 DOI: 10.3389/fpls.2022.849358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is an epigenetic mark associated with several mechanisms in plants including immunity mechanisms. However, little is known about the regulatory role of DNA methylation in the resistance response of Brassica species against fungal diseases. White rust, caused by the fungus Albugo candida, is one of the most widespread and destructive diseases of all the cultivated Brassica species, particularly Brassica rapa L. and Brassica juncea (L.) Czern and Coss. Here, we investigate whole-genome DNA methylation modifications of B. rapa subsp. perviridis in response to white rust. As a result, 233 and 275 differentially methylated regions (DMRs) in the susceptible cultivar "Misugi" and the resistant cultivar "Nanane" were identified, respectively. In both cultivars, more than half of the DMRs were associated with genes (DMR-genes). Gene expression analysis showed that 13 of these genes were also differentially expressed between control and infected samples. Gene ontology enrichment analysis of DMR genes revealed their involvement in various biological processes including defense mechanisms. DMRs were unevenly distributed around genes in susceptible and resistant cultivars. In "Misugi," DMRs tended to be located within genes, while in "Nanane," DMRs tended to be located up and downstream of the genes. However, CG DMRs were predominantly located within genes in both cultivars. Transposable elements also showed association with all three sequence contexts of DMRs but predominantly with CHG and CHH DMRs in both cultivars. Our findings indicate the occurrence of DNA methylation modifications in B. rapa in response to white rust infection and suggest a potential regulatory role of DNA methylation modification in defense mechanisms which could be exploited to improve disease resistance.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Mst. Arjina Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
18
|
Garrido-Gala J, Higuera JJ, Rodríguez-Franco A, Muñoz-Blanco J, Amil-Ruiz F, Caballero JL. A Comprehensive Study of the WRKY Transcription Factor Family in Strawberry. PLANTS 2022; 11:plants11121585. [PMID: 35736736 PMCID: PMC9229891 DOI: 10.3390/plants11121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
WRKY transcription factors play critical roles in plant growth and development or stress responses. Using up-to-date genomic data, a total of 64 and 257 WRKY genes have been identified in the diploid woodland strawberry, Fragaria vesca, and the more complex allo-octoploid commercial strawberry, Fragaria × ananassa cv. Camarosa, respectively. The completeness of the new genomes and annotations has enabled us to perform a more detailed evolutionary and functional study of the strawberry WRKY family members, particularly in the case of the cultivated hybrid, in which homoeologous and paralogous FaWRKY genes have been characterized. Analysis of the available expression profiles has revealed that many strawberry WRKY genes show preferential or tissue-specific expression. Furthermore, significant differential expression of several FaWRKY genes has been clearly detected in fruit receptacles and achenes during the ripening process and pathogen challenged, supporting a precise functional role of these strawberry genes in such processes. Further, an extensive analysis of predicted development, stress and hormone-responsive cis-acting elements in the strawberry WRKY family is shown. Our results provide a deeper and more comprehensive knowledge of the WRKY gene family in strawberry.
Collapse
Affiliation(s)
| | - José-Javier Higuera
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
| | - Francisco Amil-Ruiz
- Unidad de Bioinformática, Servicio Central de Apoyo a la Investigación (SCAI), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
- Correspondence:
| |
Collapse
|
19
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Singh D, Chaudhary P, Taunk J, Singh CK, Singh D, Tomar RSS, Aski M, Konjengbam NS, Raje RS, Singh S, Sengar RS, Yadav RK, Pal M. Fab Advances in Fabaceae for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence. Int J Mol Sci 2021; 22:10535. [PMID: 34638885 PMCID: PMC8509049 DOI: 10.3390/ijms221910535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250001, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Imphal 793103, India
| | - Ranjeet Sharan Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjay Singh
- ICAR- National Institute of Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut 250001, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
21
|
Yao N, Schmitz RJ, Johannes F. Epimutations Define a Fast-Ticking Molecular Clock in Plants. Trends Genet 2021; 37:699-710. [PMID: 34016450 PMCID: PMC8282728 DOI: 10.1016/j.tig.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Stochastic gains and losses of DNA methylation at CG dinucleotides are a frequent occurrence in plants. These spontaneous 'epimutations' occur at a rate that is 100 000 times higher than the genetic mutation rate, are effectively neutral at the genome-wide scale, and are stably inherited across mitotic and meiotic cell divisions. Mathematical models have been extraordinarily successful at describing how epimutations accumulate in plant genomes over time, making this process one of the most predictable epigenetic phenomena to date. Here, we propose that their high rate and effective neutrality make epimutations a powerful new molecular clock for timing evolutionary events of the recent past and for age dating of long-lived perennials such as trees.
Collapse
Affiliation(s)
- Nan Yao
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, Garching, Germany; Population Epigenetics and Epigenomics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
22
|
Wang L, Jia G, Jiang X, Cao S, Chen ZJ, Song Q. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. THE PLANT CELL 2021; 33:1430-1446. [PMID: 33730165 PMCID: PMC8254482 DOI: 10.1093/plcell/koab081] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 05/04/2023]
Abstract
Polyploidy or whole-genome duplication (WGD) is widespread in plants and is a key driver of evolution and speciation, accompanied by rapid and dynamic changes in genomic structure and gene expression. The 3D structure of the genome is intricately linked to gene expression, but its role in transcription regulation following polyploidy and domestication remains unclear. Here, we generated high-resolution (∼2 kb) Hi-C maps for cultivated soybean (Glycine max), wild soybean (Glycine soja), and common bean (Phaseolus vulgaris). We found polyploidization in soybean may induce architecture changes of topologically associating domains and subsequent diploidization led to chromatin topology alteration around chromosome-rearrangement sites. Compared with single-copy and small-scale duplicated genes, WGD genes displayed more long-range chromosomal interactions and were coupled with higher levels of gene expression and chromatin accessibilities but void of DNA methylation. Interestingly, chromatin loop reorganization was involved in expression divergence of the genes during soybean domestication. Genes with chromatin loops were under stronger artificial selection than genes without loops. These findings provide insights into the roles of dynamic chromatin structures on gene expression during polyploidization, diploidization, and domestication of soybean.
Collapse
Affiliation(s)
- Longfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Guanghong Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xinyu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shuai Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
23
|
Ritter EJ, Niederhuth CE. Intertwined evolution of plant epigenomes and genomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101990. [PMID: 33445143 DOI: 10.1016/j.pbi.2020.101990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is found across eukaryotes; however, plants have evolved patterns and pathways of DNA methylation that are distinct from animals and fungi. DNA methylation shapes the evolution of genomes through its direct roles in transposon silencing, gene expression, genome stability, and its impact on mutation rates. In return the diversity of DNA methylation across species is shaped by genome sequence evolution. Extensive diversification of key DNA methylation pathways has continued in plants through gene duplication and loss. Meanwhile, frequent movement of transposons has altered local DNA methylation patterns and the genes affected. Only recently has the diversity and evolutionary history of plant DNA methylation become evident with the availability of increasing genomic and epigenomic data. However, much remains unresolved regarding the evolutionary forces that have shaped the dynamics of the complex and intertwined history of plant genome and epigenome evolution.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; AgBioResearch, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Li MR, Ding N, Lu T, Zhao J, Wang ZH, Jiang P, Liu ST, Wang XF, Liu B, Li LF. Evolutionary Contribution of Duplicated Genes to Genome Evolution in the Ginseng Species Complex. Genome Biol Evol 2021; 13:6169528. [PMID: 33713106 PMCID: PMC8103499 DOI: 10.1093/gbe/evab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 11/22/2022] Open
Abstract
Genes duplicated by whole genome duplication (WGD) and small-scale duplication (SSD) have played important roles in adaptive evolution of all flowering plants. However, it still remains underinvestigated how the distinct models of duplication events and their contending evolutionary patterns have shaped the genome and epigenomes of extant plant species. In this study, we investigated the contribution of the WGD- and SSD-derived duplicate genes to the genome evolution of one diploid and three closely related allotetraploid Panax species based on genome, methylome, and proteome data sets. Our genome-wide comparative analyses revealed that although the ginseng species complex was recently diverged, they have evolved distinct overall patterns of nucleotide variation, cytosine methylation, and protein-level expression. In particular, genetic and epigenetic asymmetries observed in the recent WGD-derived genes are largely consistent across the ginseng species complex. In addition, our results revealed that gene duplicates generated by ancient WGD and SSD mechanisms exhibited distinct evolutionary patterns. We found the ancient WGD-derived genes (i.e., ancient collinear gene) are genetically more conserved and hypomethylated at the cytosine sites. In contrast, some of the SSD-derived genes (i.e., dispersal duplicated gene) showed hypermethylation and high variance in nucleotide variation pattern. Functional enrichment analyses of the duplicated genes indicated that adaptation-related traits (i.e., photosynthesis) created during the distant ancient WGDs are further strengthened by both the more recent WGD and SSD. Together, our findings suggest that different types of duplicated genes may have played distinct but relaying evolutionary roles in the polyploidization and speciation processes in the ginseng species complex.
Collapse
Affiliation(s)
- Ming-Rui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tianyuan Lu
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Si-Tong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Xin-Feng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Brown AV, Conners SI, Huang W, Wilkey AP, Grant D, Weeks NT, Cannon SB, Graham MA, Nelson RT. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 2021; 49:D1496-D1501. [PMID: 33264401 PMCID: PMC7778910 DOI: 10.1093/nar/gkaa1107] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/18/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023] Open
Abstract
SoyBase, a USDA genetic and genomics database, holds professionally curated soybean genetic and genomic data, which is integrated and made accessible to researchers and breeders. The site holds several reference genome assemblies, as well as genetic maps, thousands of mapped traits, expression and epigenetic data, pedigree information, and extensive variant and genotyping data sets. SoyBase displays include genetic, genomic, and epigenetic maps of the soybean genome. Gene expression data is presented in the genome viewer as heat maps and pictorial and tabular displays in gene report pages. Millions of sequence variants have been added, representing variations across various collections of cultivars. This variant data is explorable using new interactive tools to visualize the distribution of those variants across the genome, between selected accessions. SoyBase holds several reference-quality soybean genome assemblies, accessible via various query tools and browsers, including a new visualization system for exploring the soybean pan-genome. SoyBase also serves as a nexus of announcements pertinent to the greater soybean research community. The database also includes a soybean-specific anatomic and biochemical trait ontology. The database can be accessed at https://soybase.org.
Collapse
Affiliation(s)
- Anne V Brown
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Shawn I Conners
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Wei Huang
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Andrew P Wilkey
- ORISE Fellow USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - David Grant
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Nathan T Weeks
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Steven B Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Michelle A Graham
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Rex T Nelson
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| |
Collapse
|
26
|
Teshima T, Yamada N, Yokota Y, Sayama T, Inagaki K, Koeduka T, Uefune M, Ishimoto M, Matsui K. Suppressed Methionine γ-Lyase Expression Causes Hyperaccumulation of S-Methylmethionine in Soybean Seeds. PLANT PHYSIOLOGY 2020; 183:943-956. [PMID: 32345769 PMCID: PMC7333717 DOI: 10.1104/pp.20.00254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/16/2020] [Indexed: 05/31/2023]
Abstract
Several soybean (Glycine max) germplasms, such as Nishiyamahitashi 98-5 (NH), have an intense seaweed-like flavor after cooking because of their high seed S-methylmethionine (SMM) content. In this study, we compared the amounts of amino acids in the phloem sap, leaves, pods, and seeds between NH and the common soybean cultivar Fukuyutaka. This revealed a comparably higher SMM content alongside a higher free Met content in NH seeds, suggesting that the SMM-hyperaccumulation phenotype of NH soybean was related to Met metabolism in seeds. To investigate the molecular mechanism behind SMM hyperaccumulation, we examined the phenotype-associated gene locus in NH plants. Analyses of the quantitative trait loci in segregated offspring of the cross between NH and the common soybean cultivar Williams 82 indicated that one locus on chromosome 10 explains 71.4% of SMM hyperaccumulation. Subsequent fine-mapping revealed that a transposon insertion into the intron of a gene, Glyma.10g172700, is associated with the SMM-hyperaccumulation phenotype. The Glyma.10g172700-encoded recombinant protein showed Met-γ-lyase (MGL) activity in vitro, and the transposon-insertion mutation in NH efficiently suppressed Glyma.10g172700 expression in developing seeds. Exogenous administration of Met to sections of developing soybean seeds resulted in transient increases in Met levels, followed by continuous increases in SMM concentrations, which was likely caused by Met methyltransferase activity in the seeds. Accordingly, we propose that the SMM-hyperaccumulation phenotype is caused by suppressed MGL expression in developing soybean seeds, resulting in transient accumulation of Met, which is converted into SMM to avoid the harmful effects caused by excess free Met.
Collapse
Affiliation(s)
- Takuya Teshima
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naohiro Yamada
- Nagano Vegetable and Ornamental Crops Experiment Station, Shiojiri, Nagano 399-6461, Japan
| | - Yuko Yokota
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Takashi Sayama
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama700-8530, Japan
| | - Takao Koeduka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Masayoshi Uefune
- Department of Agrobiological Resources, Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Kenji Matsui
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
27
|
Malovichko YV, Shtark OY, Vasileva EN, Nizhnikov AA, Antonets KS. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea ( Pisum sativum L.). Cells 2020; 9:E779. [PMID: 32210065 PMCID: PMC7140803 DOI: 10.3390/cells9030779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
The garden pea (Pisum sativum L.) is a legume crop of immense economic value. Extensive breeding has led to the emergence of numerous pea varieties, of which some are distinguished by accelerated development in various stages of ontogenesis. One such trait is rapid seed maturation, which, despite novel insights into the genetic control of seed development in legumes, remains poorly studied. This article presents an attempt to dissect mechanisms of early maturation in the pea line Sprint-2 by means of whole transcriptome RNA sequencing in two developmental stages. By using a de novo assembly approach, we have obtained a reference transcriptome of 25,756 non-redundant entries expressed in pea seeds at either 10 or 20 days after pollination. Differential expression in Sprint-2 seeds has affected 13,056 transcripts. A comparison of the two pea lines with a common maturation rate demonstrates that while at 10 days after pollination, Sprint-2 seeds show development retardation linked to intensive photosynthesis, morphogenesis, and cell division, and those at 20 days show a rapid onset of desiccation marked by the cessation of translation and cell anabolism and accumulation of dehydration-protective and -storage moieties. Further inspection of certain transcript functional categories, including the chromatin constituent, transcription regulation, protein turnover, and hormonal regulation, has revealed transcriptomic trends unique to specific stages and cultivars. Among other remarkable features, Sprint-2 demonstrated an enhanced expression of transposable element-associated open reading frames and an altered expression of major maturation regulators and DNA methyltransferase genes. To the best of our knowledge, this is the first comparative transcriptomic study in which the issue of the seed maturation rate is addressed.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
| | - Ekaterina N. Vasileva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., 3, Pushkin, 196608 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
28
|
Wu X, Zhou Y, Yao D, Iqbal S, Gao Z, Zhang Z. DNA methylation of LDOX gene contributes to the floral colour variegation in peach. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153116. [PMID: 31981816 DOI: 10.1016/j.jplph.2020.153116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Peach is an important fruit and ornamental plant around the globe. Variegation in flowers often captures consumers' attention, and variegated plants are of high ornamental value. To determine the relationship between DNA methylation and phenotype, we obtained the first single-nucleotide resolution DNA methylation of variegation cultivars in peach through bisulfite sequencing. In this study, a similar methylation rate of 12.90 % in variegated flower buds (VF) and 11.96 % in red flower buds (RF) was determined. The methyl-CG (mCG) was the main context in both samples. We identified 503 differentially methylated regions (DMRs) in all chromosomes. These DMRs were focused on 96 genes and 156 promoters. Associated with the transcriptional and proteome analysis, 106 differently expressed genes and 52 different proteins had varying degrees of methylation. Silent genes exhibited higher methylation levels than expressed genes. The methylation state of the leucoanthocyanidin dioxygenase (LDOX) promoter in VF was higher than RF at flower stages 2 (FS2) based on bisulfite sequencing PCR (BSP) results. Moreover, further experiments showed LDOX gene expression and enzyme activity in RF was higher than VF. The DNA methylation trend consisted of the gene expression and flower colour phenotype. Several cis-acting regulatory elements on BSP sequences were involved in phytohormones, transcription factors, and light responsiveness, which could affect gene expression. The higher level of LDOX gene expression promoted synthesis of colourful anthocyanidins, which caused red spots on the petal. Together, this study identified the context and level of methylation at each site with bisulfite sequencing (BS). These results are helpful in uncovering the mechanism of variegated flower petal formation in peach.
Collapse
Affiliation(s)
- Xinxin Wu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing 210014, China.
| | - Yong Zhou
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Dan Yao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
29
|
Whole-Genome DNA Methylation Associated With Differentially Expressed Genes Regulated Anthocyanin Biosynthesis Within Flower Color Chimera of Ornamental Tree Prunus mume. FORESTS 2020. [DOI: 10.3390/f11010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the best-studied epigenetic modifications involved in many biological processes. However, little is known about the epigenetic mechanism for flower color chimera of Prunus mume (Japanese apricot, mei). Using bisulfate sequencing and RNA sequencing, we analyzed the white (FBW) and red (FBR) petals collected from an individual tree of Japanese apricot cv. ‘Fuban Tiaozhi’ mei to reveal the different changes in methylation patterns associated with gene expression leading to significant difference in anthocyanins accumulation of FBW (0.012 ± 0.005 mg/g) and FBR (0.078 ± 0.013 mg/g). It was found that gene expression levels were positively correlated with DNA methylation levels within gene-bodies of FBW and FBR genomes; however, negative correlations between gene expression and DNA methylation levels were detected within promoter domains. In general, the methylation level within methylome of FBW was higher; and in total, 4,618 differentially methylated regions (DMRs) and 1,212 differentially expressed genes (DEGs) were detected from FBW vs. FBR. We also identified 82 DMR-associated DEGs, and 13 of them, including PmBAHD, PmCYP450, and PmABC, were playing critical roles in phenylalanine metabolism pathway, glycosyltransferase activity, and ABC transporter. The evidence exhibited DNA methylation may regulate gene expression resulting in flower color chimera of Japanese apricot.
Collapse
|
30
|
Kenchanmane Raju SK, Ritter EJ, Niederhuth CE. Establishment, maintenance, and biological roles of non-CG methylation in plants. Essays Biochem 2019; 63:743-755. [PMID: 31652316 PMCID: PMC6923318 DOI: 10.1042/ebc20190032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Cytosine DNA methylation is prevalent throughout eukaryotes and prokaryotes. While most commonly thought of as being localized to dinucleotide CpG sites, non-CG sites can also be modified. Such non-CG methylation is widespread in plants, occurring at trinucleotide CHG and CHH (H = A, T, or C) sequence contexts. The prevalence of non-CG methylation in plants is due to the plant-specific CHROMOMETHYLASE (CMT) and RNA-directed DNA Methylation (RdDM) pathways. These pathways have evolved through multiple rounds of gene duplication and gene loss, generating epigenomic variation both within and between species. They regulate both transposable elements and genes, ensure genome integrity, and ultimately influence development and environmental responses. In these capacities, non-CG methylation influence and shape plant genomes.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
- AgBioResearch, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
31
|
Tirnaz S, Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. TRENDS IN PLANT SCIENCE 2019; 24:1137-1150. [PMID: 31604599 DOI: 10.1016/j.tplants.2019.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
Crop diseases, in conjunction with climate change, are a major threat to global crop production. DNA methylation is an epigenetic mark and is involved in plants' biological processes, including development, stress adaptation, and genome evolution. By providing a new source of variation, DNA methylation introduces novel direction to both scientists and breeders with its potential in disease resistance enhancement. Here, we discuss the impact of pathogen-induced DNA methylation modifications on a host's transcriptome reprogramming and genome stability, as part of the plant's defense mechanisms. We also highlight the knowledge gaps that need to be investigated for understanding the entire role of DNA methylation in plant pathogen interactions. This will ultimately assist breeders toward improving resistance and decreasing yield losses.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
32
|
Ji L, Mathioni SM, Johnson S, Tucker D, Bewick AJ, Do Kim K, Daron J, Slotkin RK, Jackson SA, Parrott WA, Meyers BC, Schmitz RJ. Genome-Wide Reinforcement of DNA Methylation Occurs during Somatic Embryogenesis in Soybean. THE PLANT CELL 2019; 31:2315-2331. [PMID: 31439802 PMCID: PMC6790092 DOI: 10.1105/tpc.19.00255] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 05/06/2023]
Abstract
Somatic embryogenesis is an important tissue culture technique that sometimes leads to phenotypic variation via genetic and/or epigenetic changes. To understand the genomic and epigenomic impacts of somatic embryogenesis, we characterized soybean (Glycine max) epigenomes sampled from embryos at 10 different stages ranging from 6 weeks to 13 years of continuous culture. We identified genome-wide increases in DNA methylation from cultured samples, especially at CHH sites. The hypermethylation almost exclusively occurred in regions previously possessing non-CG methylation and was accompanied by increases in the expression of genes encoding the RNA-directed DNA methylation (RdDM) machinery. The epigenomic changes were similar between somatic and zygotic embryogenesis. Following the initial global wave of hypermethylation, rare decay events of maintenance methylation were observed, and the extent of the decay increased with time in culture. These losses in DNA methylation were accompanied by downregulation of genes encoding the RdDM machinery and transcriptome reprogramming reminiscent of transcriptomes during late-stage seed development. These results reveal a process for reinforcing already silenced regions to maintain genome integrity during somatic embryogenesis over the short term, which eventually decays at certain loci over longer time scales.
Collapse
Affiliation(s)
- Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | | | - Sarah Johnson
- Institute for Plant Breeding Genetics and Genomics, University of Georgia, Athens, Georgia 30602
| | - Donna Tucker
- Institute for Plant Breeding Genetics and Genomics, University of Georgia, Athens, Georgia 30602
| | - Adam J Bewick
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602
| | - Josquin Daron
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602
| | - Wayne A Parrott
- Institute for Plant Breeding Genetics and Genomics, University of Georgia, Athens, Georgia 30602
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 63132
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
33
|
Li R, Liang F, Li M, Zou D, Sun S, Zhao Y, Zhao W, Bao Y, Xiao J, Zhang Z. MethBank 3.0: a database of DNA methylomes across a variety of species. Nucleic Acids Res 2019; 46:D288-D295. [PMID: 29161430 PMCID: PMC5753180 DOI: 10.1093/nar/gkx1139] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
MethBank (http://bigd.big.ac.cn/methbank) is a database that integrates high-quality DNA methylomes across a variety of species and provides an interactive browser for visualization of methylation data. Here, we present an updated implementation of MethBank (version 3.0) by incorporating more DNA methylomes from multiple species and equipping with more enhanced functionalities for data annotation and more friendly web interfaces for data presentation, search and visualization. MethBank 3.0 features large-scale integration of high-quality methylomes, involving 34 consensus reference methylomes derived from a large number of human samples, 336 single-base resolution methylomes from different developmental stages and/or tissues of five plants, and 18 single-base resolution methylomes from gametes and early embryos at multiple stages of two animals. Additionally, it is enhanced by improving the functionalities for data annotation, which accordingly enables systematic identification of methylation sites closely associated with age, sites with constant methylation levels across different ages, differentially methylated promoters, age-specific differentially methylated cytosines/regions, and methylated CpG islands. Moreover, MethBank provides tools to estimate human methylation age online and to identify differentially methylated promoters, respectively. Taken together, MethBank is upgraded with significant improvements and advances over the previous version, which is of great help for deciphering DNA methylation regulatory mechanisms for epigenetic studies.
Collapse
Affiliation(s)
- Rujiao Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Liang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengwei Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shixiang Sun
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbing Zhao
- Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenming Zhao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Xiao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
34
|
Kumar J, Choudhary AK, Gupta DS, Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int J Mol Sci 2019; 20:E2971. [PMID: 31216660 PMCID: PMC6627977 DOI: 10.3390/ijms20122971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pulses are the main source of protein and minerals in the vegetarian diet. These are primarily cultivated on marginal lands with few inputs in several resource-poor countries of the world, including several in South Asia. Their cultivation in resource-scarce conditions exposes them to various abiotic and biotic stresses, leading to significant yield losses. Furthermore, climate change due to global warming has increased their vulnerability to emerging new insect pests and abiotic stresses that can become even more serious in the coming years. The changing climate scenario has made it more challenging to breed and develop climate-resilient smart pulses. Although pulses are climate smart, as they simultaneously adapt to and mitigate the effects of climate change, their narrow genetic diversity has always been a major constraint to their improvement for adaptability. However, existing genetic diversity still provides opportunities to exploit novel attributes for developing climate-resilient cultivars. The mining and exploitation of adaptive traits imparting tolerance/resistance to climate-smart pulses can be accelerated further by using cutting-edge approaches of biotechnology such as transgenics, genome editing, and epigenetics. This review discusses various classical and molecular approaches and strategies to exploit adaptive traits for breeding climate-smart pulses.
Collapse
Affiliation(s)
- Jitendra Kumar
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | | | - Debjyoti Sen Gupta
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299, Rabat-Institute, Rabat, Morocco.
| |
Collapse
|
35
|
Fernie AR, Yan J. De Novo Domestication: An Alternative Route toward New Crops for the Future. MOLECULAR PLANT 2019; 12:615-631. [PMID: 30999078 DOI: 10.1016/j.molp.2019.03.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Current global agricultural production must feed over 7 billion people. However, productivity varies greatly across the globe and is under threat from both increased competitions for land and climate change and associated environmental deterioration. Moreover, the increase in human population size and dietary changes are putting an ever greater burden on agriculture. The majority of this burden is met by the cultivation of a very small number of species, largely in locations that differ from their origin of domestication. Recent technological advances have raised the possibility of de novo domestication of wild plants as a viable solution for designing ideal crops while maintaining food security and a more sustainable low-input agriculture. Here we discuss how the discovery of multiple key domestication genes alongside the development of technologies for accurate manipulation of several target genes simultaneously renders de novo domestication a route toward crops for the future.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Wang J, Li X, Do Kim K, Scanlon MJ, Jackson SA, Springer NM, Yu J. Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean. Genome Biol 2019; 20:74. [PMID: 31018867 PMCID: PMC6482504 DOI: 10.1186/s13059-019-1683-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Plant domestication provides a unique model to study genome evolution. Many studies have been conducted to examine genes, genetic diversity, genome structure, and epigenome changes associated with domestication. Interestingly, domesticated accessions have significantly higher [A] and [T] values across genome-wide polymorphic sites than accessions sampled from the corresponding progenitor species. However, the relative contributions of different genomic regions to this genome divergence pattern and underlying mechanisms have not been well characterized. RESULTS Here, we investigate the genome-wide base-composition patterns by analyzing millions of SNPs segregating among 100 accessions from a teosinte-maize comparison set and among 302 accessions from a wild-domesticated soybean comparison set. We show that non-genic part of the genome has a greater contribution than genic SNPs to the [AT]-increase observed between wild and domesticated accessions in maize and soybean. The separation between wild and domesticated accessions in [AT] values is significantly enlarged in non-genic and pericentromeric regions. Motif frequency and sequence context analyses show the motifs (PyCG) related to solar-UV signature are enriched in these regions, particularly when they are methylated. Additional analysis using population-private SNPs also implicates the role of these motifs in relatively recent mutations. With base-composition across polymorphic sites as a genome phenotype, genome scans identify a set of putative candidate genes involved in UV damage repair pathways. CONCLUSIONS The [AT]-increase is more pronounced in genomic regions that are non-genic, pericentromeric, transposable elements; methylated; and with low recombination. Our findings establish important links among UV radiation, mutation, DNA repair, methylation, and genome evolution.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Michael J. Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
37
|
Wang L, Shi Y, Chang X, Jing S, Zhang Q, You C, Yuan H, Wang H. DNA methylome analysis provides evidence that the expansion of the tea genome is linked to TE bursts. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:826-835. [PMID: 30256509 PMCID: PMC6419580 DOI: 10.1111/pbi.13018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 05/12/2023]
Abstract
DNA methylation is essential for gene regulation, imprinting and silencing of transposable elements (TEs). Although bursts of transposable elements are common in many plant lineages, how plant DNA methylation is related to transposon bursts remains unclear. Here we explore the landscape of DNA methylation of tea, a species thought to have experienced a recent transposon burst event. This species possesses more transposable elements than any other sequenced asterids (potato, tomato, coffee, pepper and tobacco). The overall average DNA methylation levels were found to differ among the tea, potato and tomato genomes, and methylation at CHG sequence sites was found to be significantly higher in tea than that in potato or tomato. Moreover, the abundant TEs resulting from burst events not only resulted in tea developing a very large genome size, but also affected many genes involved in importantly biological processes, including caffeine, theanine and flavonoid metabolic pathway genes. In addition, recently transposed TEs were more heavily methylated than ancient ones, implying that DNA methylation is proportionate to the degree of TE silencing, especially on recent active ones. Taken together, our results show that DNA methylation regulates transposon silencing and may play a role in genome size expansion.
Collapse
Affiliation(s)
- Lei Wang
- Henan Key Laboratory of Tea Plant BiologyCollege of Life ScienceXinyang Normal UniversityXinyangChina
| | - Yan Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaojun Chang
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shengli Jing
- Henan Key Laboratory of Tea Plant BiologyCollege of Life ScienceXinyang Normal UniversityXinyangChina
| | - Qunjie Zhang
- Agrobiological Gene Research CenterGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Chenjiang You
- Guangdong Provincial Key Laboratory of Plant EpigeneticsCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Department of Botany and Plant SciencesInstitute of Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Hongyu Yuan
- Henan Key Laboratory of Tea Plant BiologyCollege of Life ScienceXinyang Normal UniversityXinyangChina
| | - Haifeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
38
|
Zhang H, Ali A, Hou F, Wu T, Guo D, Zeng X, Wang F, Zhao H, Chen X, Xu P, Wu X. Effects of ploidy variation on promoter DNA methylation and gene expression in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2018; 18:314. [PMID: 30497392 PMCID: PMC6267922 DOI: 10.1186/s12870-018-1553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.
Collapse
Affiliation(s)
- Hongyu Zhang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Asif Ali
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Feixue Hou
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Tingkai Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Daiming Guo
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiufeng Zeng
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Fangfang Wang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Huixia Zhao
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiaoqiong Chen
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Peizhou Xu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xianjun Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| |
Collapse
|
39
|
Zhao T, Tao X, Feng S, Wang L, Hong H, Ma W, Shang G, Guo S, He Y, Zhou B, Guan X. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biol 2018; 19:195. [PMID: 30419941 PMCID: PMC6233382 DOI: 10.1186/s13059-018-1574-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interspecific hybridization and whole genome duplication are driving forces of genomic and organism diversification. But the effect of interspecific hybridization and whole genome duplication on the non-coding portion of the genome in particular remains largely unknown. In this study, we examine the profile of long non-coding RNAs (lncRNAs), comparing them with that of coding genes in allotetraploid cotton (Gossypium hirsutum), its putative diploid ancestors (G. arboreum; G. raimondii), and an F1 hybrid (G. arboreum × G. raimondii, AD). RESULTS We find that most lncRNAs (80%) that were allelic expressed in the allotetraploid genome. Moreover, the genome shock of hybridization reprograms the non-coding transcriptome in the F1 hybrid. Interestingly, the activated lncRNAs are predominantly transcribed from demethylated TE regions, especially from long interspersed nuclear elements (LINEs). The DNA methylation dynamics in the interspecies hybridization are predominantly associated with the drastic expression variation of lncRNAs. Similar trends of lncRNA bursting are also observed in the progress of polyploidization. Additionally, we find that a representative novel lncRNA XLOC_409583 activated after polyploidization from a LINE in the A subgenome of allotetraploid cotton was involved in control of cotton seedling height. CONCLUSION Our results reveal that the processes of hybridization and polyploidization enable the neofunctionalization of lncRNA transcripts, acting as important sources of increased plasticity for plants.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 210058, Hangzhou, China
| | - Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 210058, Hangzhou, China
| | - Shouli Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luyao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Hong
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Ma
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 210058, Hangzhou, China
| | - Guandong Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shisong Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuxin He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 210058, Hangzhou, China.
| |
Collapse
|
40
|
Xu C, Nadon BD, Kim KD, Jackson SA. Genetic and epigenetic divergence of duplicate genes in two legume species. PLANT, CELL & ENVIRONMENT 2018; 41:2033-2044. [PMID: 29314059 DOI: 10.1111/pce.13127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/04/2017] [Indexed: 05/20/2023]
Abstract
Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a polyploidy event ~59 MYA, followed by a Glycine-specific whole genome duplication (WGD) ~8-13 MYA. Duplicated genes were classified into five categories: singletons, dispersed, proximal, tandem, or WGD/segmental and found strong correlations between gene category and functional annotation. Photosynthesis and transcriptional regulation-related Gene Ontology terms were significantly over-represented in singletons and WGD genes, respectively, aligning with the gene balance hypothesis. We found that the divergence of gene expression and DNA methylation between WGD-derived paralogs increased with age and that WGD genes, initially retained via dosage constraints, subsequently underwent expression divergence, associated with other factors such as DNA methylation. Genes derived from different modes of duplication differed in breadth, level, and specificity of expression in both species. Orthologous genes and ungrouped genes (genes not in an ortholog group) differed in expression patterns. The protein divergence rates of WGD paralog pairs containing an ungrouped gene were higher than those for which both copies had orthologs. We propose that many ungrouped genes are derived from divergent and redundant gene copies, concordant with the neofunctionalization hypothesis. Tandemly duplicated genes were distinct from WGD-derived genes, indicating that mode of duplication contributes to the evolutionary fate of duplicated genes.
Collapse
Affiliation(s)
- Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Brian D Nadon
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| |
Collapse
|
41
|
Ma KF, Zhang QX, Cheng TR, Yan XL, Pan HT, Wang J. Substantial Epigenetic Variation Causing Flower Color Chimerism in the Ornamental Tree Prunus mume Revealed by Single Base Resolution Methylome Detection and Transcriptome Sequencing. Int J Mol Sci 2018; 19:E2315. [PMID: 30087265 PMCID: PMC6121637 DOI: 10.3390/ijms19082315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/03/2023] Open
Abstract
Epigenetic changes caused by methylcytosine modification participate in gene regulation and transposable element (TE) repression, resulting in phenotypic variation. Although the effects of DNA methylation and TE repression on flower, fruit, seed coat, and leaf pigmentation have been investigated, little is known about the relationship between methylation and flower color chimerism. In this study, we used a comparative methylomic⁻transcriptomic approach to explore the molecular mechanism responsible for chimeric flowers in Prunus mume "Danban Tiaozhi". High-performance liquid chromatography-electrospray ionization mass spectrometry revealed that the variation in white (WT) and red (RT) petal tissues in this species is directly due to the accumulation of anthocyanins, i.e., cyanidin 3,5-O-diglucoside, cyanidin 3-O-glucoside, and peonidin 3-O-glucoside. We next mapped the first-ever generated methylomes of P. mume, and found that 11.29⁻14.83% of the genomic cytosine sites were methylated. We also determined that gene expression was negatively correlated with methylcytosine level in general, and uncovered significant epigenetic variation between WT and RT. Furthermore, we detected differentially methylated regions (DMRs) and DMR-related genes between WT and RT, and concluded that many of these genes, including differentially expressed genes (DEGs) and transcription factor genes, are critical participants in the anthocyanin regulatory pathway. Importantly, some of the associated DEGs harbored TE insertions that were also modified by methylcytosine. The above evidence suggest that flower color chimerism in P. mume is induced by the DNA methylation of critical genes and TEs.
Collapse
Affiliation(s)
- Kai-Feng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qi-Xiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| | - Tang-Ren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Xiao-Lan Yan
- Mei Research Center of China, Wuhan 430074, China.
| | - Hui-Tang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
42
|
Bhatia H, Khemka N, Jain M, Garg R. Genome-wide bisulphite-sequencing reveals organ-specific methylation patterns in chickpea. Sci Rep 2018; 8:9704. [PMID: 29946142 PMCID: PMC6018830 DOI: 10.1038/s41598-018-27979-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is widely known to regulate gene expression in eukaryotes. Here, we unraveled DNA methylation patterns in cultivated chickpea to understand the regulation of gene expression in different organs. We analyzed the methylation pattern in leaf tissue of wild chickpea too, and compared it with cultivated chickpea. Our analysis indicated abundant CG methylation within gene-body and CHH methylation in intergenic regions of the chickpea genome in all the organs examined. Analysis of differentially methylated regions (DMRs) demonstrated a higher number of CG context DMRs in wild chickpea and CHH context DMRs in cultivated chickpea. We observed increased preponderance of hypermethylated DMRs in the promoter regions and hypomethylated DMRs in the genic regions in cultivated chickpea. Genomic location and context of the DMRs correlated well with expression of proximal genes. Our results put forth a positive correlation of promoter hypermethylation with increased transcript abundance via identification of DMR-associated genes involved in flower development in cultivated chickpea. The atypical correlation observed between promoter hypermethylation and increased transcript abundance might be dependent on 24-nt small RNAs and transcription factors binding to the promoter region. This study provides novel insights into DNA methylation patterns in chickpea and their role in regulation of gene expression.
Collapse
Affiliation(s)
- Himanshi Bhatia
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Niraj Khemka
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
43
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
44
|
Ding M, Chen ZJ. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:37-48. [PMID: 29502038 PMCID: PMC6058195 DOI: 10.1016/j.pbi.2018.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is a prominent feature for genome evolution of some animals and all flowering plants, including many important crops such as wheat, cotton, and canola. In autopolyploids, genome duplication often perturbs dosage regulation on biological networks. In allopolyploids, interspecific hybridization could induce genetic and epigenetic changes, the effects of which could be amplified by genome doubling (ploidy changes). Albeit the importance of genetic changes, some epigenetic changes can be stabilized and transmitted as epialleles into the progeny, which are subject to natural selection, adaptation, and domestication. Here we review recent advances for general and specific roles of epigenetic changes in the evolution of flowering plants and domestication of agricultural crops.
Collapse
Affiliation(s)
- Mingquan Ding
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Richard MMS, Gratias A, Thareau V, Kim KD, Balzergue S, Joets J, Jackson SA, Geffroy V. Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res 2018; 25:161-172. [PMID: 29149287 PMCID: PMC5909424 DOI: 10.1093/dnares/dsx046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.
Collapse
Affiliation(s)
- Manon M S Richard
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Johann Joets
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| |
Collapse
|
46
|
El Baidouri M, Kim KD, Abernathy B, Li YH, Qiu LJ, Jackson SA. Genic C-Methylation in Soybean Is Associated with Gene Paralogs Relocated to Transposable Element-Rich Pericentromeres. MOLECULAR PLANT 2018; 11:485-495. [PMID: 29476915 DOI: 10.1016/j.molp.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Most plants are polyploid due to whole-genome duplications (WGD) and can thus have duplicated genes. Following a WGD, paralogs are often fractionated (lost) and few duplicate pairs remain. Little attention has been paid to the role of DNA methylation in the functional divergence of paralogous genes. Using high-resolution methylation maps of accessions of domesticated and wild soybean, we show that in soybean, a recent paleopolyploid with many paralogs, DNA methylation likely contributed to the elimination of genetic redundancy of polyploidy-derived gene paralogs. Transcriptionally silenced paralogs exhibit particular genomic features as they are often associated with proximal transposable elements (TEs) and are preferentially located in pericentromeres, likely due to gene movement during evolution. Additionally, we provide evidence that gene methylation associated with proximal TEs is implicated in the divergence of expression profiles between orthologous genes of wild and domesticated soybean, and within populations.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA; Corporate R&D, LG Chem, LG Science Park, 30 Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea.
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
47
|
Wang L, Xie J, Hu J, Lan B, You C, Li F, Wang Z, Wang H. Comparative epigenomics reveals evolution of duplicated genes in potato and tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:460-471. [PMID: 29178145 DOI: 10.1111/tpj.13790] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
The evolution of duplicated genes after polyploidization has been the subject of many evolutionary biology studies. Potato (Solanum tuberosum) and tomato (Solanum lycopersicum) are the first two sequenced genomes of asterids, and share a common polyploidization event. However, the epigenetic role of DNA methylation on the evolution of duplicated genes derived from polyploidization is not fully understood. Here, we explore the role of the DNA methylation in the evolution of duplicated genes in potato and tomato. The overall levels of DNA methylation are different, although patterns of DNA methylation are similar in potato and tomato. Different types of duplicated genes can display different methylation patterns in potato and tomato. In addition, we found that differences in the methylation levels between duplicated genes were associated with gene expression divergence. In particular, for the majority of duplicated gene pairs, one copy is always hyper- or hypo-methylated compared with the other copy across different tomato fruit ripening stages, and these genes are enriched for specific function related to transcription factor (TF) activity. Furthermore, transcription of hundreds of duplicated TFs was shown to be regulated by DNA methylation during fruit ripening stages in tomato, some of which are well-known fruit ripening TFs. Taken together, our results support the notion that DNA methylation may facilitate divergent evolution of duplicated genes and play roles in important biological processes such as tomato fruit ripening.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiahui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiantuan Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Binyuan Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chenjiang You
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen, 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, China
| | - Haifeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
48
|
Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 2018; 18:1-14. [PMID: 28752221 DOI: 10.1007/s10238-017-0467-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Cancer initiation and proliferation is regulated by both epigenetic and genetic events with epigenetic modifications being increasingly identified as important targets for cancer research. DNA methylation catalyzed by DNA methyltransferases (DNMTs) is one of the essential epigenetic mechanisms that control cell proliferation, apoptosis, differentiation, cell cycle, and transformation in eukaryotes. Recent progress in epigenetics revealed a deeper understanding of the mechanisms of tumorigenesis and provided biomarkers for early detection, diagnosis, and prognosis in cancer patients. Although DNA methylation biomarker possesses potential contributing to precision medicine, there are still limitations to be overcome before it reaches clinical setting. Hence, the current status of DNA methylation biomarkers was reviewed and the future use in clinic was also predicted.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Guohong Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Bojin Su
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
49
|
Liu A, Contador CA, Fan K, Lam HM. Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. FRONTIERS IN PLANT SCIENCE 2018; 9:1860. [PMID: 30619423 PMCID: PMC6305480 DOI: 10.3389/fpls.2018.01860] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 05/19/2023]
Abstract
Members of the plant family Leguminosae (Fabaceae) are unique in that they have evolved a symbiotic relationship with rhizobia (a group of soil bacteria that can fix atmospheric nitrogen). Rhizobia infect and form root nodules on their specific host plants before differentiating into bacteroids, the symbiotic form of rhizobia. This complex relationship involves the supply of C4-dicarboxylate and phosphate by the host plants to the microsymbionts that utilize them in the energy-intensive process of fixing atmospheric nitrogen into ammonium, which is in turn made available to the host plants as a source of nitrogen, a macronutrient for growth. Although nitrogen-fixing bacteroids are no longer growing, they are metabolically active. The symbiotic process is complex and tightly regulated by both the host plants and the bacteroids. The metabolic pathways of carbon, nitrogen, and phosphate are heavily regulated in the host plants, as they need to strike a fine balance between satisfying their own needs as well as those of the microsymbionts. A network of transporters for the various metabolites are responsible for the trafficking of these essential molecules between the two partners through the symbiosome membrane (plant-derived membrane surrounding the bacteroid), and these are in turn regulated by various transcription factors that control their expressions under different environmental conditions. Understanding this complex process of symbiotic nitrogen fixation is vital in promoting sustainable agriculture and enhancing soil fertility.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carolina A. Contador
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kejing Fan
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|
50
|
Zhao M, Zhang B, Lisch D, Ma J. Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. THE PLANT CELL 2017; 29:2974-2994. [PMID: 29180596 PMCID: PMC5757279 DOI: 10.1105/tpc.17.00595] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 05/07/2023]
Abstract
Polyploidy is an important feature of plant genomes, but the nature of many polyploidization events remains to be elucidated. Here, we demonstrate that the evolutionary fates of the subgenomes in maize (Zea mays) and soybean (Glycine max) have followed different trajectories. One subgenome has been subject to relaxed selection, lower levels of gene expression, higher rates of transposable element accumulation, more small interfering RNAs and DNA methylation around genes, and higher rates of gene loss in maize, whereas none of these features were observed in soybean. Nevertheless, individual gene pairs exhibit differentiation with respect to these features in both species. In addition, we observed a higher number of chromosomal rearrangements and higher frequency of retention of duplicated genes in soybean than in maize. Furthermore, soybean "singletons" were found to be more frequently tandemly duplicated than "duplicates" in soybean, which may, to some extent, counteract the genome imbalance caused by gene loss. We propose that unlike in maize, in which two subgenomes were distinct prior to the allotetraploidization event and thus experienced global differences in selective constraints, in soybean, the two subgenomes were far less distinct prior to polyploidization, such that individual gene pairs, rather than subgenomes, experienced stochastic differences over longer periods of time, resulting in retention of the majority of duplicates.
Collapse
Affiliation(s)
- Meixia Zhao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Biao Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|