1
|
Hittorf M, Garvetto A, Magauer M, Kirchmair M, Salvenmoser W, Murúa P, Neuhauser S. Local endoreduplication of the host is a conserved process during Phytomyxea-host interaction. Front Microbiol 2025; 15:1494905. [PMID: 39974374 PMCID: PMC11835965 DOI: 10.3389/fmicb.2024.1494905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025] Open
Abstract
Background Endoreduplication, a modified cell cycle, involves cells duplicating DNA without undergoing mitosis. This phenomenon is frequently observed in plants, algae, and animals. Biotrophic pathogens have been demonstrated to induce endoreduplication in plants to secure more space or nutrients. Methods In this study, we investigated the endoreduplication process triggered by two phylogenetically distant Rhizaria organisms-Maullinia spp. (in brown algae) and Plasmodiophora brassicae (in plants)-by combining fluorescent in situ hybridization (FISH) with nuclear area measurements. Results We could confirm that Plasmodiophora brassicae (Plasmodiophorida) triggers endoreduplication in infected plants. For the first time, we also demonstrated pathogen-induced endoreduplication in brown algae infected with Maullinia ectocarpii and Maullinia braseltonii (Phagomyxida). We identified molecular signatures of endoreduplication in RNA-seq datasets of P. brassicae-infected Brassica oleracea and M. ectocarpii-infected Ectocarpus siliculosus. Discussion Cell cycle switch proteins such as CCS52A1 and B in plants, CCS52 in algae, and the protein kinase WEE1 in plants were upregulated in RNA-seq datasets hinting at a potential role in the phytomyxean-induced transition from mitotic cell cycle to endocycle. By demonstrating the consistent induction of endoreduplication in hosts during phytomyxid infections, our study expands our understanding of Phytomyxea-host interaction. The induction of this cellular mechanism by phytomyxid parasites in phylogenetically distant hosts further emphasizes the importance of endoreduplication in these biotrophic interactions.
Collapse
Affiliation(s)
- Michaela Hittorf
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Andrea Garvetto
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Martin Kirchmair
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatología, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Sigrid Neuhauser
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Xie W, Zhao Y, Deng X, Chen R, Qiang Z, García-Caparros P, Mao T, Qin T. GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25. PLANT PHYSIOLOGY 2024; 197:kiae563. [PMID: 39431560 DOI: 10.1093/plphys/kiae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.
Collapse
Affiliation(s)
- Wenfei Xie
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuang Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xianwang Deng
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ruixin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Pedro García-Caparros
- Department of Superior School Engineering, University of Almería, Ctra. Sacramento 04120, Almería, Spain
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Li Y, Zhang P, Wang G, Zhao W, Bao Z, Ma F. FvUVI4 inhibits cell division and cell expansion to modulate fruit development in Fragaria vesca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108804. [PMID: 38852237 DOI: 10.1016/j.plaphy.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Fruit development is mainly regulated by cell division and expansion. As a negative regulator of the anaphase-promoting complex/cyclosome, UVI4 plays important roles in plant growth and development via coordinating cell cycle. However, currently there is no report on UVI4's functions in regulating fruit development in strawberry. Here, Fragaria vesca homolog FvUVI4 is identified and localizes in the nucleus. FvUVI4 has high gene expression in roots, leaves, flower, buds and green fruits, and low expression in petiole, stem, white and yellow fruit. Fruit development of F. vesca 'Hawaii4' is regulated by endoreduplication, and the expression of FvUVI4 is negatively correlated with fruit cell size. Overexpression of FvUVI4 inhibits endoreduplication of leaves, flowers and fruits in both Arabidopsis and F. vesca 'Hawaii4', thereby limiting cell expansion and decreasing cell area. Overexpression of FvUVI4 also inhibits mitotic cell cycle leading to decreased cell number, and ultimately affects the growth of leaves, petals and seeds or fruits. Arabidopsis uvi4 mutants obtained via CRISPR-Cas9 technology display opposite growth phenotypes to Arabidopsis and F. vesca 'Hawaii4' overexpression lines, which can be restored by overexpression of FvUVI4 in Arabidopsis uvi4 mutants. In conclusion, our study indicates that FvUVI4 inhibits cell expansion and cell division to modulate receptacle development in woodland strawberry.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
4
|
Guo X, Zhang X, Jiang S, Qiao X, Meng B, Wang X, Wang Y, Yang K, Zhang Y, Li N, Chen T, Kang Y, Yao M, Zhang X, Wang X, Zhang E, Li J, Yan D, Hu Z, Botella JR, Song CP, Li Y, Guo S. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:684-697. [PMID: 37850874 PMCID: PMC10828200 DOI: 10.1093/plphys/kiad559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.
Collapse
Affiliation(s)
- Xiaopeng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yanan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Kaihuan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yilan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Tianyan Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiyang Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Mengyi Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinru Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Erling Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - José Ramón Botella
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
5
|
Willems A, Liang Y, Heyman J, Depuydt T, Eekhout T, Canher B, Van den Daele H, Vercauteren I, Vandepoele K, De Veylder L. Plant lineage-specific PIKMIN1 drives APC/CCCS52A2 E3-ligase activity-dependent cell division. PLANT PHYSIOLOGY 2023; 191:1574-1595. [PMID: 36423220 PMCID: PMC10022622 DOI: 10.1093/plphys/kiac528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) marks key cell cycle proteins for proteasomal breakdown, thereby ensuring unidirectional progression through the cell cycle. Its target recognition is temporally regulated by activating subunits, one of which is called CELL CYCLE SWITCH 52 A2 (CCS52A2). We sought to expand the knowledge on the APC/C by using the severe growth phenotypes of CCS52A2-deficient Arabidopsis (Arabidopsis thaliana) plants as a readout in a suppressor mutagenesis screen, resulting in the identification of the previously undescribed gene called PIKMIN1 (PKN1). PKN1 deficiency rescues the disorganized root stem cell phenotype of the ccs52a2-1 mutant, whereas an excess of PKN1 inhibits the growth of ccs52a2-1 plants, indicating the need for control of PKN1 abundance for proper development. Accordingly, the lack of PKN1 in a wild-type background negatively impacts cell division, while its systemic overexpression promotes proliferation. PKN1 shows a cell cycle phase-dependent accumulation pattern, localizing to microtubular structures, including the preprophase band, the mitotic spindle, and the phragmoplast. PKN1 is conserved throughout the plant kingdom, with its function in cell division being evolutionarily conserved in the liverwort Marchantia polymorpha. Our data thus demonstrate that PKN1 represents a novel, plant-specific protein with a role in cell division that is likely proteolytically controlled by the CCS52A2-activated APC/C.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
6
|
Goldy C, Barrera V, Taylor I, Buchensky C, Vena R, Benfey PN, De Veylder L, Rodriguez RE. SCARECROW-LIKE28 modulates organ growth in Arabidopsis by controlling mitotic cell cycle exit, endoreplication, and cell expansion dynamics. THE NEW PHYTOLOGIST 2023; 237:1652-1666. [PMID: 36451535 DOI: 10.1111/nph.18650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.
Collapse
Affiliation(s)
- Camila Goldy
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Virginia Barrera
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Isaiah Taylor
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Celeste Buchensky
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodrigo Vena
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| |
Collapse
|
7
|
Li Y, Xue S, He Q, Wang J, Zhu L, Zou J, Zhang J, Zuo C, Fan Z, Yue J, Zhang C, Yang K, Le J. Arabidopsis F-BOX STRESS INDUCED 4 is required to repress excessive divisions in stomatal development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:56-72. [PMID: 34817930 DOI: 10.1111/jipb.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- The Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Qixiumei He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Wenbo School, Jinan, 250100, China
| | - Lingling Zhu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
9
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
10
|
Schwedersky RP, Saleme MDLS, Rocha IA, Montessoro PDF, Hemerly AS, Eloy NB, Ferreira PCG. The Anaphase Promoting Complex/Cyclosome Subunit 11 and Its Role in Organ Size and Plant Development. FRONTIERS IN PLANT SCIENCE 2021; 12:563760. [PMID: 34887878 PMCID: PMC8650582 DOI: 10.3389/fpls.2021.563760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/02/2021] [Indexed: 05/09/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C), a member of the E3 ubiquitin ligase family, plays an important role in recognizing the substrates to be ubiquitylated. Progression of anaphase, and therefore, of the cell cycle, is coordinated through cyclin degradation cycles dependent on proteolysis triggered by APC/C. The APC/C activity depends on the formation of a pocket comprising the catalytic subunits, APC2, APC11, and APC10. Among these, the role of APC11 outside the cell division cycle is poorly understood. Therefore, the goal of this work was to analyze the function of APC11 during plant development by characterizing apc11 knock-down mutant lines. Accordingly, we observed decreased apc11 expression in the mutant lines, followed by a reduction in meristem root size based on the cortical cell length, and an overall size diminishment throughout the development. Additionally, crosses of apc11-1 and amiR-apc11 with plants carrying a WUSCHEL-RELATED HOMEOBOX5 (WOX5) fluorescent marker showed a weakening of the green fluorescent protein-positive cells in the Quiescent Center. Moreover, plants with apc11-1 show a decreased leaf area, together with a decrease in the cell area when the shoot development was observed by kinematics analysis. Finally, we observed a decreased APC/C activity in the root and shoot meristems in crosses of pCYCB1;1:D-box-GUS with apc11-1 plants. Our results indicate that APC11 is important in the early stages of development, mediating meristematic architecture through APC/C activity affecting the overall plant growth.
Collapse
Affiliation(s)
- Rodrigo Porto Schwedersky
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina de Lyra Soriano Saleme
- Department of Biological Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brazil
| | - Ingrid Andrade Rocha
- Department of Biological Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brazil
| | - Patricia da Fonseca Montessoro
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Silva Hemerly
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nubia Barbosa Eloy
- Department of Biological Sciences, Escola Superior de Agricultura ‘Luiz de Queiroz’, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Nubia Barbosa Eloy,
| | - Paulo Cavalcanti Gomes Ferreira
- Laboratorio de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
12
|
Musseau C, Jorly J, Gadin S, Sørensen I, Deborde C, Bernillon S, Mauxion JP, Atienza I, Moing A, Lemaire-Chamley M, Rose JKC, Chevalier C, Rothan C, Fernandez-Lochu L, Gévaudant F. The Tomato Guanylate-Binding Protein SlGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. THE PLANT CELL 2020; 32:3188-3205. [PMID: 32753430 PMCID: PMC7534463 DOI: 10.1105/tpc.20.00245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/06/2020] [Accepted: 07/31/2020] [Indexed: 05/12/2023]
Abstract
Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.
Collapse
Affiliation(s)
- Constance Musseau
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Joana Jorly
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Stéphanie Gadin
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Catherine Deborde
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Stéphane Bernillon
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Isabelle Atienza
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Annick Moing
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
- PMB-Metabolome, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement, Unité Mixte de Recherche 2018, Bordeaux Metabolome Facility, 33140 Villenave d'Ornon, France
| | - Martine Lemaire-Chamley
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Christian Chevalier
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Christophe Rothan
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Lucie Fernandez-Lochu
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| | - Frédéric Gévaudant
- Université de Bordeaux, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Biologie du Fruit et Pathologie, Unité Mixte de Recherche 1332, 33140 Villenave d'Ornon, France
| |
Collapse
|
13
|
Willems A, Heyman J, Eekhout T, Achon I, Pedroza-Garcia JA, Zhu T, Li L, Vercauteren I, Van den Daele H, van de Cotte B, De Smet I, De Veylder L. The Cyclin CYCA3;4 Is a Postprophase Target of the APC/C CCS52A2 E3-Ligase Controlling Formative Cell Divisions in Arabidopsis. THE PLANT CELL 2020; 32:2979-2996. [PMID: 32690720 PMCID: PMC7474283 DOI: 10.1105/tpc.20.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) controls unidirectional progression through the cell cycle by marking key cell cycle proteins for proteasomal turnover. Its activity is temporally regulated by the docking of different activating subunits, known in plants as CELL DIVISION PROTEIN20 (CDC20) and CELL CYCLE SWITCH52 (CCS52). Despite the importance of the APC/C during cell proliferation, the number of identified targets in the plant cell cycle is limited. Here, we used the growth and meristem phenotypes of Arabidopsis (Arabidopsis thaliana) CCS52A2-deficient plants in a suppressor mutagenesis screen to identify APC/CCCS52A2 substrates or regulators, resulting in the identification of a mutant cyclin CYCA3;4 allele. CYCA3;4 deficiency partially rescues the ccs52a2-1 phenotypes, whereas increased CYCA3;4 levels enhance the scored ccs52a2-1 phenotypes. Furthermore, whereas the CYCA3;4 protein is promptly broken down after prophase in wild-type plants, it remains present in later stages of mitosis in ccs52a2-1 mutant plants, marking it as a putative APC/CCCS52A2 substrate. Strikingly, increased CYCA3;4 levels result in aberrant root meristem and stomatal divisions, mimicking phenotypes of plants with reduced RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) activity. Correspondingly, RBR1 hyperphosphorylation was observed in CYCA3;4 gain-of-function plants. Our data thus demonstrate that an inability to timely destroy CYCA3;4 contributes to disorganized formative divisions, possibly in part caused by the inactivation of RBR1.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lei Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
14
|
Bhosale R, Maere S, De Veylder L. Endoreplication as a potential driver of cell wall modifications. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:58-65. [PMID: 31071565 DOI: 10.1016/j.pbi.2019.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 05/06/2023]
Abstract
Endoreplication represents a variant of the mitotic cell cycle during which cells replicate their DNA without mitosis and/or cytokinesis, resulting in an increase in the cells' ploidy level. This process is especially prominent in higher plants, where it has been correlated with cell differentiation, metabolic output and rapid cell growth. However, different reports argue against a ploidy-dependent contribution to cell growth. Here, we review accumulating data suggesting that endocycle onset might exert an effect on cell growth through transcriptional control of cell wall-modifying genes to drive cell wall changes required to accommodate turgor-driven rapid cell expansion, consistent with the idea that vacuolar expansion rather than a ploidy-driven increase in cellular volume represents the major force driving cell growth.
Collapse
Affiliation(s)
- Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, United Kingdom; Center for Plant Integrative Biology (CPIB), University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium.
| |
Collapse
|
15
|
Liu Z, Chen G, Gao F, Xu R, Li N, Zhang Y, Li Y. Transcriptional Repression of the APC/C Activator Genes CCS52A1/A2 by the Mediator Complex Subunit MED16 Controls Endoreduplication and Cell Growth in Arabidopsis. THE PLANT CELL 2019; 31:1899-1912. [PMID: 31175173 PMCID: PMC6713304 DOI: 10.1105/tpc.18.00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 05/08/2023]
Abstract
Endoreduplication, the replication of the nuclear genome in the absence of mitosis, is often associated with cell growth and differentiation in plants and animals, but the molecular mechanisms underlying endoreduplication in plants have not been fully elucidated. Here, we show that the Mediator complex subunit MED16 acts as a negative regulator of endoreduplication to influence cell growth in Arabidopsis (Arabidopsis thaliana). The med16 mutant exhibits larger and more numerous cells than the wild type, resulting in enlarged organs. The large cells in med16 are associated with high DNA ploidy levels. MED16 associates with the promoters of the Anaphase Promoting Complex/Cyclosome activators CELL CYCLE SWITCH52 A1 (CCS52A1) and CCS52A2 (encoding important factors for endoreduplication and cell growth) and represses their expression. MED16 interacts physically with the transcriptional repressor DEL1 to repress the expression of CCS52A2 Genetic analysis suggested that MED16 is partially dependent on CCS52A1/A2 to control endoreduplication and cell growth. Our results indicate that the transcriptional repression of CCS52A1/A2 by MED16 regulates endoreduplication and cell growth in Arabidopsis.
Collapse
Affiliation(s)
- Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Gang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Fan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
16
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
17
|
Ohhara Y, Nakamura A, Kato Y, Yamakawa-Kobayashi K. Chaperonin TRiC/CCT supports mitotic exit and entry into endocycle in Drosophila. PLoS Genet 2019; 15:e1008121. [PMID: 31034473 PMCID: PMC6508744 DOI: 10.1371/journal.pgen.1008121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/09/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Endocycle is a commonly observed cell cycle variant through which cells undergo repeated rounds of genome DNA replication without mitosis. Endocycling cells arise from mitotic cells through a switch of the cell cycle mode, called the mitotic-to-endocycle switch (MES), to initiate cell growth and terminal differentiation. However, the underlying regulatory mechanisms of MES remain unclear. Here we used the Drosophila steroidogenic organ, called the prothoracic gland (PG), to study regulatory mechanisms of MES, which is critical for the PG to upregulate biosynthesis of the steroid hormone ecdysone. We demonstrate that PG cells undergo MES through downregulation of mitotic cyclins, which is mediated by Fizzy-related (Fzr). Moreover, we performed a RNAi screen to further elucidate the regulatory mechanisms of MES, and identified the evolutionarily conserved chaperonin TCP-1 ring complex (TRiC) as a novel regulator of MES. Knockdown of TRiC subunits in the PG caused a prolonged mitotic period, probably due to impaired nuclear translocation of Fzr, which also caused loss of ecdysteroidogenic activity. These results indicate that TRiC supports proper MES and endocycle progression by regulating Fzr folding. We propose that TRiC-mediated protein quality control is a conserved mechanism supporting MES and endocycling, as well as subsequent terminal differentiation.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- * E-mail:
| | - Aki Nakamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuki Kato
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
18
|
Barkla BJ, Rhodes T, Tran KNT, Wijesinghege C, Larkin JC, Dassanayake M. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte. PLANT PHYSIOLOGY 2018; 177:615-632. [PMID: 29724770 PMCID: PMC6001328 DOI: 10.1104/pp.18.00033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/21/2018] [Indexed: 05/29/2023]
Abstract
Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Timothy Rhodes
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Kieu-Nga T Tran
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Chathura Wijesinghege
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
19
|
Smant G, Helder J, Goverse A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:686-702. [PMID: 29277939 DOI: 10.1111/tpj.13811] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
Parallel adaptations enabling the use of plant cells as the primary food source have occurred multiple times in distinct nematode clades. The hallmark of all extant obligate and facultative plant-feeding nematodes is the presence of an oral stylet, which is required for penetration of plant cell walls, delivery of pharyngeal gland secretions into host cells and selective uptake of plant assimilates. Plant parasites from different clades, and even within a single clade, display a large diversity in feeding behaviours ranging from short feeding cycles on single cells to prolonged feeding on highly sophisticated host cell complexes. Despite these differences, feeding of nematodes frequently (but certainly not always) induces common responses in host cells (e.g. endopolyploidization and cellular hypertrophy). It is thought that these host cell responses are brought about by the interplay of effectors and other biological active compounds in stylet secretions of feeding nematodes, but this has only been studied for the most advanced sedentary plant parasites. In fact, these responses are thought to be fundamental for prolonged feeding of sedentary plant parasites on host cells. However, as we discuss in this review, some of these common plant responses to independent lineages of plant parasitic nematodes might also be generic reactions to cell stress and as such their onset may not require specific inputs from plant parasitic nematodes. Sedentary plant parasitic nematodes may utilize effectors and their ability to synthesize other biologically active compounds to tailor these common responses for prolonged feeding on host cells.
Collapse
Affiliation(s)
- Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|