1
|
Gorgues L, Smokvarska M, Mercier C, Igisch CP, Crabos A, Dongois A, Bayle V, Fiche JB, Nacry P, Nollmann M, Jaillais Y, Martinière A. GEF14 acts as a specific activator of the plant osmotic signaling pathway by controlling ROP6 nanodomain formation. EMBO Rep 2025; 26:2146-2165. [PMID: 40082605 PMCID: PMC12019552 DOI: 10.1038/s44319-025-00412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
During their growth, plants encounter and respond to a variety of environmental signals. However, the mechanisms underlying the integration and specificity of signals remain poorly understood. Rho of Plant (ROP) signaling plays a central role in various processes, including polar cell growth and responses to different stimuli, and relies on stimuli-dependent membrane nanodomains. The effector composition of ROP6 nanodomains varies depending on the signal and may be involved in downstream signal specificity. In this study, we explore how ROP6 signaling is regulated by Guanine nucleotide Exchange Factor (GEF) during osmotic stress. We find that GEF14 is required for osmotically induced ROS accumulation. This isoform acts specifically in response to osmotic stimulation, since it is dispensable for other stimuli. We demonstrate that GEF14 activates ROP6 and controls its clustering in a signal-specific manner. Furthermore, we find that GEF14 relocates from the cytoplasm to clusters at the plasma membrane after osmotic stimulation. Together, our results suggest that a single GEF isoform can encode for signal specificity controlling ROP6 activation, clustering and downstream cellular responses.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Marija Smokvarska
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
| | - Caroline Mercier
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Clara P Igisch
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342, Lyon, France
| | - Amandine Crabos
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Armelle Dongois
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342, Lyon, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090, Montpellier, France
| | - Philippe Nacry
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090, Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342, Lyon, France
| | | |
Collapse
|
2
|
Bouatta AM, Anzenberger F, Riederauer L, Lepper A, Denninger P. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol 2025; 23:e3003139. [PMID: 40258071 PMCID: PMC12043234 DOI: 10.1371/journal.pbio.3003139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/30/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
During plant fertilization, excess male gametes compete for a limited number of female gametes. The dormant male gametophyte, encapsulated in the pollen grain, consists of two sperm cells enclosed in a vegetative cell. After reaching the stigma of a compatible flower, quick and efficient germination of the vegetative cell to a tip-growing pollen tube is crucial to ensure fertilization success. Rho of Plants (ROP) signaling and their activating ROP Guanine Nucleotide Exchange Factors (ROPGEFs) are essential for initiating polar growth processes in multiple cell types. However, which ROPGEFs activate pollen germination is unknown. We investigated the role of ROPGEFs in initiating pollen germination and the required cell polarity establishment. Of the five pollen-expressed ROPGEFs, we found that GEF8, GEF9, and GEF12 are required for pollen germination and male fertilization success, as gef8;gef9;gef12 triple mutants showed almost complete loss of pollen germination in vitro and had a reduced allele transmission rate. Live-cell imaging and spatiotemporal analysis of subcellular protein distribution showed that GEF8, GEF9, and GEF11, but not GEF12, displayed transient polar protein accumulations at the future site of pollen germination minutes before pollen germination, demonstrating specific roles for GEF8 and GEF9 during the initiation of pollen germination. Furthermore, this novel GEF accumulation appears in a biphasic temporal manner and can shift its location laterally. We showed that the C-terminal domain of GEF8 and GEF9 confers their protein accumulation and demonstrated that GEFs locally activate ROPs and alter Ca2+ levels, which is required for pollen tube germination. We demonstrated that not all GEFs act redundantly during pollen germination, and we described for the first time a polar domain with spatiotemporal flexibility, which is crucial for the de novo establishment of a polar growth domain within a cell and, thus, for pollen function and fertilization success.
Collapse
Affiliation(s)
- Alida Melissa Bouatta
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Franziska Anzenberger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Lisa Riederauer
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Andrea Lepper
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Philipp Denninger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| |
Collapse
|
3
|
Yan Y, Zhu J, Qiu Q, Li J, Cao X, Deng X. The Arabidopsis demethylase REF6 physically interacts with phyB to promote hypocotyl elongation under red light. Proc Natl Acad Sci U S A 2025; 122:e2417253122. [PMID: 40063793 PMCID: PMC11929476 DOI: 10.1073/pnas.2417253122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
The plant photoreceptor phytochrome B (phyB) mediates the responses of plants to red (R) light. Trimethylation of histone H3 at Lys27 (H3K27me3) plays a crucial role in governing gene expression and controlling the response of plants to environmental changes. However, how dynamic H3K27me3 mediates plant response to R light is poorly understood. Here, we report that RELATIVE OF EARLY FLOWERING 6 (REF6), an H3K27me3 demethylase, promotes hypocotyl elongation under R light in Arabidopsis. Upon exposure to R light, REF6 preferentially interacts with the active Pfr form of phyB. Consequently, phyB enhances REF6 accumulation and its binding ability, which are necessary for inducing cell-elongation-related genes from open chromatin, ensuring normal plant growth under prolonged light exposure. Moreover, REF6 acts together with the phyB-PIF4 module to mediate light regulation of hypocotyl growth. These findings provide insights into the understanding of how phytochromes, epigenetic factors, and transcription factors coordinately control plant growth in response to changing light environment.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jiaping Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Qiu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xian Deng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
4
|
Singh N, Giri MK, Chattopadhyay D. Lighting the path: how light signaling regulates stomatal movement and plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:769-786. [PMID: 39673781 DOI: 10.1093/jxb/erae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Stomata, the small pores on the surfaces of plant leaves and stems, are crucial for gas exchange and also play a role in defense against pathogens. Stomatal movement is influenced not only by surrounding light conditions but also by the presence of foliar pathogens. Certain light wavelengths such as blue or high irradiance red light cause stomatal opening, making it easier for bacteria to enter through opened stomata and causing disease progression in plants. Illumination with blue or intense red light autophosphorylates phototropin, a blue light photoreceptor protein kinase, that in turn activates a signaling cascade to open the stomata. Undoubtedly stomatal defense is a fascinating aspect of plant immunology, especially in plant-foliar pathogen interactions. During these interactions, stomata fundamentally serve as entry points for intrusive pathogens and initiate the plant defense signaling cascade. This review highlights how light-activated photoreceptors such as cryptochromes (CRYs), phytochromes (phys), and UV-receptors (UVRs) influence stomatal movement and defense signaling after foliar pathogen intrusion. It also explores the link between stomatal defense, light signaling, and plant immunity, which is vital for safeguarding crops against pathogens.
Collapse
Affiliation(s)
- Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar-751024, Odisha,India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
5
|
Wang W, Liu D, Zhang T, Guo K, Liu X, Liu D, Chen L, Yang J, Teng Z, Zou Y, Ma J, Wang Y, Yang X, Guo X, Sun X, Zhang J, Xiao Y, Paterson AH, Zhang Z. Natural variation in GhROPGEF5 contributes to longer and stronger cotton fibers. THE NEW PHYTOLOGIST 2025; 245:1090-1105. [PMID: 39575696 DOI: 10.1111/nph.20286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025]
Abstract
Length and strength are key parameters impacting the quality of textiles that can be produced from cotton fibers, and therefore are important considerations in cotton breeding. Through map-based cloning and function analysis, we demonstrated that GhROPGEF5, encoding a ROP guanine nucleotide exchange factor, was the gene controlling fiber length and strength at qFSA10.1. Evolutionary analysis revealed that a base deletion in the third exon of GhROPGEF5 resulting in superior fiber length and strength was a rare mutation occurring in a tiny percentage of Upland cottons, with reduced fiber yield hindering its spread. GhROPGEF5 interacted with and activated GhROP10. Knockout or mutation of GhROPGEF5 resulted a loss of the ability to activate GhROP10. Knockout of GhROPGEF5 or GhROP10 affected the expression of many downstream genes associated with fiber elongation and secondary wall deposition, prolonged fiber elongation and delayed secondary wall deposition, producing denser fiber helices and increasing fiber length and strength. These results revealed new molecular aspects of fiber development and revealed a rare favorable allele for improving fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Tingfu Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Kai Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Lei Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jinming Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Ying Zou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Junrui Ma
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yi Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xinrui Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xin Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xiaoting Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yuehua Xiao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Andrew H Paterson
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| |
Collapse
|
6
|
Li M, Feng L, Ye H, Li M, Jin J, Tao LZ, Liu H. OsRopGEF10 Attenuates Cytokinin Signaling to Regulate Panicle Development and Grain Yield in Rice. RICE (NEW YORK, N.Y.) 2024; 17:57. [PMID: 39223425 PMCID: PMC11369127 DOI: 10.1186/s12284-024-00737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cytokinins, which play crucial roles in shoot development, substantially affect grain yield. In rice, the OsRopGEF10-OsRAC3 module is associated with cytokinin signaling and crown root development. However, the effects of RopGEF-mediated cytokinin signaling on rice shoot development and grain yield remain unclear. In this study, we investigated the role of OsRopGEF10 in SAM development and the underlying mechanism. We showed that overexpression of OsRopGEF10 inhibited SAM and panicle development, leading to decreased grain yield. Intriguingly, the overexpression of a specific amino acid mutant of OsRopGEF10, designated gef10-W260S, was found to promote panicle development and grain yield. Further analysis using the BiFC assay revealed that the gef10-W260S mutation disrupted the recruitment of rice histidine phosphotransfer proteins (OsAHP1/2) to the plasma membrane (PM), thereby promoting cytokinin signaling. This effect was corroborated by a dark-induced leaf senescence assay, which revealed an increased cytokinin response in the gef10-W260S ectopic expression lines, whereas the overexpression lines presented a suppressed cytokinin response. Moreover, we revealed that the enhanced panicle development in the gef10-W260S lines was attributable to the upregulated expression of several type-B response regulators (RRs) that are crucial for panicle development. Collectively, these findings revealed the negative regulatory function of OsRopGEF10 in the development of the shoot apical meristem (SAM) via interference with cytokinin signaling. Our study highlights the promising role of OsRopGEF10 as a potential target for regulating SAM and panicle development in rice, revealing a valuable breeding strategy for increasing crop yield.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lianjie Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Huanxia Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Meiyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Jing X, Deng N, Cai Y. Genome-Wide Identification and Characterization of RopGEF Gene Family in C 4 Crops. Genes (Basel) 2024; 15:1112. [PMID: 39336703 PMCID: PMC11431098 DOI: 10.3390/genes15091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
In plants, RopGEF-mediated ROP signaling is pivotal in cellular signaling pathways, including apical growth, pollen germination and perception, intercellular recognition, as well as in responses to biotic and abiotic stresses. In this study, we retrieved a total of 37 RopGEF members from three C4 Crops, of which 11 are from millet, 11 from sorghum, and 15 from maize. Based on their phylogenetic relationships and structural characteristics, all RopGEF members are classified into four subfamilies. The qRT-PCR technique was utilized to evaluate the expression profiles of 11 SiRopGEFs across different tissues in foxtail millet. The findings indicated that the majority of the SiRopGEFs exhibited higher expression levels in leaves as opposed to roots and stems. The levels of expression of SiRopGEF genes were examined in response to abiotic stress and plant hormones. SiRopGEF1, SiRopGEF5, SiRopGEF6, and SiRopGEF8 showed significant induction under abiotic stresses such as salt, cold, and heat. On the other hand, SiRopGEF1, SiRopGEF2, and SiRopGEF7 were consistently upregulated, while SiRopGEF3, SiRopGEF4, SiRopGEF6, SiRopGEF9, and SiRopGEF10 were downregulated upon exposure to abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and gibberellic acid (GA3) hormones. The alterations in the expression patterns of RopGEF members imply their potential functions in plant growth and development, abiotic stress response, and hormone signal transduction. These discoveries suggest that the RopGEF genes may function as a potential genetic marker to facilitate future studies in elucidating the functional characteristics of RopGEFs.
Collapse
Affiliation(s)
- Xiuqing Jing
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China; (N.D.); (Y.C.)
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ning Deng
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China; (N.D.); (Y.C.)
| | - Yongduo Cai
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China; (N.D.); (Y.C.)
| |
Collapse
|
8
|
Pedenla Bomzan D, Sharma A, Lemos Cruz P, Carqueijeiro I, Bellenger L, Rai A, Thippesh AK, Chinnegowda VS, Parihar D, Ducos E, Courdavault V, Nagegowda DA. ROP GTPases with a geranylgeranylation motif modulate alkaloid biosynthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2024; 195:2213-2233. [PMID: 38466200 DOI: 10.1093/plphys/kiae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpene indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.
Collapse
Affiliation(s)
- Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anuj Sharma
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pamela Lemos Cruz
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Ines Carqueijeiro
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Léo Bellenger
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Avanish Rai
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Akshay Kumar Thippesh
- Department of Biotechnology and Crop Improvement, College of Horticulture, UHS Bagalkot, Mysuru 571130, India
| | - Venkatesha S Chinnegowda
- Department of Biotechnology and Crop Improvement, College of Horticulture, UHS Bagalkot, Mysuru 571130, India
| | - Durgesh Parihar
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eric Ducos
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Universitéde de Tours, 37200 Tours, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Denninger P. RHO OF PLANTS signalling and the activating ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS: specificity in cellular signal transduction in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3685-3699. [PMID: 38683617 PMCID: PMC11194304 DOI: 10.1093/jxb/erae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 05/01/2024]
Abstract
Every cell constantly receives signals from its neighbours or the environment. In plants, most signals are perceived by RECEPTOR-LIKE KINASEs (RLKs) and then transmitted into the cell. The molecular switches RHO OF PLANTS (ROP) are critical proteins for polar signal transduction and regulate multiple cell polarity processes downstream of RLKs. Many ROP-regulating proteins and scaffold proteins of the ROP complex are known. However, the spatiotemporal ROP signalling complex composition is not yet understood. Moreover, how specificity is achieved in different ROP signalling pathways within one cell still needs to be determined. This review gives an overview of recent advances in ROP signalling and how specificity by downstream scaffold proteins can be achieved. The composition of the ROP signalling complexes is discussed, focusing on the possibility of the simultaneous presence of ROP activators and inactivators within the same complex to balance ROP activity. Furthermore, this review highlights the function of plant-specific ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS polarizing ROP signalling and defining the specificity of the initiated ROP signalling pathway.
Collapse
Affiliation(s)
- Philipp Denninger
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354 Freising, Germany
| |
Collapse
|
10
|
Li Y, Hui S, Yuan Y, Ye Y, Ma X, Zhang X, Zhang S, Zhang C, Chen Y. PhyB-dependent phosphorylation of mitogen-activated protein kinase cascade MKK2-MPK2 positively regulates red light-induced stomatal opening. PLANT, CELL & ENVIRONMENT 2023; 46:3323-3336. [PMID: 37493364 DOI: 10.1111/pce.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/20/2023] [Accepted: 07/02/2023] [Indexed: 07/27/2023]
Abstract
Red light induces stomatal opening by affecting photosynthesis, metabolism and triggering signal transductions in guard cells. Phytochrome B (phyB) plays a positive role in mediating red light-induced stomatal opening. However, phyB-mediated red light guard cell signalling is poorly understood. Here, we found that phyB-mediated sequential phosphorylation of mitogen-activated protein kinase kinase 2 (MAPKK2, MKK2) and MPK2 in guard cells is essential for red light-induced stomatal opening. Mutations in MKK2 and MPK2 led to reduced stomatal opening in response to white light, and these phenotypes could be observed under red light, not blue light. MKK2 interacted with MPK2 in vitro and in plants. MPK2 was directly phosphorylated by MKK2 in vitro. Red light triggered the phosphorylation of MKK2 in guard cells, and MKK2 phosphorylation was greatly reduced in phyB mutant. Simultaneously, red light-stimulated MPK2 phosphorylation in guard cells was inhibited in mkk2 mutant. Furthermore, mkk2 and mpk2 mutants exhibit significantly smaller stomatal apertures than that of wild type during the stomatal opening stage in the diurnal stomatal movements. Our results indicate that red light-promoted phyB-dependent phosphorylation of MKK2-MPK2 cascade in guard cells is essential for stomatal opening, which contributes to the fine-tuning of stomatal opening apertures under light.
Collapse
Affiliation(s)
- Yuzhen Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Shimiao Hui
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yaxin Yuan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Yahong Ye
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaohan Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Xiaolu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chunguang Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| | - Yuling Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang, China
| |
Collapse
|
11
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
12
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
13
|
Li Y, Zhang S, Zou Y, Yuan L, Cheng M, Liu J, Zhang C, Chen Y. Red light-upregulated MPK11 negatively regulates red light-induced stomatal opening in Arabidopsis. Biochem Biophys Res Commun 2023; 638:43-50. [PMID: 36436341 DOI: 10.1016/j.bbrc.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Stomatal movements allow the uptake of CO2 for photosynthesis and water loss through transpiration, therefore play a crucial role in determining water use efficiency. Both red and blue lights induce stomatal opening, and the stomatal apertures under light are finetuned by both positive and negative regulators in guard cells. However, the molecular mechanisms for precisely adjusting stomatal apertures under light have not been completely understood. Here, we provided evidence supporting that Arabidopsis thaliana mitogen-activated protein kinase 11 (MPK11) plays a negative role in red light-induced stomatal opening. First, MPK11 was found to be highly expressed in guard cells, and MPK11-GFP signals were detected in both nuclear and cytoplasm of guard cells. The transcript levels of MPK11 in guard cells were upregulated by white light, and the stomata of mpk11 opened wider than that of wild type under white light. Consistent with the larger stomatal aperture, mpk11 mutant exhibited higher stomatal conductance and CO2 assimilation rate under white light. The transcript levels of the genes responsible for osmolytes increases were higher in guard cells of mpk11 than that of wild type, which may contribute to the larger stomatal aperture of mpk11 under white light. Furthermore, MPK11 transcript levels in guard cells were upregulated by red light, and mpk11 mutant showed a larger stomatal aperture under red light. Taken together, these results demonstrate that red light-upregulated MPK11 plays a negative role in stomatal opening, which finetuning the stomatal opening apertures and preventing excessive water loss by transpiration under light.
Collapse
Affiliation(s)
- Yuzhen Li
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Shasha Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yanmin Zou
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China; Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Lina Yuan
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Miaomiao Cheng
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jiahuan Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chunguang Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Yuling Chen
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
14
|
Weraduwage SM, Frame MK, Sharkey TD. Role of guard cell- or mesophyll cell-localized phytochromes in stomatal responses to blue, red, and far-red light. PLANTA 2022; 256:55. [PMID: 35932433 DOI: 10.1007/s00425-022-03967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Guard cell- or mesophyll cell-localized phytochromes do not have a predominant direct light sensory role in red- or blue-light-mediated stomatal opening or far-red-light-mediated stomatal closure of Arabidopsis. The role of phytochromes in blue- and red-light-mediated stomatal opening, and far-red-light- mediated decrease in opening, is still under debate. It is not clear whether reduced stomatal opening in a phytochrome B (phyB) mutant line, is due to phytochrome acting as a direct photosensor or an indirect growth effect. The exact tissue localization of the phytochrome photoreceptor important for stomatal opening is also not known. We studied differences in stomatal opening in an Arabidopsis phyB mutant, and lines showing mesophyll cell-specific or guard cell-specific inactivation of phytochromes. Stomatal conductance (gs) of intact leaves was measured under red, blue, and blue + far-red light. Lines exhibiting guard cell-specific inactivation of phytochrome did not show a change in gs under blue or red light compared to Col-0. phyB consistently exhibited a reduction in gs under both blue and red light. Addition of far-red light did not have a significant impact on the blue- or red-light-mediated stomatal response. Treatment of leaves with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), a photosynthetic electron transport (PET) inhibitor, eliminated the response to red light in all lines, indicating that stomatal opening under red light is controlled by PET, and not directly by phytochrome. Similar to previous studies, leaves of the phyB mutant line had fewer stomata. Overall, phytochrome does not appear have a predominant direct sensory role in stomatal opening under red or blue light. However, phytochromes likely have an indirect effect on the degree of stomatal opening under light through effects on leaf growth and stomatal development.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, East Lansing, MI, 48824, USA
- Department of Biology/Biochemistry, Bishop's University, Sherbrooke Quebec, J1M OL3, Canada
| | - Melinda K Frame
- Center for Advanced Microscopy, East Lansing, MI, 48824, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, East Lansing, MI, 48824, USA.
- Department of Biochemistry and Molecular Biology, East Lansing, MI, 48824, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Meng Y, Zhang A, Ma Q, Xing L. Functional Characterization of Tomato ShROP7 in Regulating Resistance against Oidium neolycopersici. Int J Mol Sci 2022; 23:ijms23158557. [PMID: 35955691 PMCID: PMC9369182 DOI: 10.3390/ijms23158557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
ROPs (Rho-like GTPases from plants) are a unique family of small GTP-binding proteins in plants and play vital roles in numerous cellular processes, including growth and development, abiotic stress signaling, and plant defense. In the case of the latter, the role of ROPs as response regulators to obligate parasitism remains largely enigmatic. Herein, we isolated and identified ShROP7 and show that it plays a critical role in plant immune response to pathogen infection. Real-time quantitative PCR analysis revealed that the expression of ShROP7 was significantly increased during incompatible interactions. To establish its requirement for resistance, we demonstrate that virus-induced gene silencing (VIGS) of ShROP7 resulted in increased susceptibility of tomato to Oidium neolycopersici (On) Lanzhou strain (On-Lz). Downstream resistance signaling through H2O2 and the induction of the hypersensitive response (HR) in ShROP7-silenced plants were significantly reduced after inoculating with On-Lz. Taken together, with the identification of ShROP7-interacting candidates, including ShSOBIR1, we demonstrate that ShROP7 plays a positive regulatory role in tomato powdery mildew resistance.
Collapse
Affiliation(s)
- Yanan Meng
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Ancheng Zhang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China (Q.M.)
| | - Qing Ma
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China (Q.M.)
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi’an 710069, China;
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
16
|
Liu T, Liu Q, Yu Z, Wang C, Mai H, Liu G, Li R, Pang G, Chen D, Liu H, Yang J, Tao LZ. eIF4E1 Regulates Arabidopsis Embryo Development and Root Growth by Interacting With RopGEF7. FRONTIERS IN PLANT SCIENCE 2022; 13:938476. [PMID: 35845661 PMCID: PMC9280432 DOI: 10.3389/fpls.2022.938476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic translation initiation factor 4E1 (eIF4E1) is required for the initiation of protein synthesis. The biological function of eIF4E1 in plant-potyvirus interactions has been extensively studied. However, the role of eIF4E1 in Arabidopsis development remains unclear. In this study, we show that eIF4E1 is highly expressed in the embryo and root apical meristem. In addition, eIF4E1 expression is induced by auxin. eIF4E1 mutants show embryonic cell division defects and short primary roots, a result of reduced cell divisions. Furthermore, our results show that mutation in eIF4E1 severely reduces the accumulation of PIN-FORMED (PIN) proteins and decreases auxin-responsive gene expression at the root tip. Yeast two-hybrid assays identified that eIF4E1 interacts with an RAC/ROP GTPase activator, RopGEF7, which has been previously reported to be involved in the maintenance of the root apical meristem. The interaction between eIF4E1 and RopGEF7 is confirmed by protein pull-down and bimolecular fluorescent complementation assays in plant cells. Taken together, our results demonstrated that eIF4E1 is important for auxin-regulated embryo development and root growth. The eIF4E1-RopGEF7 interaction suggests that eIF4E1 may act through ROP signaling to regulate auxin transport, thus regulating auxin-dependent patterning.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qianyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chunling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ruijing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dingwu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
17
|
Li G, Song P, Wang X, Ma Q, Xu J, Zhang Y, Qi B. Genome-Wide Identification of Genes Encoding for Rho-Related Proteins in ' Duli' Pear ( Pyrus betulifolia Bunge) and Their Expression Analysis in Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1608. [PMID: 35736759 PMCID: PMC9230837 DOI: 10.3390/plants11121608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Twelve Rho-related proteins (ROPs), namely PbROPs, were identified from the genome of the recently sequenced 'Duli' pear (Pyrus betulifolia Bunge), a wild-type pear variety routinely used for rootstocks in grafting in China. The length and molecular weight of these proteins are between 175 and 215 amino acids and 19.46 and 23.45 kDa, respectively. The 12 PbROPs are distributed on 8 of the 17 chromosomes, where chromosome 15 has the highest number of 3 PbROPs. Analysis of the deduced protein sequences showed that they are relatively conserved and all have the G domain, insertion sequence, and HVR motif. The expression profiles were monitored by quantitative RT-PCR, which showed that these 12 PbROP genes were ubiquitously expressed, indicating their involvement in growth and development throughout the life cycle of 'Duli' pear. However, they were altered upon treatments with abscisic acid (ABA, mimicking abiotic stress), polyethylene glycol (PEG, mimicking drought), and sodium chloride (NaCl, mimicking salt) to tissue-cultured seedlings. Further, transgenic Arabidopsis expressing PbROP1, PbROP2, and PbROP9 exhibited enhanced sensitivity to ABA, demonstrating that these 3 PbROPs may play important roles in the abiotic stress of 'Duli' pear. The combined results showed that the 'Duli' genome encodes 12 typical ROPs and they appeared to play important roles in growth, development, and abiotic stress. These preliminary data may guide future research into the molecular mechanisms of these 12 PbROPs and their utility in molecular breeding for abiotic stress-resistant 'Duli' pear rootstocks.
Collapse
Affiliation(s)
- Gang Li
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Pingli Song
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Xiang Wang
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Qingcui Ma
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Jianfeng Xu
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Yuxing Zhang
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
| | - Baoxiu Qi
- Hebei Pear Engineering Technology Research Center, College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (G.L.); (P.S.); (X.W.); (Q.M.); (J.X.)
- School of Pharmacy and Biomolecular Science, Liverpool John Moors University, Liverpool L3 3AF, UK
| |
Collapse
|
18
|
Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol 2021; 31:3538-3550.e5. [PMID: 34216556 DOI: 10.1016/j.cub.2021.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Li YZ, Zhao ZQ, Song DD, Yuan YX, Sun HJ, Zhao JF, Chen YL, Zhang CG. SnRK2.6 interacts with phytochrome B and plays a negative role in red light-induced stomatal opening. PLANT SIGNALING & BEHAVIOR 2021; 16:1913307. [PMID: 33853508 PMCID: PMC8143258 DOI: 10.1080/15592324.2021.1913307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Light is an important environmental factor for plant growth and development. Phytochrome B (phyB), a classical red/far-red light receptor, plays vital role in controlling plant photomorphogenesis and light-induced stomatal opening. Phytohormone abscisic acid (ABA) accumulates rapidly and triggers a series of physiological and molecular events during the responses to multiple abiotic stresses. Recent studies showed that phyB mutant synthesizes more ABA and exhibits improved tolerance to salt and cold stress, suggesting that a crosstalk exists between light and ABA signaling pathway. However, whether ABA signaling components mediate responses to light remains unclear. Here, we showed that SnRK2.6 (Sucrose Nonfermenting 1-Related Protein Kinase 2.6), a key regulator in ABA signaling, interacts with phyB and participates in light-induced stomatal opening. First, we checked the interaction between phyB and SnRK2s, and found that SnRK2.2/2.3/2.6 kinases physically interacted with phyB in yeast and in vitro. We also performed co-IP assay to support that SnRK2.6 interacts with phyB in plant. To investigate the role of SnRK2.6 in red light-induced stomatal opening, we obtained the snrk2.6 mutant and overexpression lines, and found that snrk2.6 mutant exhibited a significantly larger stomatal aperture under red light treatment, while the two independent overexpression lines showed significantly smaller stomatal aperture, indicative of a negative role for SnRK2.6 in red light-induced stomatal opening. The interaction of SnRK2.6 with red light receptor and the negative role of SnRK2.6 in red light-induced stomatal opening provide new evidence for the crosstalk between ABA and red light in guard cell signaling.
Collapse
Affiliation(s)
- Yu-Zhen Li
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhi-Qiao Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Dong-Dong Song
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ya-Xin Yuan
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Hai-Jing Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jun-Feng Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yu-Ling Chen
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- CONTACT Yu-Ling Chen
| | - Chun-Guang Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- Chun-Guang Zhang College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.This article has been republished with minor changes. These changes do not impact the academic content of the article
| |
Collapse
|
20
|
Zhu ZD, Sun HJ, Li J, Yuan YX, Zhao JF, Zhang CG, Chen YL. RIC7 plays a negative role in ABA-induced stomatal closure by inhibiting H 2O 2 production. PLANT SIGNALING & BEHAVIOR 2021; 16:1876379. [PMID: 33586611 PMCID: PMC7971284 DOI: 10.1080/15592324.2021.1876379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
When plants encounter environmental stresses, phytohormone abscisic acid (ABA) accumulates quickly and efficiently reduces water loss by inducing stomatal closure. Reactive oxygen species (ROS) is an important regulator in ABA-induced stomatal closure, and ROS generation is modulated by multiple components in guard-cell ABA signaling. ROP interactive CRIB-containing protein 7 (RIC7) has been found to negatively regulate ABA-induced stomatal closure. However, the molecular details of the RIC7 function in this process are unclear. Here, by using two RIC7 overexpressing mutants, we confirmed the negative role of RIC7 in ABA-induced stomatal closure and found that guard cells of RIC7 overexpressing mutants generated less H2O2 than the wild type with ABA treatment, which were consistent with the reduced expression levels of ROS generation related NADPH oxidase genes AtRBOHD and AtRBOHF, and cytosolic polyamine oxidase genes PAO1 and PAO5 in the RIC7 overexpressing mutants. Furthermore, external applied H2O2 failed to rescue the defects of stomatal closure in RIC7 overexpressing mutants. These results suggest that RIC7 affects H2O2 generation in guard cells, and the function of H2O2 is dependent on RIC7 in ABA-induced stomatal closure, indicative of interdependency between RIC7 and H2O2 in ABA guard-cell signaling.
Collapse
Affiliation(s)
- Zi-Dan Zhu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hai-Jing Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiao Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ya-Xin Yuan
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jun-Feng Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chun-Guang Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu-Ling Chen
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
21
|
Yang J, Li C, Kong D, Guo F, Wei H. Light-Mediated Signaling and Metabolic Changes Coordinate Stomatal Opening and Closure. FRONTIERS IN PLANT SCIENCE 2020; 11:601478. [PMID: 33343603 PMCID: PMC7746640 DOI: 10.3389/fpls.2020.601478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 06/10/2023]
Abstract
Stomata are valves on the leaf surface controlling carbon dioxide (CO2) influx for photosynthesis and water loss by transpiration. Thus, plants have to evolve elaborate mechanisms controlling stomatal aperture to allow efficient photosynthesis while avoid excessive water loss. Light is not only the energy source for photosynthesis but also an important signal regulating stomatal movement during dark-to-light transition. Our knowledge concerning blue and red light signaling and light-induced metabolite changes that contribute to stomatal opening are accumulating. This review summarizes recent advances on the signaling components that lie between the perception of blue/red light and activation of the PM H+-ATPases, and on the negative regulation of stomatal opening by red light-activated phyB signaling and ultraviolet (UV-B and UV-A) irradiation. Besides, light-regulated guard cell (GC)-specific metabolic levels, mesophyll-derived sucrose, and CO2 concentration within GCs also play dual roles in stomatal opening. Thus, light-induced stomatal opening is tightly accompanied by brake mechanisms, allowing plants to coordinate carbon gain and water loss. Knowledge on the mechanisms regulating the trade-off between stomatal opening and closure may have potential applications toward generating superior crops with improved water use efficiency (CO2 gain vs. water loss).
Collapse
Affiliation(s)
- Juan Yang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Chunlian Li
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Dexin Kong
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Fangyan Guo
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Hongbin Wei
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Liu J, Liu MX, Qiu LP, Xie F. SPIKE1 Activates the GTPase ROP6 to Guide the Polarized Growth of Infection Threads in Lotus japonicus. THE PLANT CELL 2020; 32:3774-3791. [PMID: 33023954 PMCID: PMC7721321 DOI: 10.1105/tpc.20.00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 05/22/2023]
Abstract
In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.
Collapse
Affiliation(s)
- Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100864, China
| | - Miao Xia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Ping Qiu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Huang CJ, Wang XH, Huang JY, Zhang CG, Chen YL. Phosphorylation of plasma membrane aquaporin PIP2;1 in C-terminal affects light-induced stomatal opening in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2020; 15:1795394. [PMID: 32693667 PMCID: PMC8550520 DOI: 10.1080/15592324.2020.1795394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 05/20/2023]
Abstract
Guard cells undergo quick volume changes during stomatal movements. However, the contribution of aquaporins to stomatal movements has not been well understood. The plasma membrane aquaporin PIP2;1in Arabidopsis has been found to mediate abscisic acid-induced or flag22-induced stomatal closure. In this research, we investigated the role of PIP2;1 in light-induced stomatal opening by measuring the stomatal apertures of the pip2;1 mutant and PIP2;1 overexpression lines after light treatment. pip2;1 mutant exhibited a larger stomatal aperture, and the overexpression lines displayed a smaller stomatal aperture. It has been reported that the phosphorylation at Ser-280 and Ser-283 of PIP2;1 in rosette tissue increased in response to darkness, whereas osmotic water permeability (Pf) in mesophyll protoplasts in darkness was lower than that under light, suggesting that phosphorylation at Ser-280 and Ser-283 of PIP2;1 affected Pf in mesophyll protoplasts. Therefore, we obtained the pip2;1 mutant expressing phosphorylation-deficient (PIP2;1 AA) or phosphomimetic (PIP2;1 DD) forms of PIP2;1. The PIP2;1 AA lines exhibited a larger stomatal aperture as pip2;1 mutant, whereas PIP2;1 DD lines exhibited a smaller stomatal aperture as PIP2;1 overexpression lines under light. These results suggest that PIP2;1 plays a negative role in light-induced stomatal opening, and phosphorylation of PIP2;1 at Ser-280 and Ser-283 causes reduced water absorption in guard cells and decreased stomatal opening.
Collapse
Affiliation(s)
- Cai-Jiao Huang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Hong Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jing-Yu Huang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Chun-Guang Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- CONTACT Chun-Guang Zhang
| | - Yu-Ling Chen
- College of Life Science, Hebei Normal University, Shijiazhuang, China
- Yu-Ling Chen . College of Life Science, Hebei Normal University. Shijiazhuang 050024, China
| |
Collapse
|
24
|
Geilfus CM, Lan J, Carpentier S. Dawn regulates guard cell proteins in Arabidopsis thaliana that function in ATP production from fatty acid beta-oxidation. PLANT MOLECULAR BIOLOGY 2018; 98:525-543. [PMID: 30392160 DOI: 10.1007/s11103-018-0794-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Based on the nature of the proteins that are altered in abundance, we conclude that guard cells switch their energy source from fatty acid metabolism to chloroplast activity, at the onset of dawn. During stomatal opening at dawn, evidence was recently presented for a breakdown and liquidation of stored triacylglycerols in guard cells to supply ATP for use in stomatal opening. However, proteome changes that happen in the guard cells during dawn were until now poorly understood. Bad accessibility to pure and intact guard cell samples can be considered as the primary reason behind this lack of knowledge. To overcome these technical constraints, epidermal guard cell samples with ruptured pavement cells were isolated at 1 h pre-dawn, 15 min post-dawn and 1 h post-dawn from Arabidopsis thaliana. Proteomic changes were analysed by ultra-performance-liquid-chromatography-mass-spectrometry. With 994 confidently identified proteins, we present the first analysis of the A. thaliana guard cell proteome that is not influenced by side effects of guard cell protoplasting. Data are available via ProteomeXchange with identifier PXD009918. By elucidating the identities of enzymes that change in abundance by the transition from dark to light, we corroborate the hypothesis that respiratory ATP production for stomatal opening results from fatty acid beta-oxidation. Moreover, we identified many proteins that were never reported in the context of guard cell biology. Among them are proteins that might play a role in signalling or circadian rhythm.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany.
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium.
| | - Jue Lan
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sebastien Carpentier
- Proteomics Core Facility, SYBIOMA, KU Leuven, O&N II Herestraat 49 - bus 901, 3000, Leuven, Belgium
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42 - Box 2455, 3001, Leuven, Belgium
| |
Collapse
|
25
|
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases Structure-Function and Signaling Pathways. PLANT PHYSIOLOGY 2018; 176:57-79. [PMID: 29150557 PMCID: PMC5761820 DOI: 10.1104/pp.17.01415] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
Interactions between receptor like kinases and guanyl nucleotide exchange factors together with identification of effector proteins reveal putative ROP GTPases signaling cascades.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
26
|
|