1
|
Nanda K, Singh M, Yadav T, Tiwari VK, Singh V, Singh VP, Sawant SV, Singh SP. Genome-wide identification and expression analysis of ferric reductase oxidase (FRO) genes in Gossypium spp. reveal their crucial role in iron homeostasis under abiotic and biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109281. [PMID: 39561681 DOI: 10.1016/j.plaphy.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Ferric Reductase Oxidase (FRO) genes are pivotal in iron uptake and homeostasis in plants, yet they are not studied in cotton. Here, we identify and analyze 65 FRO homologs (21 GhFRO, 21 GbFRO, 11 GaFRO, 12 GrFRO) across four Gossypium species (G. hirsutum, G. barbadense, G. arboreum, G. raimondii). FRO exhibit conserved ferric reductase activity and conserved domain structures; Ferric_reduct (PF01794), FAD_binding_8 (PF08022), and NAD_binding_6 (PF08030) across species. Physicochemical properties and subcellular localization analysis provided insights into FRO proteins' functional characteristics, mainly localized to the plasma membrane. Phylogenetic analysis delineates 11 groups, indicating both conserved and divergent evolutionary patterns. Gene structure analysis unveils varying exon-intron compositions. Chromosomal localization shows distribution across A and D genomes, suggesting evolutionary dynamics. Synteny analysis reveals paralogous and orthologous gene pairs subjected to purifying selection. The cis-regulatory elements analysis implicates diverse regulatory mechanisms. Expression profiling highlights dynamic regulation across developmental stages, abiotic and biotic stress conditions. GhFRO interacts with Ca++-dependent protein kinases-10/28-like (CDPKs10/28-like) and metal transporter Natural resistance-associated macrophage protein 6 (Nramp6) to regulate metal ion transport and iron homeostasis. The three-dimensional protein structure prediction suggests potential ligand-binding sites in FRO proteins. Moreover, qRT-PCR analysis of selected eight GhFROs in leaves treated with stress elicitors, MeJA, SA, NaCl, and PEG for 1h, 2h, 4h, and 6h revealed significant downregulation. Overall, this comprehensive study provides insights into FRO gene diversity, evolution, structure, regulation, and function in cotton, with implications for understanding plant iron homeostasis and stress responses.
Collapse
Affiliation(s)
- Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Maninder Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Tikshana Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vipin Kumar Tiwari
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Varsha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Samir V Sawant
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
2
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
3
|
Khuman A, Yadav V, Chaudhary B. Evolutionary dynamics of the cytoskeletal profilin gene family in Brassica juncea L. reveal its roles in silique development and stress resilience. Int J Biol Macromol 2024; 266:131247. [PMID: 38565371 DOI: 10.1016/j.ijbiomac.2024.131247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Essential to plant adaptation, cell wall (CW) integrity is maintained by CW-biosynthesis genes. Cytoskeletal actin-(de)polymerizing, phospholipid-binding profilin (PRF) proteins play important roles in maintaining cellular homeostasis across kingdoms. However, evolutionary selection of PRF genes and their systematic characterization in family Brassicaceae, especially in Brassica juncea remain unexplored. Here, a comprehensive analysis of genome-wide identification of BjPRFs, their phylogenetic association, genomic localization, gene structure, and transcriptional profiling were performed in an evolutionary framework. Identification of 23 BjPRFs in B. juncea indicated an evolutionary conservation within Brassicaceae. The BjPRFs evolved through paralogous and orthologous gene formation in Brassica genomes. Evolutionary divergence of BjPRFs indicated purifying selection, with nonsynonymous (dN)/synonymous (dS) value of 0.090 for orthologous gene-pairs. Hybrid homology-modeling identified evolutionary distinct and conserved domains in BjPRFs which suggested that these proteins evolved following the divergence of monocot and eudicot plants. RNA-seq profiles of BjPRFs revealed their functional evolution in spatiotemporal manner during plant-development and stress-conditions in diploid/amphidiploid Brassica species. Real-Time PCR experiments in seedling, vegetative, floral and silique tissues of B. juncea suggested their essential roles in systematic plant development. These observations underscore the expansion of BjPRFs in B. juncea, and offer valuable evolutionary insights for exploring cellular mechanisms, and stress resilience.
Collapse
Affiliation(s)
| | - Vandana Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | | |
Collapse
|
4
|
Tian X, Ji M, You J, Zhang Y, Lindsey K, Zhang X, Tu L, Wang M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:405-422. [PMID: 38163320 DOI: 10.1111/tpj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Wei H, Chen J, Zhang X, Lu Z, Lian B, Liu G, Chen Y, Zhong F, Yu C, Zhang J. Comprehensive analysis of annexin gene family and its expression in response to branching architecture and salt stress in crape myrtle. BMC PLANT BIOLOGY 2024; 24:78. [PMID: 38287275 PMCID: PMC10826223 DOI: 10.1186/s12870-024-04748-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Jinxin Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Xingyue Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Zixuan Lu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Bilin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, 226001, China.
- Key Lab of Landscape Plant Genetics and Breeding, Nantong, 226000, China.
| |
Collapse
|
6
|
Meng Y, Zhan J, Liu H, Liu J, Wang Y, Guo Z, He S, Nie L, Kohli A, Ye G. Natural variation of OsML1, a mitochondrial transcription termination factor, contributes to mesocotyl length variation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:910-925. [PMID: 37133286 DOI: 10.1111/tpj.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023]
Abstract
Mesocotyl length (ML) is a crucial factor in determining the establishment and yield of rice planted through dry direct seeding, a practice that is increasingly popular in rice production worldwide. ML is determined by the endogenous and external environments, and inherits as a complex trait. To date, only a few genes have been cloned, and the mechanisms underlying mesocotyl elongation remain largely unknown. Here, through a genome-wide association study using sequenced germplasm, we reveal that natural allelic variations in a mitochondrial transcription termination factor, OsML1, predominantly determined the natural variation of ML in rice. Natural variants in the coding regions of OsML1 resulted in five major haplotypes with a clear differentiation between subspecies and subpopulations in cultivated rice. The much-reduced genetic diversity of cultivated rice compared to the common wild rice suggested that OsML1 underwent selection during domestication. Transgenic experiments and molecular analysis demonstrated that OsML1 contributes to ML by influencing cell elongation primarily determined by H2 O2 homeostasis. Overexpression of OsML1 promoted mesocotyl elongation and thus improved the emergence rate under deep direct seeding. Taken together, our results suggested that OsML1 is a key positive regulator of ML, and is useful in developing varieties for deep direct seeding by conventional and transgenic approaches.
Collapse
Affiliation(s)
- Yun Meng
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Junhui Zhan
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongyan Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Jindong Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yamei Wang
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhan Guo
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Sang He
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lixiao Nie
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, 572025, China
| | - Ajay Kohli
- Rice Breeding Innovations Platform, International Rice Research Institute (IRRI), Metro Manila, 1301, Philippines
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Rice Breeding Innovations Platform, International Rice Research Institute (IRRI), Metro Manila, 1301, Philippines
| |
Collapse
|
7
|
Qin A, Aluko OO, Liu Z, Yang J, Hu M, Guan L, Sun X. Improved cotton yield: Can we achieve this goal by regulating the coordination of source and sink? FRONTIERS IN PLANT SCIENCE 2023; 14:1136636. [PMID: 37063185 PMCID: PMC10090392 DOI: 10.3389/fpls.2023.1136636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Cotton is one of the major cash crops globally. It is characterized by determinate growth and multiple fruiting, which makes the source-sink contradiction more obvious. Coordination between source and sink is crucial for normal growth, yield, and quality of cotton. Numerous studies reported how the assimilate transport and distribution under varying environmental cues affected crop yields. However, less is known about the functional mechanism underlying the assimilate transport between source and sink, and how their distribution impacts cotton growth. Here, we provided an overview of the assimilate transport and distribution mechanisms , and discussed the regulatory mechanisms involved in source-sink balance in relation to cotton yield. Therefore, this review enriched our knowledge of the regulatory mechanism involved in source-sink relationship for improved cotton yield.
Collapse
|
8
|
Wu X, Wang Y, Bian Y, Ren Y, Xu X, Zhou F, Ding H. A critical review on plant annexin: Structure, function, and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:81-89. [PMID: 36108355 DOI: 10.1016/j.plaphy.2022.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Plant annexins are evolutionary conserved protein family widely exist in almost all plant species, characterized by a shorter N-terminal region and four conservative annexin repeats. Plant annexins have Ca2+ channel-regulating activity and peroxidase as well as ATPase/GTPase activities, which give annexins functional specificity. They are widely involved in regulating diverse aspects of biochemical and cellular processes, plant growth and development, and responses to biotic and abiotic environmental stresses. Though many studies have reviewed the function of annexins, great progress have been made in the study of plant annexins recently. In this review, we outline the current understanding of basic properties of plant annexins and summarize the emerging advances in understanding the functional roles of annexins in plants and highlight the regulation mechanisms of annexin protein in response to stress especially to salt and cold stress. The interesting questions related to plant annexin that remain to be further elucidated are also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuhao Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China/College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Yuan J, Cheng L, Li H, An C, Wang Y, Zhang F. Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC PLANT BIOLOGY 2022; 22:481. [PMID: 36210448 PMCID: PMC9549635 DOI: 10.1186/s12870-022-03852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Jasmonates (JAs) are one of important phytohormones regulating potato tuber development. It is a complex process and the underlying molecular mechanism regulating tuber development by JAs is still limited. This study attempted to illuminate it through the potential proteomic dynamics information about tuber development in vitro regulated by exogenous JA. RESULTS A combined analysis of physiological and iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic approach was performed in tuber development in vitro under exogenous JA treatments (0, 0.5, 5 and 50 μΜ). Physiological results indicated that low JA concentration (especially 5 μM) promoted tuber development, whereas higher JA concentration (50 μM) showed inhibition effect. A total of 257 differentially expressed proteins (DEPs) were identified by iTRAQ, which provided a comprehensive overview on the functional protein profile changes of tuber development regulated by JA. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that low JA concentration (especially 5 μM) exhibited the promotion effects on tuber development in various cellular processes. Some cell wall polysaccharide synthesis and cytoskeleton formation-related proteins were up-regulated by JA to promote tuber cell expansion. Some primary carbon metabolism-related enzymes were up-regulated by JA to provide sufficient metabolism intermediates and energy for tuber development. And, a large number of protein biosynthesis, degradation and assembly-related were up-regulated by JA to promote tuber protein biosynthesis and maintain strict protein quality control during tuber development. CONCLUSIONS This study is the first to integrate physiological and proteomic data to provide useful information about the JA-signaling response mechanism of potato tuber development in vitro. The results revealed that the levels of a number of proteins involved in various cellular processes were regulated by JA during tuber development. The proposed hypothetical model would explain the interaction of these DEPs that associated with tuber development in vitro regulated by JA.
Collapse
Affiliation(s)
- Jianlong Yuan
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lixiang Cheng
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huijun Li
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Congcong An
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom Flammulina filiformis. Cells 2022; 11:cells11121896. [PMID: 35741023 PMCID: PMC9221348 DOI: 10.3390/cells11121896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The mushroom stipe raises the pileus above the substrate into a suitable position for dispersing spores. The stipe elongates at different speeds along its length, with the rate of elongation decreasing in a gradient from the top to the base. However, the molecular mechanisms underlying stipe gradient elongation are largely unknown. Here, we used the model basidiomycete mushroom Flammulina filiformis to investigate the mechanism of mushroom stipe elongation and the role of reactive oxygen species (ROS) signaling in this process. Our results show that O2- and H2O2 exhibit opposite gradient distributions in the stipe, with higher O2- levels in the elongation region (ER), and higher H2O2 levels in the stable region (SR). Moreover, NADPH-oxidase-encoding genes are up-regulated in the ER, have a function in producing O2-, and positively regulate stipe elongation. Genes encoding manganese superoxide dismutase (MnSOD) are up-regulated in the SR, have a function in producing H2O2, and negatively regulate stipe elongation. Altogether, our data demonstrate that ROS (O2-/H2O2) redistribution mediated by NADPH oxidase and MnSODs is linked to the gradient elongation of the F. filiformis stipe.
Collapse
|
11
|
Pandey DK, Kumar V, Chaudhary B. Concomitant Expression Evolution of Cell Wall Cytoskeletal Geneic Triad(s) Controls Floral Organ Shape and Fiber Emergence in Cotton ( Gossypium). FRONTIERS IN PLANT SCIENCE 2022; 13:900521. [PMID: 35668801 PMCID: PMC9164013 DOI: 10.3389/fpls.2022.900521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Affiliation(s)
| | - Vijay Kumar
- Department of Botany, Shivaji College, University of Delhi, New Delhi, India
| | | |
Collapse
|
12
|
Arginine Decarboxylase Gene ADC2 Regulates Fiber Elongation in Cotton. Genes (Basel) 2022; 13:genes13050784. [PMID: 35627169 PMCID: PMC9140970 DOI: 10.3390/genes13050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cotton is an important agro-industrial crop providing raw material for the textile industry. Fiber length is the key factor that directly affects fiber quality. ADC, arginine decarboxylase, is the key rate-limiting enzyme in the polyamine synthesis pathway; whereas, there is no experimental evidence that ADC is involved in fiber development in cotton yet. Our transcriptome analysis of the fiber initiation material of Gossypium arboreum L. showed that the expression profile of GaADC2 was induced significantly. Here, GhADC2, the allele of GaADC2 in tetraploid upland cotton Gossypium hirsutum L., exhibited up-regulated expression pattern during fiber elongation in cotton. Levels of polyamine are correlated with fiber elongation; especially, the amount of putrescine regulated by ADC was increased. Scanning electron microscopy showed that the fiber length was increased with exogenous addition of an ADC substrate or product putrescine; whereas, the fiber density was decreased with exogenous addition of an ADC specific inhibitor. Next, genome-wide transcriptome profiling of fiber elongation with exogenous putrescine addition was performed to determine the molecular basis in Gossypium hirsutum. A total of 3163 differentially expressed genes were detected, which mainly participated in phenylpropanoid biosynthesis, fatty acid elongation, and sesquiterpenoid and triterpenoid biosynthesis pathways. Genes encoding transcription factors MYB109, WRKY1, and TCP14 were enriched. Therefore, these results suggested the ADC2 and putrescine involvement in the development and fiber elongation of G. hirsutum, and provides a basis for cotton fiber development research in future.
Collapse
|
13
|
Prasad P, Khatoon U, Verma RK, Aalam S, Kumar A, Mohapatra D, Bhattacharya P, Bag SK, Sawant SV. Transcriptional Landscape of Cotton Fiber Development and Its Alliance With Fiber-Associated Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:811655. [PMID: 35283936 PMCID: PMC8908376 DOI: 10.3389/fpls.2022.811655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cotton fiber development is still an intriguing question to understand fiber commitment and development. At different fiber developmental stages, many genes change their expression pattern and have a pivotal role in fiber quality and yield. Recently, numerous studies have been conducted for transcriptional regulation of fiber, and raw data were deposited to the public repository for comprehensive integrative analysis. Here, we remapped > 380 cotton RNAseq data with uniform mapping strategies that span ∼400 fold coverage to the genome. We identified stage-specific features related to fiber cell commitment, initiation, elongation, and Secondary Cell Wall (SCW) synthesis and their putative cis-regulatory elements for the specific regulation in fiber development. We also mined Exclusively Expressed Transcripts (EETs) that were positively selected during cotton fiber evolution and domestication. Furthermore, the expression of EETs was validated in 100 cotton genotypes through the nCounter assay and correlated with different fiber-related traits. Thus, our data mining study reveals several important features related to cotton fiber development and improvement, which were consolidated in the "CottonExpress-omics" database.
Collapse
Affiliation(s)
- Priti Prasad
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uzma Khatoon
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Rishi Kumar Verma
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahre Aalam
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Ajay Kumar
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Sumit K. Bag
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samir V. Sawant
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Katano K, Suzuki N. What are the key mechanisms that alter the morphology of stigmatic papillae in Arabidopsis thaliana? PLANT SIGNALING & BEHAVIOR 2021; 16:1980999. [PMID: 34549683 PMCID: PMC9208798 DOI: 10.1080/15592324.2021.1980999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 05/31/2023]
Abstract
Pollination is one of the critical processes that determines crop yield and quality. Thus, it is an urgent need to elucidate the mechanisms underlying pollination. Our previous research has revealed a novel phenomenon that pollen attachment to stigma caused stigma shrinkage, whereas failure of pollen attachment to stigma due to the environmental stress induced elongation of stigmatic papillae. However, little is known about the mechanisms of these morphological alterations in stigmatic papillae. Since the RLK-ROPGEF-ROP network is a common mechanism for the elongation of pollen tubes and root hairs, this network may be also involved in the elongation of papillae in the stigma. In this review, we will discuss the known mechanisms regulating pollen tube growth and root hair elongation and attempt to propose an elongation mechanism of stigmatic papillae. In addition, we will suggest that the degradation of F-actin by a significant increase in Ca2+ induced by the components of pollen coat might be a putative molecular mechanism of stigmatic papillae shrinkage during pollen adhesion.
Collapse
Affiliation(s)
- Kazuma Katano
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Chiyoda, Japan
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
15
|
Pandey DK, Chaudhary B. Transcriptional loss of domestication-driven cytoskeletal GhPRF1 gene causes defective floral and fiber development in cotton (Gossypium). PLANT MOLECULAR BIOLOGY 2021; 107:519-532. [PMID: 34606035 DOI: 10.1007/s11103-021-01200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Constitutive- and fiber-specific RNAi of GhPRF1 gene illustrated strong correlation between domestication-driven profilin genes and floral/fiber architecture in cotton. During morpho-transformation of short-fuzz of wild cotton into the elongating spinnable fibers under the millennia of human selection, actin-polymerizing cytoskeletal profilin genes had undergone significant sequence alterations and spatiotemporal shift in their transcription levels. To comprehend the expression dynamics of profilin genes with their phenotypic implications, transgenic expression modulation of cotton profilin 1 (GhPRF1) gene was performed in the constitutive- and fiber-specific manner in Coker 310FR cotton cultivar. The constitutive GhPRF1-RNAi lines (35S:GhPRF1-RNAi) exhibited distorted 'monadelphous' staminal-tube, reduced pollen-viability and poorly developed fibers, whereas floral and fiber development of fiber-specific GhPRF1-RNAi lines showed no abnormalities. Moreover, the fiber-specific GhPRF1 overexpression lines (FBP7:GhPRF1-Ox) showed increased emergence of fiber-initials on the ovule surface, on the contrary to no fiber-initials in fiber-specific RNAi lines (FBP7:GhPRF1-RNAi). Interestingly, the average seed weight and fiber weight of FBP7:GhPRF1-Ox lines increased > 60% and > 38%, respectively, compared with FBP7:GhPRF1-RNAi lines and untransformed control seeds. On a molecular basis, the aberrant floral and fiber development of 35S:GhPRF1-RNAi lines was largely associated with sugar metabolism and hormone-signaling mechanisms. These observations illustrated the strong correlation between domestication-driven GhPRF genes, and floral/fiber development in cotton. Also, the enhanced agronomic traits in GhPRF1-Ox lines of cotton empowered us to recognize their imperative roles, and their future deployment for the sustainable cotton crop improvement.
Collapse
Affiliation(s)
- Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP, 201312, India
- Amity Institute of Biotechnology, Amity University, Ranchi, JH, 834001, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, UP, 201312, India.
| |
Collapse
|
16
|
Harbaoui M, Ben Romdhane W, Ben Hsouna A, Brini F, Ben Saad R. The durum wheat annexin, TdAnn6, improves salt and osmotic stress tolerance in Arabidopsis via modulation of antioxidant machinery. PROTOPLASMA 2021; 258:1047-1059. [PMID: 33594480 DOI: 10.1007/s00709-021-01622-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
TdAnn6 is a gene encoding an annexin protein in durum wheat (Triticum durum). The function of TdAnn6 in plant response to stress is not yet clearly understood. Here, we isolated TdAnn6 and characterized it in genetically modified Arabidopsis thaliana. Expressing TdAnn6 in Arabidopsis coincided with an improvement in stress tolerance at germination and seedling stages. In addition, TdAnn6-expressing seedling antioxidant activities were improved with lower level of malondialdehyde, and enhanced transcript levels of six stress-related genes during salt/osmotic stresses. Under greenhouse conditions, the TdAnn6 plants exhibited increased tolerance to salt or drought stress. To deepen our understanding of TdAnn6 function, we isolated a 1515-bp genomic fragment upstream of its coding sequence, designated as PrTdAnn6. The PrTdAnn6 promoter was fused to the β-glucuronidase reporter gene and transferred to Arabidopsis. By histochemical GUS staining, GUS activity was detected in the roots, leaves, and floral organs, but no activity was detected in the seeds. Furthermore, we noticed a high stimulation of promoter activity when A. thaliana seedlings were exposed to NaCl, mannitol, ABA, GA, and cold conditions. This cross-talk between tissue-specific expression and exogenous stress stimulation may provide additional layers of regulation for salt and osmotic stress responses in crops.
Collapse
Affiliation(s)
- Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
17
|
Arora S, Chaudhary B. Global expression dynamics and miRNA evolution profile govern floral/fiber architecture in the modern cotton (Gossypium). PLANTA 2021; 254:62. [PMID: 34459999 DOI: 10.1007/s00425-021-03711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 05/15/2023]
Abstract
Majority of differentially expressed miRNAs with functional attributes have been recruited independently and parallelly during allopolyploidy followed by the millennia of human selection of both domesticated G. hirsutum and G. barbadense. The genus Gossypium is a marvelous evolutionary model for studying allopolyploidy and morpho-evolution of long-spinnable fibers from the ancestral wild-fuzz. Many genes, transcription factors, and notably, the regulatory miRNAs essentially govern such remarkable modern fiber phenotypes. To comprehend the impact of allopolyploidy on the evolutionary selection of transcriptional dynamicity of key miRNAs, comparative transcriptome profiling of vegetative and fiber tissues of domesticated diploid G. arboreum (A2) and allopolyploid cotton species G. hirsutum (AD1), and G. barbadense (AD2) identified > 300 differentially expressed miRNAs (DEmiRs) within or between corresponding tissues of A2, AD1 and AD2 species. Up to 49% and 32% DEmiRs were up- and down-regulated at fiber initiation stage of AD1 and AD2 species, respectively, whereas 50% and 18% DEmiRs were up- and down-regulated at fiber elongation stage of both the allopolyploid species. Interestingly, A-subgenome-specific DEmiRs exhibit expression dominance in the allopolyploid genetic backgrounds. Comparative spatio-temporal expression analyses of AD1 and AD2 species discovered that a majority of DEmiRs were recruited independently under millennia of human selection during domestication. Functional annotations of these DEmiRs revealed selection of associated molecular functions such as hormone-signaling, calcium-signaling and reactive oxygen species (ROS) signaling during fiber initiation and elongation. To validate the functional attributes of annotated DEmiRs, we demonstrated for the first time that the target-mimicry-based constitutive diminution of auxin-signaling associated miR167 directly affected the differentiation of floral and fiber tissues of transgenic cotton. These results strongly suggested that the evolutionarily favored DEmiRs including miR167 were involved in the transcriptional regulation of numerous genes during cotton evolution for enhanced fiber-associated agronomic traits.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
18
|
Wu X, Ren Y, Jiang H, Wang Y, Yan J, Xu X, Zhou F, Ding H. Genome-Wide Identification and Transcriptional Expression Analysis of Annexin Genes in Capsicum annuum and Characterization of CaAnn9 in Salt Tolerance. Int J Mol Sci 2021; 22:ijms22168667. [PMID: 34445369 PMCID: PMC8395446 DOI: 10.3390/ijms22168667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 01/21/2023] Open
Abstract
Annexin (Ann) is a polygenic, evolutionarily conserved, calcium-dependent and phospholipid-binding protein family, which plays key roles in plant growth, development, and stress response. However, a comprehensive understanding of CaAnn genes of pepper (Capsicum annuum) at the genome-wide level is limited. Based on the available pepper genomic information, we identified 15 members of the CaAnn gene family. Phylogenetic analysis showed that CaAnn proteins could be categorized into four different orthologous groups. Real time quantitative RT-PCR analysis showed that the CaAnn genes were tissue-specific and were widely expressed in pepper leaves after treatments with cold, salt, and drought, as well as exogenously applied MeJA and ABA. In addition, the function of CaAnn9 was further explored using the virus-induced gene silencing (VIGS) technique. CaAnn9-silenced pepper seedlings were more sensitive to salt stress, reflected by the degradation of chlorophyll, the accumulation of reactive oxygen species (ROS), and the decrease of antioxidant defense capacity. This study provides important information for further study of the role of pepper CaAnn genes and their coding proteins in growth, development, and environmental responses.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Yan Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Hailong Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Yan Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Jiaxing Yan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Xiaoying Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
| | - Fucai Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Correspondence: (F.Z.); (H.D.); Tel.: +86-0514-8-797-9344 (F.Z.); Tel./Fax: +86-0514-8-797-9204 (H.D.)
| | - Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (X.W.); (Y.R.); (H.J.); (Y.W.); (J.Y.); (X.X.)
- Correspondence: (F.Z.); (H.D.); Tel.: +86-0514-8-797-9344 (F.Z.); Tel./Fax: +86-0514-8-797-9204 (H.D.)
| |
Collapse
|
19
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
20
|
Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci Rep 2020; 10:4295. [PMID: 32152363 PMCID: PMC7062692 DOI: 10.1038/s41598-020-59953-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Annexins (ANN) are a multigene, evolutionarily conserved family of calcium-dependent and phospholipid-binding proteins that play important roles in plant development and stress resistance. However, a systematic comprehensive analysis of ANN genes of Brassicaceae species (Brassica rapa, Brassica oleracea, and Brassica napus) has not yet been reported. In this study, we identified 13, 12, and 26 ANN genes in B. rapa, B. oleracea, and B. napus, respectively. About half of these genes were clustered on various chromosomes. Molecular evolutionary analysis showed that the ANN genes were highly conserved in Brassicaceae species. Transcriptome analysis showed that different group ANN members exhibited varied expression patterns in different tissues and under different (abiotic stress and hormones) treatments. Meanwhile, same group members from Arabidopsis thaliana, B. rapa, B. oleracea, and B. napus demonstrated conserved expression patterns in different tissues. The weighted gene coexpression network analysis (WGCNA) showed that BnaANN genes were induced by methyl jasmonate (MeJA) treatment and played important roles in jasmonate (JA) signaling and multiple stress response in B. napus.
Collapse
|
21
|
Song W, Wang F, Chen L, Ma R, Zuo X, Cao A, Xie S, Chen X, Jin X, Li H. GhVTC1, the Key Gene for Ascorbate Biosynthesis in Gossypium hirsutum, Involves in Cell Elongation Under Control of Ethylene. Cells 2019; 8:cells8091039. [PMID: 31492030 PMCID: PMC6769745 DOI: 10.3390/cells8091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023] Open
Abstract
L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.
Collapse
Affiliation(s)
- Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Lihua Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Rendi Ma
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiaoyu Zuo
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Aiping Cao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Shuangquan Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xifeng Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
22
|
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, Zhang Z, Jin D, Guo X, Wei Y, Li Z, Wang K, Liu F. Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. Int J Mol Sci 2019; 20:E1863. [PMID: 30991750 PMCID: PMC6514600 DOI: 10.3390/ijms20081863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are important molecules in the plant, which are involved in many biological processes, including fiber development and adaptation to abiotic stress in cotton. We carried out transcription analysis to determine the evolution of the ROS genes and analyzed their expression levels in various tissues of cotton plant under abiotic stress conditions. There were 515, 260, and 261 genes of ROS network that were identified in Gossypium hirsutum (AD₁ genome), G. arboreum (A genome), and G. raimondii (D genome), respectively. The ROS network genes were found to be distributed in all the cotton chromosomes, but with a tendency of aggregating on either the lower or upper arms of the chromosomes. Moreover, all the cotton ROS network genes were grouped into 17 families as per the phylogenetic tress analysis. A total of 243 gene pairs were orthologous in G. arboreum and G. raimondii. There were 240 gene pairs that were orthologous in G. arboreum, G. raimondii, and G. hirsutum. The synonymous substitution value (Ks) peaks of orthologous gene pairs between the At subgenome and the A progenitor genome (G. arboreum), D subgenome and D progenitor genome (G. raimondii) were 0.004 and 0.015, respectively. The Ks peaks of ROS network orthologous gene pairs between the two progenitor genomes (A and D genomes) and two subgenomes (At and Dt subgenome) were 0.045. The majority of Ka/Ks value of orthologous gene pairs between the A, D genomes and two subgenomes of TM-1 were lower than 1.0. RNA seq. analysis and RT-qPCR validation, showed that, CSD1,2,3,5,6; FSD1,2; MSD1,2; APX3,11; FRO5.6; and RBOH6 played a major role in fiber development while CSD1, APX1, APX2, MDAR1, GPX4-6-7, FER2, RBOH6, RBOH11, and FRO5 were integral for enhancing salt stress in cotton. ROS network-mediated signal pathway enhances the mechanism of fiber development and regulation of abiotic stress in Gossypium. This study will enhance the understanding of ROS network and form the basic foundation in exploring the mechanism of ROS network-involving the fiber development and regulation of abiotic stress in cotton.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Jaramogi Oginga Odinga University of Science and Technology (JOOUST), School of Biological and Physical Sciences (SPBS), P.O BOX 210-40600, Bondo, Kenya.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Dingsha Jin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xinlei Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yangyang Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Zhenqing Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| |
Collapse
|
23
|
YC3.60-Based Imaging Analysis on Calcium Level in Cotton Cells. Methods Mol Biol 2018. [PMID: 30543070 DOI: 10.1007/978-1-4939-8952-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Calcium ion (Ca2+) is a core regulator of cell functions in response to many developmental and environmental stimuli. A hallmark for Ca2+ signaling is the change of this ion in cells. Fluorescent resonance energy transfer (FRET)-based Ca2+ sensors provide a powerful tool for qualitatively and quantitatively measuring cytosolic Ca2+ level. Using YC3.60, one of those sensors, we have imaged cytosolic changes of Ca2+ in cotton fibers during the initiation stage. In this chapter, the imaging method is described in detail. The description is not limited to fiber cells but also examples leaf trichomes and protoplasts of cotton.
Collapse
|
24
|
Kumar V, Singh B, Singh SK, Rai KM, Singh SP, Sable A, Pant P, Saxena G, Sawant SV. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1069-1083. [PMID: 29952050 DOI: 10.1111/tpj.14011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 05/28/2023]
Abstract
Cotton fibers are single-celled trichomes that initiate from the epidermal cells of the ovules at or before anthesis. Here, we identified that the histone deacetylase (HDAC) activity is essential for proper cotton fiber initiation. We further identified 15 HDACs homoeologs in each of the A- and D-subgenomes of Gossypium hirsutum. Few of these HDAC homoeologs expressed preferentially during the early stages of fiber development [-1, 0 and 6 days post-anthesis (DPA)]. Among them, GhHDA5 expressed significantly at the time of fiber initiation (-1 and 0 DPA). The in vitro assay for HDAC activity indicated that GhHDA5 primarily deacetylates H3K9 acetylation marks. Moreover, the reduced expression of GhHDA5 also suppresses fiber initiation and lint yield in the RNA interference (RNAi) lines. The 0 DPA ovules of GhHDA5RNAi lines also showed alterations in reactive oxygen species homeostasis and elevated autophagic cell death in the developing fibers. The differentially expressed genes (DEGs) identified through RNA-seq of RNAi line (DEP12) and their pathway analysis showed that GhHDA5 modulates expression of many stress and development-related genes involved in fiber development. The reduced expression of GhHDA5 in the RNAi lines also resulted in H3K9 hyper-acetylation on the promoter region of few DEGs assessed by chromatin immunoprecipitation assay. The positively co-expressed genes with GhHDA5 showed cumulative higher expression during fiber initiation, and gene ontology annotation suggests their involvement in fiber development. Furthermore, the predicted protein interaction network in the positively co-expressed genes indicates HDA5 modulates fiber initiation-specific gene expression through a complex involving reported repressors.
Collapse
Affiliation(s)
- Verandra Kumar
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Babita Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Sunil K Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Surendra P Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Poonam Pant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| |
Collapse
|
25
|
Yang J, Wu C, Yu Y, Mao H, Bao Y, Kang Y, Qi Z. A mongolian pine specific endoplasmic reticulum localized CALMODULIN-LIKE calcium binding protein enhances arabidopsis growth. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:1-11. [PMID: 29689429 DOI: 10.1016/j.jplph.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Stress-adapted wild plants are natural sources of novel genes for molecular breeding. Here, we conducted a transcriptional analysis of Pinus sylvestris var. mongolica Litv, an evergreen pine in northeastern China, to identify a novel CALMODULIN-LIKE protein-encoding gene, PsCML1, no significant homologs found in other plant species. PsCML1 encodes a protein predicted to have a single trans-membrane domain at its N-terminal. Four EF-hand motifs (calcium [Ca]-binding structures) are located at its C-terminal and showed Ca2+-specific affinity in isothermal titration calorimetric analysis. Transient expression of PsCML1 in Nicotiana benthamiana showed that the PsCML1 localizes to the endoplasmic reticulum (ER). Heterologous expression of PsCML1 in Arabidopsis significantly promoted seedling growth, and increased resistance to stress from NaCl and Ca2+ deficiency. The roots of the transgenic seedlings had higher contents of cellulose and pectin, but less hemicellulose than those of the wild type (WT). The biosynthesis of cell wall components is linked with protein glycosylation in the ER and reactive oxygen species (ROS) homeostasis. No significant difference was found in the extent of protein glycosylation between the transgenic and WT plants. However, the transgenic roots had higher steady-state levels of ROS, NADPH oxidase activity, and endo-membrane dynamics than those of the WT. A working model was proposed to delineate the interaction among Ca2+, ROS homeostasis, and cell wall loosening-dependent cell division.
Collapse
Affiliation(s)
- Jia Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China; Inner Mongolia HeSheng Institute of Ecological Sciences & Technology, Hohhot, 011517, PR China
| | - Caili Wu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yahui Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huiping Mao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
26
|
Long Q, Yue F, Liu R, Song S, Li X, Ding B, Yan X, Pei Y. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton. Mol Genet Genomics 2018; 293:1139-1149. [PMID: 29752547 DOI: 10.1007/s00438-018-1445-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.
Collapse
Affiliation(s)
- Qin Long
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Fang Yue
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Ruochen Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Shuiqing Song
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xianbi Li
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Bo Ding
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xingying Yan
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
27
|
Guo K, Tu L, He Y, Deng J, Wang M, Huang H, Li Z, Zhang X. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5161-5175. [PMID: 29045717 PMCID: PMC5853336 DOI: 10.1093/jxb/erx346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) is necessary for fiber cell development in cotton (Gossypium hirsutum), both as a cell wall structural component and for environmental signaling responses. It is also known that potassium (K+) plays a critical role in cotton fiber cell elongation. However, it is unclear whether Ca2+ integrates its activities with K+ to regulate fiber elongation. Here, we report the novel discovery that Ca2+ deficiency, when integrated with K+ signaling, promotes fiber elongation. Using inductively coupled plasma-mass spectrometry (ICP-MS), we determined dynamic profiles of the ionome in ovules and fibers at different developmental stages, and found that a high accumulation of macro-elements, but not Ca2+, was associated with longer fibers. Using an in vitro ovule culture system, we found that under Ca2+-deficient conditions, sufficient K+ (52 mM) rapidly induced ovule and fiber browning, while reduced K+ (2 or 27 mM) not only suppressed tissue browning but also altered fiber elongation. Reduced K+ also enhanced reactive oxygen species scavenging ability and maintained abscisic acid and jasmonic acid levels, which in turn compensated for Ca2+ deficiency. Ca2+ deficiency combined with reduced K+ (0 mM Ca2+ and 27 mM K+) produced longer fibers in cultured ovules, due to cell wall loosening by phytosulfokine (PSK), expansin (EXP), and xyloglucan endotransglycosylase/hydrolase (XTH), and an increase of the K+ content of fiber cells. Using transgenic cotton, we showed that the CBL-INTERACTING PROTEIN KINASE 6 (GhCIPK6) gene mediates the uptake of K+ under Ca2+-deficient conditions. This study establishes a new link between Ca2+, K+, and fiber elongation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Correspondence:
| | - Yonghui He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hui Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
28
|
Li PT, Wang M, Lu QW, Ge Q, Rashid MHO, Liu AY, Gong JW, Shang HH, Gong WK, Li JW, Song WW, Guo LX, Su W, Li SQ, Guo XP, Shi YZ, Yuan YL. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics 2017; 18:705. [PMID: 28886694 PMCID: PMC5591532 DOI: 10.1186/s12864-017-4077-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. Results In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the “oxidation-reduction process”, which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. Conclusions The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4077-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Quan-Wei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei-Wu Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Li-Xue Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei Su
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiao-Ping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| |
Collapse
|
29
|
Xu J, Wang G, Wang J, Li Y, Tian L, Wang X, Guo W. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC PLANT BIOLOGY 2017; 17:148. [PMID: 28870172 PMCID: PMC5583995 DOI: 10.1186/s12870-017-1096-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/23/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lysin motif (LysM)-containing proteins are important pattern recognition receptors (PRRs) in plants, which function in the perception of microbe-associated molecular patterns (MAMPs) and in the defense against pathogenic attack. To date, the LysM genes have not been systematically analyzed in cotton or effectively utilized for disease resistance. RESULTS Here, we identified 29, 30, 60, and 56 LysM genes in the four sequenced cotton species, diploid Gossypium raimondii, diploid G. arboreum, tetraploid G. hirsutum acc. TM-1, and G. barbadense acc. 3-79, respectively. These LysM genes were classified into four groups with different structural characteristics and a variety of expression patterns in different organs and tissues when induced by chitin or Verticillium dahliae. We further characterized three genes, Lyp1, Lyk7 and LysMe3, which showed significant increase in expression in response to chitin signals, V. dahliae challenge and several stress-related signaling compounds. Lyp1, Lyk7 and LysMe3 proteins were localized to the plasma membrane, and silencing of their expression in cotton drastically impaired salicylic acid, jasmonic acid, and reactive oxygen species generation, impaired defense gene activation, and compromised resistance to V. dahliae. CONCLUSION Our results indicate that Lyp1, Lyk7, and LysMe3 are important PRRs that function in the recognition of chitin signals to activate the downstream defense processes and induce cotton defense mechanisms against V. dahliae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Yongqing Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Liangliang Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province People’s Republic of China
| |
Collapse
|
30
|
Zhang M, Han LB, Wang WY, Wu SJ, Jiao GL, Su L, Xia GX, Wang HY. Overexpression of GhFIM2 propels cotton fiber development by enhancing actin bundle formation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:531-534. [PMID: 28474404 DOI: 10.1111/jipb.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Cell elongation and secondary wall deposition are two consecutive stages during cotton fiber development. The mechanisms controlling the progression of these two developmental phases remain largely unknown. Here, we report the functional characterization of the actin-bundling protein GhFIM2 in cotton fiber. Overexpression of GhFIM2 increased the abundance of actin bundles, which was accompanied with accelerated fiber growth at the fast-elongating stage. Meanwhile, overexpression of GhFIM2 could propel the onset of secondary cell wall biogenesis. These results indicate that the dynamic rearrangement of actin higher structures involving GhFIM2 plays an important role in the development of cotton fiber cells.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Wen-Yan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Jie Wu
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
| | - Gai-Li Jiao
- Institute of Cotton Research, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
| | - Lei Su
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Plant Genomics, Beijing 100101, China
| |
Collapse
|
31
|
Li R, Xin S, Tao C, Jin X, Li H. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation. Int J Mol Sci 2017; 18:E1346. [PMID: 28644407 PMCID: PMC5535839 DOI: 10.3390/ijms18071346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H₂O₂, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Shan Xin
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Chengcheng Tao
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hongbin Li
- College of Life Sciences, Key laboratory of Agrobiotechnology, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
32
|
Zhang B, Wang Y, Liu JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). SCIENCE CHINA-LIFE SCIENCES 2017; 61:88-99. [PMID: 28547583 DOI: 10.1007/s11427-017-9053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/01/2017] [Indexed: 01/05/2023]
Abstract
Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanmei Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Tang K, Liu JY. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Acta Biochim Biophys Sin (Shanghai) 2017; 49:33-43. [PMID: 27864277 DOI: 10.1093/abbs/gmw113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Phospholipase D (PLD) hydrolyzes phospholipids to generate a free polar head group (e.g., choline) and a second messenger phosphatidic acid and plays diverse roles in plant growth and development, including seed germination, leaf senescence, root hair growth, and hypocotyl elongation. However, the function of PLD in cotton remains largely unexplored. Here, the comprehensive molecular characterization of GhPLDα1 was explored with its role in upland cotton (Gossypium hirsutum) fiber development. The GhPLDα1 gene was cloned successfully, and a sequence alignment showed that GhPLDα1 contains one C2 domain and two HKD (HxKxxxxD) domains. Quantitative reverse transcriptase-polymerase chain reaction measured the expression of GhPLDα1 in various cotton tissues with the highest level in fibers at 20 days post anthesis (d.p.a.). Fluorescent microscopy and immunoblotting in tobacco epidermis showed the GhPLDα1 distribution in both cell membranes and the cytoplasm. An activity assay indicated changes in PLDα enzyme activity in developing fiber cells with a peak level at 20 d.p.a., coinciding with the onset of cellulose accumulation and the increased H2O2 content during fiber development. Furthermore, the inhibition of PLDα activity obviously decreased the cellulose and H2O2 contents of in vitro-cultured cotton fibers. These results provide important evidence explaining the relationship of GhPLDα1 with secondary cell wall thickening in cotton fibers in that GhPLDα1 may correlate with the increased H2O2 content at the onset of secondary cell wall thickening, ultimately promoting cellulose biosynthesis.
Collapse
Affiliation(s)
- Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Dietz KJ, Mittler R, Noctor G. Recent Progress in Understanding the Role of Reactive Oxygen Species in Plant Cell Signaling. PLANT PHYSIOLOGY 2016; 171:1535-9. [PMID: 27385820 PMCID: PMC4936595 DOI: 10.1104/pp.16.00938] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Karl-Josef Dietz
- University of Bielefeld, Faculty of Biology, Department of Plant Biochemistry and Physiology, D-33615 Bielefeld, Germany
| | - Ron Mittler
- University of North Texas, College of Arts and Sciences, Department of Biological Sciences, Denton, Texas 76203
| | - Graham Noctor
- University of Paris-Saclay, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of Evry, University of Paris-Sud (Paris 11), F-91405 Orsay, France
| |
Collapse
|