1
|
Kamruzzaman M, Siddiqui M, Rustamova S, Ballvora A, Léon J, Naz A. Genome-Wide Association Analyses Identify Hydrogen Peroxide-Responsive Loci in Wheat Diversity. PLANT DIRECT 2025; 9:e70067. [PMID: 40248189 PMCID: PMC12004125 DOI: 10.1002/pld3.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
Hydrogen peroxide (H2O2) is a signaling molecule that plays a crucial role in plant growth and development against different abiotic stresses. Identifying genetic factors associated with H2O2 regulation and homeostasis can provide valuable insights for improving stress tolerance. Here, we explored genetic diversity of root and shoot traits mediated by H2O2 using a global diversity panel of 150 bread wheat cultivars. The H2O2 treatment significantly reduced root and shoot growth. We calculated relative values and stress tolerance index (STI) of root and shoot traits and performed genome-wide association studies (GWAS). This led to identification of 108 marker-trait associations including the topmost associations on chromosomes 3B, 2A, 5A, 3B, 5D, 5A, 6B, 4B, and 3B for relative root length, STI root length, relative shoot length, STI shoot length, relative root fresh weight, relative shoot fresh weight, STI shoot fresh weight, and relative and STI root-shoot ratio, respectively. Linkage disequilibrium analysis revealed that major alleles of significant markers were linked with high relative values and STIs for all traits except for relative root length and relative root-shoot ratio. The selected candidate genes were involved mostly in metal ion binding, transmembrane transport, oxidation-reduction process, protein phosphorylation, DNA, and ADP binding processes. These findings provide a fundamental basis for functional analysis of putative candidate genes linked to H2O2-mediated root-shoot growth of wheat. The result will also help to construct genetic map for H2O2-mediated root-shoot growth variation.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)‐Plant Breeding and BiotechnologyUniversity of BonnBonnGermany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA)Bangladesh Agricultural University CampusMymensinghBangladesh
| | - Md. Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)‐Plant Breeding and BiotechnologyUniversity of BonnBonnGermany
- Department of Biochemistry and Molecular BiologyGazipur Agricultural UniversityGazipurBangladesh
| | - Samira Rustamova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and EducationRepublic of AzerbaijanBakuAzerbaijan
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)‐Plant Breeding and BiotechnologyUniversity of BonnBonnGermany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)‐Plant Breeding and BiotechnologyUniversity of BonnBonnGermany
- Field Lab Campus Klein‐AltendorfUniversity of BonnRheinbachGermany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES)‐Plant Breeding and BiotechnologyUniversity of BonnBonnGermany
- Department of Plant BreedingUniversity of Applied SciencesOsnabrueckGermany
| |
Collapse
|
2
|
Wang S, Wang Y, Xu X, Lu D, Li B, Zhao Y, Cheng S, Li Z, Chen C. Comparative transcriptome analysis identified candidate genes associated with kernel row number in maize. PeerJ 2025; 13:e19143. [PMID: 40183051 PMCID: PMC11967441 DOI: 10.7717/peerj.19143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Kernel row number (KRN) is a crucial trait in maize that has a high impact on yield. However, KRN is a typical quantitative trait with only a few genes being verified so far. Here, two maize inbred lines with contrasting KRN were used to perform transcriptome analysis at five early ear developmental stages. Pairwise differential gene expression analyses were performed, and a total of 11,897 line-specific differentially expressed genes (DEGs) were detected between the two lines across the five development stages. Clustering analysis of line-specific DEGs revealed that the trends of gene expression changed significantly in the five stages, thus the five stages were further divided into two development phases: Phase I (V6-V8) and Phase II (V9-V10). Gene ontology enrichment analysis revealed that different transcriptional pathways were activated in the two phases. DEGs in Phase I were significantly enriched in morphogenesis and differentiation processes and hormone regulation. Of the 5,850 line-specific DEGs in Phase I, 2,132 genes were in known quantitative trait loci (QTLs) or flanking regions of quantitative trait nucleotides (QTNs), of which 92 were repeatedly detected in QTLs where QTNs also exist. The 92 high-probability candidate genes included development-related transcription factors (SBP-box and AP2/EREBP TFs) as well as genes involved in hormone homeostasis and signaling. Our study provides genetic resources for the elucidation of the molecular mechanisms of KRN development and reference for the cloning of candidate genes.
Collapse
Affiliation(s)
- Shukai Wang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Yancui Wang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Xitong Xu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Dusheng Lu
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Baokun Li
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Yuxin Zhao
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Senan Cheng
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Zhenhong Li
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| | - Cuixia Chen
- College of Agronomy, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
3
|
Saini DK, Bahuguna RN, Pal M, Chaturvedi AK, Krishna Jagadish SV. Genome-Wide Mapping, Allelic Fingerprinting, and Haplotypes Validation Provide Insights Into the Genetic Control of Phenotypic Plasticity in Rice. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40108857 DOI: 10.1111/pce.15477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Plant density significantly impacts photosynthesis, crop growth, and yield, thereby shaping the [CO2] fertilization effect and intricate physiological interactions in rice. An association panel of 171 rice genotypes was evaluated for physiological and yield-related traits, including the cumulative response index, under both normal planting density (NPD) and low planting density (LPD) conditions. LPD, serving as a proxy for elevated atmospheric [CO2], significantly increased all trait values, except for harvest index, compared to NPD. A genome-wide association study identified 172 QTNs, including 12 associated with multiple traits under NPD or LPD conditions. Candidate gene mining and network analysis within QTN regions identified potential candidates such as OsHAK1, RGA1, OsalphaCA3, OsalphaCA4, OsalphaCA5, OsCYP38, and OsPIN1, influencing various physiological and yield-related traits under LPD conditions. A significant relationship between the percentage of favorable alleles in genotypes and their performance under different conditions was observed. Potential haplotypes were validated using genotypes identified with contrasting [CO2] responses, grown under LPD and Free-Air [CO2] Enrichment facility. These findings can aid in selectively breeding genotypes with favorable alleles or haplotypes to enhance [CO2] responsiveness in rice. Incorporating greater phenotypic plasticity can help develop climate-smart rice varieties that increase grain yield and quality while mitigating losses from warming temperatures.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| | | | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Ashish Kumar Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, India
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
Lu J, Lankhost JA, Stomph TJ, Schneider HM, Chen Y, Mi G, Yuan L, Evers JB. Root plasticity improves maize nitrogen use when nitrogen is limiting: an analysis using 3D plant modelling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5989-6005. [PMID: 38970454 PMCID: PMC11427830 DOI: 10.1093/jxb/erae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/08/2024]
Abstract
Plant phenotypic plasticity plays an important role in nitrogen (N) acquisition and use under nitrogen-limited conditions. However, this role has never been quantified as a function of N availability, leaving it unclear whether plastic responses should be considered as potential targets for selection. A combined modelling and experimentation approach was adopted to quantify the role of plasticity in N uptake and plant yield. Based on a greenhouse experiment we considered plasticity in two maize (Zea mays) traits: root-to-leaf biomass allocation ratio and emergence rate of axial roots. In a simulation experiment we individually enabled or disabled both plastic responses for maize stands grown across six N levels. Both plastic responses contributed to maintaining a higher N uptake, and plant productivity as N availability declined compared with stands in which plastic responses were disabled. We conclude that plastic responses quantified in this study may be a potential target trait in breeding programs for greater N uptake across N levels while it may only be important for the internal use of N under N-limited conditions in maize. Given the complexity of breeding for plastic responses, an a priori model analysis is useful to identify which plastic traits to target for enhanced plant performance.
Collapse
Affiliation(s)
- Jie Lu
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Jan A Lankhost
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
- Copernicus Institute of Sustainable Development, Utrecht University, the Netherlands
| | - Tjeerd Jan Stomph
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
| | - Hannah M Schneider
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shangdong 266109, China
| | - Guohua Mi
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Jochem B Evers
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
| |
Collapse
|
5
|
Klein SP, Kaeppler SM, Brown KM, Lynch JP. Integrating GWAS with a gene co-expression network better prioritizes candidate genes associated with root metaxylem phenes in maize. THE PLANT GENOME 2024; 17:e20489. [PMID: 39034891 DOI: 10.1002/tpg2.20489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Root metaxylems are phenotypically diverse structures whose function is particularly important under drought stress. Significant research has dissected the genetic machinery underlying metaxylem phenotypes in dicots, but that of monocots are relatively underexplored. In maize (Zea mays), a robust pipeline integrated a genome-wide association study (GWAS) of root metaxylem phenes under well-watered and water-stress conditions with a gene co-expression network to prioritize the strongest gene candidates. We identified 244 candidate genes by GWAS, of which 103 reside in gene co-expression modules most relevant to xylem development. Several candidate genes may be involved in biosynthetic processes related to the cell wall, hormone signaling, oxidative stress responses, and drought responses. Of those, six gene candidates were detected in multiple root metaxylem phenes in both well-watered and water-stress conditions. We posit that candidate genes that are more essential to network function based on gene co-expression (i.e., hubs or bottlenecks) should be prioritized and classify 33 essential genes for further investigation. Our study demonstrates a new strategy for identifying promising gene candidates and presents several gene candidates that may enhance our understanding of vascular development and responses to drought in cereals.
Collapse
Affiliation(s)
- Stephanie P Klein
- Interdepartmental Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Huang Z, Huang P, Chen S, Hu M, Yu H, Guo H, Shahid MQ, Liu X, Wu J. Comparative Cytological and Gene Expression Analysis Reveals That a Common Wild Rice Inbred Line Showed Stronger Drought Tolerance Compared with the Cultivar Rice. Int J Mol Sci 2024; 25:7134. [PMID: 39000241 PMCID: PMC11241580 DOI: 10.3390/ijms25137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Common wild rice (Oryza rufipogon Griff.) is an important germplasm resource containing valuable genes. Our previous analysis reported a stable wild rice inbred line, Huaye3, which derives from the common wild rice of Guangdong Province. However, there was no information about its drought tolerance ability. Here, we assessed the germination characteristics and seedling growth between the Dawennuo and Huaye3 under five concentrations of PEG6000 treatment (0, 5%, 10%, 15%, and 20%). Huaye3 showed a stronger drought tolerance ability, and its seed germination rate still reached more than 52.50% compared with Dawennuo, which was only 25.83% under the 20% PEG6000 treatment. Cytological observations between the Dawennuo and Huaye3 indicated the root tip elongation zone and buds of Huaye3 were less affected by the PEG6000 treatment, resulting in a lower percentage of abnormalities of cortical cells, stele, and shrinkage of epidermal cells. Using the re-sequencing analysis, we detected 13,909 genes that existed in the genetic variation compared with Dawennuo. Of these genes, 39 were annotated as drought stress-related genes and their variance existed in the CDS region. Our study proved the strong drought stress tolerance ability of Huaye3, which provides the theoretical basis for the drought resistance germplasm selection in rice.
Collapse
Affiliation(s)
- Zijuan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Peishan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mengzhu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haibin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (P.H.); (S.C.); (M.H.); (H.Y.); (H.G.); (M.Q.S.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Siddiqui MN, Jahiu M, Kamruzzaman M, Sanchez-Garcia M, Mason AS, Léon J, Ballvora A. Genetic control of root architectural traits under drought stress in spring barley (Hordeum vulgare L.). THE PLANT GENOME 2024; 17:e20463. [PMID: 38764204 DOI: 10.1002/tpg2.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Root architectural traits play pivotal roles in plant adaptation to drought stress, and hence they are considered promising targets in breeding programs. Here, we phenotyped eight root architecture traits in response to well-watered and drought stress conditions in 200 spring barley (Hordeum vulgare L.) inbred lines over two consecutive field seasons. Root architecture traits were less developed under drought in both seasons when compared with control treatments. Genetic variation in root architectural traits was dissected employing a genome-wide association study (GWAS) coupled with linkage disequilibrium mapping. GWAS uncovered a total of 186 significant single nucleotide polymorphism-trait associations for eight root traits under control, drought, and drought-related indices. Of these, a few loci for root traits were detected on chromosomes 3 and 5, which co-located with QTL identified in previous studies. Interestingly, 13 loci showed simultaneou associations with multiple root traits under drought and drought-related indices. These loci harbored candidate genes, which included a wide range of drought-responsive components such as transcription factors, binding proteins, protein kinases, nutrient and ion transporters, and stress signaling factors. For instance, two candidate genes, HORVU7Hr3G0713160 and HORVU6H r3G0626550, are orthologous to AtACX3 and AtVAMPs, which have reported functions in root length-mediated drought tolerance and as a key protein in abiotic stress tolerance, respectively. Interestingly, one of these loci underlying a high-confidence candidate gene NEW ENHANCER OF ROOT DWARFISM1 (NERD1) showed involvement with root development. An allelic variation of this locus in non-coding region was significantly associated with increased root length under drought. Collectively, these results offer promising multi-trait affecting loci and candidate genes underlying root phenotypic responses to drought stress, which may provide valuable resources for genetic improvement of drought tolerance in barley.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Melisa Jahiu
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Mohammad Kamruzzaman
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Miguel Sanchez-Garcia
- Department of Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Annaliese S Mason
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Jens Léon
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Agim Ballvora
- Plant Breeding Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Wang D, Ni Y, Xie K, Li Y, Wu W, Shan H, Cheng B, Li X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2024; 25:4205. [PMID: 38673792 PMCID: PMC11050007 DOI: 10.3390/ijms25084205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| |
Collapse
|
9
|
Bhoite R, Han Y, Chaitanya AK, Varshney RK, Sharma DL. Genomic approaches to enhance adaptive plasticity to cope with soil constraints amidst climate change in wheat. THE PLANT GENOME 2024; 17:e20358. [PMID: 37265088 DOI: 10.1002/tpg2.20358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Climate change is varying the availability of resources, soil physicochemical properties, and rainfall events, which collectively determines soil physical and chemical properties. Soil constraints-acidity (pH < 6), salinity (pH ≤ 8.5), sodicity, and dispersion (pH > 8.5)-are major causes of wheat yield loss in arid and semiarid cropping systems. To cope with changing environments, plants employ adaptive strategies such as phenotypic plasticity, a key multifaceted trait, to promote shifts in phenotypes. Adaptive strategies for constrained soils are complex, determined by key functional traits and genotype × environment × management interactions. The understanding of the molecular basis of stress tolerance is particularly challenging for plasticity traits. Advances in sequencing and high-throughput genomics technologies have identified functional alleles in gene-rich regions, haplotypes, candidate genes, mechanisms, and in silico gene expression profiles at various growth developmental stages. Our review focuses on favorable alleles for enhanced gene expression, quantitative trait loci, and epigenetic regulation of plant responses to soil constraints, including heavy metal stress and nutrient limitations. A strategy is then described for quantitative traits in wheat by investigating significant alleles and functional characterization of variants, followed by gene validation using advanced genomic tools, and marker development for molecular breeding and genome editing. Moreover, the review highlights the progress of gene editing in wheat, multiplex gene editing, and novel alleles for smart control of gene expression. Application of these advanced genomic technologies to enhance plasticity traits along with soil management practices will be an effective tool to build yield, stability, and sustainability on constrained soils in the face of climate change.
Collapse
Affiliation(s)
- Roopali Bhoite
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yong Han
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Alamuru Krishna Chaitanya
- Grains Genetics Portfolio, University of Southern Queensland, Centre for Crop Health, Toowoomba, Queensland, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| | - Darshan Lal Sharma
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
11
|
Anwar K, Joshi R, Bahuguna RN, Govindjee G, Sasidharan R, Singla-Pareek SL, Pareek A. Impact of individual, combined and sequential stress on photosynthesis machinery in rice (Oryza sativa L). PHYSIOLOGIA PLANTARUM 2024; 176:e14209. [PMID: 38348703 DOI: 10.1111/ppl.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings. Exploitation of existing genetic diversity in rice for combined and/or sequential stress is a useful approach for developing climate-resilient cultivars. We phenotyped ~400 rice accessions under high temperature, drought, or submergence and their combinations. A cumulative performance index revealed Lomello as the best performer across stress and stress combinations at the seedling stage. Lomello showed a remarkable ability to maintain a higher quantum yield of photosystem (PS) II photochemistry. Moreover, the structural integrity of the photosystems, electron flow through both PSI and PSII and the ability to protect photosystems against photoinhibition were identified as the key traits of Lomello across the stress environments. A higher membrane stability and an increased amount of leaf chlorophyll under stress may be due to an efficient management of reactive oxygen species (ROS) at the cellular level. Further, an efficient electron flow through the photosystems and, thus, a higher photosynthetic rate in Lomello is expected to act as a sink for ROS by reducing the rate of electron transport to the high amount of molecular oxygen present in the chloroplast. However, further studies are needed to identify the molecular mechanism(s) involved in the stability of photosynthetic machinery and stress management in Lomello during stress conditions.
Collapse
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajeev N Bahuguna
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Govindjee Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, The Netherlands
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
12
|
Chen R, Li D, Fu J, Fu C, Qin P, Zhang X, Sun Z, He K, Li L, Zhou W, Wang Y, Wang K, Liu X, Yang Y. Exploration of quality variation and stability of hybrid rice under multi-environments. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:4. [PMID: 38225950 PMCID: PMC10788329 DOI: 10.1007/s11032-024-01442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01442-3.
Collapse
Affiliation(s)
- Rirong Chen
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Dongxu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- Software Engineering Institute, East China Normal University, Shanghai, 200062 China
| | - Jun Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Chenjian Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xuanwen Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zhenbiao Sun
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Kui He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Liang Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yingjie Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Kai Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
| | - Yuanzhu Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| |
Collapse
|
13
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
14
|
Blois L, de Miguel M, Bert PF, Ollat N, Rubio B, Voss-Fels KP, Schmid J, Marguerit E. Dissecting the genetic architecture of root-related traits in a grafted wild Vitis berlandieri population for grapevine rootstock breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:223. [PMID: 37838631 PMCID: PMC10576685 DOI: 10.1007/s00122-023-04472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
In woody perennial plants, quantitative genetics and association studies remain scarce for root-related traits, due to the time required to obtain mature plants and the complexity of phenotyping. In grapevine, a grafted cultivated plant, most of the rootstocks used are hybrids between American Vitis species (V. rupestris, V. riparia, and V. berlandieri). In this study, we used a wild population of an American Vitis species (V. berlandieri) to analyze the genetic architecture of the root-related traits of rootstocks in a grafted context. We studied a population consisting of 211 genotypes, with one to five replicates each (n = 846 individuals), plus four commercial rootstocks as control genotypes (110R, 5BB, Börner, and SO4). After two independent years of experimentation, the best linear unbiased estimates method revealed root-related traits with a moderate-to-high heritability (0.36-0.82) and coefficient of genetic variation (0.15-0.45). A genome-wide association study was performed with the BLINK model, leading to the detection of 11 QTL associated with four root-related traits (one QTL was associated with the total number of roots, four were associated with the number of small roots (< 1 mm in diameter), two were associated with the number of medium-sized roots (1 mm < diameter < 2 mm), and four were associated with mean diameter) accounting for up to 25.1% of the variance. Three genotypes were found to have better root-related trait performances than the commercial rootstocks and therefore constitute possible new candidates for use in grapevine rootstock breeding programs.
Collapse
Affiliation(s)
- Louis Blois
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France.
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany.
| | - Marina de Miguel
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Pierre-François Bert
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Bernadette Rubio
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Kai P Voss-Fels
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany
| | - Elisa Marguerit
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| |
Collapse
|
15
|
de la Mata R, Zas R. Plasticity in growth is genetically variable and highly conserved across spatial scales in a Mediterranean pine. THE NEW PHYTOLOGIST 2023; 240:542-554. [PMID: 37491863 DOI: 10.1111/nph.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023]
Abstract
Phenotypic plasticity is a main mechanism for sessile organisms to cope with changing environments. Plasticity is genetically based and can evolve under natural selection so that populations within a species show distinct phenotypic responses to environment. An important question that remains elusive is whether the intraspecific variation in plasticity at different spatial scales is independent from each other. To test whether variation in plasticity to macro- and micro-environmental variation is related among each other, we used growth data of 25 Pinus pinaster populations established in seven field common gardens in NW Spain. Phenotypic plasticity to macro-environmental variation was estimated across test sites while plasticity to micro-environmental variation was estimated by using semivariography and kriging for modeling within-site heterogeneity. We provide empirical evidence of among-population variation in the magnitude of plastic responses to both micro- and macro-environmental variation. Importantly, we found that such responses were positively correlated across spatial scales. Selection for plasticity at one scale of environmental variation may impact the expression of plasticity at other scales, having important consequences on the ability of populations to buffer climate change. These results improve our understanding of the ecological drivers underlying the expression of phenotypic plasticity.
Collapse
Affiliation(s)
- Raul de la Mata
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), Sevilla, Andalucía, 41092, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), Apdo 28, Pontevedra, 36080, Spain
| |
Collapse
|
16
|
Sankarapillai LV, Vijayaraghavareddy P, Nanaiah K, Arpitha GD, Chaitanya PM, Sathishraj R, Shindhe D, Vemanna RS, Yin X, Struik PC, Sreeman S. Phenotyping and metabolome analysis reveal the role of AdoMetDC and Di19 genes in determining acquired tolerance to drought in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13992. [PMID: 37882292 DOI: 10.1111/ppl.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 10/27/2023]
Abstract
Water-saving attempts for rice cultivation often reduce yields. Maintaining productivity under drought is possible when rice genotypes are bred with improved metabolism and spikelet fertility. Although attempts have been made to introgress water mining and water use efficiency traits, combining acquired tolerance traits (ATTs), that is, specific traits induced or upregulated to better tolerate severe stress, appears equally important. In our study, we screened 90 rice germplasm accessions that represented the molecular and phenotypic variations of 851 lines of the 3 K rice panel. Utilising phenomics, we identified markers linked to ATTs through association analysis of over 0.2 million SNPs derived from whole-genome sequences. Propensity to respond to 'induction' stress varied significantly among genotypes, reflecting differences in cellular protection against oxidative stress. Among the ATTs, the hydroxyl radical and proline contents exhibited the highest variability. Furthermore, these significant variations in ATTs were strongly correlated with spikelet fertility. The 43 significant markers associated with ATTs were further validated using a different subset of contrasting genotypes. Gene expression studies and metabolomic profiling of two well-known contrasting genotypes, APO (tolerant) and IR64 (sensitive), identified two ATT genes: AdoMetDC and Di19. Our study highlights the relevance of polyamine biosynthesis in modulating ATTs in rice. Genotypes with superior ATTs and the associated markers can be effectively employed in breeding rice varieties with sustained spikelet fertility and grain yield under drought.
Collapse
Affiliation(s)
| | - Preethi Vijayaraghavareddy
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Karthik Nanaiah
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | | | - Rajendran Sathishraj
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Dhananjay Shindhe
- Department of Pathology and Microbiology, University of Nebraska Medical Centre, Omaha, Nebraska, USA
| | - Ramu S Vemanna
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
17
|
Ghazy MI, Hamad HS, Gewaily EE, Bleih EM, Arafat EFA, El-Kallawy WH, El-Naem SA, Rehan M, Alwutayd KM, Abd El Moneim D. Impacts of kinetin implementation on leaves, floral and root-related traits during seed production in hybrid rice under water deficiency. BMC PLANT BIOLOGY 2023; 23:398. [PMID: 37605164 PMCID: PMC10463769 DOI: 10.1186/s12870-023-04405-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Water deficit is one of the most significant abiotic factors affecting rice and agricultural production worldwide. In hybrid rice, cytoplasmic male sterility (CMS) is an important technique for creating high-yielding crop based on heterosis. The phytohormone kinetin (Kin) regulates cell division in plant during the early stages of grain formation, as well as flow assimilation and osmotic regulation under water stress. The present study performed to estimate the effects of irrigation intervals (irrigation each six days (I6), nine days (I9), twelve days (I12) and fifteen days (I15) against continuous flooding (CF, each three days)) and kinetin exogenously application (control, 15 mg L-1 and 30 mg L-1) on hybrid rice (L1, IR69625A; L2, G46A and R, Giza 178 R) seed production. RESULTS Leaves traits (Chlorophyll content (CHC), relative water content (RWC), stomatal conductance (SC), Leaf temperature (LT) and transpiration rate (TR)), floral traits such as style length (SL) and total stigma length (TSL), in addition to root traits (i.e., root length (RL), root volume (RV), root: shoot ratio (RSR), root thickness (RT), root xylem vessels number (RXVN) and root xylem vessel area (RXVA) were evaluated and a significant enhancement in most traits was observed. Applying 30 mg L-1 kinetin significantly and positively enhanced all growth, floral and roots traits (RV and RXVA recorded the most increased values by 14.8% and 23.9%, respectively) under prolonging irrigation intervals, in comparison to non-treated plants. CONCLUSIONS Subsequently, spraying kinetin exogenously on foliar could be an alternative method to reduce the harmful influences of water deficiency during seed production in hybrid rice.
Collapse
Affiliation(s)
- Mohamed I Ghazy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Hassan Sh Hamad
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Elsayed E Gewaily
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Eman M Bleih
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Elsayed F A Arafat
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Wael H El-Kallawy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Sabry A El-Naem
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511, Egypt.
| |
Collapse
|
18
|
Siddiqui N, Gabi MT, Kamruzzaman M, Ambaw AM, Teferi TJ, Dadshani S, Léon J, Ballvora A. Genetic dissection of root architectural plasticity and identification of candidate loci in response to drought stress in bread wheat. BMC Genom Data 2023; 24:38. [PMID: 37495985 PMCID: PMC10373353 DOI: 10.1186/s12863-023-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The frequency of droughts has dramatically increased over the last 50 years, causing yield declines in cereals, including wheat. Crop varieties with efficient root systems show great potential for plant adaptation to drought stress, however; genetic control of root systems in wheat under field conditions is not yet well understood. RESULTS Natural variation in root architecture plasticity (phenotypic alteration due to changing environments) was dissected under field-based control (well-irrigated) and drought (rain-out shelter) conditions by a genome-wide association study using 200 diverse wheat cultivars. Our results revealed root architecture and plasticity traits were differentially responded to drought stress. A total of 25 marker-trait associations (MTAs) underlying natural variations in root architectural plasticity were identified in response to drought stress. They were abundantly distributed on chromosomes 1 A, 1B, 2 A, 2B, 3 A, 3B, 4B, 5 A, 5D, 7 A and 7B of the wheat genome. Gene ontology annotation showed that many candidate genes associated with plasticity were involved in water-transport and water channel activity, cellular response to water deprivation, scavenging reactive oxygen species, root growth and development and hormone-activated signaling pathway-transmembrane transport, indicating their response to drought stress. Further, in silico transcript abundance analysis demonstrated that root plasticity-associated candidate genes were highly expressed in roots across different root growth stages and under drought treatments. CONCLUSION Our results suggest that root phenotypic plasticity is highly quantitative, and the corresponding loci are associated with drought stress that may provide novel ways to enable root trait breeding.
Collapse
Affiliation(s)
- Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Melesech T Gabi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
| | - Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
| | - Abebaw M Ambaw
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
| | - Tesfaye J Teferi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Nutrition, University of Bonn, 53115, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, 53359, Rheinbach, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
19
|
Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei W. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1215371. [PMID: 37534289 PMCID: PMC10391551 DOI: 10.3389/fpls.2023.1215371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Rice (Oryza Sativa L.) is an essential constituent of the global food chain. Drought stress significantly diminished its productivity and threatened global food security. This review concisely discussed how drought stress negatively influenced the rice's optimal growth cycle and altered its morpho-physiological, biochemical, and molecular responses. To withstand adverse drought conditions, plants activate their inherent drought resistance mechanism (escape, avoidance, tolerance, and recovery). Drought acclimation response is characterized by many notable responses, including redox homeostasis, osmotic modifications, balanced water relations, and restored metabolic activity. Drought tolerance is a complicated phenomenon, and conventional breeding strategies have only shown limited success. The application of molecular markers is a pragmatic technique to accelerate the ongoing breeding process, known as marker-assisted breeding. This review study compiled information about quantitative trait loci (QTLs) and genes associated with agronomic yield-related traits (grain size, grain yield, harvest index, etc.) under drought stress. It emphasized the significance of modern breeding techniques and marker-assisted selection (MAS) tools for introgressing the known QTLs/genes into elite rice lines to develop drought-tolerant rice varieties. Hence, this study will provide a solid foundation for understanding the complex phenomenon of drought stress and its utilization in future crop development programs. Though modern genetic markers are expensive, future crop development programs combined with conventional and MAS tools will help the breeders produce high-yielding and drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Muhammad A. Hassan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ni Dahu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tong Hongning
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Qian
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yi Yueming
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Yiru
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wang Shimei
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
20
|
Siddiqui MN, Pandey K, Bhadhury SK, Sadeqi B, Schneider M, Sanchez-Garcia M, Stich B, Schaaf G, Léon J, Ballvora A. Convergently selected NPF2.12 coordinates root growth and nitrogen use efficiency in wheat and barley. THE NEW PHYTOLOGIST 2023; 238:2175-2193. [PMID: 36808608 DOI: 10.1111/nph.18820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/04/2023]
Abstract
Understanding the genetic and molecular function of nitrate sensing and acquisition across crop species will accelerate breeding of cultivars with improved nitrogen use efficiency (NUE). Here, we performed a genome-wide scan using wheat and barley accessions characterized under low and high N inputs that uncovered the NPF2.12 gene, encoding a homolog of the Arabidopsis nitrate transceptor NRT1.6 and other low-affinity nitrate transporters that belong to the MAJOR FACILITATOR SUPERFAMILY. Next, it is shown that variations in the NPF2.12 promoter correlated with altered NPF2.12 transcript levels where decreased gene expression was measured under low nitrate availability. Multiple field trials revealed a significantly enhanced N content in leaves and grains and NUE in the presence of the elite allele TaNPF2.12TT grown under low N conditions. Furthermore, the nitrate reductase encoding gene NIA1 was up-regulated in npf2.12 mutant upon low nitrate concentrations, thereby resulting in elevated levels of nitric oxide (NO) production. This increase in NO correlated with the higher root growth, nitrate uptake, and N translocation observed in the mutant when compared to wild-type. The presented data indicate that the elite haplotype alleles of NPF2.12 are convergently selected in wheat and barley that by inactivation indirectly contribute to root growth and NUE by activating NO signaling under low nitrate conditions.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Kailash Pandey
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Suzan Kumer Bhadhury
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Bahman Sadeqi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Michael Schneider
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Miguel Sanchez-Garcia
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, 10101, Morocco
| | - Benjamin Stich
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, D-53115, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, Rheinbach, 53359, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| |
Collapse
|
21
|
Andreo-Jimenez B, Te Beest DE, Kruijer W, Vannier N, Kadam NN, Melandri G, Jagadish SVK, van der Linden G, Ruyter-Spira C, Vandenkoornhuyse P, Bouwmeester HJ. Genetic Mapping of the Root Mycobiota in Rice and its Role in Drought Tolerance. RICE (NEW YORK, N.Y.) 2023; 16:26. [PMID: 37212977 DOI: 10.1186/s12284-023-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rice is the second most produced crop worldwide, but is highly susceptible to drought. Micro-organisms can potentially alleviate the effects of drought. The aim of the present study was to unravel the genetic factors involved in the rice-microbe interaction, and whether genetics play a role in rice drought tolerance. For this purpose, the composition of the root mycobiota was characterized in 296 rice accessions (Oryza sativa L. subsp. indica) under control and drought conditions. Genome wide association mapping (GWAS) resulted in the identification of ten significant (LOD > 4) single nucleotide polymorphisms (SNPs) associated with six root-associated fungi: Ceratosphaeria spp., Cladosporium spp., Boudiera spp., Chaetomium spp., and with a few fungi from the Rhizophydiales order. Four SNPs associated with fungi-mediated drought tolerance were also found. Genes located around those SNPs, such as a DEFENSIN-LIKE (DEFL) protein, EXOCYST TETHERING COMPLEX (EXO70), RAPID ALKALINIZATION FACTOR-LIKE (RALFL) protein, peroxidase and xylosyltransferase, have been shown to be involved in pathogen defense, abiotic stress responses and cell wall remodeling processes. Our study shows that rice genetics affects the recruitment of fungi, and that some fungi affect yield under drought. We identified candidate target genes for breeding to improve rice-fungal interactions and hence drought tolerance.
Collapse
Affiliation(s)
- Beatriz Andreo-Jimenez
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
- Biointeractions and Plant Health, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Dennis E Te Beest
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Niteen N Kadam
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- School of Plant Sciences, University of Arizona, Tucson, USA
| | - S V Krishna Jagadish
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Kansas State University, Manhattan, KS, 66506, USA
| | | | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Lv X, Li Y, Chen R, Rui M, Wang Y. Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions. Antioxidants (Basel) 2023; 12:antiox12040790. [PMID: 37107165 PMCID: PMC10135251 DOI: 10.3390/antiox12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is important for improving photosynthesis and the WUE of crops. In this study, a drought stress pot experiment was performed, and a transcriptome analysis of the leaves of three contrasting, cultivated barley genotypes Lumley (Lum, drought-tolerant), Golden Promise (GP, drought-sensitive), and Tadmor (Tad, drought-tolerant), generated by high-throughput sequencing, were compared. Lum exhibited a different WUE at the leaf and whole-plant levels and had greater CO2 assimilation, with a higher gs under drought stress. Interestingly, Lum showed a slower stomatal closure in response to a light-dark transition and significant differences compared to Tad in stomatal response to the exogenous application of ABA, H2O2, and CaCl2. A transcriptome analysis revealed that 24 ROS-related genes were indeed involved in drought response regulation, and impaired ABA-induced ROS accumulation in Lum was identified using ROS and antioxidant capacity measurements. We conclude that different stomatal ROS responses affect stomatal closure in barley, demonstrating different drought regulation strategies. These results provide valuable insight into the physiological and molecular basis of stomatal behavior and drought tolerance in barley.
Collapse
Affiliation(s)
- Xiachen Lv
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yihong Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Rongjia Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Bhandari U, Gajurel A, Khadka B, Thapa I, Chand I, Bhatta D, Poudel A, Pandey M, Shrestha S, Shrestha J. Morpho-physiological and biochemical response of rice ( Oryza sativa L.) to drought stress: A review. Heliyon 2023; 9:e13744. [PMID: 36879962 PMCID: PMC9984794 DOI: 10.1016/j.heliyon.2023.e13744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Global food shortages are caused mainly by drought, the primary driver of yield loss in agriculture worldwide. Drought stress negatively impacts the physiological and morphological characteristics of rice (Oryza sativa L.), limiting the plant productivity and hence the economy of global rice production. Physiological changes due to drought stress in rice include constrained cell division and elongation, stomatal closure, loss of turgor adjustment, reduced photosynthesis, and lower yields. Morphological changes include inhibition of seed germination, reduced tillers, early maturity, and reduced biomass. In addition, drought stress leads to a metabolic alteration by increasing the buildup of reactive oxygen species, reactive stress metabolites, antioxidative enzymes, and abscisic acid. Rice tends to combat drought through three major phenomena; tolerance, avoidance, and escape. Several mitigation techniques are introduced and adapted to combat drought stress which includes choosing drought-tolerant cultivars, planting early types, maintaining adequate moisture levels, conventional breeding, molecular maintenance, and creating variants with high-yielding characteristics. This review attempts to evaluate the various morpho-physiological responses of the rice plant to drought, along with drought stress reduction techniques.
Collapse
Affiliation(s)
- Utsav Bhandari
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Aakriti Gajurel
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Bharat Khadka
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Ishwor Thapa
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Isha Chand
- Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung Campus, Sundarbazar, Lamjung, Nepal
| | - Dibya Bhatta
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Anju Poudel
- Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, Tennessee State University, 472 Cadillac Lane, McMinnville, TN, 37110, USA
| | - Meena Pandey
- Institute of Agriculture and Animal Science, Tribhuvan University, Paklihawa Campus, Bhairahawa, Rupandehi, Nepal
| | - Suraj Shrestha
- Agriculture and Forestry University, Rampur, Chitwan, Nepal
| | - Jiban Shrestha
- Nepal Agricultural Research Council, National Plant Breeding and Genetics Research Centre, Khumaltar, Lalitpur, Nepal
| |
Collapse
|
24
|
Chamarthi SK, Kaler AS, Abdel-Haleem H, Fritschi FB, Gillman JD, Ray JD, Smith JR, Purcell LC. Identification of genomic regions associated with the plasticity of carbon 13 ratio in soybean. THE PLANT GENOME 2023; 16:e20284. [PMID: 36411598 DOI: 10.1002/tpg2.20284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/08/2022] [Indexed: 05/10/2023]
Abstract
Improving water use efficiency (WUE) for soybean [Glycine max (L.) Merr.] through selection for high carbon isotope (C13) ratio may increase drought tolerance, but increased WUE may limit growth in productive environments. An ideal genotype would be plastic for C13 ratio; that is, be able to alter C13 ratio in response to the environment. Our objective was to identify genomic regions associated with C13 ratio plasticity, C13 ratio stability, and overall C13 ratio in two panels of diverse Maturity Group IV soybean accessions. A second objective was to identify accessions that differed in their C13 ratio plasticity. Panel 1 (205 accessions) was evaluated in seven irrigated and four drought environments, and Panel 2 (373 accessions) was evaluated in four environments. Plasticity was quantified as the slope from regressing C13 ratio of individual genotypes against an environmental index calculated based on the mean within and across environments. The regression intercept was considered a measure of C13 ratio over all environments, and the root mean square error was considered a measure of stability. Combined over both panels, genome-wide association mapping (GWAM) identified 19 single nucleotide polymorphisms (SNPs) for plasticity, 39 SNPs for C13 ratio, and 16 SNPs for stability. Among these SNPs, 71 candidate genes had annotations associated with transpiration or water conservation and transport, root development, root hair elongation, and stomatal complex morphogenesis. The genomic regions associated with plasticity and stability identified in the current study will be a useful resource for implementing genomic selection for improving drought tolerance in soybean.
Collapse
Affiliation(s)
- Siva K Chamarthi
- Dep. of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, USA
| | - Avjinder S Kaler
- Dep. of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, USA
| | - Hussein Abdel-Haleem
- USDA-ARS, United States Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Felix B Fritschi
- Division of Plant Science & Technology, Univ. of Missouri, Columbia, MO, USA
| | - Jason D Gillman
- USDA-ARS, Plant Genetic Research Unit, Univ. of Missouri, Columbia, MO, USA
| | - Jeffery D Ray
- USDA-ARS, Crop Genetics Research Unit, Stoneville, MS, USA
| | - James R Smith
- USDA-ARS, Crop Genetics Research Unit, Stoneville, MS, USA
| | - Larry C Purcell
- Dep. of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
25
|
Bui KT, Naruse T, Yoshida H, Toda Y, Omori Y, Tsuda M, Kaga A, Yamasaki Y, Tsujimoto H, Ichihashi Y, Hirai M, Fujiwara T, Iwata H, Matsuoka M, Takahashi H, Nakazono M. Effects of irrigation on root growth and development of soybean: A 3-year sandy field experiment. FRONTIERS IN PLANT SCIENCE 2022; 13:1047563. [PMID: 36589062 PMCID: PMC9795411 DOI: 10.3389/fpls.2022.1047563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Increasing the water use efficiency of crops is an important agricultural goal closely related to the root system -the primary plant organ for water and nutrient acquisition. In an attempt to evaluate the response of root growth and development of soybean to water supply levels, 200 genotypes were grown in a sandy field for 3 years under irrigated and non-irrigated conditions, and 14 root traits together with shoot fresh weight and plant height were investigated. Three-way ANOVA revealed a significant effect of treatments and years on growth of plants, accounting for more than 80% of the total variability. The response of roots to irrigation was consistent over the years as most root traits were improved by irrigation. However, the actual values varied between years because the growth of plants was largely affected by the field microclimatic conditions (i.e., temperature, sunshine duration, and precipitation). Therefore, the best linear unbiased prediction values for each trait were calculated using the original data. Principal component analysis showed that most traits contributed to principal component (PC) 1, whereas average diameter, the ratio of thin and medium thickness root length to total root length contributed to PC2. Subsequently, we focused on selecting genotypes that exhibited significant improvements in root traits under irrigation than under non-irrigated conditions using the increment (I-index) and relative increment (RI-index) indices calculated for all traits. Finally, we screened for genotypes with high stability and root growth over the 3 years using the multi-trait selection index (MTSI).Six genotypes namely, GmJMC130, GmWMC178, GmJMC092, GmJMC068, GmWMC075, and GmJMC081 from the top 10% of genotypes scoring MTSI less than the selection threshold of 7.04 and 4.11 under irrigated and non-irrigated conditions, respectively, were selected. The selected genotypes have great potential for breeding cultivars with improved water usage abilities, meeting the goal of water-saving agriculture.
Collapse
Affiliation(s)
- Khuynh The Bui
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Toshiya Naruse
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Yoshida
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Yusuke Toda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Yoshihiro Omori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Tsuda
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yuji Yamasaki
- Arid Land Research Center, Tottori University, Tottori, Japan
| | | | | | - Masami Hirai
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hirokazu Takahashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikio Nakazono
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| |
Collapse
|
26
|
Natural selection under conventional and organic cropping systems affect root architecture in spring barley. Sci Rep 2022; 12:20095. [PMID: 36418861 PMCID: PMC9684413 DOI: 10.1038/s41598-022-23298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2022] Open
Abstract
A beneficial root system is crucial for efficient nutrient uptake and stress tolerance. Therefore, evaluating the root system variation for breeding crop plants towards stress adaptation is critically important. Here, we phenotyped root architectural traits of naturally adapted populations from organic and conventional cropping systems under hydroponic and field trails. Long-term natural selection under these two cropping systems resulted in a microevolution of root morphological and anatomical traits. Barley lines developed under an organic system possessed longer roots with narrow root angle, larger surface area, increased root mass density, and a thinner root diameter with an increased number of metaxylem vessels. In contrast, lines adapted to the conventional system tend to have a shorter and wider root system with a larger root volume with a thicker diameter but fewer metaxylem vessels. Allometry analysis established a relationship between root traits and plant size among barley genotypes, which specifies that root angle could be a good candidate among studied root traits to determine root-borne shoot architecture. Further, multivariate analyses showed a strong tendency towards increased variability of the organically adapted population's root morphological and anatomical traits. The genotyping of ancestor populations validated the observations made in these experiments. Collectively, this results indicate significant differences in root phenotypes between conventional and organic populations, which could be useful in comparative genomics and breeding.
Collapse
|
27
|
Choudhary P, Muthamilarasan M. Modulating physiological and transcriptional regulatory mechanisms for enhanced climate resilience in cereal crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153815. [PMID: 36150236 DOI: 10.1016/j.jplph.2022.153815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change adversely affects the yield and productivity of cereal crops, which consequently impacts food security. Therefore, studying stress acclimation, particularly transcriptional patterns and morpho-physiological responses of cereal crops to different stresses, will provide insights into the molecular determinants underlying climate resilience. The availability of advanced tools and approaches has enabled the characterization of plants at morphological, physiological, biochemical, and molecular levels, which will lead to the identification of genomic regions regulating the stress responses at these levels. This will further facilitate using transgenic, breeding, or genome editing approaches to manipulate the identified regions (genes, alleles, or QTLs) to enhance stress resilience. Next-generation sequencing approaches have advanced the identification of causal genes and markers in the genomes through forward or reverse genetics. In this context, the review enumerates the progress of dissecting the molecular mechanisms underlying transcriptional and physiological responses of major cereals to climate-induced stresses. The review systematically discusses different tools and approaches available to study the response of plants to various stresses and identify the molecular determinants regulating stress-resilience. Further, the application of genomics-assisted breeding, transgene-, and targeted editing-based approaches for modulating the genetic determinants for enhanced climate resilience has been elaborated.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
28
|
Schneider HM. Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement. AOB PLANTS 2022; 14:plac050. [PMID: 36545297 PMCID: PMC9762723 DOI: 10.1093/aobpla/plac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 06/09/2023]
Abstract
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Collapse
|
29
|
Ashfaq M, Rasheed A, Sajjad M, Ali M, Rasool B, Javed MA, Allah SU, Shaheen S, Anwar A, Ahmad MS, Mubashar U. Genome wide association mapping of yield and various desirable agronomic traits in Rice. Mol Biol Rep 2022; 49:11371-11383. [PMID: 35939183 DOI: 10.1007/s11033-022-07687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the staple foods worldwide. To feed the growing population, the improvement of rice cultivars is important. To make the improvement in the rice breeding program, it is imperative to understand the similarities and differences of the existing rice accessions to find out the genetic diversity. Previous studies demonstrated the existence of abundant elite genes in rice landraces. A genome-wide association study (GWAS) was performed for yield and yield related traits to find the genetic diversity. DESIGN Experimental study. METHODS AND RESULTS A total of 204 SSRs markers were used among 17 SSRs found to be located on each chromosome in the rice genome. The diversity was analyzed using different genetic characters i.e., the total number of alleles (TNA), polymorphic information content (PIC), and gene diversity by Power markers, and the values for each genetic character per marker ranged from 2 to 9, 0.332 to 0.887 and 0.423 to 0.900 respectively across the whole genome. The results of population structure identified four main groups. MTA identified several markers associated with many agronomically important traits. These results will be very useful for the selection of potential parents, recombinants, and MTAs that govern the improvements and developments of new high yielding rice varieties. CONCLUSIONS Analysis of diversity in germplasm is important for the improvement of cultivars in the breeding program. In the present study, the diversity was analyzed with different methods and found that enormous diversity was present in the studied rice germplasm. The structure analysis found the presence of 4 genetic groups in the existing germplasm. A total of 129 marker-trait associations (MTAs) have been found in this study.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Abdul Rasheed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, 45550, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Entomology Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.,Department of Biosciences, COMSAT University, Islamabad, Pakistan
| | - Bilal Rasool
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sami Ul Allah
- Department of Plant Breeding and Genetics, Bahuddin Zakaria University Bahudar Campus Layyah, Bahudar, Pakistan
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Alia Anwar
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Urooj Mubashar
- Government Training Education Academy, Gujranwala, Pakistan
| |
Collapse
|
30
|
Brooker R, Brown LK, George TS, Pakeman RJ, Palmer S, Ramsay L, Schöb C, Schurch N, Wilkinson MJ. Active and adaptive plasticity in a changing climate. TRENDS IN PLANT SCIENCE 2022; 27:717-728. [PMID: 35282996 DOI: 10.1016/j.tplants.2022.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Better understanding of the mechanistic basis of plant plasticity will enhance efforts to breed crops resilient to predicted climate change. However, complexity in plasticity's conceptualisation and measurement may hinder fruitful crossover of concepts between disciplines that would enable such advances. We argue active adaptive plasticity is particularly important in shaping the fitness of wild plants, representing the first line of a plant's defence to environmental change. Here, we define how this concept may be applied to crop breeding, suggest appropriate approaches to measure it in crops, and propose a refocussing on active adaptive plasticity to enhance crop resilience. We also discuss how the same concept may have wider utility, such as in ex situ plant conservation and reintroductions.
Collapse
Affiliation(s)
- Rob Brooker
- Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK; Department of Ecological Sciences, James Hutton Institute, Dundee, UK.
| | - Lawrie K Brown
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Timothy S George
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Robin J Pakeman
- Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK
| | - Sarah Palmer
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Luke Ramsay
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Christian Schöb
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Mike J Wilkinson
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| |
Collapse
|
31
|
Feng L, Dong T, Jiang P, Yang Z, Dong A, Xie SQ, Griffin CH, Wu R. An eco-evo-devo genetic network model of stress response. HORTICULTURE RESEARCH 2022; 9:uhac135. [PMID: 36061617 PMCID: PMC9433980 DOI: 10.1093/hr/uhac135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/04/2022] [Indexed: 05/23/2023]
Abstract
The capacity of plants to resist abiotic stresses is of great importance to agricultural, ecological and environmental sustainability, but little is known about its genetic underpinnings. Existing genetic tools can identify individual genetic variants mediating biochemical, physiological, and cellular defenses, but fail to chart an overall genetic atlas behind stress resistance. We view stress response as an eco-evo-devo process by which plants adaptively respond to stress through complex interactions of developmental canalization, phenotypic plasticity, and phenotypic integration. As such, we define and quantify stress response as the developmental change of adaptive traits from stress-free to stress-exposed environments. We integrate composite functional mapping and evolutionary game theory to reconstruct omnigenic, information-flow interaction networks for stress response. Using desert-adapted Euphrates poplar as an example, we infer salt resistance-related genome-wide interactome networks and trace the roadmap of how each SNP acts and interacts with any other possible SNPs to mediate salt resistance. We characterize the previously unknown regulatory mechanisms driving trait variation; i.e. the significance of a SNP may be due to the promotion of positive regulators, whereas the insignificance of a SNP may result from the inhibition of negative regulators. The regulator-regulatee interactions detected are not only experimentally validated by two complementary experiments, but also biologically interpreted by their encoded protein-protein interactions. Our eco-evo-devo model of genetic interactome networks provides an approach to interrogate the genetic architecture of stress response and informs precise gene editing for improving plants' capacity to live in stress environments.
Collapse
Affiliation(s)
| | | | | | - Zhenyu Yang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shang-Qian Xie
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou 570228, China
| | - Christopher H Griffin
- Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
32
|
Melandri G, Monteverde E, Riewe D, AbdElgawad H, McCouch SR, Bouwmeester H. Can biochemical traits bridge the gap between genomics and plant performance? A study in rice under drought. PLANT PHYSIOLOGY 2022; 189:1139-1152. [PMID: 35166848 PMCID: PMC9157150 DOI: 10.1093/plphys/kiac053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/17/2022] [Indexed: 05/13/2023]
Abstract
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54-0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59-0.64 versus 0.03-0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate-glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
| | - Eliana Monteverde
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
- Departamento de Biología Vegetal, Facultad de Agronomía, Laboratorio de Evolución y Domesticación de las Plantas, Universidad de La República, Montevideo, Uruguay
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Susan R McCouch
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Reynoso MA, Borowsky AT, Pauluzzi GC, Yeung E, Zhang J, Formentin E, Velasco J, Cabanlit S, Duvenjian C, Prior MJ, Akmakjian GZ, Deal RB, Sinha NR, Brady SM, Girke T, Bailey-Serres J. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev Cell 2022; 57:1177-1192.e6. [PMID: 35504287 DOI: 10.1016/j.devcel.2022.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
Understanding how roots modulate development under varied irrigation or rainfall is crucial for development of climate-resilient crops. We established a toolbox of tagged rice lines to profile translating mRNAs and chromatin accessibility within specific cell populations. We used these to study roots in a range of environments: plates in the lab, controlled greenhouse stress and recovery conditions, and outdoors in a paddy. Integration of chromatin and mRNA data resolves regulatory networks of the following: cycle genes in proliferating cells that attenuate DNA synthesis under submergence; genes involved in auxin signaling, the circadian clock, and small RNA regulation in ground tissue; and suberin biosynthesis, iron transporters, and nitrogen assimilation in endodermal/exodermal cells modulated with water availability. By applying a systems approach, we identify known and candidate driver transcription factors of water-deficit responses and xylem development plasticity. Collectively, this resource will facilitate genetic improvements in root systems for optimal climate resilience.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; IBBM, FCE-UNLP CONICET, La Plata 1900, Argentina
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Germain C Pauluzzi
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elaine Yeung
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Jianhai Zhang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Elide Formentin
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Department of Biology, University of Padova, Padova, Italy
| | - Joel Velasco
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sean Cabanlit
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Christine Duvenjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew J Prior
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Garo Z Akmakjian
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Thomas Girke
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
34
|
Yadav C, Bahuguna RN, Dhankher OP, Singla-Pareek SL, Pareek A. Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:899-910. [PMID: 35592483 PMCID: PMC9110620 DOI: 10.1007/s12298-022-01162-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/26/2023]
Abstract
UNLABELLED Rice is the staple food for more than 3.5 billion people worldwide. The sensitivity of rice to heat, drought, and salinity is well documented. However, rice response to combinations of these stresses is not well understood. A contrasting set of rice genotypes for heat (N22, Gharib), drought (Moroberekan, Pusa 1121) and salinity (Pokkali, IR64) were selected to characterize their response under drought, and combination of drought with heat and salinity at the sensitive seedling stage. Sensitive genotypes (IR64, Pusa 1121, Gharib) recorded higher reactive oxygen species accumulation (20-40%), membrane damage (8-65%) and reduction in photosynthetic efficiency (10-23%) across the stress and stress combinations as compared to stress tolerant checks. On the contrary, N22 and Pokkali performed best under drought + heat, and drought + salinity combination, respectively. Moreover, gene expression pattern revealed the highest expression of catalase (CAT), ascorbate peroxidase (APX) and GATA28a in N22 under heat + drought, whereas the highest expression of CAT, APX, superoxide dismutase (SOD), DEHYDRIN, GATA28a and GATA28b in Pokkali under drought + salinity. Interestingly, the phenotypic variation and expression level of genes highlighted the role of different set of physiological traits and genes under drought and drought combination with heat and salinity stress. This study reveals that rice response to stress combinations was unique with rapid readjustment at physiological and molecular levels. Moreover, phenotypic changes under stress combinations showed substantial adaptive plasticity in rice, which warrant further investigations at molecular level. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01162-y.
Collapse
Affiliation(s)
- Chhaya Yadav
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rajeev Nayan Bahuguna
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| |
Collapse
|
35
|
Ndoye MS, Burridge J, Bhosale R, Grondin A, Laplaze L. Root traits for low input agroecosystems in Africa: Lessons from three case studies. PLANT, CELL & ENVIRONMENT 2022; 45:637-649. [PMID: 35037274 DOI: 10.1111/pce.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.
Collapse
Affiliation(s)
- Mame S Ndoye
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - James Burridge
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Alexandre Grondin
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Laurent Laplaze
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
36
|
Anwar K, Joshi R, Morales A, Das G, Yin X, Anten NPR, Raghuvanshi S, Bahuguna RN, Singh MP, Singh RK, Zanten M, Sasidharan R, Singla‐Pareek SL, Pareek A. Genetic diversity reveals synergistic interaction between yield components could improve the sink size and yield in rice. Food Energy Secur 2022. [DOI: 10.1002/fes3.334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
- Division of Biotechnology CSIR‐Institute of Himalayan Bioresource Technology Palampur India
| | - Alejandro Morales
- Centre for Crop Systems Analysis Plant Sciences Group Wageningen University & Research Wageningen The Netherlands
- Molecular Plant Physiology Institute of Environmental Biology Utrecht University Utrecht The Netherlands
- Plant Ecophysiology Institute of Environmental Biology Utrecht University Utrecht The Netherlands
| | - Gourab Das
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Xinyou Yin
- Centre for Crop Systems Analysis Plant Sciences Group Wageningen University & Research Wageningen The Netherlands
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis Plant Sciences Group Wageningen University & Research Wageningen The Netherlands
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology University of Delhi South Campus New Delhi India
| | - Rajeev N. Bahuguna
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
- Center for Advance Studies on Climate Change Dr. Rajendra Prasad Central Agricultural University, Pusa Samastipur India
| | - Madan Pal Singh
- Division of Plant Physiology Indian Agricultural Research Institute PUSA New Delhi India
| | - Rakesh K. Singh
- Crop Diversification and Genetics International Center for Biosaline Agriculture Academic City Dubai United Arab Emirates
| | - Martijn Zanten
- Molecular Plant Physiology Institute of Environmental Biology Utrecht University Utrecht The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology Institute of Environmental Biology Utrecht University Utrecht The Netherlands
| | - Sneh L. Singla‐Pareek
- Plant Stress Biology International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
- National Agri‐Food Biotechnology Institute Mohali India
| |
Collapse
|
37
|
Chen Z, Sun J, Li D, Li P, He K, Ali F, Mi G, Chen F, Yuan L, Pan Q. Plasticity of root anatomy during domestication of a maize-teosinte derived population. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:139-153. [PMID: 34487165 DOI: 10.1093/jxb/erab406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays L.) has undergone profound changes in root anatomy for environmental adaptation during domestication. However, the genetic mechanism of plasticity of maize root anatomy during the domestication process remains unclear. In this study, high-resolution mapping was performed for nine root anatomical traits using a maize-teosinte population (mexicana × Mo17) across three environments. Large genetic variations were detected for different root anatomical traits. The cortex, stele, aerenchyma areas, xylem vessel number, and cortical cell number had large variations across three environments, indicating high plasticity. Sixteen quantitative trait loci (QTL) were identified, including seven QTL with QTL × environment interaction (EIQTL) for high plasticity traits and nine QTL without QTL × environment interaction (SQTL). Most of the root loci were consistent with shoot QTL depicting domestication signals. Combining transcriptome and genome-wide association studies revealed that AUXIN EFFLUX CARRIER PIN-FORMED LIKE 4 (ZmPILS4) serves as a candidate gene underlying a major QTL of xylem traits. The near-isogenic lines (NILs) with lower expression of ZmPILS4 had 18-24% more auxin concentration in the root tips and 8-15% more xylem vessels. Nucleotide diversity values analysis in the promoter region suggested that ZmPILS4 was involved in maize domestication and adaptation. These results revealed the potential genetic basis of root anatomical plasticity during domestication.
Collapse
Affiliation(s)
- Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Junli Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225000, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
38
|
Daryani P, Darzi Ramandi H, Dezhsetan S, Mirdar Mansuri R, Hosseini Salekdeh G, Shobbar ZS. Pinpointing genomic regions associated with root system architecture in rice through an integrative meta-analysis approach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:81-106. [PMID: 34623472 DOI: 10.1007/s00122-021-03953-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Applying an integrated meta-analysis approach led to identification of meta-QTLs/ candidate genes associated with rice root system architecture, which can be used in MQTL-assisted breeding/ genetic engineering of root traits. Root system architecture (RSA) is an important factor for facilitating water and nutrient uptake from deep soils and adaptation to drought stress conditions. In the present research, an integrated meta-analysis approach was employed to find candidate genes and genomic regions involved in rice RSA traits. A whole-genome meta-analysis was performed for 425 initial QTLs reported in 34 independent experiments controlling RSA traits under control and drought stress conditions in the previous twenty years. Sixty-four consensus meta-QTLs (MQTLs) were detected, unevenly distributed on twelve rice chromosomes. The confidence interval (CI) of the identified MQTLs was obtained as 0.11-14.23 cM with an average of 3.79 cM, which was 3.88 times narrower than the mean CI of the original QTLs. Interestingly, 52 MQTLs were co-located with SNP peak positions reported in rice genome-wide association studies (GWAS) for root morphological traits. The genes located in these RSA-related MQTLs were detected and explored to find the drought-responsive genes in the rice root based on the RNA-seq and microarray data. Multiple RSA and drought tolerance-associated genes were found in the MQTLs including the genes involved in auxin biosynthesis or signaling (e.g. YUCCA, WOX, AUX/IAA, ARF), root angle (DRO1-related genes), lateral root development (e.g. DSR, WRKY), root diameter (e.g. OsNAC5), plant cell wall (e.g. EXPA), and lignification (e.g. C4H, PAL, PRX and CAD). The genes located within both the SNP peak positions and the QTL-overview peaks for RSA are suggested as novel candidate genes for further functional analysis. The promising candidate genes and MQTLs can be used as basis for genetic engineering and MQTL-assisted breeding of root phenotypes to improve yield potential, stability and performance in a water-stressed environment.
Collapse
Affiliation(s)
- Parisa Daryani
- Department of Agronomy & Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran
| | - Hadi Darzi Ramandi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Sara Dezhsetan
- Department of Agronomy & Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), 31535-1897, Karaj, Iran.
| |
Collapse
|
39
|
Siddiqui MN, Teferi TJ, Ambaw AM, Gabi MT, Koua P, Léon J, Ballvora A. New drought-adaptive loci underlying candidate genes on wheat chromosome 4B with improved photosynthesis and yield responses. PHYSIOLOGIA PLANTARUM 2021; 173:2166-2180. [PMID: 34549429 DOI: 10.1111/ppl.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Flag leaf serves as an essential source of assimilates during grain filling, thereby contributing to grain yield up to 48%. Thus, high-throughput phenotyping of flag leaves is crucial to determine their physiological and genetic basis of yield formation and drought adaptation. Here, we utilized 200 wheat cultivars to identify drought-adaptive loci underlying candidate genes associated with flag leaf biomass and photosynthesis-related traits using a genome-wide association study (GWAS). GWAS revealed 21 significant marker-trait associations for key photosynthetic traits in response to drought stress. Analysis of linkage disequilibrium (LD) in these SNPs intervals discovered 103 significant SNPs that established distinct LD blocks containing a total of 382 candidate genes putatively involved in physiological processes, including photosynthesis and water responses. Further, in silico transcript analysis identified two candidate genes in locus AX-580365925 on chromosome 4B, those were found to be highly expressed under drought and associated with proton-transporting ATP synthase activity and stress response pathways. Accordingly, we identified significant allelic haplotype differences on this same locus. The tolerant haplotype (higher chlorophyll content under drought) representing major allele was more abundant and stably increased photosynthetic efficiency and yield under drought scenarios. Collectively, this study offers new adaptive loci and beneficial alleles to reshape the flag leaf physiological and associated photosynthetic components for better yield and sustainability to water-deficit stress.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tesfaye J Teferi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Abebaw M Ambaw
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Melesech T Gabi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Patrice Koua
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
A high-resolution genome-wide association study of the grain ionome and agronomic traits in rice Oryza sativa subsp. indica. Sci Rep 2021; 11:19230. [PMID: 34584121 PMCID: PMC8478900 DOI: 10.1038/s41598-021-98573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
This study presents a comprehensive study of the genetic bases controlling variation in the rice ionome employing genome-wide association studies (GWAS) with a diverse panel of indica accessions, each genotyped with 5.2 million markers. GWAS was performed for twelve elements including B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, and Zn and four agronomic traits including days to 50% flowering, grain yield, plant height and thousand grain weight. GWAS identified 128 loci associated with the grain elements and 57 associated with the agronomic traits. There were sixteen co-localization regions containing QTL for two or more traits. Fourteen grain element quantitative trait loci were stable across growing environments, which can be strong candidates to be used in marker-assisted selection to improve the concentrations of nutritive elements in rice grain. Potential candidate genes were revealed including OsNAS3 linked to the locus that controls the variation of Zn and Co concentrations. The effects of starch synthesis and grain filling on multiple grain elements were elucidated through the likely involvement of OsSUS1 and OsGSSB1 genes. Overall, our study provides crucial insights into the genetic basis of ionomic variations in rice and will facilitate improvement in breeding for trace mineral content.
Collapse
|
41
|
Kumar A, Gupta C, Thomas J, Pereira A. Genetic Dissection of Grain Yield Component Traits Under High Nighttime Temperature Stress in a Rice Diversity Panel. FRONTIERS IN PLANT SCIENCE 2021; 12:712167. [PMID: 34650575 PMCID: PMC8508263 DOI: 10.3389/fpls.2021.712167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
To dissect the genetic complexity of rice grain yield (GY) and quality in response to heat stress at the reproductive stage, a diverse panel of 190 rice accessions in the United States Department of Agriculture (USDA) rice mini-core collection (URMC) diversity panel were treated with high nighttime temperature (HNT) stress at the reproductive stage of panicle initiation. The quantifiable yield component response traits were then measured. The traits, panicle length (PL), and number of spikelets per panicle (NSP) were evaluated in subsets of the panel comprising the rice subspecies Oryza sativa ssp. Indica and ssp. Japonica. Under HNT stress, the Japonica ssp. exhibited lower reductions in PL and NSP and a higher level of genetic variation compared with the other subpopulations. Whole genome sequencing identified 6.5 million single nucleotide polymorphisms (SNPs) that were used for the genome-wide association studies (GWASs) of the PL and NSP traits. The GWAS analysis in the Combined, Indica, and Japonica populations under HNT stress identified 83, 60, and 803 highly significant SNPs associated with PL, compared to the 30, 30, and 11 highly significant SNPs associated with NSP. Among these trait-associated SNPs, 140 were coincident with genomic regions previously reported for major GY component quantitative trait loci (QTLs) under heat stress. Using extents of linkage disequilibrium in the rice populations, Venn diagram analysis showed that the highest number of putative candidate genes were identified in the Japonica population, with 20 putative candidate genes being common in the Combined, Indica and Japonica populations. Network analysis of the genes linked to significant SNPs associated with PL and NSP identified modules that were involved in primary and secondary metabolisms. The findings in this study could be useful to understand the pathways/mechanisms involved in rice GY and its components under HNT stress for the acceleration of rice-breeding programs and further functional analysis by molecular geneticists.
Collapse
Affiliation(s)
| | | | | | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, Untied States
| |
Collapse
|
42
|
Li J, Zhang H, Zhu J, Shen Y, Zeng N, Liu S, Wang H, Wang J, Zhan X. Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117204. [PMID: 33910135 DOI: 10.1016/j.envpol.2021.117204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18-30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China; Institute of Botany, Jiangsu Province and Chinese Academy Sciences, Nanjing, 210014, China
| | - Huihui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yu Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China; Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, United States
| | - Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Shiqi Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
43
|
Reeger JE, Wheatley M, Yang Y, Brown KM. Targeted mutation of transcription factor genes alters metaxylem vessel size and number in rice roots. PLANT DIRECT 2021; 5:e00328. [PMID: 34142002 PMCID: PMC8204146 DOI: 10.1002/pld3.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Root metaxylem vessels are responsible for axial water transport and contribute to hydraulic architecture. Variation in metaxylem vessel size and number can impact drought tolerance in crop plants, including rice, a crop that is particularly sensitive to drought. Identifying and validating candidate genes for metaxylem development would aid breeding efforts for improved varieties for drought tolerance. We identified three transcription factor candidate genes that potentially regulate metaxylem vessel size and number in rice based on orthologous annotations, published expression data, and available root and drought-related QTL data. Single gene knockout mutants were generated for each candidate using CRISPR-Cas9 genome editing. Root metaxylem vessel area and number were analyzed in 6-week-old knockout mutants and wild-type plants under well-watered and drought conditions in the greenhouse. Compared with wild type, LONESOME HIGHWAY (OsLHW) mutants had fewer, smaller metaxylem vessels in shallow roots and more, larger vessels in deep roots in drought conditions, indicating that OsLHW may be a repressor of drought-induced metaxylem plasticity. The AUXIN RESPONSE FACTOR 15 mutants showed fewer but larger metaxylem vessel area in well-watered conditions, but phenotypes were inconsistent under drought treatment. ORYZA SATIVA HOMEBOX 6 (OSH6) mutants had fewer, smaller metaxylem vessels in well-watered conditions with greater effects on xylem number than size. OSH6 mutants had larger shoots and more, deeper roots than the wild type in well-watered conditions, but there were no differences in performance under drought between mutants and wild type. Though these candidate gene mutants did not exhibit large phenotypic effects, the identification and investigation of candidate genes related to metaxylem traits in rice deepen our understanding of metaxylem development and are needed to facilitate incorporation of favorable alleles into breeding populations to improve drought stress tolerance.
Collapse
Affiliation(s)
- Jenna E. Reeger
- Intercollege Graduate Degree Program in Plant BiologyHuck Institutes of the Life SciencesPenn State UniversityUniversity ParkPAUSA
| | - Matthew Wheatley
- Department of Plant Pathology and Environmental MicrobiologyHuck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Yinong Yang
- Department of Plant Pathology and Environmental MicrobiologyHuck Institute of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Kathleen M. Brown
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
44
|
Li P, Yang X, Wang H, Pan T, Wang Y, Xu Y, Xu C, Yang Z. Genetic control of root plasticity in response to salt stress in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1475-1492. [PMID: 33661350 DOI: 10.1007/s00122-021-03784-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/22/2021] [Indexed: 05/22/2023]
Abstract
GWAS identified 559 significant SNPs associated with the remodelling of the root architecture in response to salt, and 168 candidate genes were prioritized by integrating RNA-seq, DEG and WGCNA data. Salinity is a major environmental factor limiting crop growth and productivity. The root is the first plant organ to encounter salt stress, yet the effects of salinity on maize root development remain unclear. In this study, the natural variations in 14 root and 4 shoot traits were evaluated in 319 maize inbred lines under control and saline conditions. Considerable phenotypic variations were observed for all traits, with high salt concentrations decreasing the root length, but increasing the root diameter. A genome-wide association study was conducted to analyse these traits and their plasticity (relative variation). We detected 559 significant single nucleotide polymorphisms, of which 125, 181 and 253 were associated with the control condition, stress condition and trait plasticity, respectively. A total of 168 of 587 candidate genes identified by genome-wide association study were supported by the differentially expressed genes or co-expression networks. Two candidate genes ZmIAA1 and ZmGRAS43 were validated by resequencing. Among these genes, 130 were detected under stress condition or trait plasticity that involved in diverse biological processes including plant hormone signal transduction, phenylpropanoid biosynthesis and fatty acid biosynthesis. Our findings clarify the root remodelling to salinity, and the identified loci and candidate genes may be important for the genetic improvement of root traits and salt tolerance in maize.
Collapse
Affiliation(s)
- Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Ting Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
45
|
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. PLANT CELL REPORTS 2021; 40:437-459. [PMID: 33389046 DOI: 10.1007/s00299-020-02649-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Cell wall plasticity plays a very crucial role in vegetative and reproductive development of rice under drought and is a highly potential trait for improving rice yield under drought. Drought is a major constraint in rice (Oryza sativa L.) cultivation severely affecting all developmental stages, with the reproductive stage being the most sensitive. Rice plants employ multiple strategies to cope with drought, in which modification in cell wall dynamics plays a crucial role. Over the years, significant progress has been made in discovering the cell wall-specific genomic resources related to drought tolerance at vegetative and reproductive stages of rice. However, questions remain about how the drought-induced changes in cell wall made by these genomic resources potentially influence the vegetative and reproductive development of rice. The possibly major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated drought tolerance of rice might have a huge promise in dissecting the putative genomic regions associated with cell wall plasticity under drought. Furthermore, engineering the drought tolerance of rice using cell wall-related genes from resurrection plants may have huge prospects for rice yield improvement. Here, we review the comprehensive multidisciplinary analyses to unravel different components and mechanisms involved in drought-induced cell wall plasticity at vegetative and reproductive stages that could be targeted for improving rice yield under drought.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, West Bengal, 731235, India.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
46
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
47
|
Lucob-Agustin N, Kawai T, Kano-Nakata M, Suralta RR, Niones JM, Hasegawa T, Inari-Ikeda M, Yamauchi A, Inukai Y. Morpho-physiological and molecular mechanisms of phenotypic root plasticity for rice adaptation to water stress conditions. BREEDING SCIENCE 2021; 71:20-29. [PMID: 33762873 PMCID: PMC7973496 DOI: 10.1270/jsbbs.20106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 05/23/2023]
Abstract
Different types of water stress severely affect crop production, and the plant root system plays a critical role in stress avoidance. In the case of rice, a cereal crop cultivated under the widest range of soil hydrologic conditions, from irrigated anaerobic conditions to rainfed conditions, phenotypic root plasticity is of particular relevance. Recently, important plastic root traits under different water stress conditions, and their physiological and molecular mechanisms have been gradually understood. In this review, we summarize these plastic root traits and their contributions to dry matter production through enhancement of water uptake under different water stress conditions. We also discuss the physiological and molecular mechanisms regulating the phenotypic plasticity of root systems.
Collapse
Affiliation(s)
- Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Roel R. Suralta
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Jonathan M. Niones
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
48
|
Guimarães PHR, de Lima IP, de Castro AP, Lanna AC, Guimarães Santos Melo P, de Raïssac M. Phenotyping Root Systems in a Set of Japonica Rice Accessions: Can Structural Traits Predict the Response to Drought? RICE (NEW YORK, N.Y.) 2020; 13:67. [PMID: 32930888 PMCID: PMC7492358 DOI: 10.1186/s12284-020-00404-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The root system plays a major role in plant growth and development and root system architecture is reported to be the main trait related to plant adaptation to drought. However, phenotyping root systems in situ is not suited to high-throughput methods, leading to the development of non-destructive methods for evaluations in more or less controlled root environments. This study used a root phenotyping platform with a panel of 20 japonica rice accessions in order to: (i) assess their genetic diversity for a set of structural and morphological root traits and classify the different types; (ii) analyze the plastic response of their root system to a water deficit at reproductive phase and (iii) explore the ability of the platform for high-throughput phenotyping of root structure and morphology. RESULTS High variability for the studied root traits was found in the reduced set of accessions. Using eight selected traits under irrigated conditions, five root clusters were found that differed in root thickness, branching index and the pattern of fine and thick root distribution along the profile. When water deficit occurred at reproductive phase, some accessions significantly reduced root growth compared to the irrigated treatment, while others stimulated it. It was found that root cluster, as defined under irrigated conditions, could not predict the plastic response of roots under drought. CONCLUSIONS This study revealed the possibility of reconstructing the structure of root systems from scanned images. It was thus possible to significantly class root systems according to simple structural traits, opening up the way for using such a platform for medium to high-throughput phenotyping. The study also highlighted the uncoupling between root structures under non-limiting water conditions and their response to drought.
Collapse
Affiliation(s)
| | - Isabela Pereira de Lima
- Universidade Federal de Lavras, Departamento de Agricultura, Campus Universitário, Lavras, MG, 37200-000, Brazil
| | | | - Anna Cristina Lanna
- Embrapa Arroz e Feijão, Rodovia GO-462, km 12, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | | | - Marcel de Raïssac
- Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, AGAP, Montpellier, France.
| |
Collapse
|
49
|
Klein SP, Schneider HM, Perkins AC, Brown KM, Lynch JP. Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance. PLANT PHYSIOLOGY 2020; 183:1011-1025. [PMID: 32332090 PMCID: PMC7333687 DOI: 10.1104/pp.20.00211] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 05/18/2023]
Abstract
To test the hypothesis that multiple integrated root phenotypes would co-optimize drought tolerance, we phenotyped the root anatomy and architecture of 400 mature maize (Zea mays) genotypes under well-watered and water-stressed conditions in the field. We found substantial variation in all 23 root phenes measured. A phenotypic bulked segregant analysis revealed that bulks representing the best and worst performers in the field displayed distinct root phenotypes. In contrast to the worst bulk, the root phenotype of the best bulk under drought consisted of greater cortical aerenchyma formation, more numerous and narrower metaxylem vessels, and thicker nodal roots. Partition-against-medians clustering revealed several clusters of unique root phenotypes related to plant performance under water stress. Clusters associated with improved drought tolerance consisted of phene states that likely enable greater soil exploration by reallocating internal resources to greater root construction (increased aerenchyma content, larger cortical cells, fewer cortical cell files), restrict uptake of water to conserve soil moisture (reduced hydraulic conductance, narrow metaxylem vessels), and improve penetrability of hard, dry soils (thick roots with a larger proportion of stele, and smaller distal cortical cells). We propose that the most drought-tolerant-integrated phenotypes merit consideration as breeding ideotypes.
Collapse
Affiliation(s)
- Stephanie P Klein
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alden C Perkins
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
50
|
Hsiao AS, Wang K, Ho THD. An Intrinsically Disordered Protein Interacts with the Cytoskeleton for Adaptive Root Growth under Stress. PLANT PHYSIOLOGY 2020; 183:570-587. [PMID: 32238442 PMCID: PMC7271773 DOI: 10.1104/pp.19.01372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 05/27/2023]
Abstract
Intrinsically disordered proteins function as flexible stress modulators in vivo through largely unknown mechanisms. Here, we elucidated the mechanistic role of an intrinsically disordered protein, REPETITIVE PRO-RICH PROTEIN (RePRP), in regulating rice (Oryza sativa) root growth under water deficit. With nearly 40% Pro, RePRP is induced by water deficit and abscisic acid (ABA) in the root elongation zone. RePRP is sufficient and necessary for repression of root development by water deficit or ABA. We showed that RePRP interacts with the highly ordered cytoskeleton components actin and tubulin both in vivo and in vitro. Binding of RePRP reduces the abundance of actin filaments, thus diminishing noncellulosic polysaccharide transport to the cell wall and increasing the enzyme activity of Suc synthase. RePRP also reorients the microtubule network, which leads to disordered cellulose microfibril organization in the cell wall. The cell wall modification suppresses root cell elongation, thereby generating short roots, whereas increased Suc synthase activity triggers starch accumulation in "heavy" roots. Intrinsically disordered proteins control cell elongation and carbon reserves via an order-by-disorder mechanism, regulating the highly ordered cytoskeleton for development of "short-but-heavy" roots as an adaptive response to water deficit in rice.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|