1
|
Susila H, Gawarecka K, Youn G, Jurić S, Jeong H, Ahn JH. THYLAKOID FORMATION 1 interacts with FLOWERING LOCUS T and modulates temperature-responsive flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:60-75. [PMID: 39136360 DOI: 10.1111/tpj.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/25/2024] [Indexed: 09/27/2024]
Abstract
The intracellular localization of the florigen FLOWERING LOCUS T (FT) is important for its long-distance transport toward the shoot apical meristem. However, the mechanisms regulating the FT localization remain poorly understood. Here, we discovered that in Arabidopsis thaliana, the chloroplast-localized protein THYLAKOID FORMATION 1 (THF1) physically interacts with FT, sequestering FT in the outer chloroplast envelope. Loss of THF1 function led to temperature-insensitive flowering, resulting in early flowering, especially under low ambient temperatures. THF1 mainly acts in the leaf vasculature and shoot apex to prevent flowering. Mutation of CONSTANS or FT completely suppressed the early flowering of thf1-1 mutants. FT and THF1 interact via their anion binding pocket and coiled-coil domain (CCD), respectively. Deletion of the CCD in THF1 by gene editing caused temperature-insensitive early flowering similar to that observed in the thf1-1 mutant. FT levels in the outer chloroplast envelope decreased in the thf1-1 mutant, suggesting that THF1 is important for sequestering FT. Furthermore, THF1 protein levels decreased in seedlings grown at high ambient temperature, suggesting an explanation for its role in plant responses to ambient temperature. A thf1-1 phosphatidylglycerolphosphate synthase 1 (pgp1) double mutant exhibited additive acceleration of flowering at 23 and 16°C, compared to the single mutants, indicating that THF1 and phosphatidylglycerol (PG) act as independent but synergistic regulators of temperature-responsive flowering. Collectively, our results provide an understanding of the genetic pathway involving THF1 and its role in temperature-responsive flowering and reveal a previously unappreciated additive interplay between THF1 and PG in temperature-responsive flowering.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, 6201, Australia
| | - Katarzyna Gawarecka
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geummin Youn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Snježana Jurić
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyewon Jeong
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Gu F, Han Z, Zou X, Xie H, Chen C, Huang C, Guo T, Wang J, Wang H. Unveiling the Role of RNA Recognition Motif Proteins in Orchestrating Nucleotide-Binding Site and Leucine-Rich Repeat Protein Gene Pairs and Chloroplast Immunity Pathways: Insights into Plant Defense Mechanisms. Int J Mol Sci 2024; 25:5557. [PMID: 38791594 PMCID: PMC11122538 DOI: 10.3390/ijms25105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.
Collapse
Affiliation(s)
- Fengwei Gu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhikai Han
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodi Zou
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huabin Xie
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chun Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Cuihong Huang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Tao Guo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiafeng Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Shi J, Wang H, Li M, Mi L, Gao Y, Qiang S, Zhang Y, Chen D, Dai X, Ma H, Lu H, Kim C, Chen S. Alternaria TeA toxin activates a chloroplast retrograde signaling pathway to facilitate JA-dependent pathogenicity. PLANT COMMUNICATIONS 2024; 5:100775. [PMID: 38050356 PMCID: PMC10943587 DOI: 10.1016/j.xplc.2023.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.
Collapse
Affiliation(s)
- Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liru Mi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yazhi Gao
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinbin Dai
- Bioinformatics and Computational Biology Laboratory, Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Zhang X, Wang D, Zhao P, Sun Y, Fang RX, Ye J. Near-infrared light and PIF4 promote plant antiviral defense by enhancing RNA interference. PLANT COMMUNICATIONS 2024; 5:100644. [PMID: 37393430 PMCID: PMC10811336 DOI: 10.1016/j.xplc.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
The molecular mechanism underlying phototherapy and light treatment, which utilize various wavelength spectra of light, including near-infrared (NIR), to cure human and plant diseases, is obscure. Here we revealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-activated RNA interference (RNAi) in plants. PIF4, a central transcription factor involved in light signaling, accumulates to high levels under NIR light in plants. PIF4 directly induces the transcription of two essential components of RNAi, RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and ARGONAUTE 1 (AGO1), which play important roles in resistance to both DNA and RNA viruses. Moreover, the pathogenic determinant βC1 protein, which is evolutionarily conserved and encoded by betasatellites, interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization. These findings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the exploration of NIR antiviral treatment.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Han G, Liu H, Zhu S, Gu T, Cao L, Yan H, Jin Y, Wang J, Liu S, Zhou Y, Shi Z, He H, An D. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:66-81. [PMID: 38153293 PMCID: PMC10754004 DOI: 10.1111/pbi.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 12/29/2023]
Abstract
Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shanying Zhu
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Huagang He
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Lee HY, Choi J, Kang M, Lee JH, Kim MS, Choi D. Protein stability governed by α1-2 helices in Pvr4 is essential for localization and cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:510-523. [PMID: 37433739 DOI: 10.1111/tpj.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Plant nucleotide-binding domain leucine-rich-repeat receptor (NLR) confers disease resistance to various pathogens by recognizing effectors derived from the pathogen. Previous studies have shown that overexpression of the CC domain in several NLRs triggers cell death, implying that the CC domain plays an important role as a signaling module. However, how CC domain transduces immune signals remains largely unknown. A Potyvirus-resistant NLR protein, Pvr4, possesses a CC domain (CCPvr4 ) that induces cell death upon transient overexpression in Nicotiana benthamiana. In this study, loss-of-function mutants were generated by error-prone PCR-based random mutagenesis to understand the molecular mechanisms underlying CCPvr4 -mediated cell death. Cell biology and biochemical studies revealed that M16 and Q52 in the α1 and α2 helices, respectively, are crucial for protein stability, and mutation of these residues disrupts localization to the plasma membrane and oligomerization activity. The increase of the protein stability of these mutants by tagging a green fluorescent protein (GFP) variant led to restoration of cell death-inducing activity and plasma membrane localization. Another mutant, I7E in the very N-terminal region, lost cell death-inducing activity by weakening the interaction with plasma membrane H+ -ATPase compared to CCPvr4 , although the protein remained in the plasma membrane. Moreover, most of the mutated residues are on the outer surface of the funnel shape in the predicted pentameric CCPvr4 , implying that the disordered N-terminal region plays a crucial role in association with PMA as well as targeting to the plasma membrane. This work could provide insights into the molecular mechanisms of cell death induced by NLR immune receptors.
Collapse
Affiliation(s)
- Hye-Young Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minji Kang
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, 17058, Republic of Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Horticultural Science and Biotechnology Program, Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
9
|
Velásquez-Zapata V, Elmore JM, Wise RP. Bioinformatic Analysis of Yeast Two-Hybrid Next-Generation Interaction Screen Data. Methods Mol Biol 2023; 2690:223-239. [PMID: 37450151 DOI: 10.1007/978-1-0716-3327-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Yeast two-hybrid next-generation interaction screening (Y2H-NGIS) uses the output of next-generation sequencing to mine for novel protein-protein interactions. Here, we outline the analytics underlying Y2H-NGIS datasets. Different systems, libraries, and experimental designs comprise Y2H-NGIS methodologies. We summarize the analysis in several layers that comprise the characterization of baits and preys, quantification, and identification of true interactions for subsequent secondary validation. We present two software designed for this purpose, NGPINT and Y2H-SCORES, which are used as front-end and back-end tools in the analysis. Y2H-SCORES software can be used and adapted to analyze different datasets not only from Y2H-NGIS but from other techniques ruled by similar biological principles.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA.
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA.
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
- USDA-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, USA
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research, Ames, IA, USA
| | - Roger P Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA.
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA.
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research, Ames, IA, USA.
| |
Collapse
|
10
|
Pelletier A, Moffett P. N and N'-mediated recognition confers resistance to tomato brown rugose fruit virus. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000660. [PMID: 36389119 PMCID: PMC9653555 DOI: 10.17912/micropub.biology.000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Tomato brown rugose fruit virus (ToBRFV) is an emerging tobamovirus that overcomes the Tm-2 2 resistance gene used in commercial tomato plants to protect against tobamoviruses. In this article, we show that ToBRFV is recognised through its P50 replicase fragment by the resistance gene N in N. tabacum , which triggers a hypersensitive response (HR). We also demonstrate that the N' gene provides protection against ToBRFV through recognition of the viral coat protein without triggering a typical HR in N. tabacum .
Collapse
Affiliation(s)
- Antoine Pelletier
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
11
|
Lee H, Seo Y, Lee JH, Lee SE, Oh S, Kim J, Jung S, Kim H, Park H, Kim S, Mang H, Choi D. Plasma membrane-localized plant immune receptor targets H + -ATPase for membrane depolarization to regulate cell death. THE NEW PHYTOLOGIST 2022; 233:934-947. [PMID: 34632584 PMCID: PMC9298278 DOI: 10.1111/nph.17789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The hypersensitive response (HR) is a robust immune response mediated by nucleotide-binding, leucine-rich repeat receptors (NLRs). However, the early molecular event that links activated NLRs to cell death is unclear. Here, we demonstrate that NLRs target plasma membrane H+ -ATPases (PMAs) that generate electrochemical potential, an essential component of living cells, across the plasma membrane. CCA 309, an autoactive N-terminal domain of a coiled-coil NLR (CNL) in pepper, is associated with PMAs. Silencing or overexpression of PMAs reversibly affects cell death induced by CCA 309 in Nicotiana benthamiana. CCA 309-induced extracellular alkalization causes plasma membrane depolarization, followed by cell death. Coimmunoprecipitation analyses suggest that CCA 309 inhibits PMA activation by preoccupying the dephosphorylated penultimate threonine residue of PMA. Moreover, pharmacological experiments using fusicoccin, an irreversible PMA activator, showed that inhibition of PMAs contributes to CNL-type (but not Toll interleukin-1 receptor NLR-type) resistance protein-induced cell death. We suggest PMAs as primary targets of plasma membrane-associated CNLs leading to HR-associated cell death by disturbing the electrochemical gradient across the membrane. These results provide new insight into NLR-mediated cell death in plants, as well as innate immunity in higher eukaryotes.
Collapse
Affiliation(s)
- Hye‐Young Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Ye‐Eun Seo
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Joo Hyun Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - So Eui Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Soohyun Oh
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Jihyun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Seungmee Jung
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Haeun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Hyojeong Park
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Sejun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Hyunggon Mang
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Doil Choi
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| |
Collapse
|
12
|
Song Y, Feng L, Alyafei MAM, Jaleel A, Ren M. Function of Chloroplasts in Plant Stress Responses. Int J Mol Sci 2021; 22:ijms222413464. [PMID: 34948261 PMCID: PMC8705820 DOI: 10.3390/ijms222413464] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.A.M.A.); (A.J.)
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-(13)-527313471
| |
Collapse
|
13
|
Kachroo P, Burch-Smith TM, Grant M. An Emerging Role for Chloroplasts in Disease and Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:423-445. [PMID: 34432508 DOI: 10.1146/annurev-phyto-020620-115813] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroplasts are key players in plant immune signaling, contributing to not only de novo synthesis of defensive phytohormones but also the generation of reactive oxygen and nitrogen species following activation of pattern recognition receptors or resistance (R) proteins. The local hypersensitive response (HR) elicited by R proteins is underpinned by chloroplast-generated reactive oxygen species. HR-induced lipid peroxidation generates important chloroplast-derived signaling lipids essential to the establishment of systemic immunity. As a consequence of this pivotal role in immunity, pathogens deploy effector complements that directly or indirectly target chloroplasts to attenuate chloroplast immunity (CI). Our review summarizes the current knowledge of CI signaling and highlights common pathogen chloroplast targets and virulence strategies. We address emerging insights into chloroplast retrograde signaling in immune responses and gaps in our knowledge, including the importance of understanding chloroplast heterogeneity and chloroplast involvement in intraorganellular interactions in host immunity.
Collapse
Affiliation(s)
- Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK;
| |
Collapse
|
14
|
Liu M, Li Y, Zhu Y, Sun Y, Wang G. Maize nicotinate N-methyltransferase interacts with the NLR protein Rp1-D21 and modulates the hypersensitive response. MOLECULAR PLANT PATHOLOGY 2021; 22:564-579. [PMID: 33675291 PMCID: PMC8035639 DOI: 10.1111/mpp.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21 ). ZmNANMT, but not ZmCOMT, interacts with CCD21 , and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.
Collapse
Affiliation(s)
- Mengjie Liu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
- The Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceCollege of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Ya‐Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yu‐Xiu Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yang Sun
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Guan‐Feng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| |
Collapse
|
15
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
16
|
Kim Y, Kim YJ, Paek KH. Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1432-1448. [PMID: 33165515 DOI: 10.1093/jxb/eraa527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Resistance (R) gene-mediated resistance is a robust and efficient antiviral immune system in the plants. Thus, when R-mediated resistance was suppressed at elevated temperatures, resistance towards viruses was expected to be completely collapsed. Nonetheless, the multiplication of Tobacco mosaic virus pathotype P0 (TMV-P0) was inhibited, and TMV-P0 particles were only occasionally present in the systemic leaves of pepper plants (Capsicum annuum). RNAi-mediated RNA silencing is a well-known antiviral immune mechanism. At elevated temperatures, RNAi-mediated antiviral resistance was induced and virus-derived siRNAs (vsiRNAs) were dramatically increased. Through sRNA-sequencing (sRNA-Seq) analysis, we revealed that vsiRNAs derived from TMV-P0 were greatly increased. Intriguingly, virus-infected plants could select the temperature-specific vsiRNAs for antiviral resistance from the amplified vsiRNAs at elevated temperatures. Pre-application of these temperature-specific vsiRNAs endowed antiviral resistance of the plants. Therefore, plants sustain antiviral resistance by activating RNAi-mediated resistance, based on temperature-specific vsiRNAs at elevated temperatures.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Wang J, Han M, Liu Y. Diversity, structure and function of the coiled-coil domains of plant NLR immune receptors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:283-296. [PMID: 33205883 DOI: 10.1111/jipb.13032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Plant nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen avirulence effectors and activate defense responses. Nucleotide-binding, leucine-rich repeat receptors are classified into coiled-coil (CC)-containing and Toll/interleukin-1 receptor (TIR)-containing NLRs. Recent advances suggest that NLR CC domains often function in signaling activation, especially for induction of cell death. In this review, we outline our current understanding of NLR CC domains, including their diversity/classification and structure, their roles in cell death induction, disease resistance, and interaction with other proteins. Furthermore, we provide possible directions for future work.
Collapse
Affiliation(s)
- Junzhu Wang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
18
|
Lee H, Mang H, Choi E, Seo Y, Kim M, Oh S, Kim S, Choi D. Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants. THE NEW PHYTOLOGIST 2021; 229:532-547. [PMID: 32810286 PMCID: PMC7756659 DOI: 10.1111/nph.16878] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/07/2020] [Indexed: 05/16/2023]
Abstract
Plants possess hundreds of intracellular immune receptors encoding nucleotide-binding domain leucine-rich repeat (NLR) proteins. Full-length NLRs or a specific domain of NLRs often induce plant cell death in the absence of pathogen infection. In this study we used genome-wide transient expression analysis to identify a group of NLRs (ANLs; ancient and autonomous NLRs) carrying autoactive coiled-coil (CCA ) domains in pepper (Capsicum annuum). CCA -mediated cell death mimics hypersensitive cell death triggered by the interaction between NLRs and pathogen effectors. Sequence alignment and mutagenesis analyses revealed that the intact α1 helix of CCA s is critical for both CCA - and ANL-mediated cell death. Cell death induced by CCA s does not require NRG1/ADR1 or NRC type helper NLRs, suggesting ANLs may function as singleton NLRs. We also found that CCA s localize to the plasma membrane, as demonstrated for Arabidopsis singleton NLR ZAR1. Extended studies revealed that autoactive CCA s are well conserved in other Solanaceae plants as well as in rice, a monocot plant. Further phylogenetic analyses revealed that ANLs are present in all tested seed plants (spermatophytes). Our study not only uncovers the autonomous NLR clade in plants but also provides powerful resources for dissecting the underlying molecular mechanism of NLR-mediated cell death in plants.
Collapse
Affiliation(s)
- Hye‐Young Lee
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
| | - Hyunggon Mang
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
| | - Eunhye Choi
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
| | - Ye‐Eun Seo
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute for Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Myung‐Shin Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
| | - Soohyun Oh
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute for Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Saet‐Byul Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
| | - Doil Choi
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Korea
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute for Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| |
Collapse
|
19
|
Zdrzałek R, Kamoun S, Terauchi R, Saitoh H, Banfield MJ. The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS One 2020; 15:e0238616. [PMID: 32931489 PMCID: PMC7491719 DOI: 10.1371/journal.pone.0238616] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromasa Saitoh
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
20
|
Gao A, Hu M, Gong Y, Dong R, Jiang Y, Zhu S, Ji J, Zhang D, Li S, He H. Pm21 CC domain activity modulated by intramolecular interactions is implicated in cell death and disease resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:975-984. [PMID: 32421925 PMCID: PMC7279971 DOI: 10.1111/mpp.12943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 05/14/2023]
Abstract
Nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs) provide resistance against several plant pathogens. We previously cloned the wheat powdery mildew resistance gene Pm21, which encodes a coiled-coil (CC) NLR that confers broad-spectrum resistance against Blumeria graminis f. sp. tritici. Here, we report comprehensive biochemical and functional analyses of Pm21 CC domain in Nicotiana benthamiana. Transient overexpression assay suggested that only the extended CC (eCC, amino acid residues 1-159) domain has cell-death-inducing activity, whereas the CC-containing truncations, including CC-NB and CC-NB-LRR, do not induce cell-death responses. Coimmunoprecipitation (Co-IP) assay showed that the eCC domain self-associates and interacts with the NB and LRR domains in planta. These results imply that the activity of the eCC domain is inhibited by the intramolecular interactions of different domains in the absence of pathogens. We found that the LRR domain plays a crucial role in D491V-mediated full-length (FL) Pm21 autoactivation. Some mutations in the CC domain leading to the loss of Pm21 resistance to powdery mildew impaired the CC activity of cell-death induction. Two mutations (R73Q and E80K) interfered with D491V-mediated Pm21 autoactivation without affecting the cell-death-inducing activity of the eCC domain. Notably, some susceptible mutants harbouring mutations in the CC domain still exhibited cell-death-inducing activity. Taken together, these results implicate the CC domain of Pm21 in cell-death signalling and disease-resistance signalling, which are potentially independent of each other.
Collapse
Affiliation(s)
- Anli Gao
- School of Life SciencesHenan UniversityKaifengChina
| | - Minjie Hu
- School of Life SciencesHenan UniversityKaifengChina
| | - Yifei Gong
- School of Life SciencesHenan UniversityKaifengChina
| | | | - Yuan Jiang
- School of Life SciencesHenan UniversityKaifengChina
| | - Shanying Zhu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Jian Ji
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Dale Zhang
- School of Life SciencesHenan UniversityKaifengChina
| | - Suoping Li
- School of Life SciencesHenan UniversityKaifengChina
| | - Huagang He
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
21
|
Islam S, Bhor SA, Tanaka K, Sakamoto H, Yaeno T, Kaya H, Kobayashi K. Impaired Expression of Chloroplast HSP90C Chaperone Activates Plant Defense Responses with a Possible Link to a Disease-Symptom-Like Phenotype. Int J Mol Sci 2020; 21:E4202. [PMID: 32545608 PMCID: PMC7352560 DOI: 10.3390/ijms21124202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-seq analysis of a transgenic tobacco plant, i-hpHSP90C, in which chloroplast HSP90C genes can be silenced in an artificially inducible manner resulting in the development of chlorosis, revealed the up- and downregulation of 2746 and 3490 genes, respectively. Gene ontology analysis of these differentially expressed genes indicated the upregulation of ROS-responsive genes; the activation of the innate immunity and cell death pathways; and the downregulation of genes involved in photosynthesis, plastid organization, and cell cycle. Cell death was confirmed by trypan blue staining and electrolyte leakage assay, and the H2O2 production was confirmed by diaminobenzidine staining. The results collectively suggest that the reduced levels of HSP90C chaperone lead the plant to develop chlorosis primarily through the global downregulation of chloroplast- and photosynthesis-related genes and additionally through the light-dependent production of ROS, followed by the activation of immune responses, including cell death.
Collapse
Affiliation(s)
- Shaikhul Islam
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan;
| | - Hikaru Sakamoto
- Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan;
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Hidetaka Kaya
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
22
|
Bolus S, Akhunov E, Coaker G, Dubcovsky J. Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:308-319. [PMID: 31556346 PMCID: PMC7309591 DOI: 10.1094/mpmi-08-19-0216-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Stephen Bolus
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Department of Plant Pathology, University of California, Davis
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
23
|
Baudin M, Schreiber KJ, Martin EC, Petrescu AJ, Lewis JD. Structure-function analysis of ZAR1 immune receptor reveals key molecular interactions for activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:352-370. [PMID: 31557357 DOI: 10.1111/tpj.14547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 05/26/2023]
Abstract
NLR (nucleotide-binding [NB] leucine-rich repeat [LRR] receptor) proteins are critical for inducing immune responses in response to pathogen proteins, and must be tightly modulated to prevent spurious activation in the absence of a pathogen. The ZAR1 NLR recognizes diverse effector proteins from Pseudomonas syringae, including HopZ1a, and Xanthomonas species. Receptor-like cytoplasmic kinases (RLCKs) such as ZED1, interact with ZAR1 and provide specificity for different effector proteins, such as HopZ1a. We previously developed a transient expression system in Nicotiana benthamiana that allowed us to demonstrate that ZAR1 function is conserved from the Brassicaceae to the Solanaceae. Here, we combined structural modelling of ZAR1, with molecular and functional assays in our transient system, to show that multiple intramolecular and intermolecular interactions modulate ZAR1 activity. We identified determinants required for the formation of the ZARCC oligomer and its activity. Lastly, we characterized intramolecular interactions between ZAR1 subdomains that participate in keeping ZAR1 immune complexes inactive. This work identifies molecular constraints on immune receptor function and activation.
Collapse
Affiliation(s)
- Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, USA
| | - Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, USA
| | - Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, USA
| |
Collapse
|
24
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
25
|
Tomita R, Sekine KT, Tateda C, Kobayashi K. Identification and Functional Analysis of NB-LRR-Type Virus Resistance Genes: Overview and Functional Analysis of Candidate Genes. Methods Mol Biol 2019; 2028:1-10. [PMID: 31228106 DOI: 10.1007/978-1-4939-9635-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Coexpression of a plant NB-LRR-type resistance (R) gene and corresponding viral avirulent (Avr) gene introduced in Nicotiana benthamiana using Agrobacterium tumefaciens confers hypersensitive response (HR). Such Agrobacterium-mediated transient gene expression methods have contributed to the identification of new plant R genes and facilitated the analysis of their functions. Here we describe a model method, by which several tobamovirus R genes from Solanaceous plants have been successfully identified and characterized molecularly.
Collapse
Affiliation(s)
- Reiko Tomita
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Ken-Taro Sekine
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kappei Kobayashi
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
26
|
Bentham AR, Zdrzałek R, De la Concepcion JC, Banfield MJ. Uncoiling CNLs: Structure/Function Approaches to Understanding CC Domain Function in Plant NLRs. PLANT & CELL PHYSIOLOGY 2018; 59:2398-2408. [PMID: 30192967 PMCID: PMC6290485 DOI: 10.1093/pcp/pcy185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/24/2018] [Indexed: 05/20/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular pathogen receptors whose N-terminal domains are integral to signal transduction after perception of a pathogen-derived effector protein. The two major plant NLR classes are defined by the presence of either a Toll/interleukin-1 receptor (TIR) or a coiled-coil (CC) domain at their N-terminus (TNLs and CNLs). Our knowledge of how CC domains function in plant CNLs lags behind that of how TIR domains function in plant TNLs. CNLs are the most abundant class of NLRs in monocotyledonous plants, and further research is required to understand the molecular mechanisms of how these domains contribute to disease resistance in cereal crops. Previous studies of CC domains have revealed functional diversity, making categorization difficult, which in turn makes experimental design for assaying function challenging. In this review, we summarize the current understanding of CC domain function in plant CNLs, highlighting the differences in modes of action and structure. To aid experimental design in exploring CC domain function, we present a 'best-practice' guide to designing constructs through use of sequence and secondary structure comparisons and discuss the relevant assays for investigating CC domain function. Finally, we discuss whether using homology modeling is useful to describe putative CC domain function in CNLs through parallels with the functions of previously characterized helical adaptor proteins.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
27
|
Kim SB, Lee HY, Choi EH, Park E, Kim JH, Moon KB, Kim HS, Choi D. The Coiled-Coil and Leucine-Rich Repeat Domain of the Potyvirus Resistance Protein Pvr4 Has a Distinct Role in Signaling and Pathogen Recognition. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:906-913. [PMID: 29663867 DOI: 10.1094/mpmi-12-17-0313-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The pepper Pvr4 protein encoding coiled-coil (CC) nucleotide-binding (NB) leucine-rich repeat (LRR) (NLR) confer hypersensitive response (HR) to potyviruses, including Pepper mottle virus (PepMoV), by recognizing the viral avirulence protein NIb. To figure out the Pvr4-mediated HR mechanism, we analyzed signaling component genes and structure-function relationships of Pvr4, using chimeras and deletion mutants in Nicotiana benthamiana. Molecular chaperone components including HSP90, SGT1, and RAR1 were required, while plant hormones and mitogen-activated protein kinase signaling components had little effect on Pvr4-NIb-mediated HR cell death. Domain swap analyses indicated that the LRR domain of Pvr4 determines recognition of PepMoV-NIb. Our deletion analysis further revealed that the CC domain or CC-NBARC domain alone can trigger autoactive cell death in N. benthamiana. However, the fragments having only an LRR domain could suppress CC-NBARC domain-induced cell death in trans. Further, C-terminal truncation analysis of Pvr4 revealed that a minimum three of five LRR exons showing high similarity was essential for Pvr4 function. The LRR domain may maintain Pvr4 in an inactive state in the absence of NIb. These results provide further insight into the structure and function of NLR protein signaling in plants.
Collapse
Affiliation(s)
- Saet-Byul Kim
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Hye-Young Lee
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Eun-Hye Choi
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Eunsook Park
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Ji-Hyun Kim
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Ki-Beom Moon
- 2 Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Hyun-Soon Kim
- 2 Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Doil Choi
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| |
Collapse
|
28
|
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol 2018; 19:116. [PMID: 30111359 PMCID: PMC6092874 DOI: 10.1186/s13059-018-1472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). Results The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. Conclusion The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks. Electronic supplementary material The online version of this article (10.1186/s13059-018-1472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Stefanie Lück
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Maria Pogoda
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Tobias Meitzel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jonathan Brassac
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Caroline Höfle
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ralph Hückelhoven
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Jörn Klinkenberg
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany.,Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Zellbiologie, D-79104, Freiburg, Germany
| | - Eva Bauer
- Technische Universität München, Liesel-Beckmann-Straße 2, D-85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Barbara Lazzari
- Parco Technologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
| | - Nils Stein
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
29
|
Bec Ková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0394. [PMID: 28808107 PMCID: PMC5566888 DOI: 10.1098/rstb.2016.0394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Martina Bec Ková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Amanda Kozlo
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Koník
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic .,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
30
|
Moffett P. Transfer and modification of NLR proteins for virus resistance in plants. Curr Opin Virol 2017; 26:43-48. [DOI: 10.1016/j.coviro.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
|
31
|
Vega-Arreguín JC, Shimada-Beltrán H, Sevillano-Serrano J, Moffett P. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp. FRONTIERS IN PLANT SCIENCE 2017; 8:205. [PMID: 28261255 PMCID: PMC5309224 DOI: 10.3389/fpls.2017.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/03/2017] [Indexed: 05/29/2023]
Abstract
The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.
Collapse
Affiliation(s)
- Julio C. Vega-Arreguín
- Boyce Thompson Institute for Plant Research, IthacaNY, USA
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Harumi Shimada-Beltrán
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Jacobo Sevillano-Serrano
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Peter Moffett
- Boyce Thompson Institute for Plant Research, IthacaNY, USA
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, SherbrookeQC, Canada
| |
Collapse
|